CN108123682B - 振荡装置 - Google Patents

振荡装置 Download PDF

Info

Publication number
CN108123682B
CN108123682B CN201711133181.5A CN201711133181A CN108123682B CN 108123682 B CN108123682 B CN 108123682B CN 201711133181 A CN201711133181 A CN 201711133181A CN 108123682 B CN108123682 B CN 108123682B
Authority
CN
China
Prior art keywords
oscillation
node
coupled
signal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711133181.5A
Other languages
English (en)
Other versions
CN108123682A (zh
Inventor
陈韦霖
陈冠达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Inc
Original Assignee
MediaTek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Inc filed Critical MediaTek Inc
Publication of CN108123682A publication Critical patent/CN108123682A/zh
Application granted granted Critical
Publication of CN108123682B publication Critical patent/CN108123682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/20Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/20Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator
    • H03B5/24Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator active element in amplifier being semiconductor device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/203Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit in an oscillator circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/20Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator
    • H03B5/26Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator frequency-determining element being part of bridge circuit in closed ring around which signal is transmitted; frequency-determining element being connected via a bridge circuit to such a closed ring, e.g. Wien-Bridge oscillator, parallel-T oscillator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明提供了一种振荡装置,包括振荡器和逻辑电路。振荡器用于产生振荡信号;以及,逻辑电路用于根据振荡信号控制振荡器,使得振荡信号包括两种不同的振荡周期。本发明提供的振荡装置能够产生包括两种不同的振荡周期的振荡信号,该振荡信号可以用来减少与温度相关的电路延迟,而无需任何的带隙基准电路。

Description

振荡装置
技术领域
本发明涉及一种振荡装置(oscillation device),更特别地,涉及一种可被用作温度至频率转换器(temperature-to-frequency converter)或温度传感器且无需任何带隙基准电路的振荡装置。
背景技术
通常,振荡器用于产生具有单一频率的振荡信号,然而,这样的振荡器在具体应用中会存在一些缺陷。例如,由于总电路延迟依赖于当前温度,因此,温度至频率转换器的精度受其总电路延迟的影响。此外,传统的温度传感器需要带隙基准电路(bandgapreference circuit)来提供与温度无关的偏置电压(或电流)。而从带隙基准电路到感测元件的途经迹线可能会较长以及导致非期望的耦合和负载效应。因此,需要提出一种新颖设计来解决现有技术的一些缺陷。
发明内容
有鉴于此,本发明的目的之一在于提供一种振荡装置,以解决上述问题。
根据本发明的一些实施例,本发明提供一种振荡装置,包括振荡器和逻辑电路。振荡器用于产生振荡信号;以及,逻辑电路用于根据振荡信号控制振荡器,使得振荡信号包括两种不同的振荡周期。
本发明提供的振荡装置能够产生包括两种不同的振荡周期的振荡信号,其可以用于减少与温度相关的电路延迟,而无需任何的带隙基准电路。
本领域技术人员在阅读附图所示优选实施例的下述详细描述之后,可以毫无疑义地理解本发明的这些目的及其它目的。详细的描述将参考附图在下面的实施例中给出。
附图说明
通过阅读后续的详细描述以及参考附图所给的示例,可以更全面地理解本发明,其中:
图1是根据本发明实施例示出的一种振荡装置的示意图;
图2是根据本发明实施例示出的振荡器的示意图;
图3是根据本发明实施例示出的一种逻辑电路的示意图;
图4是根据本发明实施例示出的一种信号波形示意图。
在下面的详细描述中,为了说明的目的,阐述了许多具体细节,以便本领域技术人员能够更透彻地理解本发明实施例。然而,显而易见的是,可以在没有这些具体细节的情况下实施一个或多个实施例,不同的实施例可根据需求相结合,而并不应当仅限于附图所列举的实施例。
具体实施方式
以下描述为本发明实施的较佳实施例,其仅用来例举阐释本发明的技术特征,而并非用来限制本发明的范畴。在通篇说明书及权利要求书当中使用了某些词汇来指称特定的元件,所属领域技术人员应当理解,制造商可能会使用不同的名称来称呼同样的元件。因此,本说明书及权利要求书并不以名称的差异作为区别元件的方式,而是以元件在功能上的差异作为区别的基准。本发明中使用的术语“元件”、“系统”和“装置”可以是与计算机相关的实体,其中,该计算机可以是硬件、软件、或硬件和软件的结合。在以下描述和权利要求书当中所提及的术语“包含”和“包括”为开放式用语,故应解释成“包含,但不限定于…”的意思。此外,术语“耦接”意指间接或直接的电气连接。因此,若文中描述一个装置耦接于另一装置,则代表该装置可直接电气连接于该另一装置,或者透过其它装置或连接手段间接地电气连接至该另一装置。
其中,除非另有指示,各附图的不同附图中对应的数字和符号通常涉及相应的部分。所绘制的附图清楚地说明了实施例的相关部分且并不一定是按比例绘制。
文中所用术语“基本”或“大致”是指在可接受的范围内,本领域技术人员能够解决所要解决的技术问题,基本达到所要达到的技术效果。举例而言,“大致等于”是指在不影响结果正确性时,技术人员能够接受的与“完全等于”有一定误差的方式。
图1是根据本发明实施例示出的一种振荡装置100的示意图。如图1所示,振荡装置100包括振荡器(oscillator)110和逻辑电路(logic circuit)120。振荡器110用于产生振荡信号SOUT。举例来说,振荡信号SOUT可以是周期性方波、周期性三角波或周期性正弦波。逻辑电路120用于根据振荡信号SOUT控制振荡器110,使得振荡信号SOUT包括两种不同的振荡周期(例如,T1和T2)。换句话说,振荡信号SOUT可具有两种不同的振荡频率。在一些实施例中,振荡装置100可被用作温度传感器或温度至频率转换器,但本发明并不限于此。
本发明提出的振荡装置100的详细电路结构将在以下实施例中描述。应当理解的是,这些实施例和附图仅是示例性的,而不是对本发明的限制。
图2是根据本发明实施例示出的一种振荡器210的示意图。振荡器210可被应用于图1所示实施例的振荡装置100。在图2所示的实施例中,振荡器210可以包括运算放大器(operational amplifier,OP)230、第一电流源241、第二电流源242、吸收电流源(currentsink)250、第一开关组件261、第二开关组件262、第三开关组件263、电容器C1、第一电阻R1、第二电阻R2和第三电阻R3。通常,振荡器210可以是方波发生器,用于产生包括两种不同振荡周期的振荡信号SOUT。在图2所示的实施例中,振荡信号的频率改变(或切换)可以通过改变电阻R1、R2、R3的电阻值、电容器C1的电容值或电流比例(I1:I2:I3)来实现。例如,可通过调整(或切换)电流比例(I1:I2:I3)来产生两种不同的振荡周期(例如,T1和T2)。
运算放大器230具有正输入端、负输入端和输出端,运算放大器230的正输入端耦接于第一节点N1,运算放大器230的负输入端耦接于第二节点N2,以及,运算放大器230的输出端用于输出振荡信号SOUT。第一电流源241用于提供(supply)第一电流I1至第一节点N1。第二电流源242用于提供第二电流I2至第二节点N2。电容器C1耦接在第一节点N1和接地电压VSS之间。吸收电流源250用于从第一节点N1抽取(draw)第三电流I3。第一开关组件261耦接在吸收电流源250和接地电压VSS之间。第一开关组件261是根据振荡信号SOUT接通的(closed)或断开(opened)的,以使能(enable)或禁用(disable)吸收电流源250,换言之,第一开关组件261的接通或断开受振荡信号SOUT的控制,以使能或禁用吸收电流源250。举例来说,若振荡信号SOUT具有高逻辑电平(例如,逻辑“1”),则第一开关组件261将被接通,以及,吸收电流源250将被使能;相反,若振荡信号SOUT具有低逻辑电平(例如,逻辑“0”),则第一开关组件261将被断开,以及,吸收电流源250将被禁用。
第一电阻R1耦接在第二节点N2和第三节点N3之间。第二开关组件262耦接在第三节点N3和接地电压VSS之间,用于将第三节点N3选择性地耦接于接地电压VSS。第二开关组件262是根据第一控制信号SC1接通的或断开的,换言之,第二开关组件262的接通或断开受第一控制信号SC1的控制。举例来说,若第一控制信号SC1具有高逻辑电平(例如,逻辑“1”),则第二开关组件262将被接通,以及,第三节点N3将通过第二开关组件262连接到接地电压VSS;相反,若第一控制信号SC1具有低逻辑电平(例如,逻辑“0”),则第二开关组件262将被断开。在替代实施例中,第二开关组件262可被移除,以及,第三节点N3直接连接到接地电压VSS,换言之,第二开关组件262是可选器件。第二电阻R2耦接在第三节点N3和第四节点N4之间。第三开关组件263耦接在第四节点N4和接地电压VSS之间,用于将第四节点N4选择性地耦接于接地电压VSS。第三开关组件263是根据第二控制信号SC2接通的或断开的,换言之,第三开关组件263的接通或断开受第二控制信号SC2的控制。举例来说,若第二控制信号SC2具有高逻辑电平(例如,逻辑“1”),则第三开关组件263将被接通,以及,第四节点N4将直接连接到接地电压VSS;相反,若第二控制信号SC2具有低逻辑电平(例如,逻辑“0”),则第三开关组件263将被断开。在替代实施例中,第三开关组件263可被移除,以及,第四节点N4直接连接到接地电压VSS,换言之,第三开关组件263是可选器件。第三电阻R3耦接在第四节点N4和接地电压VSS之间。为便于描述与理解,以下实施例以图2所示的电路结构展开说明,但应当说明的是,本发明并不限于该特定结构。第二开关组件262和第三开关组件263被配置为给振荡器210提供三个不同的阈值电压。当第二开关组件262和第三开关组件263都是断开的时,第一阈值电压(或称为最高阈值电压)与第一电阻R1、第二电阻R2和第三电阻R3的总电阻值成比例。当第二开关组件262是断开的以及第三开关组件263是接通的时,第二阈值电压(或称为中间阈值电压)与第一电阻R1和第二电阻R2的总电阻值成比例。当第二开关组件262是接通的以及第三开关组件263是断开的时,第一阈值电压(或称为最低阈值电压)与第一电阻R1的电阻值成比例。利用上述三个阈值电压,振荡器210可以产生包括两种不同振荡周期(T1和T2)的振荡信号SOUT。
图3是根据本发明实施例示出的一种逻辑电路320的示意图。逻辑电路320可应用于图1所示实施例的振荡装置100。例如,逻辑电路320可以用T型锁存器(T-latch)来实现,但本发明并不限于此。在图3所示的实施例中,逻辑电路320包括反相器(inverter)370、D触发器(D flip-flop)380、第一或非门(NOR gate)391和第二或非门392。逻辑电路320根据振荡信号SOUT产生第一控制信号SC1和第二控制信号SC2,以利用负反馈机制来控制振荡器210。
反相器370的输入端用于接收振荡信号SOUT,以及,反相器370的输出端耦接于第五节点N5。D触发器380具有数据端(D)、耦接于第五节点N5的时钟端(用三角形符号表示)、耦接于第六节点N6的输出端(Q),以及,耦接于第七节点N7并被反馈至数据端(D)的反相输出端(Q)。第一或非门(NOR gate)391具有耦接于第六节点N6的第一输入端、耦接于第五节点N5的第二输入端和用于输出第一控制信号SC1的输出端。第二或非门392具有耦接于第五节点N5的第一输入端、耦接于第七节点N7的第二输入端和用于输出第二控制信号SC2的输出端。
第一控制信号SC1、第二控制信号SC2与振荡信号SOUT之间的关系可以用布尔等式(1)和(2)表示如下:
Figure BDA0001469645650000051
Figure BDA0001469645650000052
其中,符号SC1N+1表示第一控制信号SC1在第(N+1)个时钟周期上的逻辑电平(N为正整数),符号SOUTN+1表示振荡信号SOUT在第(N+1)个时钟周期上的逻辑电平,符号
Figure BDA0001469645650000053
表示第一控制信号SC1在第N个时钟周期上的逻辑电平的反相(inverse),符号SC2N+1表示第二个控制信号SC2在第(N+1)个时钟周期上的逻辑电平,符号
Figure BDA0001469645650000054
表示第二控制信号SC2在第N个时钟周期上的逻辑电平的反相。符号“”表示逻辑与。利用上述电路结构,逻辑电路320可以将振荡信号SOUT分成第一控制信号SC1和第二控制信号SC2。如图4所示,第一控制信号SC1包括振荡信号SOUT的高逻辑持续时间的其中一部分,第二控制信号SC2包括振荡信号SOUT的高逻辑持续时间的其它部分。换言之,如图4所示,第一控制信号SC1是根据与振荡信号SOUT的第一振荡周期T1相关的波形所形成的信号,第二控制信号SC2是根据与振荡信号SOUT的第二振荡周期T2相关的波形所形成的另一信号。
图4是根据本发明实施例示出的一种信号波形示意图。横轴表示时间,纵轴表示各信号的电压电平。请一起参考图1至图4。第一控制信号SC1的高逻辑持续时间和第二控制信号SC2的高逻辑持续时间彼此交错。振荡信号SOUT包括第一振荡周期T1和第二振荡周期T2。第一振荡周期T1和第二振荡周期T2具有不同的长度,以及,它们在时间轴上交替布置(arranged alternately)。换言之,第一振荡周期T1和第二振荡周期T2是不等长的,且在时间轴上交替布置(arranged alternately)。在替代实施例中,可以对以上示出的电路结构进行调整,使得振荡信号SOUT包括如图4所示的多个连续的第一振荡周期T1和多个连续的第二振荡周期T2。例如,配合在一起的两个、三个或更多个第一振荡周期T1被布置成与配合在一起的两个、三个或更多个第二振荡周期T2相邻,这些变型实施例不影响本发明的性能。第一振荡周期T1和第二振荡周期T2的长度可以根据等式(3)和(4)计算。
Figure BDA0001469645650000061
Figure BDA0001469645650000062
其中,符号T1表示第一振荡周期T1的长度,符号T2表示第二振荡周期T2的长度,符号R2表示第二电阻R2的电阻值,符号R3表示第三电阻R3的电阻值,符号C1表示电容器C1的电容值,符号I1表示来自第一电流源241的第一电流I1的大小,符号I2表示来自第二电流源242的第二电流I2的大小,符号I3表示流向吸收电流源250的第三电流I3的大小,以及,符号D表示振荡器210的总电路延迟。
如上所述,应当注意的是,第一振荡周期T1和第二振荡周期T2都包括振荡器210的总电路延迟D。总电路延迟D主要是由运算放大器230的传播延迟决定的,以及,总电路延迟D取决于当前的温度。当振荡装置100被配置为检测温度时,其精度会受到总电路延迟D的负面影响。
因此,本发明实施例提出一种使用振荡装置100作为高精度的温度至频率转换器或温度传感器的新颖设计。所提出的设计可以消除或减少非期望的总电路延迟D,并提供更精准的检测结果。请参考以下等式(5)、(6)、(7)和(8)。
Figure BDA0001469645650000071
首先,将第一振荡周期T1减去第二振荡周期T2,从而,共同的总电路延迟D被消除。T1-T2可以通过高速的参考时钟(reference clock)来计数或者是使用时间至数字转换器(time-to-digital converter)来得到,具体地,本发明实施例不做任何限制。然后,第一振荡周期T1和第二振荡周期T2之间的上述差值(T1-T2)在不同的温度下测量两次。
Figure BDA0001469645650000072
其中,符号T1'表示在参考温度(reference temperature)TPR下测量的第一振荡周期T1的长度,符号T2'表示在参考温度TPR下测量的第二振荡周期T2的长度,符号ΔTDR表示T1'和T2'之间的差值,符号T1”表示在操作温度(operation temperature)TPO下测量的第一振荡周期T1的长度,符号T2”表示在操作温度TPO下测量的第二振荡周期T2的长度,符号ΔTDM表示T1”和T2”之间的差值。
具体地,振荡装置100可以操作在测试模式(test mode)或正常模式(normalmode)下。当振荡装置100操作在测试模式下时,第一振荡周期T1'和第二振荡周期T2'之间的参考时间差(reference time difference)ΔTDR是在参考温度TPR下测量得到的。当振荡装置操作在正常模式下时,第一振荡周期T1”和第二振荡周期T2”之间的修正时间差(modified time difference)ΔTDM是在操作温度TPO下测量得到的。
Figure BDA0001469645650000073
其中,符号R2'表示在参考温度TPR下测量得到的第二电阻R2的电阻值,符号C1'表示在参考温度TPR下测量得到的电容器C1的电容值,符号R2”表示在操作温度TPO下测量得到的第二电阻R2的电阻值,符号C1”表示在操作温度TPO下测量得到的电容器C1的电容值。
由于电流比(即,
Figure BDA0001469645650000074
几乎是恒定的且对温度变化不敏感,因此,修正时间差ΔTDM与参考时间差ΔTDR的比值基本上是与不同温度下测量得到的第二电阻R2和电容器C1的阻抗值相对的。若当前温度从参考温度TPR变化到操作温度TPO,则第二电阻R2的电阻值和电容器C1的电容值将与它们的原始值略有不同(即,R2”≠R2'和C1”≠C1')。参考时间差ΔTDR与在参考温度TPR下测量得到的电阻值R2'和电容值C1'的乘积成比例。修正时间差ΔTDM与在操作温度TPO下测量得到的电阻值R2”和电容值C1”的乘积成比例。
Figure BDA0001469645650000081
其中,符号TPR表示参考温度TPR的温度值,符号TPO表示操作温度TPO的温度值,符号CR1表示第二电阻R2的一阶温度系数(first-order temperature coefficient),符号CR2表示第二电阻R2的二阶温度系数(second-order temperature coefficient),符号CC1表示电容器C1的一阶温度系数,符号CC2表示电容器C1的二阶温度系数(请注意,电容器C1的二阶温度系数CC2通常非常小且可忽略不计)。
根据等式(6)、(7)和(8),修正时间差ΔTDM与参考时间差ΔTDR的比值近似为关于操作温度TPO和参考温度TPR之间的温度差(TPO-TPR)的二次多项式。由于修正时间差ΔTDM与参考时间差ΔTDR的比值是可测量的,因此通过求解二次方程(8)可以容易地计算出温度差(TPO-TPR)。最后,可以根据修正时间差ΔTDM与基准时间差ΔTDR的比值以及参考温度TPR来估算操作温度TPO。在一些实施例中,上述等式(1)至(6)可以由处理器和与振荡装置100相关的时间至数字转换器(time-to-digital converter,图中未示出)来解决。
在替代实施例中,可以对以上实施例进行调整,使得电阻R3被短路路径(short-circuited path)替代,以及,第三开关组件263被移除,换言之,电阻R3和第三开关组件263是可选器件。在测试/正常模式下,若控制(或调整)第一电流I1、第二电流I2和第三电流I3,则第一振荡周期T1和第二振荡周期T2仍然可以具有不同的长度。也就是说,逻辑电路320可以根据振荡信号SOUT(而不是接通/断开第三开关组件263的状态)对来自第一电流源241的第一电流I1、来自第二电流源242的第二电流I2和流入至吸收电流源250的第三电流I3进行调整(例如,进行微调)。通过这样的设计,总电路延迟D仍然可以通过将第一振荡周期T1减去第二振荡周期T2而被抵消或减少。该实施例的其它特征与图1至图4所示的实施例类似,以及它们可以达到类似的性能水平。
应当注意的是,本发明不限于上述实施例。在替代实施例中,可以基于以上实施例进行调整,使得本发明可以通过类似的方式调整电容器C1的电容值来提供相同的功能。
本发明提出了一种新颖的振荡装置,该振荡装置能够提供具有两种不同的振荡周期的振荡信号,其能够用在温度至频率转换器/温度传感器或其它应用中(具体地,本发明不做任何限制),以减少与温度相关的电路中延迟。当振荡装置被用作温度至频率转换器/温度传感器时,由于非理想的与温度相关的电路延迟可以通过参考两个振荡周期之间的时间差而被完全消除,从而可以实现更高的检测精度。此外,所提出的振荡装置不需要用于提供稳定电压的任何带隙电路,因此有效地减少了芯片面积和制造成本。简而言之,本发明提出了一种用于温度检测领域的高精度、无带隙、低成本的振荡装置。
应当说明的是,上述电压、电流、电阻、电感、电容和其它元件参数不是本发明的限制。设计师可以根据不同的要求调整这些参数。本发明的振荡装置和温度至频率转换器/温度传感器不限于图1至图4所示的结构。本发明可以仅包括图1至图4所示的任何一个或多个实施例中的任何一个或多个特征。换句话说,并非图中所示的全部特征都应在振荡装置和温度至频率转换器中实现。
虽然本发明已经通过示例的方式以及依据优选实施例进行了描述,但是,应当理解的是,本发明并不限于公开的实施例。相反,它旨在覆盖各种变型和类似的结构(如对于本领域技术人员将是显而易见的)。因此,所附权利要求的范围应被赋予最宽的解释,以涵盖所有的这些变型和类似的结构。

Claims (8)

1.一种振荡装置,包括:
振荡器,用于产生振荡信号;以及
逻辑电路,用于根据所述振荡信号控制所述振荡器,使得所述振荡信号包括两种不同的振荡周期;其中,所述振荡器包括:
运算放大器,其中,所述运算放大器具有耦接于第一节点的正输入端、耦接于第二节点的负输入端和用于输出所述振荡信号的输出端;
第一电流源,用于提供第一电流至所述第一节点;
第二电流源,用于提供第二电流至所述第二节点;电容器,耦接在所述第一节点和接地电压之间;第一开关组件,耦接在所述第一节点和所述接地电压之间,其中,所述第一开关组件的接通或断开受所述振荡信号的控制;第一电阻,耦接在所述第二节点和第三节点之间;
第二电阻,耦接在所述第三节点和第四节点之间;
第三电阻,耦接在所述第四节点和所述接地电压之间;
第二开关组件,其中,所述第三节点通过所述第二开关组件选择性地耦接于所述接地电压,所述第二开关组件的接通或断开受第一控制信号的控制;
第三开关组件,其中,所述第四节点通过所述第三开关组件选择性地耦接于所述接地电压,所述第三开关组件的接通或断开受第二控制信号的控制;
其中,所述第一控制信号和所述第二控制信号是由所述逻辑电路根据所述振荡信号产生的。
2.根据权利要求1所述的振荡装置,其特征在于,所述振荡器还包括:
吸收电流源,耦接在所述第一节点和所述第一开关组件之间,用于从所述第一节点抽取第三电流,其中,所述第一开关组件的接通或断开用于使能或禁用所述吸收电流源。
3.根据权利要求1所述的振荡装置,其特征在于,所述逻辑电路是利用T型锁存器实现的。
4.根据权利要求1所述的振荡装置,其特征在于,所述逻辑电路包括:
反相器,其中,所述反相器具有用于接收所述振荡信号的输入端和耦接于第五节点的输出端;以及
D触发器,其中,所述D触发器具有数据端、耦接于所述第五节点的时钟端、耦接于第六节点的输出端和耦接于第七节点并被反馈到所述数据端的反相输出端;
第一或非门,其中,所述第一或非门具有耦接于所述第六节点的第一输入端、耦接于所述第五节点的第二输入端和用于输出所述第一控制信号的输出端;以及
第二或非门,其中,所述第二或非门具有耦接于所述第五节点的第一输入端、耦接于所述第七节点的第二输入端和用于输出所述第二控制信号的输出端。
5.根据权利要求1所述的振荡装置,其特征在于,所述振荡信号包括:具有不同长度并且随时间轴交替布置的第一振荡周期和第二振荡周期。
6.根据权利要求5所述的振荡装置,其特征在于,所述振荡装置被用作温度至频率转换器或温度传感器。
7.根据权利要求6所述的振荡装置,其特征在于,所述振荡装置的操作模式包括测试模式和正常模式,当所述振荡装置在所述测试模式下操作时,在参考温度下测量得到所述第一振荡周期与所述第二振荡周期之间的参考时间差,以及,当所述振荡装置在所述正常模式下操作时,在操作温度下测量得到所述第一振荡周期和所述第二振荡周期之间的修正时间差。
8.根据权利要求7所述的振荡装置,其特征在于,所述操作温度是根据所述修正时间差与所述参考时间差的比值以及所述参考温度估计得到的。
CN201711133181.5A 2016-11-29 2017-11-15 振荡装置 Active CN108123682B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662427193P 2016-11-29 2016-11-29
US62/427,193 2016-11-29
US15/806,688 US10879844B2 (en) 2016-11-29 2017-11-08 Oscillation device
US15/806,688 2017-11-08

Publications (2)

Publication Number Publication Date
CN108123682A CN108123682A (zh) 2018-06-05
CN108123682B true CN108123682B (zh) 2021-05-07

Family

ID=62192941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711133181.5A Active CN108123682B (zh) 2016-11-29 2017-11-15 振荡装置

Country Status (3)

Country Link
US (1) US10879844B2 (zh)
CN (1) CN108123682B (zh)
TW (1) TWI668963B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092497B2 (en) * 2018-10-31 2021-08-17 Taiwan Semiconductor Manufacturing Company Limited Temperature protection circuit
TWI682623B (zh) 2019-04-02 2020-01-11 聯陽半導體股份有限公司 溫度補償振盪電路

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697279A (en) * 1985-11-04 1987-09-29 Hughes Aircraft Company Test/master/slave triple latch flip-flop
US5745092A (en) * 1993-12-22 1998-04-28 Seiko Epson Corporation Liquid-Crystal display system and power supply method that supply different logic source voltages to signal and scan drivers
US7173501B1 (en) * 2003-06-27 2007-02-06 Cypress Semiconductor Corporation Dual slope temperature dependent oscillator
CN101242166A (zh) * 2007-02-08 2008-08-13 联发科技股份有限公司 调整主动式滤波器的方法与装置
CN102820852A (zh) * 2011-06-09 2012-12-12 英飞凌科技奥地利有限公司 用于产生振荡信号的方法和振荡器电路
CN103051171A (zh) * 2011-10-12 2013-04-17 聚积科技股份有限公司 降低电磁干扰的控制电路
CN103338026A (zh) * 2012-02-08 2013-10-02 联发科技股份有限公司 张弛振荡器
CN103973226A (zh) * 2013-01-21 2014-08-06 三星电子株式会社 温度控制振荡器、温度传感器及片上系统
US8988157B2 (en) * 2011-08-11 2015-03-24 Renesas Electronics Corporation Oscillation circuit and semiconductor integrated circuit including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281519A (ja) 1987-05-13 1988-11-18 Noboru Yamaguchi 同期クロック信号発生装置
KR940005459A (ko) 1992-06-22 1994-03-21 모리시타 요이찌 Pll회로
US5508664A (en) 1995-04-20 1996-04-16 International Business Machines Corporation Oscillators having charge/discharge circuits with adjustment to maintain desired duty cycles
US6052035A (en) 1998-03-19 2000-04-18 Microchip Technology Incorporated Oscillator with clock output inhibition control
TW494636B (en) 2001-02-26 2002-07-11 Realtek Semiconductor Co Ltd Spread spectrum phase-locked loop circuit with adjustable spread bandwidth
US6903616B2 (en) * 2003-06-24 2005-06-07 Stmicroelectronics, Inc. Startup circuit and method for starting an oscillator after power-off
US7061331B2 (en) 2004-02-02 2006-06-13 Agere Systems Inc. Clock generation circuits providing slewing of clock frequency
US20090085684A1 (en) * 2007-10-01 2009-04-02 Silicon Laboratories Inc. Low power rtc oscillator
KR20120032079A (ko) * 2010-09-28 2012-04-05 삼성전자주식회사 발광 다이오드 구동 장치용 디밍 회로 및 이를 포함하는 발광 다이오드 구동 장치
US8884666B2 (en) 2011-08-02 2014-11-11 Ps4 Luxco S.A.R.L. Clock generator
KR101367682B1 (ko) * 2012-07-31 2014-02-26 삼성전기주식회사 오실레이터

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697279A (en) * 1985-11-04 1987-09-29 Hughes Aircraft Company Test/master/slave triple latch flip-flop
US5745092A (en) * 1993-12-22 1998-04-28 Seiko Epson Corporation Liquid-Crystal display system and power supply method that supply different logic source voltages to signal and scan drivers
US7173501B1 (en) * 2003-06-27 2007-02-06 Cypress Semiconductor Corporation Dual slope temperature dependent oscillator
CN101242166A (zh) * 2007-02-08 2008-08-13 联发科技股份有限公司 调整主动式滤波器的方法与装置
CN102820852A (zh) * 2011-06-09 2012-12-12 英飞凌科技奥地利有限公司 用于产生振荡信号的方法和振荡器电路
US8988157B2 (en) * 2011-08-11 2015-03-24 Renesas Electronics Corporation Oscillation circuit and semiconductor integrated circuit including the same
CN103051171A (zh) * 2011-10-12 2013-04-17 聚积科技股份有限公司 降低电磁干扰的控制电路
CN103338026A (zh) * 2012-02-08 2013-10-02 联发科技股份有限公司 张弛振荡器
CN103973226A (zh) * 2013-01-21 2014-08-06 三星电子株式会社 温度控制振荡器、温度传感器及片上系统

Also Published As

Publication number Publication date
TW201820785A (zh) 2018-06-01
US20180152140A1 (en) 2018-05-31
US10879844B2 (en) 2020-12-29
CN108123682A (zh) 2018-06-05
TWI668963B (zh) 2019-08-11

Similar Documents

Publication Publication Date Title
US8912855B2 (en) Relaxation oscillator
US9714966B2 (en) Circuit aging sensor
JP5674401B2 (ja) 半導体装置
US9300247B2 (en) RC oscillator with additional inverter in series with capacitor
US8115559B2 (en) Oscillator for providing a constant oscillation signal, and a signal processing device including the oscillator
US9112510B2 (en) Reference voltage generation circuit, oscillation circuit including the same and method for calibrating oscillation frequency of oscillation circuit
US9166569B2 (en) Relaxation oscillator
US7982549B1 (en) Dual self-calibrating low-power oscillator system and operation
JP4495695B2 (ja) 発振回路
US20140022023A1 (en) Temperature-insensitive ring oscillators and inverter circuits
US20140145707A1 (en) Voltage fluctuation detection circuit and semiconductor integrated circuit
JP2011223375A (ja) 発振回路
KR20170052449A (ko) 클록 신호들의 듀티 싸이클을 조정하기 위한 장치 및 방법
CN108123682B (zh) 振荡装置
US8106715B1 (en) Low-power oscillator
JP6623696B2 (ja) 電源装置及び半導体装置
JP2013214915A (ja) 発振装置、半導体装置、及び発振装置の動作方法
US20220404895A1 (en) Voltage control device
TWI385926B (zh) 時脈產生器
US7446597B2 (en) Voltage-controlled current source and frequency scanner using the same
JP2007078440A (ja) R/f変換回路及びそれを具備する半導体集積回路
US8618869B2 (en) Fast power-on bias circuit
CN221202509U (zh) 一种高精度低抖动时钟振荡器电路
US7609119B2 (en) Reference voltage generator for logic elements providing stable and predefined gate propagation time
KR20180099270A (ko) 온도 센서 및 온도 센싱 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant