WO2021100329A1 - 電圧制御装置 - Google Patents

電圧制御装置 Download PDF

Info

Publication number
WO2021100329A1
WO2021100329A1 PCT/JP2020/037169 JP2020037169W WO2021100329A1 WO 2021100329 A1 WO2021100329 A1 WO 2021100329A1 JP 2020037169 W JP2020037169 W JP 2020037169W WO 2021100329 A1 WO2021100329 A1 WO 2021100329A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
internal
power supply
control device
Prior art date
Application number
PCT/JP2020/037169
Other languages
English (en)
French (fr)
Inventor
誉博 内藤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/755,838 priority Critical patent/US11928003B2/en
Publication of WO2021100329A1 publication Critical patent/WO2021100329A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/08Clock generators with changeable or programmable clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/06Clock generators producing several clock signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits

Definitions

  • This disclosure relates to a voltage control device.
  • the power consumption of the controlled circuit in the device can be reduced by lowering the power supply voltage.
  • the power supply voltage applied to the controlled circuit must be equal to or higher than the minimum operating voltage. Therefore, it is required to reduce the power consumption by keeping the power supply voltage equal to or higher than the minimum operating voltage and as close as possible to the minimum operating voltage.
  • AVS (Adaptive Voltage Scaling) control device may be used to meet such demands.
  • the AVS control device is a voltage control device that controls the controlled circuit so as to reduce power consumption while adapting the power supply voltage of the controlled circuit to the operating environment such as manufacturing variation, temperature, and operating frequency.
  • the AVS control device needs to perform AVS control by adding the maximum predicted value of the voltage drop due to manufacturing variation or the like as a margin voltage to the minimum operating voltage.
  • the present disclosure provides a voltage control device capable of reducing power consumption by keeping the power supply voltage of the controlled circuit above the minimum operating voltage and as close as possible to the minimum operating voltage.
  • the voltage control device includes a power supply circuit that supplies power to an input terminal of a controlled circuit, and a power supply supplied from the power supply circuit to the controlled circuit based on a clock signal supplied to the controlled circuit.
  • a power supply voltage control circuit that controls voltage, and a second internal circuit region that has a second wiring distance that is longer than the first wiring distance of the first internal circuit region in the controlled circuit in terms of the wiring distance from the input unit in the controlled circuit. It is provided with a clock generation circuit that receives the internal voltage applied to the power supply as a power source and generates a clock signal based on the internal voltage.
  • the second wiring distance is longer than half of the maximum distance among the plurality of wiring distances from the input unit to the plurality of internal circuit areas in the controlled circuit.
  • the second wiring distance is almost the largest of the plurality of wiring distances from the input unit to the plurality of internal circuit areas in the controlled circuit.
  • the internal voltage is lower than the voltage applied to the first internal circuit region.
  • the internal voltage drops more than half of the maximum voltage drop from the power supply voltage in the controlled circuit.
  • the internal voltage is almost the smallest voltage among the voltages supplied to a plurality of internal circuit regions in the controlled circuit.
  • the linear distance from the input unit to the second internal circuit area is longer than the linear distance from the input unit to the first internal circuit area.
  • the linear distance from the input unit to the second internal circuit region is longer than half of the maximum distance among the plurality of linear distances from the input unit to the plurality of internal circuit regions in the controlled circuit.
  • the linear distance from the input unit to the second internal circuit region is almost the largest of the plurality of linear distances from the input unit to the plurality of internal circuit regions in the controlled circuit.
  • the clock generation circuit has the same circuit configuration as the second internal circuit area.
  • the clock generation circuit is a delay circuit that inverts an input signal, outputs it as an output signal, and inputs the output signal as an input signal.
  • the clock generation circuit receives the minimum internal voltage as a power source and generates a clock signal based on the minimum internal voltage.
  • It also has a storage unit that stores information in the second internal circuit area that receives the minimum internal voltage.
  • the selection circuit selects the second internal circuit area based on the information obtained from the storage unit.
  • a plurality of clock generation circuits that receive a plurality of internal voltages applied to a plurality of internal circuit regions in a controlled circuit as a power source and generate a plurality of clock signals based on the plurality of internal voltages, respectively. It further includes a selection circuit that inputs a plurality of clock signals from a plurality of clock generation circuits and selects a clock signal having the minimum frequency from the plurality of clock signals.
  • It also has a storage unit that stores information on the clock generation circuit that outputs the clock signal of the minimum frequency.
  • the selection circuit selects the clock signal based on the information obtained from the storage unit.
  • the block diagram which shows an example of the connection relationship between a voltage control device and a controlled circuit. A circuit diagram showing an example of the internal configuration of a clock generation circuit.
  • FIG. 6 is a block diagram showing a configuration example of a voltage control device and a controlled circuit according to a fourth embodiment.
  • the block diagram which shows the structural example of the voltage control apparatus and the controlled circuit according to 5th Embodiment.
  • a circuit diagram showing a configuration example of a delay monitor circuit The circuit diagram which shows the other configuration example of the delay monitor circuit.
  • the circuit diagram which shows the other structural example of the delay monitor circuit.
  • FIG. 1 is a block diagram showing a configuration example of a voltage control device according to the first embodiment.
  • the voltage control device 1 according to the present disclosure includes a power supply circuit 10, a power supply voltage control circuit 20, and a clock generation circuit 30.
  • the voltage control device 1 is, for example, an AVS control device that controls the power supply voltage VDD applied to the controlled circuit 2 so as to be adapted to the operating environment such as manufacturing variation, temperature, and operating frequency of the controlled circuit 2.
  • the power supply circuit 10 receives a target voltage from the power supply voltage control circuit 20 and supplies electric power according to the target voltage to the input unit of the controlled circuit 2.
  • the controlled circuit 2 is, for example, a digital logic circuit such as a CPU (Central Processing Unit) that operates based on a clock signal CLK.
  • the controlled circuit 2 may be one or a plurality of semiconductor chips, or may be a part of a semiconductor integrated circuit in one semiconductor chip.
  • the power supply voltage control circuit 20 receives the clock signal CLK output from the clock generation circuit 30 and the target frequency from the outside, and supplies the power supply voltage VDD from the power supply circuit 10 to the controlled circuit 2 based on the clock signal CLK. To control. For example, the power supply voltage control circuit 20 adjusts the target voltage so that the clock signal CLK becomes equal to the target frequency.
  • the target voltage is information indicating the voltage value of the electric power actually supplied from the power supply circuit 10 to the controlled circuit 2.
  • the clock generation circuit 30 receives the internal voltage of the controlled circuit 2 and outputs the clock signal CLK with the internal voltage as the power supply voltage VDDOSC.
  • the power supply voltage V DDOSC is an internal voltage that is voltage dropped from the power supply voltage VDD in the internal circuit region in the controlled circuit 2.
  • the clock signal CLK is supplied to the controlled circuit 2 and the power supply voltage control circuit 20.
  • the clock signal CLK is supplied to the controlled circuit 2 to control the operating speed of the controlled circuit 2.
  • the operating speed of the controlled circuit 2 changes depending on the frequency of the clock signal CLK, and the target voltage required for the controlled circuit 2 also changes accordingly. Therefore, the clock signal CLK is fed back to the power supply voltage control circuit 20 and used for adjusting the target voltage.
  • the power supply voltage control circuit 20 controls the target voltage so that the clock signal CLK becomes equal to the preset target frequency.
  • the voltage control device 1 may be composed of one or a plurality of semiconductor chips including a power supply circuit 10, a power supply voltage control circuit 20, and a clock generation circuit 30. Further, the voltage control device 1 may be provided outside the controlled circuit 2 or may be incorporated inside the controlled circuit 2. In the present disclosure, the voltage control device 1 will be described as being externally attached to the controlled circuit 2.
  • FIG. 2 is a block diagram showing an example of the connection relationship between the voltage control device 1 and the controlled circuit 2.
  • the controlled circuit 2 is an arbitrary digital logic circuit, and is composed of a plurality of internal circuit areas IC01 to ICnn. n is an arbitrary positive integer.
  • the internal circuit regions IC01 to ICnn may have the same circuit configuration or may have different circuit configurations from each other. Further, the division of the internal circuit areas IC01 to ICnn is also arbitrary, and the digital logic circuit may be divided into arbitrary units.
  • the controlled circuit 2 is connected between the power supply circuit 10 and the ground GND.
  • a power supply voltage VDD is applied to the first terminal T1 on the high voltage side as an input terminal
  • a ground voltage VSS is applied to the second terminal on the low voltage side as another input terminal.
  • the internal circuit areas IC01 to ICnn are electrically connected between the first terminal T1 and the second terminal T2 via the internal wiring W, respectively.
  • the wiring distance from the first terminal T1 or the second terminal T2 to the internal circuit areas IC01 to ICnn may be different from each other for each of the internal circuit areas IC01 to ICnn.
  • the wiring distance from the first terminal T1 to the internal circuit area IC01 to ICij (0 ⁇ i ⁇ n, 0 ⁇ j ⁇ n) becomes longer as i and j become larger.
  • the wiring distance from the second terminal T2 to the internal circuit area IC01 to ICij becomes longer as i becomes larger, and becomes longer as j becomes smaller.
  • the internal wiring W has a resistance, depending on the respective wiring distance from the first terminal T1 to the internal circuit region IC01 ⁇ ICnn, voltage drop from the power supply voltage V DD in the inner circuit region IC01 ⁇ ICnn different. Also, depending on the respective wiring distance from the second terminal T2 to the internal circuit region IC01 ⁇ ICnn, the voltage rises from the ground voltage V SS to the internal circuit region IC01 ⁇ ICnn different. Therefore, the internal voltage (effective power supply voltage) applied between the high voltage terminal on the power supply circuit 10 side and the low voltage terminal on the ground GND side of the internal circuit areas IC01 to ICnn is in each of the internal circuit areas IC01 to ICnn. different.
  • the power supply voltage applied to both ends of the circuit is also referred to as an effective power supply voltage. If the effective power supply voltage of the internal circuit areas IC01 to ICnn is different, the operating frequencies of the internal circuit areas IC01 to ICnn change. Therefore, the power supply voltage control circuit 20 is required to set the target voltage of the power supply voltage VDD so that all the operating frequencies of the internal circuit regions IC01 to ICnn are equal to or higher than the target frequency.
  • the operating frequency of the internal circuit region having the largest voltage drop from the power supply voltage VDD of the controlled circuit 2 should be equal to or higher than the target frequency. Need to be.
  • the path passing through the internal circuit region (second internal circuit region) having the largest voltage drop is hereinafter referred to as a “critical path”.
  • the critical path is a path passing through the internal circuit regions ICn1 to ICnn between the node NHnn and the node NLn1.
  • the node NHnn is a node of a high voltage terminal of the internal circuit area ICnn.
  • the node NLn1 is a node of the low voltage terminal of the internal circuit area ICn1.
  • the critical path may be selected from a plurality of internal circuit regions.
  • the second wiring distance from the first terminal T1 to the node NHnn is the first wiring distance from the first terminal T1 to another internal circuit area (first internal circuit area).
  • the second wiring distance from the first terminal T1 to the node NHnn is the maximum wiring distance from the first terminal T1 to the plurality of internal circuit regions IC01 to ICnn in the controlled circuit 2. Therefore, among the internal circuit area IC01 to ICnn, the node NHnn of the internal circuit area ICnn has the largest voltage drop from the power supply voltage VDD.
  • the fourth wiring distance from the second terminal T2 to the node NLn1 (internal circuit area ICn1) is longer than the third wiring distance from the second terminal T2 to the other internal circuit area. That is, the fourth wiring distance from the second terminal T2 to the node NLn1 is the maximum wiring distance from the second terminal T2 to the plurality of internal circuit regions IC01 to ICnn in the controlled circuit 2. Therefore, in the internal circuit region IC01 ⁇ ICnn, node NHn1 internal circuit region ICn1 the largest in the voltage rises from the ground voltage V SS.
  • the effective power supply voltage applied between the node NHnn and the node NLn1 becomes the effective power supply voltage in the controlled circuit 2, and the path passing through the internal circuit regions ICn1 to ICnnn between the node NHnn and the node NLn1 is the critical path. It becomes.
  • the power supply voltage control circuit 20 can set all the operating frequencies of the internal circuit regions IC01 to ICnn to be equal to or higher than the target frequency. Therefore, the clock generation circuit 30 is composed of a replica circuit having the same circuit configuration as the critical path as the second internal circuit region.
  • FIG. 3 is a circuit diagram showing an example of the internal configuration of the clock generation circuit 30.
  • the clock generation circuit 30 is a replica circuit of the critical path. That is, the clock generation circuit 30 is an example of a so-called critical path replica ring oscillator (CPRRO).
  • the critical path is, for example, the internal circuit regions ICn1 to ICnn from the node NHnn to the node NLn1 in FIG.
  • the clock generation circuit 30 having such a configuration is a delay circuit that outputs an output signal in which the input signal is delayed and logically inverted as a clock signal CLK, and feedback-inputs this output signal as an input signal.
  • the clock generation circuit 30 Since the clock generation circuit 30 inverts its own output signal for each delay time and outputs it, the pulsed clock signal CLK can be output.
  • the clock generation circuit 30 may be a circuit having the same configuration as the critical path, but may be another circuit having an fV characteristic substantially equal to that of the critical path.
  • the clock generation circuit 30 receives a voltage V DDOSC as the high voltage side power, receives the voltage V SSOSC as low voltage side power source.
  • the voltage VDDOSC is substantially equal to the internal voltage of the node NHnn
  • the voltage VSSOSC is approximately equal to the internal voltage of the node NLn1.
  • the clock generation circuit 30 has the same configuration as the internal circuit regions ICn1 to ICnn as the second internal circuit region, and has an effective power supply voltage V that is substantially equal to the internal voltage applied to the internal circuit regions ICn1 to ICnn. It works with eff_OSC. That is, the clock generation circuit 30 generates the clock signal CLK based on the internal voltage of the node NHnn and the voltage difference (effective power supply voltage) V eff_OSC of the node NLn1.
  • the clock generation circuit 30 Since the clock generation circuit 30 and the internal circuit regions ICn1 to ICnn have the same configuration, the clock generation circuit 30 has the same characteristics (for example, fV characteristics) as the internal circuit regions ICn1 to ICnn (that is, the critical path). be able to. Further, the clock generation circuit 30 and the internal circuit regions ICn1 to ICnn operate at substantially the same power supply voltage. Therefore, the clock generation circuit 30 does not need to add a delay circuit (for example, 31 in FIG. 4) in consideration of the voltage drop of the effective power supply voltage with respect to the internal circuit regions ICn1 to ICnn.
  • a delay circuit for example, 31 in FIG. 4
  • the voltage control device 1 can perform AVS control while reducing power consumption.
  • the clock generating circuit operates with the power supply voltage V DD and ground voltage V SS, a clock generation circuit, taking into account the voltage drop of the effective supply voltage applied to the critical path, having an additional delay circuit There is a need.
  • FIG. 4 is a circuit diagram showing a clock generation circuit 32 in which a delay circuit 31 is added to the replica circuits 30 of the internal circuit areas ICn1 to ICnn.
  • Supply voltage V DDOSC of the clock generating circuit 32, the V SSOSC, external power supply voltage V DD and ground voltage V SS is used respectively.
  • the fV characteristic of the clock generation circuit 32 will be described below.
  • FIG. 5 is a graph showing the fV characteristics of a general circuit.
  • the vertical axis represents the frequency f
  • the horizontal axis represents the power supply voltage V.
  • the fV characteristic is a characteristic indicating the relationship between the operating frequency f of the circuit and the power supply voltage V. Normally, as shown in FIG. 5, when the power supply voltage V is increased, the operating frequency f is increased, and conversely, when the power supply voltage V is decreased, the operating frequency f is decreased.
  • the power supply voltage V is AVS controlled in order to operate at the target frequency ft or higher even if the fV characteristic of the critical path changes due to circuit manufacturing variation or temperature.
  • the circuit shown by line L1 operates at the target frequency ft even in VL1 where the effective power supply voltage is relatively low.
  • the circuit shown by line L2 the effective power supply voltage in the intermediate voltage of about V L2 between V L1 and V L3, operates at the target frequency ft.
  • the minimum operating voltage (VL1 to VL3 ) required for the circuit to operate at the target frequency ft differs depending on the manufacturing variation and the temperature of the circuit. Further, in order to guarantee the operation in consideration of the error due to the circuit and its control, it is necessary to add a margin voltage dV m to each of the minimum operating voltages (VL1 to VL3) of L1 to L3. Therefore, the target voltage of the circuits shown by the line L1 ⁇ L3, respectively V L1 + dV m, V L2 + dV m, the V L3 + dV m. In order to operate all the circuits of lines L1 to L3 normally, the range of the minimum operating voltage is dV, and considering the margin voltage dV m , the range of the effective power supply voltage in AVS control is dV AVS .
  • the effective supply voltage, minimum sum of the operating voltage and margin voltage (V L1 + dV m, V L2 + dV m, V L3 + dV m V It must be L1 to VL3 ) or higher.
  • the margin voltage dV m applied to the minimum operating voltage is preferably as small as possible in order to reduce the power consumption of the circuit. This is because an excessive margin voltage dV m causes an extra power loss.
  • FIG. 6 is a graph showing the fV characteristics of the controlled circuit 2 and the clock generation circuit 32, respectively.
  • the line L IC shows the fV characteristics of the internal circuit regions CI01 to ICnn of the controlled circuit 2.
  • Line L CLK shows the fV characteristic of the clock generation circuit 32.
  • the fV characteristics of the controlled circuit 2 and the clock generation circuit 32 are shown by straight lines for easy understanding, but the fV characteristics are curves as shown in FIG. It doesn't matter.
  • the ground voltage VSS is set to zero, and the effective power supply voltage of the controlled circuit 2 applied between the terminals T1 and T2 is assumed to be the power supply voltage VDD .
  • V eff_min_est is an estimated value of the effective power supply voltage required for the critical path of the controlled circuit 2 to operate at the target frequency ft.
  • the range of the power supply voltage actually applied to the internal circuit regions IC01 to ICnn of the controlled circuit 2 is V eff_n1 to V eff_01 .
  • V eff_n1 is an effective power supply voltage applied to the internal circuit region ICn1 as shown in FIG.
  • V eff_01 is an effective power supply voltage applied to the internal circuit area IC01, and is a voltage difference between the terminal on the power supply circuit 10 side and the terminal on the ground GND side of the internal circuit area IC01.
  • V eff_n1 is the smallest and the voltage V eff_01 applied to the internal circuit region IC01 is the largest among the internal circuit regions IC01 to ICnn.
  • the range dV eff of the effective power supply voltage of the internal circuit regions IC01 to ICnn of the controlled circuit 2 is V eff_n1 to V eff_01 .
  • the range df eff of the effective operating frequency of the controlled circuit 2 with respect to the range dV eff of the effective power supply voltage is f eff_n1 to f eff_01 .
  • the controlled circuit 2 operates in the effective operating frequency range df eff according to the power supply voltage in the effective power supply voltage range dV eff .
  • the clock generation circuit 32 inputs the power supply voltage VDD and the ground voltage VSS as the power supply voltage. Therefore, in consideration of the effective power supply voltage of the internal circuit regions ICn1 to ICnn (that is, the critical path) having the largest voltage drop among the internal circuit regions IC01 to ICnn, the clock generation circuit 32 adds a delay circuit 31 to the replica circuit 30. It is added. Since the delay circuit 31 functions to lower the frequency of the clock signal CLK, the power supply voltage control circuit 20 raises the target voltage in order to make the clock signal CLK equal to the target frequency ft.
  • the power supply circuit 10 can apply a high power supply voltage VDD to the controlled circuit 2 in consideration of the voltage drop of the effective power supply voltage up to the critical path. As a result, all the internal circuit regions of the controlled circuit 2 including the critical path can operate normally.
  • the f-V characteristic of the clock generation circuit 32 indicated by the line L CLK has an offset voltage dV OS with respect to the f-V characteristic of the controlled circuit 2 indicated by the line L IC.
  • the effective power supply voltage V eff_OSC applied to the clock generation circuit 32 is set to a voltage higher by the offset voltage dV OS than the estimated minimum value V eff_min_est of the effective power supply voltage by adding the delay circuit 31.
  • the target voltage of the power supply voltage V DD is set to a slightly higher voltage by the voltage drop than the effective power supply voltage V Eff_OSC of the clock generating circuit 32 ing.
  • the power supply voltage VDD should be sufficient if the voltage (V eff_min_est + dV eff_max ) is higher than the estimated minimum value V eff_min_est of the effective power supply voltage by the maximum value dV eff_max of the actual voltage drop.
  • the power supply voltage VDD is set to a voltage higher than the voltage (V eff_min_est + dV eff_max ) by an excessive margin voltage dV loss.
  • the reason for requiring such an excessive margin voltage dV loss is as follows.
  • the voltage drop from the power supply voltage VDD to the critical path is estimated, and the power supply voltage VDD is set. Therefore, the delay circuit 31 so that the estimated maximum value dV Eff_max_est voltage drop becomes larger than the actual voltage drop maximum value dV Eff_max is designed.
  • the estimated maximum value dV eff_max_est of the voltage drop is set in consideration of manufacturing variations of the controlled circuit 2 and the clock generation circuit 32, characteristic changes due to temperature, transient changes, and the like.
  • the delay circuit 31 by adding the delay circuit 31, a structural difference occurs between the critical path and the clock generation circuit 32. This structural difference becomes a factor that deteriorates the correlation accuracy between the critical path and the clock generation circuit 32.
  • the fV characteristic of the clock generation circuit 32 causes a correlation error as shown by the broken line in the line L CLK of FIG.
  • the estimated voltage of the variation in the power supply voltage due to the correlation error is shown by Verr_est.
  • Verr_est Such an error estimated voltage Verr_est is also added to the estimated maximum value dV eff_max_est of the voltage drop, and the target voltage of the power supply voltage VDD is set. For this reason, the clock generation circuit 32 requires an excessive margin voltage dV loss .
  • FIG. 7 is a graph showing an example of fV characteristics of the controlled circuit 2 and the clock generation circuit 30 according to the first embodiment.
  • the clock generation circuit 30 is a replica circuit having the same configuration as the critical path (internal circuit area ICn1 to ICnn), and does not have the delay circuit 31. Further, the clock generation circuit 30 operates by receiving an effective power supply voltage applied to the internal circuit regions ICn1 to ICnn as a critical path. Therefore, the fV characteristics of the controlled circuit 2 and the clock generation circuit 30 do not have an offset and are substantially overlapped as shown by the lines L IC and L CLK.
  • the clock generation circuit 30 receives the internal voltage ( lower than the power supply voltage VDD ) applied to the critical path as the effective power supply voltage V eff_OSC , so that the power supply voltage V DD to the critical path There is no need to consider the voltage drop of. Therefore, it is not necessary to set the estimated maximum value dV eff_max_est of the voltage drop, and it is not necessary to provide an additional delay circuit 31.
  • the additional delay circuit 31 Since the additional delay circuit 31 is unnecessary, the critical path and the clock generation circuit 30 have structurally the same configuration, and the correlation error between the critical path and the clock generation circuit 30 is almost eliminated. That is, it is not necessary to consider the error estimation voltage Verr_est of the power supply voltage due to the correlation error. As a result, an excessive margin voltage dV loss is almost unnecessary.
  • the effective power supply voltage V Eff_OSC the effective power supply voltage V Eff_n1 and clock generation circuit 30 of the internal circuit region ICn1 is substantially equal.
  • the operating frequency f Eff_n1 internal circuit region ICn1 becomes substantially equal to the target frequency ft.
  • Supply the target voltage of the voltage V DD can be set to the maximum value dV Eff_max voltage obtained by adding the actual voltage drop from the effective power supply voltage V Eff_n1 and the effective supply voltage V eff_OSC.
  • the voltage control device 1 can reduce the power consumption by approaching the minimum operating voltage while maintaining the effective power supply voltage V eff_n1 of the controlled circuit 2 at or above the minimum operating voltage.
  • the clock generation circuit 30 is a replica circuit having the same configuration as the critical path, and receives the power supply voltage from the internal voltage having the largest voltage drop from the power supply voltage VDD. That is, the clock generation circuit 30 receives the power supply voltage from the internal circuit regions ICn1 to ICnn, which have the smallest effective power supply voltage.
  • the clock generation circuit 30 may obtain the effective power supply voltage V eff_OSC from the internal circuit region where the effective power supply voltage is as small as possible.
  • the circuit scale of the critical path may become large or an additional delay circuit may be required, but the clock generation circuit 30 has a margin voltage dV loss more than the clock generation circuit 32 that receives the power supply voltage VDD. It can be made smaller.
  • the clock generation circuit 30 receives the high internal voltage of the voltage drops below half the voltage difference between the largest internal voltage and the power supply voltage V DD of the voltage drop from the power supply voltage V DD as the effective power supply voltage V Eff_OSC May be good. That is, the effective power supply voltage V eff_OSC may be an internal voltage whose voltage drop is larger than half of the maximum voltage drop. As a result, the effective power supply voltage V eff_OSC of the clock generation circuit 30 can be obtained from the internal power supply in the internal circuit region as close to the critical path as possible.
  • the clock generation circuit 30 may receive the effective power supply voltage V eff_OSC from an internal circuit region in which the wiring distance from the terminals T1 and T2 is as long as possible. For example, when the wiring distance from the terminal T1 to the internal circuit area IC1n is longer than the wiring distance from the terminal T1 to the internal circuit area IC0n, the clock generation circuit 30 is connected to the high voltage side terminal (node NH1n) of the internal circuit area IC1n. Receive high voltage power supply.
  • the clock generation circuit 30 When the wiring distance from the terminal T2 to the internal circuit area IC11 is longer than the wiring distance from the terminal T2 to the internal circuit area IC01, the clock generation circuit 30 has a low voltage from the low voltage side terminal (node NL11) of the internal circuit area IC11. Receive power. As a result, the clock generation circuit 30 receives the voltage difference between the node NH1n and the node NL11 as the effective power supply voltage V eff_OSC . As a result, the effective power supply voltage V eff_OSC of the clock generation circuit 30 can be obtained from the internal power supply in the internal circuit region close to the critical path.
  • the clock generation circuit 30 may receive a high-voltage power supply from an internal circuit region longer than half of the maximum distance among the plurality of wiring distances from the terminal T1 to the plurality of internal circuit regions IC01 to ICnn. Further, the clock generation circuit 30 may receive a low voltage power supply from an internal circuit region located at a position longer than half of the maximum distance among the plurality of wiring distances from the terminal T2 to the plurality of internal circuit regions IC01 to ICnn. Even in this way, the effective power supply voltage V eff_OSC of the clock generation circuit 30 can be obtained from the internal power supply in the internal circuit region close to the critical path.
  • the clock generation circuit 30 may receive the effective power supply voltage V eff_OSC from the internal circuit region in which the linear distance from the terminals T1 and T2 is as long as possible in the planar layout. For example, when the linear distance from the terminal T1 to the internal circuit region IC1n is longer than the linear distance from the terminal T1 to the internal circuit region IC0n, the clock generation circuit 30 is connected to the high voltage side terminal (node NH1n) of the internal circuit region IC1n. Receive high voltage power supply.
  • the clock generation circuit 30 When the linear distance from the terminal T2 to the internal circuit area IC11 is longer than the linear distance from the terminal T2 to the internal circuit area IC01, the clock generation circuit 30 has a low voltage from the low voltage side terminal (node NL11) of the internal circuit area IC11. Receive power. As a result, the clock generation circuit 30 receives the voltage difference between the node NH1n and the node NL11 as the effective power supply voltage V eff_OSC . As a result, the effective power supply voltage V eff_OSC of the clock generation circuit 30 can be obtained from the internal power supply in the internal circuit region close to the critical path.
  • the clock generation circuit 30 may receive a high-voltage power supply from an internal circuit region located at a position farther than half of the maximum distance among the linear distances from the terminal T1 to the plurality of internal circuit regions IC01 to ICnn. Further, the clock generation circuit 30 may receive a low voltage power supply from an internal circuit region located at a position longer than half of the maximum distance among the linear distances from the terminal T2 to the plurality of internal circuit regions IC01 to ICnn. Even in this way, the effective power supply voltage V eff_OSC of the clock generation circuit 30 can be obtained from the internal power supply in the internal circuit region close to the critical path.
  • the clock generation circuit 30 uses the internal voltage of the controlled circuit 2 as the effective power supply voltage. As a result, the clock generation circuit 30 can change the frequency of the clock signal CLK in response to the transient voltage fluctuation of the power supply voltage VDD , and can suppress the occurrence of a timing error in the controlled circuit 2 (Adaptive Clocking technology). ).
  • FIG. 8 is a block diagram showing a connection relationship between the voltage control device 1 and the controlled circuit 2 according to the second embodiment.
  • the voltage control device 1 according to the second embodiment supplies the minimum internal voltage selected from the plurality of internal circuit regions IC01 to ICnn to the clock generation circuit 30 as the effective power supply voltage V eff_OSC .
  • the voltage control device 1 according to the second embodiment further includes a multiplexer MUX H1 , a multiplexer MUX L1, and a register 40.
  • Other configurations of the second embodiment may be the same as the corresponding configurations of the first embodiment.
  • the multiplexer MUX H1 as a selection circuit is connected to the high-voltage terminals of a plurality of internal circuit regions IC01 to ICnn in the controlled circuit 2, and inputs a plurality of high-voltage power supplies applied to the internal circuit region. Then, the multiplexer MUX H1 selects the minimum voltage power supply from the plurality of high voltage power supplies. The selected high-voltage power supply is input to the high-voltage power supply VDDOSC of the clock generation circuit 30.
  • the multiplexer MUX L1 as another selection circuit is connected to the low voltage terminals of the plurality of internal circuit areas IC01 to ICnn in the controlled circuit 2, and is applied to the plurality of low voltage power supplies applied to the internal circuit areas IC01 to ICnn. Enter. Then, the multiplexer MUX L1 selects the power supply having the maximum voltage from the plurality of low voltage power supplies. The selected low-voltage power supply is input to the low-voltage power supply VSSOSC of the clock generation circuit 30.
  • the clock generation circuit 30 can generate a clock signal based on the minimum effective power supply voltage among the effective power supply voltages of the internal circuit regions IC01 to ICnn.
  • the register 40 as a storage unit provides information for determining which high-voltage power supply and which low-voltage power supply is selected from the plurality of high-voltage power supplies and the plurality of low-voltage power supplies input to the multiplexer MUX H1 and MUX L1. Store. For example, the effective power supply voltage or operating frequency of the internal circuit regions IC01 to ICnn is measured in advance, and the register 40 stores the information of the internal circuit region having the lowest effective power supply voltage or the lowest operating frequency.
  • the multiplexers MUX H1 and MUX L1 input the high voltage power supply and the low voltage power supply from all the internal circuit areas IC01 to ICnn or a part thereof, and based on the information obtained from the register 40, the multiplexer MUX H1 and the MUX L1 are the lowest high voltage power supply The highest low voltage power supply is selected and output to the clock generation circuit 30.
  • the multiplexers MUX H1 and MUX L1 input high-voltage power and low-voltage power from a plurality of internal circuit regions that are relatively far from the terminal T1 (or terminal T2) in the wiring distance or the linear distance.
  • the lowest high voltage power supply and the highest low voltage power supply may be selected and output to the clock generation circuit 30.
  • the register 40 may store information on the internal circuit region having the longest wiring distance or linear distance from the terminals T and T2 among the internal circuit regions IC01 to ICnn.
  • the internal voltage of a plurality of internal circuit areas whose voltage drop from the power supply voltage VDD is equal to or more than a certain threshold is transferred to the multiplexer MUX H1.
  • MUX L1 may be supplied.
  • the internal voltage of the internal circuit region in which the wiring distance or the linear distance from the terminal T1 (or the terminal T2) is equal to or greater than a certain threshold value may be supplied to the multiplexer MUX H1 and MUX L1.
  • the number of wires from the internal circuit region to the multiplexer MUX H1 and MUX L1 can be reduced, and the size of the voltage control device 1 or the controlled circuit 2 can be reduced.
  • the register 40 may store the information of each operating state and the information of the internal circuit area corresponding to the critical path in the operating state as a lookup table in association with each other.
  • the multiplexers MUX H1 and MUX L1 may dynamically select the effective power supply voltage of the critical path according to the operating state of the controlled circuit 2 by referring to the look-up table of the register 40.
  • the voltage control device 1 can AVS control the controlled circuit 2 using an appropriate power supply voltage VDD in a plurality of operating states of the controlled circuit 2.
  • the multiplexers MUX H1 and MUX L1 have the lowest high voltage by comparing the high voltage power supply and the low voltage power supply from all the internal circuit regions IC01 to ICnn or a part thereof by using a comparator such as a differential amplifier circuit. A voltage power supply and the highest low voltage power supply may be selected. Even in this case, the voltage control device 1 can set an appropriate power supply voltage VDD in a plurality of operating states of the controlled circuit 2. Further, in this case, the register 40 can be omitted.
