WO2021101278A1 - 자기 구동이 가능한 기능성 마이크로스캐폴드 및 이의 제조방법 - Google Patents

자기 구동이 가능한 기능성 마이크로스캐폴드 및 이의 제조방법 Download PDF

Info

Publication number
WO2021101278A1
WO2021101278A1 PCT/KR2020/016394 KR2020016394W WO2021101278A1 WO 2021101278 A1 WO2021101278 A1 WO 2021101278A1 KR 2020016394 W KR2020016394 W KR 2020016394W WO 2021101278 A1 WO2021101278 A1 WO 2021101278A1
Authority
WO
WIPO (PCT)
Prior art keywords
microscaffold
magnetic nanoparticles
scaffold
functional
mnp
Prior art date
Application number
PCT/KR2020/016394
Other languages
English (en)
French (fr)
Inventor
장영준
조보배
이슬기
Original Assignee
(주)바이오트코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오트코리아 filed Critical (주)바이오트코리아
Publication of WO2021101278A1 publication Critical patent/WO2021101278A1/ko
Priority to US17/662,923 priority Critical patent/US20220265827A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/44Radioisotopes, radionuclides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • A61L2300/622Microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • A61L2300/624Nanocapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Definitions

  • the present invention relates to a functional microscaffold capable of self-driving, and more particularly, a custom combination of a magnetic nanoparticle having a positively charged or negatively charged surface and a biodegradable microscaffold for efficient targeted treatment of intractable diseases. It relates to a manufacturing method.
  • a scaffold is an artificially made extracellular matrix (ECM) for tissue construction and cell function control, and is a structural support for tissue that acts as a cell adhesion inducer.
  • ECM extracellular matrix
  • These scaffolds should be designed in consideration of properties such as biocompatibility, degradability, porosity, moisture content, transfer, and cell adhesion, and a property that has recently attracted attention is magnetic properties.
  • a scaffold containing magnetic particles has been reported on a method of manufacturing a polymer magnetic scaffold for bone regeneration by attracting growth factors and biomaterials in vitro and increasing the rate of bone cell growth and differentiation (Publication No. 10). -2016-0047819, 10-2016-0031682, 10-2016-0031683).
  • the inventors of the present invention intend to manufacture a functional microscaffold capable of carrying therapeutic substances such as cell therapy and drugs and self-driving by an external driving device in order to include the features of existing studies and enable more efficient targeted treatment. I did.
  • the inventors of the present invention are studying a magnetically driven functional microscaffold by an external drive device for efficient targeted treatment of intractable diseases, a method of custom bonding between a magnetic nanoparticle having a positive or negative charge and a biodegradable microscaffold was found, and it was demonstrated that non-invasive and effective targeted treatment is possible by confirming that the manufactured microscaffold is driven by an external drive device.
  • the present invention provides a functional microscaffold that enables efficient targeted treatment of intractable diseases in response to an external drive device, and a microscaffold according to the surface potential of magnetic nanoparticles (MNP) for the same. It is an object of the present invention to provide a custom bonding manufacturing method.
  • a functional microscaffold for targeted treatment composed of a biodegradable polymer and in which magnetic particles are loaded on the interior or surface of a three-dimensional porous microstructure.
  • the magnetic particles may be positively charged magnetic nanoparticles or negatively charged magnetic nanoparticles, and the positively charged magnetic nanoparticles may include a cationic polymer compound, and the negatively charged magnetic nanoparticles are reacted with an acidic substance.
  • the positively charged magnetic nanoparticles may include a cationic polymer compound, and the negatively charged magnetic nanoparticles are reacted with an acidic substance.
  • step (a) reacting iron chloride with a cationic polymer compound or an acidic material to obtain positively charged magnetic nanoparticles or negatively charged magnetic nanoparticles; And (b) loading the positively charged magnetic nanoparticles or negatively charged magnetic nanoparticles obtained in step (a) onto a porous microstructure composed of a biodegradable polymer, Is provided.
  • magnetic nanoparticles having positive or negative charges and microscaffolds are combined through each custom method, and the range of applied diseases is determined by confirming that the manufactured functional scaffold is normally driven by an external drive device. It turned out to be wide.
  • the magnetically driven functional microscaffold and its manufacturing method of the present invention can be usefully used as a technology enabling the application of magnetic nanoparticles according to the scaffold state and various targeted treatments in the field of target treatment of intractable diseases.
  • 1A to 1C are SEM photographs of the fabricated scaffold.
  • Figure 2 schematically shows the binding reaction of PEI-MNP and scaffold.
  • FIG 3 is a photograph of a PEI-MNP scaffold obtained by combining various concentrations of PEI-MNP and scaffold in the presence of a coupling agent (with coupoing agent) and without a coupling agent (without coupoing agent).
  • FIG. 4 is a SEM photograph showing the proximity surface state of a scaffold (200-400 ⁇ m range and 400 ⁇ m or more) according to size to which PEI-MNP is applied.
  • 5A to 5D are SEM-EDS results confirming the presence of Fe on the surface of the scaffold coated with PEI-MNP.
  • FIG. 9 is a SEM photograph showing the state of the proximity surface of the scaffold to which CA-MNP is applied.
  • 10a to 10c are SEM-EDS results confirming the presence of Fe on the surface of the scaffold to which CA-MNP was applied.
  • FIG. 13 is a photograph taken of driving of a PEI-MNP-coupled microscaffold and a CA-MNP-coupled microscaffold by an external drive device (EMA).
  • EMA external drive device
  • the present invention provides a functional microscaffold for targeted treatment composed of a biodegradable polymer and in which magnetic particles are loaded inside or on the surface of a three-dimensional porous microstructure.
  • the magnetic particles may be positively charged magnetic nanoparticles, and preferably, may be positively charged iron compounds (eg, iron chloride), but are not limited thereto.
  • a cationic polymer compound such as polyethyleneimine may be used to impart a positive charge to the nanoparticles, but is not limited thereto.
  • the magnetic particles may be negatively charged magnetic nanoparticles, and preferably, may be an iron compound having a negative charge (eg, iron chloride or a commercially sold iron compound), but is not limited thereto.
  • the negatively charged magnetic nanoparticles may be prepared by reacting an iron compound with an acidic substance such as citric acid to impart a negative charge to the nanoparticles, but is not limited thereto.
  • the functional microscaffold for targeted treatment comprises the steps of (a) reacting iron chloride with a cationic polymer compound or an acidic substance to obtain positively charged magnetic nanoparticles or negatively charged magnetic nanoparticles; And (b) loading the positively charged magnetic nanoparticles or negatively charged magnetic nanoparticles obtained in step (a) onto a porous microstructure composed of a biodegradable polymer.
  • the manufacturing method of the present invention includes a step of reacting iron chloride with a cationic polymer compound or an acidic substance to obtain positively charged magnetic nanoparticles or negatively charged magnetic nanoparticles [ie, step (a)].
  • step (a) the cationic polymer compound or acidic substance is as described above.
  • iron chloride is stirred in water to generate nanoparticle nuclei, and then a basic substance (e.g., ammonia water, etc.) is added dropwise to grow the nanoparticle nuclei, and then citric acid
  • an acidic substance such as a solution, negatively charged magnetic nanoparticles can be prepared.
  • the manufacturing method of the present invention includes the step of loading the positively charged magnetic nanoparticles or negatively charged magnetic nanoparticles obtained in step (a) onto a porous microstructure composed of a biodegradable polymer [ie, step (b)].
  • the porous microstructure composed of the biodegradable polymer may be prepared by modifying the method described in Korean Patent Application No. 10-2018-0044095.
  • the EDC / NHS coupling reaction can be used, or by electrostatic coupling between the positively charged surface of the positively charged magnetic nanoparticles and the negatively charged surface of the microstructure (microscaffold). I can.
  • the surface of a microstructure (microscaffold) having a negative charge is surface-modified with a cationic polymer so that the microstructure has a positive charge, and the negatively charged magnetic nanoparticles
  • the surface-modified microstructure with a positive charge and the activated negatively charged magnetic nanoparticles may be subjected to a coupling reaction.
  • the negatively charged magnetic nanoparticles may be reacted with a cationic polysaccharide such as chitosan and the like and then adsorbed onto the negatively charged surface of the microstructure (microscaffold), thereby loading the negatively charged magnetic nanoparticles on the porous microstructure.
  • a cationic polysaccharide such as chitosan and the like
  • a 1 M hydrochloric acid solution (48 ml) in which FeCl 2 (2.536 g. 0.02 mol) and FeCl 3 (6.488 g, 0.04 mol) are dissolved was slowly added to the 1 M sodium hydroxide solution (200 ml), and the mixture was stirred at 1,500 rpm in a nitrogen atmosphere. Stir at speed. After reacting at 80° C. for 2 hours, 20 ml of distilled water in which polyethyleneimine (polyethylenimine, branched, PEI, [MW 10,000], 12 g) is dissolved was added, followed by stirring at 95° C. for 30 minutes. After completion of the reaction, it was washed three times with distilled water at about 40° C. and dispersed in 100 ml of distilled water.
  • FeCl 2 ⁇ 4H 2 O (3.464 g. 0.016 mol) and FeCl 3 ⁇ 6H 2 O (8.88 g, 0.0032 mol) were dissolved in 200 ml of distilled water and stirred at 1,000 rpm for 20 minutes to generate nanoparticle nuclei. After slowly dropping 50 ml of ammonia water, the temperature was slowly raised and reacted at 80° C. for 30 minutes to grow nuclei. Subsequently, a solution obtained by dissolving 4 g of citric acid in 8 ml of distilled water was added, the temperature was raised to 90° C., reacted for 1 hour, and then cooled to room temperature.
  • the upper layer was removed using magnetic properties, and about 200 ml of distilled water was added to the nanoparticle solution, followed by centrifugation at 10,000 rpm for 10 minutes to remove the supernatant. About 200 ml of distilled water was added to the separated precipitate again, dispersed with an ultrasonicator, and centrifuged at 10,000 rpm for 10 minutes to recover the supernatant.
  • the PLGA [poly(lactic-co-glycolic acid)] microscaffold was manufactured by modifying the method described in Korean Patent Application No. 10-2018-0044095. In summary, it is as follows. PLGA [poly(lactic-co-glycolic acid)] by dual emulsion method using a microfluidic device composed of Tygon tube, 1/32, 1/16, 3/32 in dd, 21G needle and tubing adapter The microscaffold was prepared. First, PLGA and gelatin solutions were prepared for water-in-oil (W-O) emulsification.
  • W-O water-in-oil
  • PLGA 210 mg was dissolved in 2.8 ml of dichloromethane (DCM) and 45 ⁇ l of Span80 for 7 minutes at 3000 rpm. Thereafter, 1750 ⁇ l of a gelatin solution (0.3 g / 4.7 ml PVA [polyvinyl alcohol] 1% aqueous solution) was added to the PLGA solution to make a W-O emulsion, followed by stirring at 3000 rpm for 4 minutes and 30 seconds.
  • DCM dichloromethane
  • the emulsified WO solution was transferred to a 20 ml vial, a tubing adapter of a 26G tube and a Tygon tube were connected, and a 21G needle was inserted into the part where the final scaffold came out, and the microfluidic device was 30-24 in a nitrogen gas state. It was adjusted to a pressure of kpa, and a WO emulsion and a 1% aqueous solution of PVA were injected and continuously prepared through a Tygon tube of the microfluidic device. Then, the scaffold flowing along the 21G needle connected to the tubing adapter was collected in deionized water of a 2 L double beaker maintained at a constant temperature.
  • the prepared PEI-MNP solution was diluted to 60 mg/ml, 30 mg/ml, 15 mg/ml, 7.5 mg/ml, 3.75 mg/ml, 1.875 mg/ml, 0.9375 mg/ml, 0.46875 mg/ml, respectively. Prepared in concentration.
  • Coupling solution 2.5 prepared by dissolving 0.2875 g of EDC[1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride] and 0,1725 g of N-hydroxysuccinimide (NHS) in 5 ml of 0.1 M MES (4-morpholinoethanesulfonic acid) solution
  • the prepared PLGA scaffold water dispersed state: 0.5 ml was added, DW removed / dried state: 0.004 g
  • 2.5 ml of the PEI-MNP solution having each concentration prepared above was added to the solution in which the scaffold was dispersed, followed by stirring for about 16 hours.
  • the final reaction concentration of the MNP solution is 30 mg/ml, 15 mg/ml, 7.5 mg/ml, 3.75 mg/ml, 1.875 mg/ml, 0.9375 mg/ml, 0.46875 mg/ml, 0.23425 mg/ml, respectively.
  • the PEI-MNP scaffold was washed with D.W and collected through a cell strainer (100 mesh). Separation into 200-400 ⁇ m and 400 ⁇ m or more scaffolds were performed and the magnetic strength was compared (see FIG. 12).
  • Figure 6 schematically shows the binding reaction of CA-MNP and scaffold.
  • 0.03 g of freeze-dried scaffold was added to 10 ml of PEI solution diluted to 10%, 20%, 30%, 40%, 50% concentration, and stirred for 18 hours (vortex), and 50 ml of water-dispersed scaffold was added to 1%. , 5%, 10% diluted PEI solution was slowly added to 500 ml and stirred for 18 hours to coat the negatively charged scaffold surface with PEI, a cationic polymer, thereby modifying the surface with positive charge. After completion of the reaction, it was sufficiently washed with D.W and freeze-dried to prepare a PEI-coated scaffold.
  • the CA-MNP scaffold prepared by the above reaction was observed on the scaffold surface through SEM measurement, and the presence of Fe, a component of CA-MNP applied to the scaffold, was confirmed through surface mapping of SEM-EDS. (See Figs. 9 and 10a to 10c).
  • Ferraheme (FDA approved, Amag Pharmaceuticals Inc.) is an iron nanoparticle with a negatively charged surface and attempted to enhance its adsorption to a scaffold having a negatively charged surface through reaction with chitosan, a cationic polysaccharide ( See Fig. 11).
  • a chitosan solution was prepared by dissolving 40 mg of chitosan in 60 ml of a 1% acetic acid solution. 3 ml of ferrahem (30 mg/ml) was added to the chitosan solution, stirred for 3 hours (vortexed), and then thoroughly washed through centrifugation to remove residual acetic acid. After re-dispersing by adding 3 ml D.W, the concentration of Fe was measured through ICP analysis to prepare a concentration of 20 mg/ml.
  • the prepared ferahem chitosan solution was added (3.75 mg Fe) to the tube (e-tube) containing the scaffold (water dispersion state: 0.5 ml of the scaffold itself, DW removed / dried state: 0.01 g), and 5 It was fixed over time to induce a surface adsorption reaction. After enhancing the adsorption power of the surface ferahem chitosan through lyophilization, the unreacted ferahem chitosan particle powder was removed through a particle separator, and MNP scaffolds in the range of 300-400 ⁇ m were collected.
  • magnetic nanoparticles having positive or negative charges and microscaffolds are combined through each custom method, and the range of applied diseases is determined by confirming that the manufactured functional scaffold is normally driven by an external drive device. It turned out to be wide. Therefore, the magnetically driven functional microscaffold and its manufacturing method of the present invention are useful in related industrial fields as a technology that enables the application of magnetic nanoparticles according to the scaffold state and various target treatments in the field of target treatment of intractable diseases. Can be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 난치성 질환의 효율적인 표적 치료를 위해 자기 구동이 가능한 기능성 마이크로스캐폴드 및 이의 제조방법을 제공한다. 본 발명의 자기 구동 기능성 마이크로스캐폴드 및 이의 제조방법은 난치성 질환의 표적 치료 분야에서 스캐폴드 상태에 따른 자성 나노 입자 적용 및 다양성 있는 표적 치료를 가능하게 하는 기술로서 유용하게 사용될 수 있다.

Description

자기 구동이 가능한 기능성 마이크로스캐폴드 및 이의 제조방법
본 발명은 자기 구동이 가능한 기능성 마이크로스캐폴드에 관한 것으로, 더욱 상세하게는 난치성 질환의 효율적인 표적 치료를 위한, 양전하성 또는 음전하성 표면을 갖는 자성 나노입자와 생분해성 마이크로스캐폴드의 맞춤 결합 제조방법에 관한 것이다.
스캐폴드(scaffold)는 조직 구축, 세포기능 제어를 위해 인공적으로 만든 세포외 기질(ECM)로 세포의 접착유도물질 역할을 하는 조직의 구조적 지지체이다. 이러한 스캐폴드는 생체적합성, 분해성, 다공성, 수분함유, 전달, 세포유착 등의 성질을 고려해 디자인해야 하며 최근 새롭게 주목받는 성질이 자성 특성이다.
자성 입자를 포함하는 스캐폴드는 생체 내에서 생체 외의 성장 요소 및 바이오 물질들을 끌어당기고 뼈 세포 성장 및 분화 속도를 증가시켜 뼈 재생용 폴리머 자성 스캐폴드 제조 방법에 대해 보고된 바 있다(공개번호 제10-2016-0047819호, 제10-2016-0031682호, 제10-2016-0031683호). 이와 관련하여 본 발명 발명자들은 기존 연구의 특징을 포함하고 보다 효율적인 표적 치료가 가능케 하고자 세포치료제 및 약물과 같은 치료물질 담지가 가능하고 외부 구동 장치에 의해 자기구동이 되는 기능성 마이크로스캐폴드를 제조하고자 하였다. 또한 자성 나노입자 표면 특성에 따라 적합한 결합 제조방법을 제공하고자 하였다.
[선행기술문헌]
[특허문헌]
한국특허공개 제10-2016-0047819호 (2016년05월03일)
한국특허공개 제10-2016-0031682호 (2016년03월23일)
한국특허공개 제10-2016-0031683호 (2016년03월23일)
본 발명의 발명자들은 난치성 질환의 효율적인 표적 치료를 위해 외부 구동 장치에 의한 자기 구동 기능성 마이크로스캐폴드에 대하여 연구하던 중, 양전하 또는 음전하를 갖는 자성 나노입자와 생분해성 마이크로스캐폴드의 맞춤 결합 방법을 발견하였으며, 제조된 마이크로스캐폴드가 외부 구동 장치에 의해 구동되는 것을 확인함으로써 비침습적이고 효과적인 표적 치료가 가능하다는 것을 입증하였다.
따라서, 본 발명은 외부 구동 장치에 반응하여 난치성 질환의 효율적인 표적 치료를 가능하게 하는 기능성 마이크로스캐폴드 및 이를 위한, 자성 나노입자(magnetic nanoparticle, MNP)의 표면 전위에 따른 마이크로스캐폴드와의 맞춤 결합 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 일 측면에 따라, 생분해성 고분자로 구성되고 3차원 형태의 다공성 마이크로구조체의 내부 또는 표면에 자성 입자가 적재된 표적 치료용 기능성 마이크로스캐폴드가 제공된다.
일 구현예에서, 상기 자성 입자는 양전하 자성 나노입자 또는 음전하 자성 나노입자일 수 있으며, 상기 양전하 자성 나노입자는 양이온성 고분자 화합물을 포함할 수 있으며, 상기 음전하 자성 나노입자는 산성 물질과의 반응에 의해 제조될 수 있다.
본 발명의 다른 측면에 따라, (a) 염화철을 양이온성 고분자 화합물 또는 산성 물질과 반응시켜 양전하 자성 나노입자 또는 음전하 자성 나노입자를 얻는 단계; 및 (b) 단계(a)에서 얻어진 상기 양전하 자성 나노입자 또는 음전하 자성 나노입자를 생분해성 고분자로 구성된 다공성 마이크로구조체에 적재시키는 단계를 포함하는, 상기 표적 치료용 기능성 마이크로스캐폴드의 제조방법이 제공된다.
본 발명에 의해, 양전하 또는 음전하를 갖는 자성 나노입자와 마이크로스캐폴드를 각각의 맞춤 방법을 통해 결합하고, 제조된 기능성 스캐폴드가 외부 구동 장치에 의해 정상 구동 된다는 것을 확인함으로써 적용 질환의 범위가 넓다는 것이 밝혀졌다.
따라서, 본 발명의 자기 구동 기능성 마이크로스캐폴드 및 이의 제조방법은 난치성 질환의 표적 치료 분야에서 스캐폴드 상태에 따른 자성 나노 입자 적용 및 다양성 있는 표적 치료를 가능하게 하는 기술로서 유용하게 사용될 수 있다.
도 1a 내지 1c는 제작된 스캐폴드의 SEM 사진이다.
도 2는 PEI-MNP 및 스캐폴드의 결합 반응을 개략적으로 나타낸 것이다.
도 3은 다양한 농도의 PEI-MNP 및 스캐폴드를 커플링제가 존재하는 상태(with coupoing agent) 및 커플링제가 존재하지 않는 상태(without coupoing agent)에서 결합시켜 얻은 PEI-MNP 스캐폴드의 사진이다.
도 4는 PEI-MNP가 도포된 크기별 스캐폴드(200-400 μm 범위 및 400 μm 이상)의 근접 표면 상태를 나타낸 SEM 사진이다.
도 5a 내지 5d는 PEI-MNP가 도포된 스캐폴드 표면의 Fe 존재를 확인한 SEM-EDS 결과이다.
도 6은 CA-MNP 및 스캐폴드의 결합 반응을 개략적으로 나타낸 것이다.
도 7은 수분산된 스캐폴드를 사용하여 CA-MNP 및 스캐폴드를 결합시킨 결과이다.
도 8은 건조된 스캐폴드를 사용하여 CA-MNP 및 스캐폴드를 결합시킨 결과이다.
도 9는 CA-MNP가 도포된 스캐폴드의 근접 표면 상태를 나타낸 SEM 사진이다.
도 10a 내지 10c는 CA-MNP가 도포된 스캐폴드 표면의 Fe 존재를 확인한 SEM-EDS 결과이다.
도 11은 페라헴과 스캐폴드의 결합 반응을 개략적으로 나타낸 것이다.
도 12는 각 나노입자(PEI-MNP, CA-MNP 및 페라헴)와 결합한 스캐폴드의 자성세기를 측정하여 비교한 결과이다.
도 13은 PEI-MNP 결합 마이크로스캐폴드와 CA-MNP 결합 마이크로스캐폴드의 외부구동장치(EMA)에 의한 구동을 촬영한 사진이다.
본 발명은 생분해성 고분자로 구성되고 3차원 형태의 다공성 마이크로구조체의 내부 또는 표면에 자성 입자가 적재된 표적 치료용 기능성 마이크로스캐폴드를 제공한다.
일 구현예에서, 상기 자성 입자는 양전하 자성 나노입자일 수 있으며, 바람직하게는, 양전하를 갖는 철 화합물(예를 들어, 염화철)일 수 있으나, 이에 제한되지 않는다. 또한, 상기 양전하 자성 나노입자는 나노입자에 양전하를 부여하기 위하여 폴리에틸렌이민 등의 양이온성 고분자 화합물이 사용될 수 있으나, 이에 제한되지 않는다.
일 구현예에서, 상기 자성 입자는 음전하 자성 나노입자일 수 있으며, 바람직하게는, 음전하를 갖는 철 화합물(예를 들어, 염화철 또는 상업적으로 판매되는 철 화합물)일 수 있으나, 이에 제한되지 않는다. 또한, 상기 음전하 자성 나노입자는 나노입자에 음전하를 부여하기 위하여 철 화합물과 시트릭산 등의 산성 물질과의 반응에 의해 제조될 수 있으나, 이에 제한되지 않는다.
상기 표적 치료용 기능성 마이크로스캐폴드는 (a) 염화철을 양이온성 고분자 화합물 또는 산성 물질과 반응시켜 양전하 자성 나노입자 또는 음전하 자성 나노입자를 얻는 단계; 및 (b) 단계(a)에서 얻어진 상기 양전하 자성 나노입자 또는 음전하 자성 나노입자를 생분해성 고분자로 구성된 다공성 마이크로구조체에 적재시키는 단계를 포함하는 방법에 의해 제조될 수 있다.
본 발명의 제조방법은 염화철을 양이온성 고분자 화합물 또는 산성 물질과 반응시켜 양전하 자성 나노입자 또는 음전하 자성 나노입자를 얻는 단계[즉, 단계(a)]를 포함한다. 단계(a)에서, 양이온성 고분자 화합물 또는 산성 물질은 상기에서 설명한 바와 같다. 단계(a)에서 염화철을 산성 물질과 반응시키는 경우에는 염화철을 물에서 교반하여 나노입자 핵을 생성시킨 후 염기성 물질(예를 들어, 암모니아수 등)을 적가하여 나노입자 핵을 성장시킨 다음, 시트릭산 용액 등의 산성 물질과 반응시켜 음전하 자성 나노입자를 제조할 수 있다.
본 발명의 제조방법은 단계(a)에서 얻어진 상기 양전하 자성 나노입자 또는 음전하 자성 나노입자를 생분해성 고분자로 구성된 다공성 마이크로구조체에 적재시키는 단계[즉, 단계(b)]를 포함한다. 단계(b)에서, 생분해성 고분자로 구성된 다공성 마이크로구조체는 한국특허 출원번호 제10-2018-0044095호에 기재된 방법을 변형하여 제조될 수 있다.
다공성 마이크로구조체에 양전하 자성 나노입자를 적재시키는 경우에는 EDC / NHS 커플링 반응을 이용하거나, 양전하 자성 나노입자의 양전하 표면과 마이크로구조체(마이크로스캐폴드)의 음전하 표면 간의 정전기적 결합에 의해 수행할 수 있다.
다공성 마이크로구조체에 음전하 자성 나노입자를 적재시키는 경우에는 음전하를 갖는 마이크로구조체(마이크로스캐폴드)의 표면을 양이온계 폴리머(Cationic polymer)로 표면 개질하여 마이크로구조체가 양전하를 갖도록 하고, 음전하 자성 나노입자를 커플링제 등으로 표면 음전하(예를 들어, 카르복실기 등)을 활성화시킨 다음, 양전하로 표면 개질된 마이크로구조체와 활성화된 음전하 자성 나노입자를 커플링 반응시킴으로써 수행할 수 있다.
혹은, 음전하 자성 나노입자를 키토산 등의 양이온성 폴리사카라이드 등과 반응시킨 다음, 마이크로구조체(마이크로스캐폴드)의 음전하 표면에 이를 흡착시킴으로써 다공성 마이크로구조체에 음전하 자성 나노입자를 적재시킬 수 있다.
이하, 본 발명을 실시예 및 실험예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.
<실시예>
1. 자성 나노입자 제조
(1) 양전하 표면의 자성 나노입자 제조(PEI-MNP)
FeCl2(2.536 g. 0.02 mol)와 FeCl3(6.488 g, 0.04 mol)이 녹아 있는 1 M 염산 용액(48 ml)을 1 M 수산화 나트륨 용액(200 ml)에 천천히 첨가하고 질소 분위기에서 1,500 rpm의 속도로 교반하였다. 80 ℃에서 2시간 반응시킨 후, 폴리에틸렌이민(Polyethylenimine, branched, PEI, [MW 10,000], 12 g)이 녹아 있는 증류수 20 ml을 첨가하여 95 ℃에서 30 분간 교반하였다. 반응 완료 후, 약 40 ℃의 증류수로 3회 세척하고 증류수 100 ml에 분산하였다.
(2) 음전하 표면의 자성 나노입자 제조(CA-MNP)
질소 분위기 하에서 FeCl2ㆍ4H2O(3.464 g. 0.016 mol)와 FeCl3ㆍ6H2O(8.88 g, 0.0032 mol)을 증류수 200 ml에 녹이고 20 분간 1,000 rpm에서 교반하여 나노입자 핵을 생성시켰다. 암모니아수 50 ml를 천천히 떨어뜨려준 뒤, 천천히 온도를 올려 80 ℃에서 30 분간 반응시켜 핵을 성장시켰다. 이어서 4 g의 시트릭산을 8 ml의 증류수에 녹인 용액을 첨가하고 온도를 90 ℃로 올려 1 시간 동안 반응시킨 뒤, 상온으로 식혔다. 자성 성질을 이용해 상층을 제거하고 약 200 ml의 증류수를 나노입자 용액에 가하여 10,000 rpm 속도로 10 분간 원심 분리하여 상층액을 제거하였다. 분리된 침전물에 다시 약 200 ml의 증류수를 가하고 초음파기로 분산시켜 10,000 rpm 속도로 10 분간 원심분리하여 상층액을 회수하였다.
2. 스캐폴드 제작
PLGA[poly(lactic-co-glycolic acid)] 마이크로스캐폴드는 한국특허 출원번호 제10-2018-0044095호에 기재된 방법을 변형하여 제조하였다. 요약하면 하기와 같다. 타이곤 튜브(Tygon tube, 1/32, 1/16, 3/32 in d.d), 21G 바늘 및 튜빙어뎁터로 구성된 미세유체 장치를 이용하여 이중 에멀젼 방법으로 PLGA[poly(lactic-co-glycolic acid)] 마이크로스캐폴드를 제조하였다. 먼저 유중수(W-O) 유화를 위해 PLGA 및 젤라틴 용액을 제조하였다. 구체적으로, PLGA(210 mg)을 DCM(dichloromethane) 2.8 ml와 Span80 45 ㎕ 용액에 7분 동안 3000 rpm의 조건으로 용해시켰다. 그 후, W-O 에멀젼을 만들기 위해 상기 PLGA 용액에 젤라틴 용액(0.3g / 4.7 ml PVA[polyvinyl alcohol] 1% 수용액) 1750 ㎕를 첨가하여 4분 30초 동안 3000 rpm에서 교반하였다.
상기 유화된 W-O 용액을 20 ml 바이알에 옮겨 26G 관의 튜빙어댑터(tubing adapter) 및 타이곤 튜브를 연결하여 최종 스캐폴드가 나오는 부분에 21G 바늘을 삽입하였고, 질소 가스 상태에서 미세유체 장치를 30-24 kpa의 압력으로 조정하였으며, W-O 에멀젼과 PVA 1% 수용액을 주입하여 상기 미세유체 장치의 타이곤 튜브를 통해 연속적으로 제조하였다. 그 다음, 튜빙어댑터에 연결된 21G 바늘을 따라 흘려보내진 스캐폴드를 항온유지가 되는 2 L 이중 비커의 탈 이온수에서 수집하였다. 이어서 상기 수집된 스캐폴드에 함유된 DCM(dichloromethane)을 제거하기 위해 4시간에 걸쳐 완만하게 교반하여 증발시킨 다음 젤라틴이 함유된 PLGA 마이크로입자를 수득하였다. 그 후 상기 스캐폴드 내에 함유된 젤라틴을 제거하기 위해, 젤라틴 마이크로입자를 1000 ml 비커(38 ℃) 탈 이온수에 침지하였다가 5분 동안 교반하였다. 마지막으로, 탈 이온수로 5회 세척한 후, 탈 이온수를 함유한 20 ml 바이알에 젤라틴이 침출된 PLGA 마이크로스캐폴드를 제조하였다.
3. 자성 나노입자와 스캐폴드의 결합 반응
(1) 양전하 표면의 자성 나노입자와 스캐폴드 결합 반응
상기 제조한 PEI-MNP 용액을 희석하여 각각 60 mg/ml, 30 mg/ml, 15 mg/ml, 7.5 mg/ml, 3.75 mg/ml, 1.875 mg/ml, 0.9375 mg/ml, 0.46875 mg/ml 농도로 준비하였다. EDC[1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride] 0.2875 g, NHS(N-hydroxysuccinimide) 0,1725 g을 0.1 M MES(4-morpholinoethanesulfonic acid) 용액 5 ml에 녹여 제조한 커플링 용액 2.5 ml에 상기 제조한 PLGA 스캐폴드(수분산 상태: 0.5 ml 넣은 후, D.W 제거 / 건조 상태: 0.004 g)을 넣고 6시간 동안 교반(vortex)하여 스캐폴드 표면을 활성화하였다. 상기에서 제조한 각각의 농도를 갖는 PEI-MNP 용액 2.5 ml를 스캐폴드가 분산되어 있는 용액에 첨가하여 약 16 시간 동안 교반하였다. 또한, 커플링제 없이 PEI-MNP의 양전하 표면과 스캐폴드의 음전하 표면 간의 정전기적 결합 확인을 위해 스캐폴드가 분산되어 있는 D.W 2.5 ml에 상기 농도로 희석된 MNP 용액 2.5 ml를 첨가하여 약 16 시간 동안 교반하였다.
이 때, MNP 용액의 반응 최종 농도는 각각 30 mg/ml, 15 mg/ml, 7.5 mg/ml, 3.75 mg/ml, 1.875 mg/ml, 0.9375 mg/ml, 0.46875 mg/ml, 0.23425 mg/ml이다(도 3 참조). 반응 후, Cell strainer(100 mesh)를 통해 PEI-MNP 스캐폴드를 D.W로 세척하여 수집하였다. 200-400 μm 및 400 μm 이상의 스캐폴드로 분리하여 동일 과정을 진행하여 자성 세기를 비교하였다(도 12 참조).
SEM 측정을 통해 PEI-MNP와 결합된 스캐폴드의 표면 관찰을 진행하였고, SEM-EDS의 표면 맵핑(mapping)을 통해 스캐폴드에 도포된 PEI-MNP의 성분인 Fe의 존재를 확인하였다(도 4 및 도 5a 내지 5d 참조).
(2) 음전하 표면의 자성 나노입자와 스캐폴드 결합 반응
(2-1) CA-MNP와 스캐폴드의 결합
도 6에 CA-MNP 및 스캐폴드의 결합 반응을 개략적으로 나타내었다.
(i) PEI 코팅 스캐폴드 준비
동결 건조된 스캐폴드 0.03 g을 10%, 20%, 30%, 40%, 50% 농도로 희석된 PEI 용액 10 ml에 첨가하고 18 시간 교반(vortex), 수분산된 스캐폴드 50 ml를 1%, 5%, 10% 농도로 희석된 PEI 용액 500 ml에 천천히 첨가하고 18 시간 교반하여 음전하를 띠는 스캐폴드 표면을 양이온계 폴리머(Cationic polymer)인 PEI로 코팅함으로써 양전하로 표면 개질하였다. 반응 종결 후, D.W로 충분히 세척하고 동결 건조하여 PEI 코팅 스캐폴드를 준비하였다.
(ii) CA-MNP 활성화
EDC 0.2875 g, NHS 0,1725 g을 0.1 M MES buffer에 녹인 커플링 용액 5 ml에 상기 제조한 CA-MNP 3 ml(6 mg/ml, 3ml->18 mg)를 첨가하고 6시간 교반(vortex)하여 CA-MNP 표면의 카르복실기(-COOH)를 활성화하였다.
(iii) 활성화된 CA-MNP - PEI 스캐폴드 결합
상기 제조된 PEI 코팅 스캐폴드 0.02 g을 활성화된 CA-MNP 용액에 첨가하고 15 시간 교반(vortex)하여 커플링 반응을 유도하였다. 반응 종결 후, D.W로 충분히 세척하고 동결건조하여 CA-MNP 스캐폴드를 수집하였다(도 7 및 도 8 참조).
상기 반응으로 제조된 CA-MNP 스캐폴드는 SEM 측정을 통해 스캐폴드 표면 관찰을 진행하였고, SEM-EDS의 표면 맵핑(mapping)을 통해 스캐폴드에 도포된 CA-MNP의 성분인 Fe의 존재를 확인하였다(도 9 및 도 10a 내지 10c 참조).
(2-2) 페라헴과 스캐폴드의 결합
페라헴[Feraheme(FDA 승인, Amag pharmaceuticals Inc.)]은 음전하 표면을 갖고 있는 철 나노입자로 양이온성 폴리사카라이드인 키토산과의 반응을 통해 음전하 표면을 갖는 스캐폴드에의 흡착력을 강화하고자 하였다(도 11 참조).
(i) 페라헴 및 키토산의 결합
시판되고 있는 빈혈치료제 페라헴(Feraheme)을 이용하여 스캐폴드와의 결합반응을 시도하였다. 키토산 40 mg을 1% 아세트산 용액 60 ml에 녹여 키토산 용액을 준비하였다. 페라헴(30 mg/ml) 3 ml을 키토산 용액에 첨가하고 3 시간 동안 교반(vortex)한 뒤, 원심분리를 통해 충분히 세척하여 잔류 아세트산을 제거하였다. 3 ml D.W를 첨가하여 재분산한 뒤, ICP 분석을 통해 Fe의 농도를 측정하여 20 mg/ml의 농도가 되도록 준비하였다.
(ii) 키토산 처리된 페라헴 및 스캐폴드의 결합
스캐폴드(수분산 상태: 스캐폴드 자체 0.5 ml 채운 뒤, D.W 제거 / 건조 상태: 0.01 g)가 담겨있는 튜브(e-tube)에 상기 제조한 페라헴 키토산 용액을 첨가하고(3.75 mg Fe) 5시간 이상 고정하여 표면 흡착 반응을 유도하였다. 동결건조를 통해 표면 페라헴 키토산의 흡착력을 강화시킨 뒤, 입자분리기를 통해 미반응 페라헴 키토산 입자분말을 제거하고 300-400 μm 범위의 MNP 스캐폴드를 수집하였다.
<실험예>
PEI-MNP가 결합된 마이크로스캐폴드와 CA-MNP가 결합된 마이크로스캐폴드를 외부구동장치인 EMA(Electro Magnetic Actuation)를 이용하여 구동함으로써 표적치료의 가능성을 확인하였다(도 13 참조).
본 발명에 의해, 양전하 또는 음전하를 갖는 자성 나노입자와 마이크로스캐폴드를 각각의 맞춤 방법을 통해 결합하고, 제조된 기능성 스캐폴드가 외부 구동 장치에 의해 정상 구동 된다는 것을 확인함으로써 적용 질환의 범위가 넓다는 것이 밝혀졌다. 따라서, 본 발명의 자기 구동 기능성 마이크로스캐폴드 및 이의 제조방법은 난치성 질환의 표적 치료 분야에서 스캐폴드 상태에 따른 자성 나노 입자 적용 및 다양성 있는 표적 치료를 가능하게 하는 기술로서 관련 산업 분야에 유용하게 사용될 수 있다.

Claims (5)

  1. 생분해성 고분자로 구성되고 3차원 형태의 다공성 마이크로구조체의 내부 또는 표면에 자성 입자가 적재된 표적 치료용 기능성 마이크로스캐폴드.
  2. 제1항에 있어서, 상기 자성 입자가 양전하 자성 나노입자 또는 음전하 자성 나노입자인 것을 특징으로 하는 표적 치료용 기능성 마이크로스캐폴드.
  3. 제2항에 있어서, 상기 양전하 자성 나노입자가 양이온성 고분자 화합물을 포함하는 것을 특징으로 하는 표적 치료용 기능성 마이크로스캐폴드.
  4. 제2항에 있어서, 상기 음전하 자성 나노입자가 산성 물질과의 반응에 의해 제조된 것을 특징으로 하는 표적 치료용 기능성 마이크로스캐폴드.
  5. (a) 염화철을 양이온성 고분자 화합물 또는 산성 물질과 반응시켜 양전하 자성 나노입자 또는 음전하 자성 나노입자를 얻는 단계; 및
    (b) 단계(a)에서 얻어진 상기 양전하 자성 나노입자 또는 음전하 자성 나노입자를 생분해성 고분자로 구성된 다공성 마이크로구조체에 적재시키는 단계
    를 포함하는, 제1항의 표적 치료용 기능성 마이크로스캐폴드의 제조방법.
PCT/KR2020/016394 2019-11-21 2020-11-19 자기 구동이 가능한 기능성 마이크로스캐폴드 및 이의 제조방법 WO2021101278A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/662,923 US20220265827A1 (en) 2019-11-21 2022-05-11 Functional microscaffold that can be magnetically actuated and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0150529 2019-11-21
KR1020190150529A KR20210062378A (ko) 2019-11-21 2019-11-21 자기 구동이 가능한 기능성 마이크로스캐폴드 및 이의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/662,923 Continuation US20220265827A1 (en) 2019-11-21 2022-05-11 Functional microscaffold that can be magnetically actuated and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2021101278A1 true WO2021101278A1 (ko) 2021-05-27

Family

ID=75981374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016394 WO2021101278A1 (ko) 2019-11-21 2020-11-19 자기 구동이 가능한 기능성 마이크로스캐폴드 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20220265827A1 (ko)
KR (1) KR20210062378A (ko)
WO (1) WO2021101278A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102502717B1 (ko) * 2020-10-26 2023-02-23 전남대학교 산학협력단 키토산 다공성 구조체 기반의 자기구동 마이크로로봇
WO2023128566A1 (ko) * 2021-12-28 2023-07-06 가톨릭대학교 산학협력단 항암 박테리아 및 자성 나노입자를 포함하는 마이크로 로봇 및 이의 제조방법
KR20230172282A (ko) 2022-06-15 2023-12-22 (주)바이오트코리아 자기구동이 가능한 치료물질 전달용 하이드로겔 마이크로비즈의 제조방법, 이에 의해 제조된 하이드로겔 마이크로비즈 및 이를 포함하는 근골격계 질환 치료용 약학 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303190B1 (ko) * 2011-11-08 2013-09-09 전남대학교산학협력단 자성체를 포함하는 박테리아-기반 마이크로로봇
KR20160031683A (ko) * 2014-09-12 2016-03-23 단국대학교 천안캠퍼스 산학협력단 기계적 및 생물학적 특성이 향상된 자성 나노섬유 스캐폴드의 제조방법 및 그 제조방법에 의해 제조된 자성 나노섬유 스캐폴드
KR101657777B1 (ko) * 2014-10-23 2016-09-19 단국대학교 천안캠퍼스 산학협력단 자성 나노입자를 포함하는 유무기 하이브리드 스캐폴드 및 이의 제조방법
KR101927196B1 (ko) * 2016-10-26 2018-12-11 전남대학교 산학협력단 자기구동 관절연골 재생 시스템
KR20190120655A (ko) * 2018-04-16 2019-10-24 전남대학교산학협력단 최소 침습 골연골 재생용 자기 구동 마이크로지지체

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101627043B1 (ko) 2014-09-12 2016-06-03 단국대학교 천안캠퍼스 산학협력단 표면 기능화된 나노입자를 포함하는 뼈 재생용 폴리머 자성 스캐폴드의 제조방법 및 그 제조방법에 의하여 제조된 뼈 재생용 자성 스캐폴드

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303190B1 (ko) * 2011-11-08 2013-09-09 전남대학교산학협력단 자성체를 포함하는 박테리아-기반 마이크로로봇
KR20160031683A (ko) * 2014-09-12 2016-03-23 단국대학교 천안캠퍼스 산학협력단 기계적 및 생물학적 특성이 향상된 자성 나노섬유 스캐폴드의 제조방법 및 그 제조방법에 의해 제조된 자성 나노섬유 스캐폴드
KR101657777B1 (ko) * 2014-10-23 2016-09-19 단국대학교 천안캠퍼스 산학협력단 자성 나노입자를 포함하는 유무기 하이브리드 스캐폴드 및 이의 제조방법
KR101927196B1 (ko) * 2016-10-26 2018-12-11 전남대학교 산학협력단 자기구동 관절연골 재생 시스템
KR20190120655A (ko) * 2018-04-16 2019-10-24 전남대학교산학협력단 최소 침습 골연골 재생용 자기 구동 마이크로지지체

Also Published As

Publication number Publication date
KR20210062378A (ko) 2021-05-31
US20220265827A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2021101278A1 (ko) 자기 구동이 가능한 기능성 마이크로스캐폴드 및 이의 제조방법
Finotelli et al. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin
EP1190123B1 (en) Encapsulation of crystals via multilayer coatings
Gan et al. Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release
Ye et al. New loading process and release properties of insulin from polysaccharide microcapsules fabricated through layer-by-layer assembly
Van der Lubben et al. Chitosan microparticles for oral vaccination:: preparation, characterization and preliminary in vivo uptake studies in murine Peyer's patches
Yu et al. Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems
Mrówczyński et al. Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery
JP4480801B2 (ja) 吸収困難な薬剤の生物学的利用能を改善する製剤およびそれを生成する方法
Chandran et al. An electric field responsive drug delivery system based on chitosan–gold nanocomposites for site specific and controlled delivery of 5-fluorouracil
Zhang et al. Biomembrane‐Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications
Ramachandran et al. Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery
WO2018080155A2 (ko) 고분자 코팅 기반의 산화질소 전달용 복합체 제작 방법 및 이의 응용
Orozco et al. Biodegradable self-reporting nanocomposite films of poly (lactic acid) nanoparticles engineered by layer-by-layer assembly
US20110060269A1 (en) Method for killing cells using photocatalytic titanium dioxide particles
Sahiner Colloidal nanocomposite hydrogel particles
Lin et al. Osteogenic effects of inductive coupling magnetism from magnetic 3D printed hydrogel scaffold
US20110177231A1 (en) Nano-, Micro-, Macro- Encapsulation And Release Of Materials
Al Thaher Tailored gentamicin release from silica nanocarriers coated with polyelectrolyte multilayers
WO2012102516A2 (ko) 자성 특성과 발광 특성을 동시에 갖는 나노복합체 및 그 제조 방법
CN111904945A (zh) 一种纳米混悬液的口服给药体系和构建方法及其应用
CN109276560B (zh) 一种含乳铁蛋白的pH响应型微囊及其制备方法和应用
CN114569582A (zh) 一种酶制剂及其制备方法和用途
CN111743880B (zh) 一种单抗类药物口服纳米-微球制剂及其制备方法
CN109453139B (zh) 一种包含5-氟尿嘧啶的层层自组装纳米载体及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889565

Country of ref document: EP

Kind code of ref document: A1