  • the voltage control device 1 selects a high voltage power supply and a low voltage power supply from the effective power supply voltages of the plurality of internal circuit regions and uses them as the effective power supply voltage V eff_OSC of the clock generation circuit 30. Can be done. As a result, the voltage control device 1 can dynamically select an appropriate effective power supply voltage V eff_OSC of the clock generation circuit 30. Further, the second embodiment can also obtain the effect of the first embodiment.
  • FIG. 9 is a block diagram showing a connection relationship between the voltage control device 1 and the controlled circuit 2 according to the third embodiment.
  • the voltage control device 1 according to the third embodiment selects a clock signal having the minimum frequency from a plurality of clock signals from a plurality of clock generation circuits 30_1 to 30_y and supplies the clock signal to the controlled circuit 2.
  • y is a positive integer.
  • the voltage control device 1 further includes a plurality of clock generation circuits 30_1 to 30_y, a multiplexer MUX2, and a register 40.
  • Other configurations of the third embodiment may be the same as the corresponding configurations of the first embodiment.
  • the plurality of clock generation circuits 30_1 to 30_y receive all or a part of the plurality of internal voltages applied to the plurality of internal circuit regions IC01 to ICnn as effective power supply voltages V eff_OSC1 to V eff_OSCy , respectively. Then, the clock generation circuits 30_1 to 30_y generate a plurality of clock signals based on the effective power supply voltages V eff_OSC1 to V eff_OSCy, respectively.
  • the frequencies of the plurality of clock signals generated at this time are frequencies corresponding to the effective power supply voltages V eff_OSC1 to V eff_OSCy based on the fV characteristics of the clock generation circuits 30_1 to 30_y.
  • the multiplexer MUX2 as a selection circuit inputs a plurality of clock signals from a plurality of clock generation circuits 30_1 to 30_y, and selects a clock signal having the minimum frequency from the plurality of clock signals.
  • the clock signal of the minimum frequency corresponds to the minimum effective power supply voltage. That is, it can be said that the clock signal having the minimum frequency is a clock signal output from a clock generation circuit (any of 30_1 to 30_y) that has received the internal voltage of the critical path.
  • the power supply voltage control circuit 20 controls the power supply voltage VDD so that the clock signal having such a minimum frequency is equal to the target frequency ft. As a result, the entire internal circuit area IC01 to ICnn including the critical path of the controlled circuit 2 can operate normally.
  • the register 40 as a storage unit stores the information of the clock generation circuit that outputs the clock signal of the minimum frequency. For example, the effective power supply voltage or operating frequency of the internal circuit regions IC01 to ICnn is measured in advance, and the register 40 stores the information of the internal circuit region having the lowest effective power supply voltage or the lowest operating frequency.
  • the multiplexer MUX2 inputs a clock signal from the clock generation circuits 30_1 to 30_y, selects a clock signal having the minimum frequency based on the information obtained from the register 40, and outputs the clock signal to the controlled circuit 2.
  • the clock generation circuits 30_1 to 30_y may be provided corresponding to all the internal circuit areas IC01 to ICnn, or may be provided corresponding to a part of the internal circuit areas.
  • the clock generation circuits 30_1 to 30_y are provided corresponding to some internal circuit regions, the clock is generated for the internal circuit region where the voltage drop, the wiring distance, or the linear distance is equal to or larger than the threshold value, as in the second embodiment.
  • a generation circuit may be provided.
  • the number of clock generation circuits 30_1 to 30_y can be reduced.
  • the number of wires from the internal circuit region to the clock generation circuits 30_1 to 30_y can be reduced.
  • the size of the voltage control device 1 or the controlled circuit 2 can be reduced.
  • the register 40 stores the information of each operating state and the information of the internal circuit area corresponding to the critical path in the operating state as a look-up table. do it.
  • the multiplexer MUX2 may refer to the look-up table of the register 40 and dynamically select the clock signal corresponding to the critical path according to the operating state of the controlled circuit 2.
  • the voltage control device 1 can AVS control the controlled circuit 2 using an appropriate power supply voltage VDD in a plurality of operating states of the controlled circuit 2.
  • the multiplexer MUX2 may use a low-pass filter circuit or the like to compare the frequencies of the clock signals from the clock generation circuits 30_1 to 30_y and select the clock signal having the lowest frequency. Even in this case, the voltage control device 1 can set an appropriate power supply voltage VDD in a plurality of operating states of the controlled circuit 2. Further, in this case, the register 40 can be omitted. In this case, the register 40 may store a plurality of look-up tables corresponding to a plurality of operating states.
  • the clock generation circuit corresponding to the non-selected clock signal may stop the clock generation operation. As a result, the power consumption of the voltage control device 1 can be further reduced.
  • the voltage control device 1 selects the minimum frequency clock signal from the clock signals obtained by the effective power supply voltages of the plurality of internal circuit regions, and selects the minimum frequency clock signal from the controlled circuit 2 Supply to. Even in this way, the voltage control device 1 can dynamically select an appropriate effective power supply voltage V eff_OSC of the clock generation circuit 30. Further, the third embodiment can also obtain the effect of the first embodiment.
  • FIG. 10 is a block diagram showing a configuration example of the voltage control device 1 and the controlled circuit 2 according to the fourth embodiment.
  • the voltage control device 1 according to the fourth embodiment further includes a delay monitor circuit 50 in addition to the clock generation circuit 30.
  • the delay monitor circuit 50 like the clock generation circuit 30, includes a circuit having the same configuration as the critical path or a circuit having substantially the same fV characteristics.
  • the delay monitor circuit 50 receives the power supply voltage VDDOSC from the controlled circuit 2, measures the delay time of the critical path, and feeds back the information of the delay time to the power supply voltage control circuit 20.
  • the clock generation circuit 30 receives the power supply voltage VDDOSC from the controlled circuit 2 and supplies the clock signal CLK to the controlled circuit 2, it does not feed back to the power supply voltage control circuit 20. That is, in the fourth embodiment, the clock generation circuit 30 for generating the clock signal CLK and the delay monitor circuit 50 for setting the power supply voltage VDD are separately provided. Other configurations of the fourth embodiment may be the same as the corresponding configurations of the first embodiment.
  • the internal configuration of the delay monitor circuit 50 will be described later with reference to FIGS. 12 to 14. Further, the internal configuration of the clock generation circuit 30 may be the configuration shown in FIGS. 15 and 16 in addition to the configuration shown in FIG.
  • FIG. 11 is a block diagram showing a configuration example of the voltage control device 1 and the controlled circuit 2 according to the fifth embodiment. Similar to the fourth embodiment, the voltage control device 1 according to the fifth embodiment also includes a delay monitor circuit 50 in addition to the clock generation circuit 30. However, the clock generation circuit 30 generates a clock signal CLK having a constant arbitrary frequency, and does not receive the internal voltage from the controlled circuit 2 as the power supply voltage VDDOSC.
  • the clock generation circuit 30 may be, for example, a crystal oscillator, an LC or RC oscillator, a PLL (Phase Locked Loop) circuit, a PLL (Digital Locked Loop) circuit, or the like.
  • the clock generation circuit 30 since the clock generation circuit 30 does not use the internal voltage of the controlled circuit 2 as the effective power supply voltage, the above-mentioned Adaptive Clocking technique cannot be used. However, the frequency of the clock signal CLK can be stably maintained at a constant value.
  • Other configurations of the fifth embodiment may be the same as the corresponding configurations of the fourth embodiment.
  • FIG. 12 is a circuit diagram showing a configuration example of the delay monitor circuit 50.
  • the delay monitor circuit 50 includes a delay circuit 51 and a delay measuring instrument 52.
  • the delay circuit 51 may be a circuit having substantially the same configuration as the clock generation circuit 30, or is a circuit having substantially the same fV characteristics as the clock generation circuit 30. That is, the delay circuit 51 is a circuit having substantially the same configuration or substantially the same fV characteristics as the critical path.
  • the delay measuring instrument 52 is connected between the output and the input of the delay circuit 51, and measures the time from the rising point to the falling point of the output of the delay circuit 51 (pulse width of the clock signal CLK). Alternatively, the delay measuring instrument 52 may measure the time from the falling point to the rising point of the output of the delay circuit 51. That is, the delay measuring instrument 52 measures the delay time from the input to the output of the delay circuit 51.
  • the delay time may be the average value of a plurality of pulse widths. This delay time information is fed back to the power supply voltage control circuit 20.
  • the power supply voltage control circuit 20 receives the delay time information and sets the target voltage so that the delay time becomes equal to the target delay time. Since the delay time is the reciprocal of the frequency of the clock signal CLK (inversely proportional), it is also possible to set the target voltage of the power supply voltage VDD by using the delay time instead of the frequency. Of course, the delay monitor circuit 50 may output the frequency of the delay circuit 51. In this case, the power supply voltage control circuit 20 may set the target voltage based on the frequency from the delay monitor circuit 50.
  • FIG. 13 is a circuit diagram showing another configuration example of the delay monitor circuit 50.
  • the delay monitor circuit 50 includes a delay circuit 51, a counter 53, and an arithmetic processor 54.
  • the counter 53 is connected between the output of the delay circuit 51 and the input of the arithmetic processor 54, and counts the number of times the output of the delay circuit 51 is inverted (the number of times the clock signal CLK is inverted) within a predetermined period.
  • the arithmetic processor 54 is connected to the output of the counter 53 and receives the number of inversions of the output of the delay circuit 51.
  • the arithmetic processor 54 measures the delay time based on the predetermined time and the number of times the output of the delay circuit 51 is inverted. This delay time information is fed back to the power supply voltage control circuit 20.
  • FIG. 14 is a circuit diagram showing still another configuration example of the delay monitor circuit 50.
  • the delay monitor circuit 50 is the same as the delay monitor circuit 50 shown in FIG. 13 in that it includes a delay circuit 51, a counter 53, and an arithmetic processor 54. However, the configuration of the delay circuit 51 is different from that of FIG.
  • the delay circuit 51 of FIG. 14 has different delay trains DL1, DL2, DL3 ... Connected in parallel to the delay measuring instrument 52.
  • Each delay sequence DL1, DL2, DL3 ... Is configured by connecting a plurality of the same delay elements in series.
  • the delay element may be, for example, a logic circuit such as an inverter circuit, a NAND arithmetic circuit, or a NOR arithmetic circuit.
  • the delay measuring instrument 52 selects any of the delay columns DL1, DL2, DL3, ... Based on the information from the register 40, for example.
  • the delay measuring instrument 52 measures the delay time using the pulse signal from the selected delay sequence.
  • the voltage control device 1 selects a delay sequence having appropriate fV characteristics according to the operating state of the controlled circuit 2, and controls the controlled circuit 2 with AVS using an appropriate power supply voltage VDD. can do.
  • the degree of freedom of AVS control is increased. Further, when the arithmetic processor 54 calculates the delay time by arithmetic operation, the delay time fed back to the power supply voltage control circuit 20 can be generated based on the fV characteristic different from the actually measured delay element. Become. This further increases the degree of freedom in AVS control.
  • the delay monitor circuit 50 is provided separately from the clock generation circuit 30, but has the same configuration or the same f- as the critical path like the clock generation circuit 30. It can have V characteristics. Therefore, the fourth and fifth embodiments can obtain the same effect as the first embodiment.
  • the fourth and fifth embodiments may be combined with the second or third embodiment.
  • the power supply voltage V DDOSC supplied to the clock generation circuit 30 and / or the delay monitor circuit 50 may be the internal voltage selected by the multiplexer MUX H1.
  • the low voltage power supply supplied to the clock generation circuit 30 and / or the delay monitor circuit 50 may be the internal voltage selected by the multiplexer MUX L1.
  • a plurality of clock generation circuits 30 and / or a plurality of delay monitor circuits 50 are provided, and two clock generation circuits 30 and two delay monitor circuits 50 are provided.
  • One multiplexer outputs the clock signal CLK of the lowest frequency among the clock signals from the plurality of clock generation circuits 30 to the controlled circuit 2.
  • the other multiplexer may feed back the longest delay time among the delay times from the plurality of delay monitor circuits 50 to the power supply voltage control circuit 20.
  • FIG. 15 is a circuit diagram showing a configuration example of the clock generation circuit 30.
  • the clock generation circuit 30 includes delay circuits DL11 to DL13 and multiplexers MUX31 to MUX33.
  • the delay circuits DL11 to DL13 each have different types of delay elements.
  • Each of the delay circuits DL11 to DL13 is configured by connecting a plurality of the same delay elements in series.
  • the configuration of each of the delay circuits DL11 to DL13 is not limited to this.
  • the delay circuits DL11 to DL13 are connected in series via multiplexers MUX31 to MUX33.
  • the delay circuit DL11 outputs a plurality of output signals obtained from different delay elements to the multiplexer MUX31.
  • the multiplexer MUX 31 selects one of a plurality of output signals from the delay circuit DL 11 and outputs the output signal to the delay circuit DL 12 in the subsequent stage.
  • the delay circuit DL12 outputs a plurality of output signals obtained from different delay elements to the multiplexer MUX32.
  • the multiplexer MUX 32 selects one of a plurality of output signals from the delay circuit DL12 and outputs the output signal to the delay circuit DL13 in the subsequent stage.
  • the delay circuit DL13 outputs a plurality of output signals obtained from a plurality of different parts of the delay element to the multiplexer MUX 33.
  • the multiplexer MUX 33 selects one of a plurality of output signals from the delay circuit DL13, inverts the output signal with the inverter INV1, and outputs it as a clock signal CLK.
  • the clock generation circuit 30 outputs the output signal from the inverter INV1 to the controlled circuit 2 and feeds it back to its own input.
  • the multiplexers MUX31 to MUX33 select one of the output signals based on the information from the register 40.
  • the clock generation circuit 30 constitutes a delay circuit having appropriate fV characteristics according to the operating state of the controlled circuit 2, and controls the controlled circuit 2 with AVS using an appropriate power supply voltage VDD. can do.
  • FIG. 16 is a circuit diagram showing another configuration example of the clock generation circuit 30.
  • the clock generation circuit 30 of this modification includes a delay circuit DL40 and a multiplexer MUX40.
  • the delay circuit DL40 has a single type of delay element (for example, an inverter circuit) connected in series, and is output via the multiplexer MUX40.
  • the delay circuit DL40 outputs a plurality of output signals obtained from a plurality of different parts of the delay element to the multiplexer MUX40.
  • the multiplexer MUX40 selects one of a plurality of output signals from the delay circuit DL40, inverts the output signal with the inverter INV2, and outputs it as a clock signal CLK.
  • the multiplexer MUX 40 selects one of the output signals based on the information from the register 40.
  • the clock generation circuit 30 may have an arbitrary delay time by changing the number of delay elements connected in series. it can. Information on the number of delay elements connected in series may be stored in the register 40 in advance.
  • the clock generation circuit 30 also constitutes a delay circuit having appropriate fV characteristics according to the operating state of the controlled circuit 2, and is controlled using an appropriate power supply voltage VDD. 2 can be AVS controlled.
  • the present technology may also have the following configurations.
  • a power supply circuit that supplies power to the input terminals of the controlled circuit,
  • a power supply voltage control circuit that controls the power supply voltage supplied from the power supply circuit to the controlled circuit based on the clock signal supplied to the controlled circuit.
  • the internal voltage applied from the input unit to the second internal circuit region having a second wiring distance longer than the first wiring distance of the first internal circuit region in the controlled circuit at the wiring distance in the controlled circuit.
  • a voltage control device including a clock generation circuit that receives as a power source and generates the clock signal based on the internal voltage.
  • the voltage control device according to any one of claims 1 to 9, wherein the clock generation circuit has the same circuit configuration as the second internal circuit region.
  • the clock generation circuit is a delay circuit in which an input signal is inverted and output as an output signal, and the output signal is input as the input signal. apparatus.
  • a selection circuit for inputting a plurality of internal voltages applied to a plurality of internal circuit regions in the controlled circuit and selecting the minimum internal voltage from the plurality of internal voltages is further provided.
  • the voltage control device according to any one of claims 1 to 11, wherein the clock generation circuit receives the minimum internal voltage as a power source and generates the clock signal based on the minimum internal voltage.
  • a storage unit for storing information of the second internal circuit region that receives the minimum internal voltage is provided.
  • a plurality of clock generation circuits that receive a plurality of internal voltages applied to a plurality of internal circuit regions in the controlled circuit as a power source and generate a plurality of clock signals based on the plurality of internal voltages, respectively.
  • a storage unit for storing information of the clock generation circuit that outputs the clock signal of the minimum frequency is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

[課題]被制御回路の電源電圧を最低動作電圧以上に維持しつつ、できるだけ該最低動作電圧に近付けて、消費電力を低減することができる電圧制御装置を提供する。 [解決手段]本開示による電圧制御装置は、被制御回路の入力端子に電力を供給する電源回路と、被制御回路に供給されるクロック信号に基づいて、電源回路から被制御回路へ供給される電源電圧を制御する電源電圧制御回路と、入力部から被制御回路内の配線距離において被制御回路内の第1内部回路領域の第1配線距離よりも長い第2配線距離を有する第2内部回路領域に印加される内部電圧を電源として受け取り、該内部電圧に基づいてクロック信号を生成するクロック生成回路と、を備えている。

Description

電圧制御装置
 本開示は、電圧制御装置に関する。
 携帯型電子機器またはIoT(Internet of Things)等の小型電子機器は、小型でありながらできる限り長時間駆動することが望まれている。このため、機器内のシステムの低消費電力化が強く要求されている。機器内の被制御回路は、電源電圧を低くすることで、消費電力を低減することができる。一方、被制御回路の動作を保証するためには、被制御回路に印加される電源電圧は、最低動作電圧以上でなくてはならない。従って、電源電圧を最低動作電圧以上に維持しつつ、できるだけ該最低動作電圧に近付けて、消費電力を低減することが求められている。
 このような要求に応えるために、AVS(Adaptive Voltage Scaling)制御装置が用いられることがある。AVS制御装置は、被制御回路の電源電圧を製造バラツキ、温度、動作周波数等の動作環境に適応させつつ、消費電力を低減させるように被制御回路を制御する電圧制御装置である。AVS制御装置は、製造バラツキ等による電圧降下の最大予測値を余裕電圧として最低動作電圧に加算してAVS制御を行う必要がある。しかし、従来のAVS制御装置では、被制御回路とAVS制御装置自体との相関誤差も考慮して大きな余裕電圧を設定する必要があり、余計な電力損失が発生するという問題があった。
 そこで、本開示は、被制御回路の電源電圧を最低動作電圧以上に維持しつつ、できるだけ該最低動作電圧に近付けて、消費電力を低減することができる電圧制御装置を提供する。
 本開示の一側面による電圧制御装置は、被制御回路の入力端子に電力を供給する電源回路と、被制御回路に供給されるクロック信号に基づいて、電源回路から被制御回路へ供給される電源電圧を制御する電源電圧制御回路と、入力部から被制御回路内の配線距離において被制御回路内の第1内部回路領域の第1配線距離よりも長い第2配線距離を有する第2内部回路領域に印加される内部電圧を電源として受け取り、該内部電圧に基づいてクロック信号を生成するクロック生成回路と、を備えている。
 第2配線距離は、入力部から被制御回路内の複数の内部回路領域までの複数の配線距離のうち最大距離の半分よりも長い。
 第2配線距離は、入力部から被制御回路内の複数の内部回路領域までの複数の配線距離のうちほぼ最大である。
内部電圧は、第1内部回路領域に印加される電圧より低い。
 内部電圧は、被制御回路において電源電圧からの最大電圧降下の半分より大きく電圧降下している。
 内部電圧は、被制御回路内の複数の内部回路領域に供給される電圧のうちほぼ最小の電圧である。
 入力部から第2内部回路領域までの直線距離は、入力部から第1内部回路領域までの直線距離よりも長い。
 入力部から第2内部回路領域までの直線距離は、入力部から被制御回路内の複数の内部回路領域までの複数の直線距離のうち最大距離の半分よりも長い。
 入力部から第2内部回路領域までの直線距離は、入力部から被制御回路内の複数の内部回路領域までの複数の直線距離のうちほぼ最大である。
 クロック生成回路は、第2内部回路領域と同一の回路構成を有する。
 クロック生成回路は、入力信号を反転して出力信号として出力し、該出力信号を入力信号として入力する遅延回路である。
 被制御回路内の複数の内部回路領域に印加される複数の内部電圧を入力し、該複数の内部電圧から最小の内部電圧を選択する選択回路をさらに備え、
 クロック生成回路は、最小の内部電圧を電源として受け取り、該最小の内部電圧に基づいてクロック信号を生成する。
 最小の内部電圧を受ける第2内部回路領域の情報を格納する記憶部をさらに備え、
 選択回路は、記憶部から得られた情報に基づいて第2内部回路領域を選択する。
 被制御回路内の複数の内部回路領域に印加される複数の内部電圧をそれぞれ電源として受け取り、それぞれ該複数の内部電圧に基づいて複数のクロック信号を生成する複数のクロック生成回路と、
 複数のクロック生成回路からの複数のクロック信号を入力し、該複数のクロック信号から最小周波数のクロック信号を選択する選択回路とをさらに備える。
 最小周波数のクロック信号を出力するクロック生成回路の情報を格納する記憶部をさらに備え、
 選択回路は、記憶部から得られた情報に基づいてクロック信号を選択する。
第1実施形態に従った電圧制御装置の構成例を示すブロック図。 電圧制御装置と被制御回路との接続関係の一例を示すブロック図。 クロック生成回路の内部構成の一例を示す回路図。 内部回路領域のレプリカ回路に遅延回路を付加したクロック生成回路を示す回路図。 一般的な回路のf-V特性を示すグラフ。 被制御回路2およびクロック生成回路32のそれぞれのf-V特性を示すグラフ。 第1実施形態による被制御回路およびクロック生成回路のf-V特性の一例を示すグラフ。 第2実施形態による電圧制御装置と被制御回路との接続関係を示すブロック図。 第3実施形態による電圧制御装置と被制御回路との接続関係を示すブロック図。 第4実施形態による電圧制御装置および被制御回路の構成例を示すブロック図。 第5実施形態による電圧制御装置および被制御回路の構成例を示すブロック図。 遅延モニタ回路の構成例を示す回路図。 遅延モニタ回路の他の構成例を示す回路図。 遅延モニタ回路のさらに他の構成例を示す回路図。 クロック生成回路の構成例を示す回路図。 クロック生成回路の他の構成例を示す回路図。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。図面は模式的または概念的なものであり、各部分の比率などは、必ずしも現実のものと同一とは限らない。明細書と図面において、既出の図面に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1実施形態)
 図1は、第1実施形態に従った電圧制御装置の構成例を示すブロック図である。本開示による電圧制御装置1は、電源回路10と、電源電圧制御回路20と、クロック生成回路30とを備えている。電圧制御装置1は、例えば、被制御回路2に印加する電源電圧VDDを、被制御回路2の製造ばらつき、温度、動作周波数等の動作環境に適応させるように制御するAVS制御装置である。
 電源回路10は、電源電圧制御回路20から目標電圧を受け、被制御回路2の入力部へ目標電圧に従った電力を供給する。被制御回路2は、例えば、CPU(Central Processing Unit)のようなクロック信号CLKに基づいて動作するデジタルロジック回路である。被制御回路2は、1つまたは複数の半導体チップでもよく、あるいは、1つの半導体チップ内の一部分の半導体集積回路であってもよい。
 電源電圧制御回路20は、クロック生成回路30から出力されるクロック信号CLKと外部からの目標周波数とを受け取り、クロック信号CLKに基づいて電源回路10から被制御回路2へ供給される電源電圧VDDを制御する。例えば、電源電圧制御回路20は、クロック信号CLKが目標周波数に等しくなるように、目標電圧を調節する。目標電圧は、電源回路10から被制御回路2へ実際に供給される電力の電圧値を示す情報である。
 クロック生成回路30は、被制御回路2の内部電圧を受け取り、内部電圧を電源電圧VDDOSCとしてクロック信号CLKを出力する。電源電圧VDDOSCは、電源電圧VDDから被制御回路2内の内部回路領域において電圧降下された内部電圧である。クロック信号CLKは、被制御回路2および電源電圧制御回路20へ供給される。クロック信号CLKは、被制御回路2に供給されて、被制御回路2の動作速度を制御する。クロック信号CLKの周波数によって被制御回路2の動作速度が変わり、それに伴い被制御回路2に必要な目標電圧も変わる。従って、クロック信号CLKは、電源電圧制御回路20にフィードバックされ、目標電圧の調節に用いられる。電源電圧制御回路20は、クロック信号CLKが予め設定された目標周波数に等しくなるように目標電圧を制御する。
 電圧制御装置1は、電源回路10、電源電圧制御回路20およびクロック生成回路30を含む1つのあるいは複数の半導体チップで構成されてもよい。また、電圧制御装置1は、被制御回路2の外部に設けられていてもよく、その内部に組み込まれていてもよい。尚、本開示では、電圧制御装置1は、被制御回路2に対して外付けされているものとして説明する。
 図2は、電圧制御装置1と被制御回路2との接続関係の一例を示すブロック図である。被制御回路2は、任意のデジタルロジック回路であり、複数の内部回路領域IC01~ICnnで構成されている。nは任意の正整数である。内部回路領域IC01~ICnnは、それぞれ同じ回路構成を有してもよく、互いに異なる回路構成を有していてもよい。さらに、内部回路領域IC01~ICnnの区分けも任意であり、デジタルロジック回路を任意の単位で分割してよい。
 被制御回路2は、電源回路10とグランドGNDとの間に接続されている。入力端子としての高電圧側の第1端子T1には電源電圧VDDが印加され、他の入力端子としての低電圧側の第2端子には接地電圧VSSが印加される。内部回路領域IC01~ICnnは、それぞれ内部配線Wを介して第1端子T1と第2端子T2との間に電気的に接続されている。第1端子T1または第2端子T2から内部回路領域IC01~ICnnまでの配線距離は、内部回路領域IC01~ICnnのそれぞれについて互いに異なっていてもよい。例えば、本開示では、第1端子T1から内部回路領域IC01~ICij(0≦i≦n、0≦j≦n)までの配線距離は、i、jが大きくなるにつれて長くなっている。第2端子T2から内部回路領域IC01~ICijまでの配線距離は、iが大きくなるにつれて長くなっており、jが小さくなるにつれて長くなっている。
 内部配線Wは抵抗を有するので、第1端子T1から内部回路領域IC01~ICnnまでのそれぞれの配線距離に依って、内部回路領域IC01~ICnnにおける電源電圧VDDからの降下電圧が異なる。また、第2端子T2から内部回路領域IC01~ICnnまでのそれぞれの配線距離に依って、接地電圧VSSから内部回路領域IC01~ICnnまでの電圧上昇も異なる。従って、内部回路領域IC01~ICnnの電源回路10側の高電圧端子とグランドGND側の低電圧端子との間に印加される内部電圧(実効電源電圧)は、内部回路領域IC01~ICnnのそれぞれにおいて異なる。以下、回路の両端に印加される電源電圧を、実効電源電圧ともいう。内部回路領域IC01~ICnnの実効電源電圧が異なると、内部回路領域IC01~ICnnの動作周波数が変わる。このため、電源電圧制御回路20は、内部回路領域IC01~ICnnの全ての動作周波数が目標周波数以上となるように、電源電圧VDDの目標電圧を設定することが求められる。
 全内部回路領域IC01~ICnnの動作周波数を目標周波数以上とするためには、被制御回路2の電源電圧VDDからの電圧降下の最も大きな内部回路領域の動作周波数を、目標周波数以上とするようにする必要がある。このような電圧降下の最も大きな内部回路領域(第2内部回路領域)を通る経路を、以下、“クリティカルパス”と呼ぶ。例えば、内部回路領域IC01~ICnnが同じ回路構成を有すものとすると、クリティカルパスは、ノードNHnnとノードNLn1との間の内部回路領域ICn1~ICnnを通過する経路である。ノードNHnnは、内部回路領域ICnnの高電圧端子のノードである。ノードNLn1は、内部回路領域ICn1の低電圧端子のノードである。
 尚、実際には、実効電源電圧の最も低い内部回路領域を電圧測定によって特定することは困難な場合がある。即ち、クリティカルパスを特定することが困難な場合がある。このような場合には、第1端子T1または第2端子T2から複数の内部回路領域IC01~ICnnまでの配線距離のうち、ほぼ最大の配線距離を有する内部回路領域をクリティカルパスと判断してもよい。また、被制御回路2の平面レイアウトにおいて、第1端子T1または第2端子T2から複数の内部回路領域IC01~ICnnまでの直線距離のうち、ほぼ最大の直線距離を有する内部回路領域をクリティカルパスと判断してもよい。さらに、第2または第3実施形態のように、複数の内部回路領域からクリティカルパスを選択してもよい。
 例えば、図2において、第1端子T1からノードNHnn(内部回路領域ICnn)までの第2配線距離は、第1端子T1から他の内部回路領域(第1内部回路領域)までの第1配線距離よりも長い。即ち、第1端子T1からノードNHnnまでの第2配線距離は、第1端子T1から被制御回路2内の複数の内部回路領域IC01~ICnnまでの配線距離のうち最大距離となる。従って、内部回路領域IC01~ICnnのうち、内部回路領域ICnnのノードNHnnが電源電圧VDDからの電圧降下において最も大きい。
 また、第2端子T2からノードNLn1(内部回路領域ICn1)までの第4配線距離は、第2端子T2から他の内部回路領域までの第3配線距離よりも長い。即ち、第2端子T2からノードNLn1までの第4配線距離は、第2端子T2から被制御回路2内の複数の内部回路領域IC01~ICnnまでの配線距離のうち最大距離となる。従って、内部回路領域IC01~ICnnのうち、内部回路領域ICn1のノードNHn1が接地電圧VSSからの電圧上昇において最も大きい。よって、ノードNHnnとノードNLn1との間に印加される実効電源電圧が被制御回路2内の実効電源電圧となり、ノードNHnnとノードNLn1との間の内部回路領域ICn1~ICnnを通る経路がクリティカルパスとなる。
 電源電圧制御回路20は、クリティカルパスの動作周波数が目標周波数以上となるように目標電圧を設定すれば、内部回路領域IC01~ICnnの全ての動作周波数を目標周波数以上とすることができる。そこで、クロック生成回路30は、第2内部回路領域としてのクリティカルパスと同一の回路構成を有するレプリカ回路で構成される。
 図3は、クロック生成回路30の内部構成の一例を示す回路図である。クロック生成回路30は、クリティカルパスのレプリカ回路である。即ち、クロック生成回路30は、所謂、クリティカルパス・レプリカ・リングオシレータ(CPRRO)の一例である。クリティカルパスは、例えば、図2のノードNHnnからノードNLn1までの内部回路領域ICn1~ICnnとなる。このような構成を有するクロック生成回路30は、入力信号を遅延させかつ論理反転させた出力信号を、クロック信号CLKとして出力するとともに、この出力信号を入力信号としてフィードバック入力する遅延回路である。クロック生成回路30は、自身の出力信号を遅延時間ごとに反転させて出力するので、パルス状のクロック信号CLKを出力することができる。尚、クロック生成回路30は、クリティカルパスと同一構成の回路であってもよいが、クリティカルパスとほぼ等しいf-V特性を有する他の回路であってもよい。
 ここで、図3に示すように、クロック生成回路30は、高電圧側電源として電圧VDDOSCを受け取り、低電圧側電源として電圧VSSOSCを受け取る。ノードNHnn、NLn1からクロック生成回路30までの配線抵抗が充分に小さいとすると、電圧VDDOSCはノードNHnnの内部電圧にほぼ等しく、電圧VSSOSCはノードNLn1の内部電圧にほぼ等しい。これにより、クロック生成回路30は、第2内部回路領域としての内部回路領域ICn1~ICnnと同一構成を有し、かつ、内部回路領域ICn1~ICnnに印加される内部電圧とほぼ等しい実効電源電圧Veff_OSCで動作する。即ち、クロック生成回路30は、ノードNHnnの内部電圧およびノードNLn1の電圧差(実効電源電圧)Veff_OSCに基づいてクロック信号CLKを生成する。
 クロック生成回路30および内部回路領域ICn1~ICnnが同一構成を有することにより、クロック生成回路30は、内部回路領域ICn1~ICnn(即ち、クリティカルパス)と同じ特性(例えば、f-V特性)を有することができる。さらに、クロック生成回路30および内部回路領域ICn1~ICnnがほぼ同じ電源電圧で動作する。よって、クロック生成回路30は、内部回路領域ICn1~ICnnに対する実効電源電圧の電圧降下を考慮した遅延回路(例えば、図4の31)を付加する必要がない。従って、付加的な遅延回路による特性の相関誤差を考慮する必要がなく、クロック生成回路30の特性に余計なオフセット成分を付加する必要がなくなる。これにより、後述するように、目標電圧に余計な余裕電圧を含める必要が無くなり、目標電圧を最低動作電圧に接近させることができる。その結果、本開示による電圧制御装置1は、消費電力を低減しつつAVS制御を行うことができる。
 例えば、もし、クロック生成回路が電源電圧VDDおよび接地電圧VSSで動作する場合、クロック生成回路は、クリティカルパスに印加される実効電源電圧の電圧降下を考慮して、遅延回路を追加で有する必要がある。
 図4は、内部回路領域ICn1~ICnnのレプリカ回路30に遅延回路31を付加したクロック生成回路32を示す回路図である。クロック生成回路32の電源電圧VDDOSC、VSSOSCには、それぞれ外部の電源電圧VDDおよび接地電圧VSSが用いられる。このクロック生成回路32のf-V特性について以下説明する。
 まず、一般的なf-V特性について説明する。
 図5は、一般的な回路のf-V特性を示すグラフである。縦軸は、周波数fを示し、横軸は、電源電圧Vを示す。f-V特性は、回路の動作周波数fと電源電圧Vとの関係を示す特性である。通常、図5に示すように、電源電圧Vを上昇させると、動作周波数fは上昇し、逆に、電源電圧Vを低下させると、動作周波数fは低下する。
 目標周波数をftとすると、回路の製造ばらつきや温度によってクリティカルパスのf-V特性が変化しても、目標周波数ft以上で動作するために電源電圧VはAVS制御される。例えば、ラインL1で示す回路は、実効電源電圧が比較的低いVL1でも、目標周波数ftで動作する。ラインL3で示す回路は、実効電源電圧が比較的高いVL3ないと、目標周波数ftで動作しない。ラインL2で示す回路は、実効電源電圧がVL1とVL3との間の中間程度の電圧VL2において、目標周波数ftで動作する。このように、回路は、の製造ばらつきや温度によって、目標周波数ftで動作するために必要な最低動作電圧(VL1~VL3)が異なる。さらに、回路およびその制御による誤差も考慮して動作を保証するために、L1~L3のそれぞれの最低動作電圧(VL1~VL3)に対して余裕電圧dVを付加する必要がある。従って、ラインL1~L3で示す各回路の目標電圧は、それぞれVL1+dV、VL2+dV、VL3+dVとなる。ラインL1~L3の回路を全て正常に動作させるためには、最低動作電圧の範囲はdVとなり、余裕電圧dVを考慮すると、AVS制御における実効電源電圧の範囲はdVAVSとなる。
 AVS制御において、回路の動作周波数を目標周波数f以上で保証するためには、実効電源電圧は、最低動作電圧および余裕電圧の和(VL1+dV、VL2+dV、VL3+dVL1~VL3)以上でなくてはならない。一方、最低動作電圧に付加される余裕電圧dVは、回路の消費電力を低減させるために、できるだけ小さいことが好ましい。過剰な余裕電圧dVは、余計な電力損失になるからである。
 次に、図4の遅延回路31を有するクロック生成回路32のf-V特性について説明する。
 図6は、被制御回路2およびクロック生成回路32のそれぞれのf-V特性を示すグラフである。ラインLICは、被制御回路2の内部回路領域CI01~ICnnのf-V特性を示す。ラインLCLKは、クロック生成回路32のf-V特性を示す。尚、図6では、理解し易いように、被制御回路2およびクロック生成回路32のf-V特性を直線で示しているが、f-V特性は、図5に示すような曲線であっても構わない。また、便宜的に接地電圧VSSをゼロとし、端子T1と端子T2との間に印加される被制御回路2の実効電源電圧は電源電圧VDDであるとして説明する。
 被制御回路2では、目標周波数ft以上の動作周波数を得るために、実効電源電圧の推定最小値Veff_min_est以上の電源電圧が必要とされる。推定最小値Veff_min_estは、被制御回路2のクリティカルパスが目標周波数ftで動作するために必要な実効電源電圧の推定値である。一方、被制御回路2の内部回路領域IC01~ICnnに実際に印加される電源電圧の範囲は、Veff_n1~Veff_01となっている。Veff_n1は、図2に示すように内部回路領域ICn1に印加される実効電源電圧であり、内部回路領域ICn1の電源回路10側の端子とグランドGND側の端子との間の電圧差である。Veff_01は、内部回路領域IC01に印加される実効電源電圧であり、内部回路領域IC01の電源回路10側の端子とグランドGND側の端子との間の電圧差である。本開示では、内部回路領域IC01~ICnnの中で、内部回路領域ICn1に印加される電圧Veff_n1が最小であり、内部回路領域IC01に印加される電圧Veff_01が最大であるものとしている。この場合、被制御回路2の内部回路領域IC01~ICnnの実効電源電圧の範囲dVeffは、Veff_n1~Veff_01となる。
 実効電源電圧の範囲dVeffに対する被制御回路2の実効動作周波数の範囲dfeffは、feff_n1~feff_01となる。被制御回路2は、実効電源電圧の範囲dVeffの電源電圧によって、実効動作周波数の範囲dfeffで動作する。
 一方、クロック生成回路32は、電源電圧VDDおよび接地電圧VSSを電源電圧として入力している。従って、内部回路領域IC01~ICnnのうち電圧降下の最も大きな内部回路領域ICn1~ICnn(即ち、クリティカルパス)の実効電源電圧を考慮して、クロック生成回路32は、レプリカ回路30に遅延回路31を付加している。遅延回路31は、クロック信号CLKの周波数を低下させるように機能するので、クロック信号CLKを目標周波数ftに等しくするために、電源電圧制御回路20は、目標電圧を上昇させる。これにより、電源回路10は、クリティカルパスまでの実効電源電圧の電圧降下を考慮した高い電源電圧VDDを被制御回路2へ印加することができる。その結果、クリティカルパスも含めた被制御回路2の全ての内部回路領域が正常に動作することができる。
 遅延回路31を付加することによって、ラインLCLKで示すクロック生成回路32のf-V特性は、ラインLICで示す被制御回路2のf-V特性に対してオフセット電圧dVOSを有することになる。例えば、クロック生成回路32に印加される実効電源電圧Veff_OSCは、遅延回路31の付加によって、実効電源電圧の推定最小値Veff_min_estよりもオフセット電圧dVOSだけ高い電圧に設定される。
 電源電圧VDDからクロック生成回路32までの電圧降下を考慮して、電源電圧VDDの目標電圧は、クロック生成回路32の実効電源電圧Veff_OSCよりも該電圧降下分だけ少し高い電圧に設定されている。
 ここで、実際の電圧降下の最大値dVeff_maxは、電源電圧VDDと内部回路領域ICn1の実効電源電圧Veff_n1との電圧差となる。従って、電源電圧VDDは、実効電源電圧の推定最小値Veff_min_estよりも実際の電圧降下の最大値dVeff_maxだけ高い電圧(Veff_min_est+dVeff_max)であれば足りるはずである。
 しかし、遅延回路31を有するクロック生成回路32を用いた場合、電源電圧VDDは、電圧(Veff_min_est+dVeff_max)よりも過剰な余裕電圧dVlossだけ高い電圧に設定されている。このように過剰な余裕電圧dVlossを必要とする理由は以下の通りである。
 まず、電源電圧VDDからクリティカルパスまでの電圧降下を推定し、電源電圧VDDが設定される。そのため、電圧降下の推定最大値dVeff_max_estが実際の電圧降下最大値dVeff_maxよりも大きくなるように遅延回路31は設計される。電圧降下の推定最大値dVeff_max_estは、被制御回路2およびクロック生成回路32の製造バラツキ、温度による特性変化、過渡的な変化等を考慮して設定される。
 また、レプリカ回路30に遅延回路31を付加することによって、クリティカルパスとクロック生成回路32との間に構造上の差違が生じる。この構造差は、クリティカルパスとクロック生成回路32との相関精度を悪化させる要因になる。例えば、遅延回路31を付加することによって、クロック生成回路32のf-V特性は、図6のラインLCLKのうち破線で示すように相関誤差を生じる。相関誤差による電源電圧のばらつきの推定電圧は、Verr_estで示されている。このような誤差推定電圧Verr_estも電圧降下の推定最大値dVeff_max_estに付加されて、電源電圧VDDの目標電圧が設定される。このような理由により、クロック生成回路32は、過剰な余裕電圧dVlossを必要とする。
 次に、本開示によるクロック生成回路30のf-V特性について説明する。
 図7は、第1実施形態による被制御回路2およびクロック生成回路30のf-V特性の一例を示すグラフである。クロック生成回路30は、クリティカルパス(内部回路領域ICn1~ICnn)と同一構成を有するレプリカ回路であり、遅延回路31を有していない。また、クロック生成回路30は、クリティカルパスとしての内部回路領域ICn1~ICnnに印加される実効電源電圧を受けて動作する。従って、被制御回路2およびクロック生成回路30のf-V特性は、ラインLIC、LCLKで示すように、オフセットを有さずほぼ重複している。
 このように、本開示によるクロック生成回路30は、クリティカルパスに印加される内部電圧(電源電圧VDDよりも低電圧)を実効電源電圧Veff_OSCとして受けることにより、電源電圧VDDからクリティカルパスまでの電圧降下を考慮する必要がない。従って、電圧降下の推定最大値dVeff_max_estの設定が不要であり、付加的な遅延回路31を設ける必要が無い。
 付加的な遅延回路31が不要なため、クリティカルパスとクロック生成回路30とが構造上、同一構成となり、クリティカルパスとクロック生成回路30との相関誤差がほぼ無くなる。即ち、相関誤差による電源電圧の誤差推定電圧Verr_estも考慮する必要が無い。その結果、過剰な余裕電圧dVlossがほとんど不要となる。
 この場合、内部回路領域ICn1の実効電源電圧Veff_n1およびクロック生成回路30の実効電源電圧Veff_OSCは、ほぼ等しくなる。また、内部回路領域ICn1の動作周波数feff_n1は、目標周波数ftにほぼ等しくなる。電源電圧VDDの目標電圧は、実効電源電圧Veff_n1および実効電源電圧Veff_OSCから実際の電圧降下の最大値dVeff_maxを加算した電圧に設定すればよい。
 これにより、電圧制御装置1は、被制御回路2の実効電源電圧Veff_n1を最低動作電圧以上に維持しつつ、最低動作電圧に近付けて、消費電力を低減することができる。
 尚、第1実施形態では、クロック生成回路30は、クリティカルパスと同一構成を有するレプリカ回路であり、電源電圧VDDからの電圧降下の最も大きな内部電圧から電源電圧を受けている。即ち、クロック生成回路30は、実効電源電圧の最も小さい内部回路領域ICn1~ICnnから電源電圧を受けている。
 しかし、クリティカルパスを特定できない場合には、クロック生成回路30は、実効電源電圧が少しでも小さい内部回路領域から実効電源電圧Veff_OSCを得てもよい。この場合、クリティカルパスの回路規模が大きくなったり、追加の遅延回路が必要になる可能性があるが、クロック生成回路30は、電源電圧VDDを受けるクロック生成回路32よりも余裕電圧dVlossを小さくすることができる。
 あるいは、例えば、クロック生成回路30は、電源電圧VDDからの電圧降下の最も大きな内部電圧と電源電圧VDDとの電圧差の半分より電圧降下の大きな内部電圧を実効電源電圧Veff_OSCとして受けてもよい。即ち、実効電源電圧Veff_OSCは、最大電圧降下の半分より大きく電圧降下している内部電圧でもよい。これにより、クロック生成回路30の実効電源電圧Veff_OSCは、できるだけクリティカルパスに近い内部回路領域の内部電源から得ることができる。
 代替的に、クロック生成回路30は、端子T1、T2からの配線距離が少しでも長い内部回路領域から実効電源電圧Veff_OSCを受けてもよい。例えば、端子T1から内部回路領域IC1nまでの配線距離が端子T1から内部回路領域IC0nまでの配線距離よりも長い場合、クロック生成回路30は、内部回路領域IC1nの高電圧側端子(ノードNH1n)から高電圧電源を受ける。端子T2から内部回路領域IC11までの配線距離が端子T2から内部回路領域IC01までの配線距離よりも長い場合、クロック生成回路30は、内部回路領域IC11の低電圧側端子(ノードNL11)から低電圧電源を受ける。これにより、クロック生成回路30は、ノードNH1nとノードNL11との電圧差を実効電源電圧Veff_OSCとして受ける。これにより、クロック生成回路30の実効電源電圧Veff_OSCは、クリティカルパスに近い内部回路領域の内部電源から得ることができる。
 あるいは、例えば、クロック生成回路30は、端子T1から複数の内部回路領域IC01~ICnnまでの複数の配線距離のうち最大距離の半分よりも長い内部回路領域から高電圧電源を受けてもよい。かつ、クロック生成回路30は、端子T2から複数の内部回路領域IC01~ICnnまでの複数の配線距離のうち最大距離の半分よりも長い位置にある内部回路領域から低電圧電源を受けてもよい。このようにしても、クロック生成回路30の実効電源電圧Veff_OSCは、クリティカルパスに近い内部回路領域の内部電源から得ることができる。
 さらに、クロック生成回路30は、平面レイアウトにおいて、端子T1、T2からの直線距離が少しでも長い内部回路領域から実効電源電圧Veff_OSCを受けてもよい。例えば、端子T1から内部回路領域IC1nまでの直線距離が端子T1から内部回路領域IC0nまでの直線距離よりも長い場合、クロック生成回路30は、内部回路領域IC1nの高電圧側端子(ノードNH1n)から高電圧電源を受ける。端子T2から内部回路領域IC11までの直線距離が端子T2から内部回路領域IC01までの直線距離よりも長い場合、クロック生成回路30は、内部回路領域IC11の低電圧側端子(ノードNL11)から低電圧電源を受ける。これにより、クロック生成回路30は、ノードNH1nとノードNL11との電圧差を実効電源電圧Veff_OSCとして受ける。これにより、クロック生成回路30の実効電源電圧Veff_OSCは、クリティカルパスに近い内部回路領域の内部電源から得ることができる。
 あるいは、例えば、クロック生成回路30は、端子T1から複数の内部回路領域IC01~ICnnまでの直線距離のうち最大距離の半分よりも遠い位置にある内部回路領域から高電圧電源を受けてもよい。かつ、クロック生成回路30は、端子T2から複数の内部回路領域IC01~ICnnまでの直線距離のうち最大距離の半分よりも長い位置にある内部回路領域から低電圧電源を受けてもよい。このようにしても、クロック生成回路30の実効電源電圧Veff_OSCは、クリティカルパスに近い内部回路領域の内部電源から得ることができる。
 また、第1実施形態によれば、クロック生成回路30は、被制御回路2の内部電圧を実効電源電圧として用いている。これにより、クロック生成回路30は、電源電圧VDDの過渡的な電圧変動に対してクロック信号CLKの周波数を変更し、被制御回路2におけるタイミングエラーの発生を抑制することができる(Adaptive Clocking技術)。
(第2実施形態)
 図8は、第2実施形態による電圧制御装置1と被制御回路2との接続関係を示すブロック図である。第2実施形態による電圧制御装置1は、複数の内部回路領域IC01~ICnnから選択された最小内部電圧を、クロック生成回路30に実効電源電圧Veff_OSCとして供給する。第2実施形態による電圧制御装置1は、マルチプレクサMUXH1と、マルチプレクサMUXL1と、レジスタ40とをさらに備えている。第2実施形態のその他の構成は、第1実施形態の対応する構成と同様でよい。
 選択回路としてのマルチプレクサMUXH1は、被制御回路2内の複数の内部回路領域IC01~ICnnの高電圧端子に接続されており、内部回路領域に印加される複数の高電圧電源を入力する。そして、マルチプレクサMUXH1は、該複数の高電圧電源から最小電圧の電源を選択する。選択された高電圧電源は、クロック生成回路30の高電圧電源VDDOSCに入力される。
 他の選択回路としてのマルチプレクサMUXL1は、被制御回路2内の複数の内部回路領域IC01~ICnnの低電圧端子に接続されており、内部回路領域IC01~ICnnに印加される複数の低電圧電源を入力する。そして、マルチプレクサMUXL1は、該複数の低電圧電源から最大電圧の電源を選択する。選択された低電圧電源は、クロック生成回路30の低電圧電源VSSOSCに入力される。
 これにより、クロック生成回路30は、内部回路領域IC01~ICnnの実効電源電圧のうち最小の実効電源電圧に基づいてクロック信号を生成することができる。
 記憶部としてのレジスタ40は、マルチプレクサMUXH1、MUXL1に入力された複数の高電圧電源および複数の低電圧電源のうち、どの高電圧電源およびどの低電圧電源を選択するかを決定する情報を格納する。例えば、内部回路領域IC01~ICnnの実効電源電圧または動作周波数を予め測定し、レジスタ40は、最も低い実効電源電圧または最も低い動作周波数を有する内部回路領域の情報を格納する。
 マルチプレクサMUXH1、MUXL1は、全ての内部回路領域IC01~ICnnあるいはその一部から高電圧電源および低電圧電源を入力して、レジスタ40から得られた情報に基づいて、最も低い高電圧電源と最も高い低電圧電源を選択してクロック生成回路30へ出力する。代替的に、マルチプレクサMUXH1、MUXL1は、端子T1(または端子T2)から配線距離または直線距離において比較的遠い複数の内部回路領域から高電圧電源および低電圧電源を入力して、その中から、最も低い高電圧電源と最も高い低電圧電源を選択してクロック生成回路30へ出力してもよい。この場合、レジスタ40は、内部回路領域IC01~ICnnのうち端子T、T2から最も配線距離または直線距離の長い内部回路領域の情報を格納すればよい。
 内部回路領域IC01~ICnnの一部の内部電圧をマルチプレクサMUXH1、MUXL1へ供給する場合、電源電圧VDDからの電圧降下が或る閾値以上の複数の内部回路領域の内部電圧をマルチプレクサMUXH1、MUXL1へ供給すればよい。代替的に、端子T1(または端子T2)からの配線距離または直線距離が或る閾値以上の内部回路領域の内部電圧をマルチプレクサMUXH1、MUXL1へ供給してもよい。これにより、内部回路領域からマルチプレクサMUXH1、MUXL1までの配線数を少なくし、電圧制御装置1または被制御回路2のサイズを小さくすることができる。
 また、動作状態によって被制御回路2の消費電流の分布が変わると、クリティカルパスが変化する場合がある。この場合、レジスタ40は、各動作状態の情報と該動作状態におけるクリティカルパスに該当する内部回路領域の情報とを関連付けてルックアップテーブルとして格納すればよい。マルチプレクサMUXH1、MUXL1は、レジスタ40のルックアップテーブルを参照して、被制御回路2の動作状態に応じたクリティカルパスの実効電源電圧を動的に選択すればよい。これにより、電圧制御装置1は、被制御回路2の複数の動作状態において、適切な電源電圧VDDを用いて被制御回路2をAVS制御することができる。
 マルチプレクサMUXH1、MUXL1は、差動増幅回路等の比較器を用いて、全ての内部回路領域IC01~ICnnからあるいはその一部からの高電圧電源および低電圧電源を比較して、最も低い高電圧電源と最も高い低電圧電源を選択してもよい。この場合であっても、電圧制御装置1は、被制御回路2の複数の動作状態において、適切な電源電圧VDDを設定することができる。また、この場合、レジスタ40を省略することができる。
 このように、第2実施形態による電圧制御装置1は、複数の内部回路領域の実効電源電圧から高電圧電源および低電圧電源を選択して、クロック生成回路30の実効電源電圧Veff_OSCとして用いることができる。これにより、電圧制御装置1は、動的に適切なクロック生成回路30の実効電源電圧Veff_OSCを選択することができる。また、第2実施形態は、第1実施形態の効果も得ることができる。
(第3実施形態)
 図9は、第3実施形態による電圧制御装置1と被制御回路2との接続関係を示すブロック図である。第3実施形態による電圧制御装置1は、複数のクロック生成回路30_1~30_yからの複数のクロック信号から最小周波数のクロック信号を選択して、被制御回路2へ供給する。尚、yは正整数である。
 第3実施形態による電圧制御装置1は、複数のクロック生成回路30_1~30_yと、マルチプレクサMUX2と、レジスタ40とをさらに備えている。第3実施形態のその他の構成は、第1実施形態の対応する構成と同様でよい。
 複数のクロック生成回路30_1~30_yは、複数の内部回路領域IC01~ICnnに印加される複数の内部電圧の全部または一部を、それぞれ実効電源電圧Veff_OSC1~Veff_OSCyとして受け取る。そそて、クロック生成回路30_1~30_yは、それぞれ実効電源電圧Veff_OSC1~Veff_OSCyに基づいて、複数のクロック信号を生成する。このとき生成される複数のクロック信号の周波数は、クロック生成回路30_1~30_yのf-V特性に基づき、実効電源電圧Veff_OSC1~Veff_OSCyに応じた周波数となる。
 選択回路としてのマルチプレクサMUX2は、複数のクロック生成回路30_1~30_yからの複数のクロック信号を入力し、該複数のクロック信号から最小周波数のクロック信号を選択する。上述のように、実効電源電圧が小さいほど、クロック信号の周波数は低下する。従って、最小周波数のクロック信号は、最小実効電源電圧に対応する。即ち、最小周波数のクロック信号は、クリティカルパスの内部電圧を受けたクロック生成回路(30_1~30_yのいずれか)から出力されるクロック信号であると言うことができる。電源電圧制御回路20はこのような最小周波数のクロック信号を目標周波数ftに等しくするように、電源電圧VDDを制御する。これにより、被制御回路2のクリティカルパスを含む内部回路領域IC01~ICnnの全体が正常に動作することができる。
 記憶部としてのレジスタ40は、最小周波数のクロック信号を出力するクロック生成回路の情報を格納する。例えば、内部回路領域IC01~ICnnの実効電源電圧または動作周波数を予め測定し、レジスタ40は、最も低い実効電源電圧または最も低い動作周波数を有する内部回路領域の情報を格納する。
 マルチプレクサMUX2は、クロック生成回路30_1~30_yからクロック信号を入力して、レジスタ40から得られた情報に基づいて、最小周波数のクロック信号を選択して被制御回路2へ出力する。
 クロック生成回路30_1~30_yは、全ての内部回路領域IC01~ICnnに対応して設けられてもよく、一部の内部回路領域に対応して設けられていてもよい。クロック生成回路30_1~30_yが一部の内部回路領域に対応して設けられている場合、第2実施形態と同様に、電圧降下、配線距離または直線距離が閾値以上の内部回路領域に対してクロック生成回路を設ければよい。これにより、クロック生成回路30_1~30_yの個数を少なくすることができる。また、内部回路領域からクロック生成回路30_1~30_yまでの配線数を少なくすることができる。その結果、電圧制御装置1または被制御回路2の大きさを小さくすることができる。
 また、被制御回路2の動作状態によってクリティカルパスが変化する場合、レジスタ40は、各動作状態の情報と該動作状態におけるクリティカルパスに該当する内部回路領域の情報とを関連付けてルックアップテーブルとして格納すればよい。マルチプレクサMUX2は、レジスタ40のルックアップテーブルを参照して、被制御回路2の動作状態に応じてクリティカルパスに対応するクロック信号を動的に選択すればよい。これにより、電圧制御装置1は、被制御回路2の複数の動作状態において、適切な電源電圧VDDを用いて被制御回路2をAVS制御することができる。
 マルチプレクサMUX2は、ローパスフィルタ回路等を用いて、クロック生成回路30_1~30_yからのクロック信号の周波数を比較して、最も低い周波数のクロック信号を選択してもよい。この場合であっても、電圧制御装置1は、被制御回路2の複数の動作状態において、適切な電源電圧VDDを設定することができる。また、この場合、レジスタ40を省略することができる。この場合、レジスタ40は、複数の動作状態に対応した複数のルックアップテーブルを格納してもよい。
 非選択のクロック信号に対応するクロック生成回路は、クロック生成動作を停止してもよい。これにより、電圧制御装置1の消費電力をさらに低減させることができる。
 このように、第3実施形態による電圧制御装置1は、複数の内部回路領域の実効電源電圧によって得られるクロック信号から最小周波数のクロック信号を選択し、この最小周波数のクロック信号を被制御回路2に供給する。このようにしても、電圧制御装置1は、動的に適切なクロック生成回路30の実効電源電圧Veff_OSCを選択することができる。また、第3実施形態は、第1実施形態の効果も得ることができる。
(第4実施形態)
 図10は、第4実施形態による電圧制御装置1および被制御回路2の構成例を示すブロック図である。第4実施形態による電圧制御装置1は、クロック生成回路30とは別に、遅延モニタ回路50をさらに備えている。遅延モニタ回路50は、クロック生成回路30と同様に、クリティカルパスと同一構成の回路あるいはほぼ同じf-V特性を有する回路を含む。遅延モニタ回路50は、被制御回路2から電源電圧VDDOSCを受けて、クリティカルパスの遅延時間を測定し、その遅延時間の情報を電源電圧制御回路20にフィードバックする。一方、クロック生成回路30は、被制御回路2から電源電圧VDDOSCを受けて、クロック信号CLKを被制御回路2へ供給するものの、電源電圧制御回路20にはフィードバックしていない。即ち、第4実施形態では、クロック信号CLKを生成するクロック生成回路30と電源電圧VDDを設定するための遅延モニタ回路50とが別々に設けられた形態である。第4実施形態のその他の構成は、第1実施形態の対応する構成と同様でよい。
 遅延モニタ回路50の内部構成については、図12~図14を参照して後で説明する。また、クロック生成回路30の内部構成については、図3に示す構成の他、図15、図16に示す構成でもよい。
 (第5実施形態)
 図11は、第5実施形態による電圧制御装置1および被制御回路2の構成例を示すブロック図である。第5実施形態による電圧制御装置1も、第4実施形態と同様に、クロック生成回路30とは別に、遅延モニタ回路50をさらに備えている。しかし、クロック生成回路30は、一定の任意周波数のクロック信号CLKを生成し、被制御回路2からの内部電圧を電源電圧VDDOSCとしては受けていない。クロック生成回路30は、例えば、水晶発振器、LCまたはRC発振器、PLL(Phase Locked Loop)回路、DLL(Digital Locked Loop)回路等でよい。
 第5実施形態によれば、クロック生成回路30は、被制御回路2の内部電圧を実効電源電圧として用いていないため、上述のAdaptive Clocking技術を用いることはできない。しかし、クロック信号CLKの周波数を一定値に安定して維持することができる。
 第5実施形態のその他の構成は、第4実施形態の対応する構成と同様でよい。
 (遅延モニタ回路50の構成)
 ここで、第4および第5実施形態における遅延モニタ回路50の内部構成について説明する。
 図12は、遅延モニタ回路50の構成例を示す回路図である。遅延モニタ回路50は、遅延回路51と、遅延計測器52とを含む。遅延回路51は、クロック生成回路30の構成とほぼ同一回路でもよく、あるいは、クロック生成回路30とほぼ同一のf-V特性を有する回路である。即ち、遅延回路51は、クリティカルパスとほぼ同一構成あるいはほぼ同一f-V特性を有する回路である。遅延計測器52は、遅延回路51の出力と入力との間に接続されており、遅延回路51の出力の立ち上がり時点から立ち下がり時点までの時間(クロック信号CLKのパルス幅)を計測する。あるいは、遅延計測器52は、遅延回路51の出力の立ち下がり時点から立ち上がる時点までの時間を計測してもよい。即ち、遅延計測器52は、遅延回路51の入力から出力までの遅延時間を計測する。遅延時間は、複数のパルス幅の平均値であってもよい。この遅延時間の情報は、電源電圧制御回路20へフィードバックされる。
 電源電圧制御回路20は、遅延時間の情報を受け取り、遅延時間が目標遅延時間に等しくなるように目標電圧を設定する。遅延時間は、クロック信号CLKの周波数の逆数である(反比例する)ので、周波数に代えて遅延時間を用いて電源電圧VDDの目標電圧を設定することも可能である。勿論、遅延モニタ回路50は、遅延回路51の周波数を出力してもよい。この場合、電源電圧制御回路20は、遅延モニタ回路50からの周波数に基づいて目標電圧を設定すればよい。
 (遅延モニタ回路50の変形例1)
 図13は、遅延モニタ回路50の他の構成例を示す回路図である。遅延モニタ回路50は、遅延回路51と、カウンタ53と、演算処理器54とを含む。
 カウンタ53は、遅延回路51の出力と演算処理器54の入力との間に接続されており、所定期間内における遅延回路51の出力の反転回数(クロック信号CLKの反転回数)をカウントする。
 演算処理器54は、カウンタ53の出力に接続されており、遅延回路51の出力の反転回数を受け取る。演算処理器54は、所定時間と遅延回路51の出力の反転回数とに基づいて、遅延時間を計測する。この遅延時間の情報は、電源電圧制御回路20へフィードバックされる。
 電源電圧制御回路20の動作は、図12を参照して上述したとおりである。
 (遅延モニタ回路50の変形例2)
 図14は、遅延モニタ回路50のさらに他の構成例を示す回路図である。遅延モニタ回路50は、遅延回路51と、カウンタ53と、演算処理器54とを含む点で、図13に示す遅延モニタ回路50と同じである。しかし、遅延回路51の構成が図13のそれと異なる。
 図14の遅延回路51は、遅延計測器52に対して並列に接続された互いに異なる遅延列DL1、DL2、DL3・・・を有する。各遅延列DL1、DL2、DL3・・・は、それぞれ複数の同一遅延要素を直列に接続して構成されている。しかし、各遅延列DL1、DL2、DL3・・・の構成は、これに限定されず、異なるf-V特性を有していればよい。遅延要素は、例えば、インバータ回路、NAND演算回路、NOR演算回路等のロジック回路でよい。遅延計測器52は、例えば、レジスタ40からの情報に基づいて、いずれかの遅延列DL1、DL2、DL3・・・を選択する。遅延計測器52は、選択された遅延列からのパルス信号を用いて遅延時間を計測する。これにより、電圧制御装置1は、被制御回路2の動作状態に応じて、適切なf-V特性を有する遅延列を選択し、適切な電源電圧VDDを用いて被制御回路2をAVS制御することができる。
 図14の遅延モニタ回路50のその他の構成および動作は、図13に示す構成および動作と同じでよい。
 図14の遅延モニタ回路50によれば、被制御回路2の動作状態に応じて、適切なf-V特性を有する遅延列を選択することができるので、AVS制御の自由度が高くなる。また、演算処理器54が演算によって遅延時間を算出する場合、電源電圧制御回路20にフィードバックされる遅延時間は、実際に計測した遅延要素と異なるf-V特性に基づいて生成することが可能となる。これにより、さらに、AVS制御の自由度が高くなる。
 以上ように、第4および第5実施形態によれば、遅延モニタ回路50は、クロック生成回路30とは別に設けられているが、クロック生成回路30と同様にクリティカルパスと同一構成または同一f-V特性を有することができる。従って、第4および第5実施形態は、第1実施形態と同様の効果を得ることができる。第4および第5実施形態は、第2または第3実施形態と組み合わせてもよい。例えば、第4または第5実施形態を第2実施形態と組み合わせる場合、クロック生成回路30および/または遅延モニタ回路50に供給される電源電圧VDDOSC、マルチプレクサMUXH1で選択された内部電圧でよい。また、クロック生成回路30および/または遅延モニタ回路50に供給される低電圧電源は、マルチプレクサMUXL1で選択された内部電圧でよい。例えば、第4または第5実施形態を第3実施形態と組み合わせる場合、複数のクロック生成回路30および/または複数の遅延モニタ回路50を設け、クロック生成回路30および遅延モニタ回路50に対応する2つのマルチプレクサを設ける。一方のマルチプレクサは、複数のクロック生成回路30からのクロック信号のうち最小周波数のクロック信号CLKを被制御回路2へ出力する。他方のマルチプレクサは、複数の遅延モニタ回路50からの遅延時間のうち最長の遅延時間を電源電圧制御回路20へフィードバックすればよい。
 このように、遅延モニタ回路50をクロック生成回路30とは別に設けることによって、f-V特性を等しくしつつ、クロック生成回路30と遅延モニタ回路50との構成を相違させることができる。これは、電圧制御装置1の回路設計において自由度を高めることができる。
(クロック生成回路30の構成)
 第4および第5実施形態における遅延モニタ回路50の内部構成について説明する。
 図15は、クロック生成回路30の構成例を示す回路図である。クロック生成回路30は、遅延回路DL11~DL13と、マルチプレクサMUX31~MUX33とを備えている。遅延回路DL11~DL13は、それぞれ互いに異なる種類の遅延要素を有する。各遅延回路DL11~DL13は、それぞれ複数の同一遅延要素を直列に接続して構成されている。しかし、各遅延回路DL11~DL13は、の構成は、これに限定されない。
 遅延回路DL11~DL13は、マルチプレクサMUX31~MUX33を介して直列に接続されている。例えば、遅延回路DL11は、異なる遅延要素から得られる複数の出力信号をマルチプレクサMUX31へ出力する。マルチプレクサMUX31は、遅延回路DL11からの複数の出力信号のうちいずれか1つの出力信号を選択して、後段の遅延回路DL12へ出力する。
 同様に、遅延回路DL12は、異なる遅延要素から得られる複数の出力信号をマルチプレクサMUX32へ出力する。マルチプレクサMUX32は、遅延回路DL12からの複数の出力信号のうちいずれか1つの出力信号を選択して、後段の遅延回路DL13へ出力する。
 遅延回路DL13は、遅延要素の複数の異なる箇所から得られる複数の出力信号をマルチプレクサMUX33へ出力する。マルチプレクサMUX33は、遅延回路DL13からの複数の出力信号のうちいずれか1つの出力信号を選択して、その出力信号をインバータINV1で反転しクロック信号CLKとして出力する。
 クロック生成回路30は、インバータINV1からの出力信号を被制御回路2へ出力するとともに、自己の入力へフィードバックする。
 マルチプレクサMUX31~MUX33は、レジスタ40からの情報に基づいて、いずれかの出力信号を選択する。これにより、クロック生成回路30は、被制御回路2の動作状態に応じて、適切なf-V特性を有する遅延回路を構成し、適切な電源電圧VDDを用いて被制御回路2をAVS制御することができる。
(クロック生成回路30の変形例)
 図16は、クロック生成回路30の他の構成例を示す回路図である。本変形例のクロック生成回路30は、遅延回路DL40と、マルチプレクサMUX40とを備えている。遅延回路DL40は、直列接続された単一種類の遅延要素(例えば、インバータ回路)を有し、マルチプレクサMUX40を介して出力される。例えば、遅延回路DL40は、遅延要素の複数の異なる箇所から得られる複数の出力信号をマルチプレクサMUX40へ出力する。マルチプレクサMUX40は、遅延回路DL40からの複数の出力信号のうちいずれか1つの出力信号を選択して、その出力信号をインバータINV2で反転しクロック信号CLKとして出力する。マルチプレクサMUX40は、レジスタ40からの情報に基づいて、いずれかの出力信号を選択する。
 このように、単一種類の遅延要素のみで構成された遅延回路DL40であっても、直列接続される遅延要素の個数を変更することによって、クロック生成回路30は任意の遅延時間を有することができる。直列接続される遅延要素の個数の情報は、レジスタ40に予め格納しておけばよい。
 これにより、本変形例によるクロック生成回路30も、被制御回路2の動作状態に応じて、適切なf-V特性を有する遅延回路を構成し、適切な電源電圧VDDを用いて被制御回路2をAVS制御することができる。
 本技術は、以下の構成も取り得る。
(1)
 被制御回路の入力端子に電力を供給する電源回路と、
 前記被制御回路に供給されるクロック信号に基づいて、前記電源回路から前記被制御回路へ供給される電源電圧を制御する電源電圧制御回路と、
 前記入力部から前記被制御回路内の配線距離において前記被制御回路内の第1内部回路領域の第1配線距離よりも長い第2配線距離を有する第2内部回路領域に印加される内部電圧を電源として受け取り、該内部電圧に基づいて前記クロック信号を生成するクロック生成回路と、を備えた電圧制御装置。
(2)
 前記第2配線距離は、前記入力部から前記被制御回路内の複数の内部回路領域までの複数の配線距離のうち最大距離の半分よりも長い、請求項1に記載の電圧制御装置。
(3)
 前記第2配線距離は、前記入力部から前記被制御回路内の複数の内部回路領域までの複数の配線距離のうちほぼ最大である、請求項1に記載の電圧制御装置。
(4)
 前記内部電圧は、前記第1内部回路領域に印加される電圧より低い、請求項1から請求項3のいずれか一項に記載の電圧制御装置。
(5)
 前記内部電圧は、前記被制御回路において前記電源電圧からの最大電圧降下の半分より大きく電圧降下している、請求項1から請求項4のいずれか一項に記載の電圧制御装置。
(6)
 前記内部電圧は、前記被制御回路内の複数の内部回路領域に供給される電圧のうちほぼ最小の電圧である、請求項1から請求項5のいずれか一項に記載の電圧制御装置。
(7)
 前記入力部から前記第2内部回路領域までの直線距離は、前記入力部から前記第1内部回路領域までの直線距離よりも長い、請求項1から請求項6のいずれか一項に記載の電圧制御装置。
(8)
 前記入力部から前記第2内部回路領域までの直線距離は、前記入力部から前記被制御回路内の複数の内部回路領域までの複数の直線距離のうち最大距離の半分よりも長い、請求項1から請求項7のいずれか一項に記載の電圧制御装置。
(9)
 前記入力部から前記第2内部回路領域までの直線距離は、前記入力部から前記被制御回路内の複数の内部回路領域までの複数の直線距離のうちほぼ最大である、請求項8に記載の電圧制御装置。
(10)
 前記クロック生成回路は、前記第2内部回路領域と同一の回路構成を有する、請求項1から請求項9のいずれか一項に記載の電圧制御装置。
(11)
 前記クロック生成回路は、入力信号を反転して出力信号として出力し、該出力信号を前記入力信号として入力する遅延回路である、請求項1から請求項10のいずれか一項に記載の電圧制御装置。
(12)
 前記被制御回路内の複数の内部回路領域に印加される複数の内部電圧を入力し、該複数の内部電圧から最小の内部電圧を選択する選択回路をさらに備え、
 前記クロック生成回路は、前記最小の内部電圧を電源として受け取り、該最小の内部電圧に基づいて前記クロック信号を生成する、請求項1から請求項11のいずれか一項に記載の電圧制御装置。
(13)
 前記最小の内部電圧を受ける前記第2内部回路領域の情報を格納する記憶部をさらに備え、
 前記選択回路は、前記記憶部から得られた情報に基づいて前記第2内部回路領域を選択する、請求項12に記載の電圧制御装置。
(14)
 前記被制御回路内の複数の内部回路領域に印加される複数の内部電圧をそれぞれ電源として受け取り、それぞれ該複数の内部電圧に基づいて複数のクロック信号を生成する複数のクロック生成回路と、
 前記複数のクロック生成回路からの複数のクロック信号を入力し、該複数のクロック信号から最小周波数のクロック信号を選択する選択回路とをさらに備えた、請求項1から請求項11のいずれか一項に記載の電圧制御装置。
(15)
 前記最小周波数のクロック信号を出力する前記クロック生成回路の情報を格納する記憶部をさらに備え、
 前記選択回路は、前記記憶部から得られた情報に基づいて前記クロック信号を選択する、請求項14に記載の電圧制御装置。
 尚、本開示は、上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
1 電圧制御装置、10 電源回路、20 電源電圧制御回路、30 クロック生成回路、IC01~ICnn 内部回路領域IC01~ICnn、MUXH1、MUXL1、MUX2 マルチプレクサ

Claims (15)

  1.  被制御回路の入力端子に電力を供給する電源回路と、
     前記被制御回路に供給されるクロック信号に基づいて、前記電源回路から前記被制御回路へ供給される電源電圧を制御する電源電圧制御回路と、
     前記入力部から前記被制御回路内の配線距離において前記被制御回路内の第1内部回路領域の第1配線距離よりも長い第2配線距離を有する第2内部回路領域に印加される内部電圧を電源として受け取り、該内部電圧に基づいて前記クロック信号を生成するクロック生成回路と、を備えた電圧制御装置。
  2.  前記第2配線距離は、前記入力部から前記被制御回路内の複数の内部回路領域までの複数の配線距離のうち最大距離の半分よりも長い、請求項1に記載の電圧制御装置。
  3.  前記第2配線距離は、前記入力部から前記被制御回路内の複数の内部回路領域までの複数の配線距離のうちほぼ最大である、請求項1に記載の電圧制御装置。
  4.  前記内部電圧は、前記第1内部回路領域に印加される電圧より低い、請求項1に記載の電圧制御装置。
  5.  前記内部電圧は、前記被制御回路において前記電源電圧からの最大電圧降下の半分より大きく電圧降下している、請求項1に記載の電圧制御装置。
  6.  前記内部電圧は、前記被制御回路内の複数の内部回路領域に供給される電圧のうちほぼ最小の電圧である、請求項1に記載の電圧制御装置。
  7.  前記入力部から前記第2内部回路領域までの直線距離は、前記入力部から前記第1内部回路領域までの直線距離よりも長い、請求項1に記載の電圧制御装置。
  8.  前記入力部から前記第2内部回路領域までの直線距離は、前記入力部から前記被制御回路内の複数の内部回路領域までの複数の直線距離のうち最大距離の半分よりも長い、請求項1に記載の電圧制御装置。
  9.  前記入力部から前記第2内部回路領域までの直線距離は、前記入力部から前記被制御回路内の複数の内部回路領域までの複数の直線距離のうちほぼ最大である、請求項8に記載の電圧制御装置。
  10.  前記クロック生成回路は、前記第2内部回路領域と同一の回路構成を有する、請求項1に記載の電圧制御装置。
  11.  前記クロック生成回路は、入力信号を反転して出力信号として出力し、該出力信号を前記入力信号として入力する遅延回路である、請求項1に記載の電圧制御装置。
  12.  前記被制御回路内の複数の内部回路領域に印加される複数の内部電圧を入力し、該複数の内部電圧から最小の内部電圧を選択する選択回路をさらに備え、
     前記クロック生成回路は、前記最小の内部電圧を電源として受け取り、該最小の内部電圧に基づいて前記クロック信号を生成する、請求項1に記載の電圧制御装置。
  13.  前記最小の内部電圧を受ける前記第2内部回路領域の情報を格納する記憶部をさらに備え、
     前記選択回路は、前記記憶部から得られた情報に基づいて前記第2内部回路領域を選択する、請求項12に記載の電圧制御装置。
  14.  前記被制御回路内の複数の内部回路領域に印加される複数の内部電圧をそれぞれ電源として受け取り、それぞれ該複数の内部電圧に基づいて複数のクロック信号を生成する複数のクロック生成回路と、
     前記複数のクロック生成回路からの複数のクロック信号を入力し、該複数のクロック信号から最小周波数のクロック信号を選択する選択回路とをさらに備えた、請求項1に記載の電圧制御装置。
  15.  前記最小周波数のクロック信号を出力する前記クロック生成回路の情報を格納する記憶部をさらに備え、
     前記選択回路は、前記記憶部から得られた情報に基づいて前記クロック信号を選択する、請求項14に記載の電圧制御装置。
PCT/JP2020/037169 2019-11-19 2020-09-30 電圧制御装置 WO2021100329A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/755,838 US11928003B2 (en) 2019-11-19 2020-09-30 Voltage control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019208780 2019-11-19
JP2019-208780 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021100329A1 true WO2021100329A1 (ja) 2021-05-27

Family

ID=75980608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037169 WO2021100329A1 (ja) 2019-11-19 2020-09-30 電圧制御装置

Country Status (2)

Country Link
US (1) US11928003B2 (ja)
WO (1) WO2021100329A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11784635B1 (en) * 2022-08-23 2023-10-10 Nuvoton Technology Corporation Control circuit and operation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502466A (ja) * 2002-01-19 2006-01-19 ナショナル セミコンダクタ コーポレイション デジタル処理コンポーネント内で使用する適応電圧スケーリングクロック発生器およびその操作方法
JP2009519620A (ja) * 2005-10-31 2009-05-14 クゥアルコム・インコーポレイテッド 電子デバイスのための適応電圧スケーリング
WO2012026024A1 (ja) * 2010-08-26 2012-03-01 ルネサスエレクトロニクス株式会社 データ処理装置およびデータ処理システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7519925B2 (en) * 2004-06-04 2009-04-14 Texas Instruments Incorporated Integrated circuit with dynamically controlled voltage supply
US7327185B2 (en) * 2004-11-02 2008-02-05 Texas Instruments Incorporated Selectable application of offset to dynamically controlled voltage supply
DE102005007084B4 (de) * 2005-02-16 2010-02-11 Qimonda Ag Integrierter Halbleiterspeicher mit einstellbarer interner Spannung
US8294525B2 (en) * 2010-06-18 2012-10-23 International Business Machines Corporation Technique for linearizing the voltage-to-frequency response of a VCO
US8724421B2 (en) * 2012-07-18 2014-05-13 Lsi Corporation Dual rail power supply scheme for memories
US20140289690A1 (en) * 2013-03-21 2014-09-25 Synopsys, Inc. On-chip-variation (ocv) and timing-criticality aware clock tree synthesis (cts)
US9766649B2 (en) * 2013-07-22 2017-09-19 Nvidia Corporation Closed loop dynamic voltage and frequency scaling
US10103719B2 (en) * 2013-07-22 2018-10-16 Nvidia Corporation Integrated voltage regulator with in-built process, temperature and aging compensation
US9575553B2 (en) * 2014-12-19 2017-02-21 Advanced Micro Devices, Inc. Replica path timing adjustment and normalization for adaptive voltage and frequency scaling
US9891652B2 (en) * 2015-05-15 2018-02-13 Marvell Israel (M.I.S.L) Ltd. Critical paths accommodation with frequency variable clock generator
US9634676B2 (en) * 2015-07-01 2017-04-25 Qualcomm Incorporated Circuits and methods providing clock frequency adjustment in response to supply voltage changes
JP6859695B2 (ja) * 2016-12-19 2021-04-14 富士通株式会社 情報処理装置、情報処理方法及び情報処理プログラム
US10739804B2 (en) * 2017-09-22 2020-08-11 Intel Corporation Voltage regulator efficiency-aware global-minimum energy tracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502466A (ja) * 2002-01-19 2006-01-19 ナショナル セミコンダクタ コーポレイション デジタル処理コンポーネント内で使用する適応電圧スケーリングクロック発生器およびその操作方法
JP2009519620A (ja) * 2005-10-31 2009-05-14 クゥアルコム・インコーポレイテッド 電子デバイスのための適応電圧スケーリング
WO2012026024A1 (ja) * 2010-08-26 2012-03-01 ルネサスエレクトロニクス株式会社 データ処理装置およびデータ処理システム

Also Published As

Publication number Publication date
US11928003B2 (en) 2024-03-12
US20220404895A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
TW502493B (en) Voltage controlled oscillator, PLL circuit and semiconductor integrated circuit device
US20090224823A1 (en) Internal voltage generating circuit and semiconductor integrated circuit device
KR20050040726A (ko) 반도체회로디바이스 및 데이터처리시스템
US6711229B1 (en) Method of synchronizing phase-locked loop, phase-locked loop and semiconductor provided with same
US5463353A (en) Resistorless VCO including current source and sink controlling a current controlled oscillator
KR20160065987A (ko) 실시간 클록 애플리케이션들을 위한 초 저-전력 고주파수 크리스탈 발진기
KR20170052449A (ko) 클록 신호들의 듀티 싸이클을 조정하기 위한 장치 및 방법
US7605668B2 (en) Delay stage with controllably variable capacitive load
US7151396B2 (en) Clock delay compensation circuit
WO2021100329A1 (ja) 電圧制御装置
US20090063875A1 (en) Data processing device, power supply voltage generator and method of controlling power supply voltage thereof
KR20040060442A (ko) 개선된 보상 지연 회로를 가지는 반도체 메모리 장치의dll 및 이에 대한 지연시간 보상방법
US8258815B2 (en) Clock generator circuits for generating clock signals
US11075602B1 (en) Oscillator compensation using bias current
CN210490799U (zh) 一种SoC内置振荡电路
JP4603903B2 (ja) 負荷変動補償回路、電子デバイス、試験装置、及びタイミング発生回路
CN108123682B (zh) 振荡装置
US7447289B2 (en) Signal timing adjustment device, signal timing adjustment system, signal timing adjustment amount setting program, and storage medium storing the program
JP4945366B2 (ja) 信号遅延回路およびこれを用いたパルス発生回路
EP0940919A2 (en) Semiconductor integrated circuit device with built-in timing regulator for output signals
US20060170478A1 (en) Delay circuit for semiconductor device
JP2009224817A (ja) 半導体回路デバイス
US7852132B2 (en) Semiconductor integrated circuit
CN114172495A (zh) 使用松弛传感器的自适应体偏置或电压调节
US10826467B1 (en) High-accuracy dual-mode free running oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP