WO2021100106A1 - モータ駆動制御装置、及びモータ駆動制御システム - Google Patents
モータ駆動制御装置、及びモータ駆動制御システム Download PDFInfo
- Publication number
- WO2021100106A1 WO2021100106A1 PCT/JP2019/045206 JP2019045206W WO2021100106A1 WO 2021100106 A1 WO2021100106 A1 WO 2021100106A1 JP 2019045206 W JP2019045206 W JP 2019045206W WO 2021100106 A1 WO2021100106 A1 WO 2021100106A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- brake
- motor drive
- friction torque
- drive control
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 description 28
- 238000004891 communication Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 10
- 230000005856 abnormality Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P3/00—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
- H02P3/02—Details of stopping control
- H02P3/04—Means for stopping or slowing by a separate brake, e.g. friction brake or eddy-current brake
Definitions
- the present application relates to a motor drive control device and a motor drive control system having a function of determining the brake release of a motor equipped with a brake.
- the motor may be driven in a state where the brake is not released due to a brake failure. If the motor is driven in a state where the brake is not released, there is a problem that the brake is worn and the brake is deteriorated or the motor breaks down. Therefore, there is a motor drive control device that determines the state of the brake in order to prevent the motor from being driven when the brake is not released.
- the load torque of the motor when the motor is driven when the brake is activated and the load torque of the motor when the motor is driven when the brake is released are measured, and the brake is activated. Obtain the threshold value of the load torque at the time in advance.
- the load torque of the motor is the sum of the friction torque generated by the frictional force generated by operating the brake, the gravitational torque generated by gravity and acceleration other than the frictional force of the brake, and the acceleration / deceleration torque.
- the present application has been made to solve the above-mentioned problems, and it is possible to detect failure or forgetting of brake release even at the first drive after wiring without measuring the load torque of the motor in advance.
- the purpose is to obtain a possible motor drive control device.
- the motor drive control device of the present application determines the friction torque estimation unit that calculates the estimated value of the friction torque of the motor when the motor is driven, the estimated value of the friction torque calculated by the friction torque estimation unit, and the state of the brake that brakes the motor. It is characterized by including a brake release determination unit for determining the state of the brake using the threshold of the friction torque for determination.
- Block configuration diagram showing the motor drive control system of the first embodiment A flowchart showing the operation of the motor drive control device according to the first embodiment. A flowchart showing the operation of the controller according to the first embodiment.
- Block configuration diagram showing the motor drive control system of the second embodiment Block configuration diagram showing the motor drive control system of the third embodiment
- Block configuration diagram showing the motor drive control system of the fourth embodiment Hardware configuration diagram of the motor drive control device of the first to fourth embodiments
- FIG. 1 is a block configuration diagram showing a motor drive control system 1 according to the first embodiment of the present application.
- the motor drive control system 1 of the first embodiment includes a controller 100, a motor drive control device 200, and a servomotor 300.
- the controller 100 transmits a drive command to the motor drive control device 200, and the motor drive control device 200 drives and controls the servomotor 300 based on the drive command to drive the servomotor 300.
- the controller 100 includes a communication unit 110 and a display unit 120.
- the communication unit 110 is an interface capable of exchanging information with the motor drive control device 200.
- the communication unit 110 transmits a drive command to the motor drive control device 200, and receives information on the servomotor 300 from the motor drive control device 200, for example, a determination result of brake release.
- the drive command transmitted by the communication unit 110 to the motor drive control device 200 is generated based on a program stored in the controller 100 or a command from a higher-level computer that controls the controller 100.
- the display unit 120 is a display that displays information to the user of the motor drive control system 1.
- the information to be displayed to the user is a determination result of the brake release determination unit 233 of the motor drive control device 200, which will be described later, a warning when a brake is abnormal, or the like.
- the motor drive control device 200 includes a drive unit 210, an acquisition unit 220, a processing unit 230, a communication unit 240, and a storage unit 250.
- the motor drive control device 200 receives a drive command from the communication unit 110 of the controller 100 at the communication unit 240, and converts the drive command into a control instruction signal to the drive unit 210 at the processing unit 230. Then, the drive unit 210 that has received the control instruction signal drives the motor 302 and the brake 301 of the servomotor 300, and the acquisition unit 220 acquires the information necessary for determining the state of the brake 301 from the servomotor 300. Further, the processing unit 230 determines the state of the brake 301 using the information from the acquisition unit 220 and the information stored in the storage unit 250, and transmits the determination result from the communication unit 240 to the communication unit 110 of the controller 100.
- the drive unit 210 includes a motor drive unit 211 and a brake drive unit 212.
- the motor drive unit 211 supplies electric power for driving the motor 302.
- the magnitude of this power supply is instructed by the processing unit 230.
- the brake drive unit 212 controls the drive of the brake 301 so that the brake 301 is in the released state or the operating state.
- the acquisition unit 220 includes a rotation speed acquisition unit 221, a current value acquisition unit 222, and a threshold value acquisition unit 223.
- the rotation speed acquisition unit 221 acquires information on the rotation speed driven by the motor 302 from the encoder 303 of the servomotor 300.
- the rotation speed acquisition unit 221 may acquire not only the rotation speed of the motor 302 but also the rotation angle, rotation direction, rotation speed, and the like of the motor 302.
- the current value acquisition unit 222 acquires the current value supplied from the motor drive unit 211 to the motor 302.
- a value actually detected by an ammeter may be used, or a value calculated from the electric power supplied by the motor drive unit 211 to the motor 302 may be used.
- the threshold value acquisition unit 223 acquires the threshold value of the friction torque of the motor 302 when the brake 301 is operated.
- the friction torque threshold is described as, for example, the allowable torque, the maximum torque, or the braking torque in the specifications of the motor 302, or is stored in the encoder 303 or the motor 302.
- the threshold value acquisition unit 223 acquires the threshold value of the friction torque stored in the encoder 303.
- the threshold value acquisition unit 223 may acquire the friction torque threshold value from the motor as long as the motor 302 stores the friction torque threshold value. Since the threshold value acquisition unit 223 acquires the friction torque threshold value, the motor drive control device 200 of the present application determines the state of the brake 301 without obtaining the load torque of the motor 302 when the brake 301 is operated in advance. can do.
- the processing unit 230 includes a control instruction generation unit 231, a friction torque estimation unit 232, and a brake release determination unit 233.
- the control instruction generation unit 231 converts the drive command received from the controller 100 into a power value or the like, and generates a control instruction signal to the drive unit 210.
- the control instruction generation unit 231 uses not only the drive command received from the controller 100 but also the rotation speed information from the encoder 303 acquired by the rotation speed acquisition unit 221 to signal a control instruction to the motor drive unit 211. May be generated.
- the friction torque estimation unit 232 calculates an estimated value of the friction torque of the motor 302 when the motor 302 is driven.
- the friction torque estimation unit 232 of the first embodiment calculates the friction torque estimation value based on the information on the rotation speed of the motor 302 acquired by the rotation speed acquisition unit 221 and the current value acquired by the current value acquisition unit 222.
- the method of calculating the estimated value of the friction torque from the rotation speed of the motor 302 and the supplied current value is conventionally known as described in Patent Document 1, and is not the main point of the present application.
- the estimation method is not limited. Further, if the method can calculate the estimated value of the friction torque, it may be calculated from the rotation speed of the motor 302, the load torque, and the like instead of the rotation speed of the motor 302 and the supplied current value.
- the brake release determination unit 233 determines the state of the brake 301 by using the estimated value of the friction torque calculated by the friction torque estimation unit 232 and the threshold value of the friction torque. In the first embodiment, the brake release determination unit 233 determines the state of the brake 301 in three ways: a release state, an operating state, and an unreleased state.
- the released state of the brake 301 refers to a state in which the brake 301 is not braking the motor 302.
- the operating state of the brake 301 refers to a state in which the brake driving unit 212 is operating the brake 301.
- the unreleased state of the brake 301 refers to a state in which the brake 301 is braking the motor 302 due to an abnormality in the brake 301 even though the brake drive unit 212 is not operating the brake 301.
- the brake release determination unit 233 determines that the brake 301 is in the release state.
- the brake release determination unit 233 determines that the brake 301 is in the operating state.
- the brake 301 is in the operating state.
- the brake drive unit 212 does not operate the brake 301
- the state determination method of the brake 301 described above is an example, and may only determine whether or not the brake 301 of the brake release determination unit 233 is in the unreleased state. On the contrary, the state of the brake 301 may be determined in more detail by performing a finer case classification than described above.
- the communication unit 240 is an interface capable of exchanging information with the controller 100.
- the communication unit 240 includes a drive command receiving unit 241 and a determination information transmitting unit 242.
- the drive command receiving unit 241 receives the drive command from the communication unit 110 of the controller 100 to the motor drive control device 200 and transmits the drive command to the control instruction generation unit 231.
- the determination information transmission unit 242 transmits the brake release determination result from the brake release determination unit 233 to the communication unit 110 of the controller 100.
- the storage unit 250 stores a value required for determining the state of the brake 301.
- the current value acquired by the current value acquisition unit 222 or the rotation speed acquired by the rotation speed acquisition unit 221 may be stored.
- the storage unit 250 includes a threshold value storage unit 251 and stores the threshold value of the friction torque acquired by the threshold value acquisition unit 223.
- the servomotor 300 includes a brake 301, a motor 302, and an encoder 303.
- the brake 301 does not come into contact with the motor 302 in the released state. In the unreleased state, it comes into contact with the motor 302 and brakes the drive of the motor 302 by the frictional force generated between the brake 301 and the motor 302.
- the motor 302 is rotationally driven when power is supplied from the motor drive control device 200, and the rotational drive is stopped when the power supply from the motor drive control device 200 is stopped or the brake 301 is activated.
- the encoder 303 outputs information on the number of rotations of the rotating shaft driven by the motor 302.
- the encoder 303 may output not only the rotation speed of the motor 302 but also information such as the rotation angle, the rotation direction, and the rotation speed of the motor 302.
- FIG. 2 is a flowchart showing the operation of the motor drive control device 200 according to the first embodiment of the present application.
- step S100 the control instruction generation unit 231 determines whether the drive command reception unit 241 has received the motor drive start instruction from the controller 100. Step S100 is repeated until the instruction to start driving the motor is received.
- step S101 the power supply from the motor driving unit 211 to the motor 302 is started, and the drive control of the motor 302 is started.
- step S101 the process proceeds to step S102, and the current value acquisition unit 222 acquires the current value supplied to the motor 302.
- step S102 the process proceeds to step S103, and the rotation speed acquisition unit 221 acquires the rotation speed of the motor 302.
- step S103 the process proceeds to step S104, and the friction torque estimation unit 232 calculates the estimated value of the friction torque.
- step S104 the process proceeds to step S105, and the threshold value acquisition unit 223 acquires the friction torque threshold value.
- step S105 the process proceeds to step S106, and the brake release determination unit 233 determines whether or not the estimated value of the friction torque is larger than the threshold value of the friction torque.
- step S106 If the estimated value of the friction torque is equal to or less than the friction torque threshold value in step S106, the process proceeds to step S107, the brake release determination unit 233 determines that the brake 301 is in the release state, and proceeds to step S111.
- step S106 determines in step S106 that the estimated value of the friction torque is larger than the threshold value of the friction torque. If the brake release determination unit 233 determines in step S106 that the estimated value of the friction torque is larger than the threshold value of the friction torque, the process proceeds to step S108.
- step S108 it is determined whether the brake drive unit 212 is operating the brake 301. When the brake 301 is operated, the process proceeds to step S109, and the brake release determination unit 233 determines that the brake 301 is in the operating state. After step S109, the process proceeds to step S111.
- step S108 When the estimated value of the friction torque is larger than the threshold value of the friction torque and the brake drive unit 212 does not operate the brake 301, the process proceeds from step S108 to step S110, and the brake release determination unit 233 indicates that the brake 301 has not been released. Is determined. After step S110, the process proceeds to step S111.
- step S111 it is determined in step S111 whether or not a motor drive end instruction has been received from the controller 100.
- step S101 If the instruction to end the motor drive has not been received, the process returns to step S101, and the operation of determining the state of the brake 301 in steps S101 to S111 is repeated.
- the determination information transmission unit 242 may transmit the determination result of the brake release determination unit 233 to the controller 100.
- step S111 When it is determined in step S111 that the drive command receiving unit 241 has received the instruction to end the motor drive from the controller 100, the motor drive control device 200 ends the operation.
- the motor drive control device 200 calculates the estimated value of the friction torque during the driving of the motor 302 and determines the state of the brake 301 without performing the pre-driving and the pre-measurement of the motor 302. Can be done.
- step S108 it was determined in step S108 whether the brake 301 was operated by the brake drive unit 212, but the brake release determination unit 233 was in the unreleased state or the activated state without performing step S108. It may be determined that.
- the brake drive unit 212 may move the brake 301 to an appropriate position. You may move it.
- FIG. 3 is a flowchart showing the operation of the controller 100 of the first embodiment.
- step S200 the controller 100 determines whether the motor drive start operation has been performed by the user. Step S200 is repeated until the operation of starting the motor drive is performed.
- step S201 When the operation to start the motor drive is performed by the user, the process proceeds to step S201, and an instruction to start the motor drive is transmitted to the motor drive control device 200.
- step S202 it is determined whether or not the determination result of the state of the brake 301 has been received from the motor drive control device 200. If the determination result of the state of the brake 301 has not been received, the process proceeds to step S204.
- step S202 If it is determined in step S202 that the determination result of the state of the brake 301 has been received, it is determined in step S203 whether or not the brake has not been released. If the brake 301 is not in the unreleased state, there is no abnormality in the brake 301, and the process proceeds to step S204.
- step S204 it is determined whether the operation for ending the motor drive has been performed by the user. If there is no operation to end the motor drive, the process returns to step S202, and the determination as to whether or not the brake release determination result has been received is repeated.
- step S203 If it is determined in step S203 that the brake 301 has not been released, the process proceeds to step S205, and the display unit 120 notifies the abnormality of the brake 301.
- step S204 When it is determined in step S204 that the operation to end the motor drive has been performed, or after step S205, the process proceeds to step S206, an instruction to end the motor drive is transmitted to the motor drive control device 200, and the operation of the controller 100 ends.
- the display unit 120 notifies the user of the abnormality in step S205.
- the user can notice the abnormality of the brake 301.
- a motor stop command is transmitted to the motor drive control device 200 in step S206 to instruct the motor drive to end. Therefore, it is possible to prevent the motor 302 from being driven while the brake 301 is not released.
- the operation of the controller 100 shown in FIG. 3 is an example, and when the brake 301 is not released, the end of driving the motor 302 and the notification of the brake abnormality on the display unit 120 are not essential operations. , Other operations may prevent the motor 302 from being driven when the brake 301 is not released.
- the motor 302 is prevented from being driven when the brake 301 is not released by the operation of the controller 100, but the determination result from the brake release determination unit 233 is acquired by the control instruction generation unit 231.
- a control instruction signal may be transmitted from the control instruction generation unit 231 to the motor drive unit 211 to stop the motor 302.
- the friction torque estimation unit calculates the estimated value of the friction torque of the motor and compares it with the threshold value of the friction torque when the brake is operated to determine the state of the brake. Since the determination is made, it is possible to detect the failure or forgetting of the brake release without performing the preliminary measurement of the load torque of the motor.
- the motor drive control system 1 it is possible to prevent the motor drive by detecting an abnormality such as a failure to release the brake or forgetting the brake without performing a preliminary measurement of the load torque of the motor. Even at the time of initial wiring, it is possible to prevent wear of the brake or motor failure in the unreleased state.
- FIG. 4 is a block configuration diagram showing the motor drive control system 1 of the second embodiment.
- the motor drive control device 200 of the second embodiment is different from the motor drive control device 200 of the first embodiment in that the friction torque estimation unit 232 includes the friction torque estimation value processing unit 234. Since the other configurations are the same as those of the first embodiment, the description thereof will be omitted.
- the friction torque estimation unit 232 uses the friction torque estimation value processing unit 234 to calculate the estimated value of the friction torque due to the brake among the friction torques of the motor 302, and calculates the friction torque with higher accuracy.
- the motor drive control device 200 of the present application determines the state of the brake 301 without performing the preliminary measurement of the motor 302, but the motor 302 may be accelerated / decelerated and rotated when the motor 302 is actually used.
- the motor 302 rotates in acceleration / deceleration, acceleration / deceleration torque is generated in the motor 302.
- This acceleration / deceleration torque is independent of the friction torque generated by the brake 301. Therefore, the friction torque estimation value processing unit 234 calculates the acceleration / deceleration torque based on the rotation speed of the motor 302 acquired by the rotation speed acquisition unit 221 and the current value acquired by the current value acquisition unit 222, and then the friction torque.
- the acceleration / deceleration torque is excluded from the estimated value of, and a more accurate estimated value of the friction torque is calculated.
- the method for calculating the acceleration / deceleration torque is known, for example, in Japanese Patent No. 5591400, and the method for calculating the acceleration / deceleration torque is not limited.
- the friction torque estimation value processing unit 234 calculates the gravitational torque based on the rotation speed of the motor 302 acquired by the rotation speed acquisition unit 221 and the current value acquired by the current value acquisition unit 222, and then determines the friction torque.
- the gravitational torque is excluded from the estimated value to calculate a more accurate estimated value of the friction torque.
- the method for calculating the gravitational torque is known in Patent Document 1, for example, and the method for calculating the gravitational torque is not limited in the present application.
- the brake release determination unit 233 can be performed more accurately. The state of the brake can be determined.
- the friction torque estimation value processing unit 234 can calculate a more accurate friction torque estimate value, so that the state of the brake 301 can be determined more accurately. It becomes possible.
- FIG. 5 is a block configuration diagram showing the motor drive control system 1 of the third embodiment.
- the motor drive control device 200 of the third embodiment is different from the motor drive control device 200 of the first embodiment in that the communication unit 240 includes the threshold value acquisition unit 223 and the controller 100 includes the operation unit 130. Since the other configurations are the same as those of the first embodiment, the description thereof will be omitted.
- the user uses the operation unit 130 of the controller 100 with an arbitrary value as the threshold value of the friction torque with reference to the allowable torque or the instantaneous maximum torque described in the motor specifications. And enter.
- the operation unit 130 may be a user interface capable of inputting numerical values, such as a touch panel or a numeric keypad.
- the threshold value of the friction torque input by the user in the operation unit 130 is transmitted to the motor drive control device 200 by the communication unit 110, and the threshold value acquisition unit 223 acquires the threshold value of the friction torque from the user's operation information.
- the threshold value of the friction torque acquired by the threshold value acquisition unit 223 is stored in the threshold value storage unit 251 of the storage unit 250.
- the brake release determination unit 233 acquires the value of the threshold value of the friction torque from the threshold storage unit 251 and determines the state of the brake 301.
- the user can set the friction torque threshold value by inputting the friction torque threshold value in the operation unit 130. Therefore, even if the threshold value of the friction torque is not stored in the motor 302 or the encoder 303, the state of the brake 301 can be determined without performing the preliminary measurement of the motor 302.
- FIG. 6 is a block configuration diagram showing the motor drive control system 1 of the fourth embodiment.
- the motor drive control device 200 of the fourth embodiment is different from the motor drive control device 200 of the first embodiment in that the storage unit 250 is not provided. Since the other configurations are the same as those of the first embodiment, the description thereof will be omitted.
- the brake release determination unit 233 acquires the friction torque threshold value from the threshold value acquisition unit 223 each time the brake release determination unit 233 determines the state of the brake 301, and determines the brake release. Since the motor drive control device 200 according to the fourth embodiment does not require the storage unit 250, the motor drive control device 200 is configured at low cost to determine the state of the brake 301 without performing prior measurement of the motor 302. It can be carried out.
- FIG. 7 is a hardware configuration diagram of the motor drive control device 200 of the first to fourth embodiments.
- the motor drive control device 200 includes an input device 901, an output device 902, a storage device 903, and a processing device 904.
- the input device 901 is an interface for inputting information provided by the acquisition unit 220 and the communication unit 240 of the motor drive control device 200.
- the interface may be a wired communication network such as a LAN cable or a coaxial cable, or a wireless communication network using wireless communication technology.
- the output device 902 is provided with a drive unit 210 and a communication unit 240.
- the output device 902 is a control signal or communication interface. Since the communication unit 240 has already been described in the input device 901, it will be omitted.
- the drive unit 210 particularly the motor drive unit 211, is an interface capable of supplying electric power to the motor 302, for example, a lead wire for supplying power.
- the storage device 903 is provided in the storage unit 250. It corresponds to a working memory and is a device that stores information.
- non-volatile or volatile semiconductor memories such as RAM, ROM, and flash memory, magnetic disks, flexible disks, optical disks, compact disks, and the like are applicable.
- the processing device 904 is provided in the processing unit 230.
- the processing device 904 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program recorded in the storage device 903.
- CPU Central Processing Unit
- the processing device 904 When the processing device 904 is dedicated hardware, the processing device 904 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. ..
- the processing device 904 When the processing device 904 is a CPU, the function of the processing unit 230 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and recorded in the storage device 903. The processing device 904 realizes the functions of each part by reading and executing the program stored in the storage device 903.
- each function of the processing unit 230 may be partially realized by hardware and partly realized by software or firmware.
- control instruction generation unit 231 may be dedicated hardware, and the friction torque estimation unit 232 and the brake release determination unit 233 may be described as a program recorded in the storage device 903 to realize the functions.
- the processing device 904 can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
- Motor drive control system 100 Controller 110 Communication unit 120 Display unit 130 Operation unit 200 Motor drive control device 210 Drive unit 211 Motor drive unit 212 Brake drive unit 220 Acquisition unit 221 Rotation speed acquisition unit 222 Current value acquisition unit 223 Threshold acquisition unit 230 Processing unit 231 Control instruction generation unit 232 Friction torque estimation unit 233 Brake release judgment unit 234 Friction torque estimation value processing unit 240 Communication unit 241 Drive command reception unit 242 Judgment information transmission unit 250 Storage unit 251 Threshold storage unit 300 Servo motor 301 Brake 302 Motor 303 Encoder 901 Input device 902 Output device 903 Storage device 904 Processing device
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
- Stopping Of Electric Motors (AREA)
- Valve Device For Special Equipments (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
Abstract
ブレーキを備えるモータのブレーキ解除を判定する機能を備えたモータ駆動制御装置およびモータ駆動制御システムに関する。本発明のモータ駆動制御装置、及びモータ駆動制御システムは、モータ駆動時におけるモータの摩擦トルクの推定値を算出する摩擦トルク推定部と、摩擦トルク推定部が算出した摩擦トルクの推定値と、モータを制動するブレーキの状態を判定するための摩擦トルクの閾値とを用いて、ブレーキの状態を判定するブレーキ解除判定部と、を備えることを特徴とする。
Description
本願はブレーキを備えるモータのブレーキ解除を判定する機能を備えたモータ駆動制御装置およびモータ駆動制御システムに関するものである。
ブレーキを備えたモータにおいて、ブレーキの故障により、ブレーキが解除されていない状態でモータが駆動してしまうことがある。ブレーキが未解除の状態でモータを駆動させると、ブレーキが摩耗してブレーキが劣化したり、モータが故障したりするという問題がある。従って、ブレーキが未解除の状態でのモータ駆動を防止するためにブレーキの状態を判定するモータ駆動制御装置がある。
例えば、特許文献1ではモータの使用前に、ブレーキ作動時にモータを駆動させたときのモータの負荷トルクと、ブレーキ解除時にモータを駆動させたときのモータの負荷トルクとを測定し、ブレーキが作動時の負荷トルクの閾値を事前に求めておく。そして、モータを使用するときは、モータ駆動中のモータの負荷トルクが、事前に求めたブレーキ作動時の負荷トルクの閾値以上であれば、ブレーキが作動していると判定する。なお、モータの負荷トルクとは、ブレーキが作動して生じる摩擦力による摩擦トルクと、ブレーキの摩擦力以外の重力および加速度によって生じる重力トルクおよび加減速トルク等の合計である。
しかし、特許文献1の方法では、モータの使用を開始する前にブレーキ作動時およびブレーキ解除時のモータの負荷トルクを事前にモータを駆動させることにより求めなければ、モータ駆動中のブレーキの状態を判定することができない。従って、この事前測定のためにモータを駆動させる必要があり、手間がかかるという問題があった。また、実際にモータを使用する環境で、初回駆動時の配線ミスまたはシステム設定またはプログラムのミス等によるブレーキ解除の失敗および忘れを検知することができないという問題があった。
本願は、上記のような課題を解決するためになされたものであり、モータの負荷トルクの事前測定をせずに、配線後初回駆動時においてもブレーキ解除の失敗および忘れの検知を行うことが可能なモータ駆動制御装置を得ることを目的とする。
本願のモータ駆動制御装置は、モータ駆動時におけるモータの摩擦トルクの推定値を算出する摩擦トルク推定部と、摩擦トルク推定部が算出した摩擦トルクの推定値と、モータを制動するブレーキの状態を判定するための摩擦トルクの閾値とを用いて、ブレーキの状態を判定するブレーキ解除判定部と、を備えることを特徴とする。
本願により、モータの負荷トルクの事前測定をせずに、配線後初回駆動時においてもブレーキ解除の失敗および忘れの検知を行うことが可能となる。
実施の形態1.
以下、本願にかかる実施の形態を図に基づいて説明する。なお、図面の説明においては、同一部分または相当部分には同一符号を付し、重複する説明を省略する。この実施の形態により本願が限定されるものではない。
以下、本願にかかる実施の形態を図に基づいて説明する。なお、図面の説明においては、同一部分または相当部分には同一符号を付し、重複する説明を省略する。この実施の形態により本願が限定されるものではない。
まず、本願の実施の形態1のモータ駆動制御システムの構成を説明する。図1は、本願の実施の形態1のモータ駆動制御システム1を示すブロック構成図である。
実施の形態1のモータ駆動制御システム1は、コントローラ100、モータ駆動制御装置200、サーボモータ300から構成される。コントローラ100がモータ駆動制御装置200へ駆動指令を送信し、モータ駆動制御装置200が駆動指令に基づいてサーボモータ300を駆動制御することで、サーボモータ300が駆動する。
以下、各装置の構成について説明する。まずコントローラ100について説明する。コントローラ100は、通信部110と表示部120とを備える。
通信部110は、モータ駆動制御装置200と情報のやりとりが可能なインターフェースである。通信部110は、モータ駆動制御装置200へ駆動指令を送信し、モータ駆動制御装置200からサーボモータ300に関する情報、例えばブレーキ解除の判定結果を受信する。通信部110がモータ駆動制御装置200へ送信する駆動指令はコントローラ100に記憶されたプログラムまたはコントローラ100を制御する上位のコンピュータからの指令に基づいて生成される。
表示部120は、モータ駆動制御システム1のユーザへ情報を表示するディスプレイである。ユーザに表示する情報は、後述するモータ駆動制御装置200のブレーキ解除判定部233の判定結果またはブレーキ異常時の警告等である。
続いて、モータ駆動制御装置200について説明する。モータ駆動制御装置200は、駆動部210、取得部220、処理部230、通信部240、記憶部250を備える。
まず、モータ駆動制御装置200の各構成の概要を説明する。モータ駆動制御装置200は、コントローラ100の通信部110からの駆動指令を通信部240で受信し、駆動指令を処理部230で駆動部210への制御指示の信号に変換する。そして、制御指示の信号を受信した駆動部210がサーボモータ300のモータ302及びブレーキ301を駆動させ、取得部220がブレーキ301の状態の判定に必要な情報をサーボモータ300から取得する。更に、処理部230が取得部220からの情報と、記憶部250が記憶する情報を用いてブレーキ301の状態の判定を行い、判定結果を通信部240からコントローラ100の通信部110へ送信する。
次に、モータ駆動制御装置200の各構成について、詳細に説明する。まず、駆動部210はモータ駆動部211とブレーキ駆動部212とを備える。
モータ駆動部211は、モータ302が駆動するための電力を供給する。この供給電力の大きさは処理部230から指示される。
ブレーキ駆動部212は、ブレーキ301が解除状態または作動状態となるようブレーキ301の駆動を制御する。
取得部220は、回転数取得部221、電流値取得部222、閾値取得部223を備える。
回転数取得部221は、サーボモータ300のエンコーダ303からモータ302の駆動による回転数の情報を取得する。なお、回転数取得部221はモータ302の回転数だけでなくモータ302の回転角、回転方向、回転速度等を取得してよい。
電流値取得部222は、モータ駆動部211からモータ302へ供給される電流値を取得する。この電流値は実際に設けた電流計による検出値を用いても、モータ駆動部211がモータ302へ供給する電力から算出して求めた値を用いてもよい。
閾値取得部223は、ブレーキ301が作動するときのモータ302の摩擦トルクの閾値を取得する。なお、摩擦トルクの閾値は、例えば、モータ302の仕様書に許容トルク、最大トルク、または制動トルクとして記載されている、もしくは、エンコーダ303またはモータ302に記憶されている。実施の形態1では、図1に示すように閾値取得部223は、エンコーダ303が保存している摩擦トルクの閾値を取得するものとする。閾値取得部223は、摩擦トルクの閾値をエンコーダ303から取得する代わりに、モータ302が摩擦トルクの閾値を保存していればモータから取得してもよい。閾値取得部223が摩擦トルクの閾値を取得するため、本願のモータ駆動制御装置200は、事前にブレーキ301を作動させたときのモータ302の負荷トルクを求めなくても、ブレーキ301の状態を判定することができる。
処理部230は、制御指示生成部231、摩擦トルク推定部232、ブレーキ解除判定部233を備える。
制御指示生成部231は、コントローラ100から受信した駆動指令を、電力値等に変換し、駆動部210への制御指示信号を生成する。なお、制御指示生成部231は、コントローラ100から受信した駆動指令だけでなく、回転数取得部221が取得したエンコーダ303からの回転数の情報も用いて、モータ駆動部211への制御指示の信号を生成してもよい。
摩擦トルク推定部232は、モータ302駆動時における、モータ302の摩擦トルクの推定値を算出する。実施の形態1の摩擦トルク推定部232は回転数取得部221が取得するモータ302の回転数の情報と、電流値取得部222が取得する電流値に基づいて、摩擦トルク推定値を算出する。なお、モータ302の回転数と供給された電流値から摩擦トルクの推定値を算出する方式は、特許文献1にも記載されているように従来既知であり、本願の要点ではないため摩擦トルクの推定方式は限定しないこととする。また、摩擦トルクの推定値を算出できる方法であれば、モータ302の回転数と供給された電流値の代わりに、モータ302の回転速度と負荷トルク等から算出してもよい。
ブレーキ解除判定部233は、摩擦トルク推定部232が算出した摩擦トルクの推定値と、摩擦トルクの閾値とを用いて、ブレーキ301の状態を判定する。実施の形態1では、ブレーキ解除判定部233はブレーキ301の状態を解除状態、作動状態、未解除状態の3通りで判定する。なお、ブレーキ301の解除状態とは、ブレーキ301がモータ302を制動していない状態を指す。ブレーキ301の作動状態とは、ブレーキ駆動部212がブレーキ301を作動させている状態を指す。ブレーキ301の未解除状態とは、ブレーキ駆動部212がブレーキ301を作動させていないにも関わらず、ブレーキ301の異常によりブレーキ301がモータ302を制動している状態を指す。
ブレーキ解除判定部233は摩擦トルクの推定値が摩擦トルクの閾値以下のとき、ブレーキ301が解除状態であると判定する。摩擦トルクの推定値が摩擦トルクの閾値より大きく、ブレーキ駆動部212がブレーキ301を作動させていないとき、ブレーキ301が作動状態であると判定する。摩擦トルクの推定値が摩擦トルクの閾値より大きくブレーキ駆動部212がブレーキ301を作動させていないとき、未解除状態であると判定する。なお、上記で説明したブレーキ301の状態判定方法は一例であり、ブレーキ解除判定部233のブレーキ301が未解除状態であるか否かのみを判定するものとしてもよい。反対に、上記で説明した以上に細かい場合分けを行い、より詳細にブレーキ301の状態を判定してもよい。
通信部240は、コントローラ100と情報のやりとりが可能なインターフェースである。通信部240は、駆動指令受信部241と判定情報送信部242とを備える。
駆動指令受信部241は、コントローラ100の通信部110からの、モータ駆動制御装置200へ駆動指令を受信し、制御指示生成部231に伝える。
判定情報送信部242は、コントローラ100の通信部110へ、ブレーキ解除判定部233からのブレーキ解除の判定結果を送信する。
記憶部250は、ブレーキ301の状態を判定するために必要な値を記憶する。たとえば電流値取得部222が取得した電流値または回転数取得部221が取得した回転数等を記憶してもよい。また、記憶部250は閾値記憶部251を備え、閾値取得部223が取得した摩擦トルクの閾値を記憶する。
続いて、サーボモータ300について説明する。サーボモータ300は、ブレーキ301、モータ302、エンコーダ303を備える。
ブレーキ301は解除状態ではモータ302と接触しない。未解除状態ではモータ302と接触し、ブレーキ301とモータ302との間で生じる摩擦力によってモータ302の駆動を制動する。
モータ302は、モータ駆動制御装置200から電力が供給されると回転駆動し、モータ駆動制御装置200からの電力供給が停止されるか、ブレーキ301が作動することで回転駆動を停止する。
エンコーダ303は、モータ302の駆動による回転軸の回転数の情報を出力する。なお、エンコーダ303はモータ302の回転数だけでなく、モータ302の回転角、回転方向、回転速度等の情報を出力してもよい。
次に、本願の実施の形態1のモータ駆動制御装置200の動作について図2を用いて説明する。図2は本願の実施の形態1のモータ駆動制御装置200の動作を示すフローチャートである。
モータ駆動制御装置200が運転を開始すると、図2のフローが開始される。まず、ステップS100にて制御指示生成部231が、駆動指令受信部241にてモータ駆動開始の指示をコントローラ100から受信したかを判断する。モータ駆動開始の指示を受信するまで、ステップS100を繰り返す。
駆動指令受信部241がモータ駆動開始の指示を受信すると、ステップS101に進み、モータ駆動部211からモータ302への電力供給を開始してモータ302の駆動制御を開始する。
ステップS101の次にステップS102に進み、電流値取得部222にて、モータ302へ供給される電流値を取得する。
ステップS102のあと、ステップS103に進み、回転数取得部221にてモータ302の回転数を取得する。
ステップS102のあと、ステップS103に進み、回転数取得部221にてモータ302の回転数を取得する。
ステップS103の後、ステップS104に進み、摩擦トルク推定部232にて摩擦トルクの推定値を算出する。
ステップS104の後、ステップS105に進み、閾値取得部223にて摩擦トルクの閾値を取得する。
ステップS105の後、ステップS106に進み、摩擦トルクの推定値が摩擦トルクの閾値よりも大きいか否かを、ブレーキ解除判定部233が判定する。
ステップS106で摩擦トルクの推定値が摩擦トルクの閾値以下であれば、ステップS107に進み、ブレーキ解除判定部233にて、ブレーキ301は解除状態であると判定し、ステップS111に進む。
ステップS106にて摩擦トルクの推定値が摩擦トルクの閾値よりも大きいとブレーキ解除判定部233が判定すると、ステップS108に進む。ステップS108では、ブレーキ駆動部212がブレーキ301を作動させているかを判断する。ブレーキ301を作動させている場合、ステップS109に進み、ブレーキ解除判定部233はブレーキ301が作動状態であると判定する。ステップS109の後、ステップS111に進む。
摩擦トルクの推定値が摩擦トルクの閾値よりも大きく、ブレーキ駆動部212がブレーキ301を作動させていない場合、ステップS108からステップS110に進み、ブレーキ解除判定部233はブレーキ301は未解除状態であると判定する。ステップS110の後、ステップS111に進む。
ステップS107またはステップS109またはステップS110のあと、ステップS111にて、コントローラ100からモータ駆動終了の指示を受信したか否かを判定する。
モータ駆動終了の指示を受信していなければステップS101に戻り、ステップS101からステップS111のブレーキ301の状態の判定動作を繰り返す。なお、ステップS101に戻る前に判定情報送信部242からコントローラ100へブレーキ解除判定部233の判定結果を送信してもよい。
ステップS111にて駆動指令受信部241がコントローラ100からモータ駆動終了の指示を受信したと判断すると、モータ駆動制御装置200は動作を終了する。
以上の動作により、モータ駆動制御装置200は、モータ302の事前駆動及び事前測定を行わなくとも、モータ302の駆動中に摩擦トルクの推定値を算出して、ブレーキ301の状態の判定を行うことができる。
なお、図2ではステップS108にてブレーキ301をブレーキ駆動部212によって作動させているかを判定したが、ステップS108を行わずに、ブレーキ解除判定部233は、ブレーキが未解除状態または作動状態であると判定させるようにしてもよい。
また、図2には記載していないが、ブレーキ301が未解除状態であれば、モータ駆動部211からモータ302への電力供給を停止したり、ブレーキ駆動部212がブレーキ301を適正な位置へ動かしたりしてもよい。
次に、実施の形態1のコントローラ100の動作の例を図3を用いて説明する。図3は実施の形態1のコントローラ100の動作を示すフローチャートである。
コントローラ100が運転を開始すると、図3のフローが開始される。まず、ステップS200にてコントローラ100はユーザによってモータ駆動開始の操作がなされたかを判断する。モータ駆動開始の操作がなされるまで、ステップS200を繰り返す。
ユーザによってモータ駆動開始の操作がなされるとステップS201に進み、モータ駆動制御装置200へモータ駆動開始の指示を送信する。
ステップS201の次にステップS202に進み、モータ駆動制御装置200からブレーキ301の状態の判定結果を受信したかを判断する。ブレーキ301の状態の判定結果を受信していなければステップS204に進む。
ステップS202にて、ブレーキ301の状態の判定結果を受信したと判断すると、ステップS203にてブレーキが未解除状態であったか否かを判断する。ブレーキ301が未解除状態でなければ、ブレーキ301には異常がないので、ステップS204に進む。
ステップS204では、モータ駆動終了の操作がユーザによってなされたかを判断する。モータ駆動終了の操作がなければステップS202に戻り、ブレーキ解除判定結果を受信したかの判断を繰り返す。
ステップS203にて、ブレーキ301が未解除状態であったと判断すると、ステップS205に進み、表示部120でブレーキ301の異常を通知する。
ステップS204にてモータ駆動終了の操作がなされたと判断した場合、またはステップS205の後、ステップS206に進み、モータ駆動制御装置200にモータ駆動終了の指示を送信し、コントローラ100の動作は終了する。
以上図3にて示したコントローラ100の動作により、モータ駆動制御装置200にてブレーキ301が未解除状態であると判定されると、ステップS205にて表示部120でユーザに異常を通知するので、ユーザがブレーキ301の異常に気づくことができる。また、モータ駆動制御装置200から、ブレーキ301が未解除状態であるという判定情報をコントローラが受信したとき、ステップS206にてモータ駆動制御装置200にモータの停止指令を送信して、モータ駆動終了指示を行うので、ブレーキ301が未解除のままモータ302が駆動することを防止することができる。
なお、図3にて示したコントローラ100の動作は例であり、ブレーキ301が未解除状態である場合に、モータ302の駆動終了、および表示部120でのブレーキ異常の通知は必須の動作ではなく、その他の動作によってブレーキ301が未解除状態でのモータ302の駆動を防止してもよい。
また、上記では、コントローラ100の動作によってブレーキ301が未解除状態である場合のモータ302の駆動を防止したが、ブレーキ解除判定部233からの判定結果を制御指示生成部231にて取得して、モータ駆動部211にモータ302を停止するよう制御指示生成部231から制御指示の信号を送信してもよい。
以上、実施の形態1におけるモータ駆動制御装置200では、摩擦トルク推定部により、モータの摩擦トルクの推定値を算出し、ブレーキが作動するときの摩擦トルクの閾値と比較して、ブレーキの状態を判定するので、モータの負荷トルクの事前測定を行わなくても、ブレーキ解除失敗および忘れを検知することが可能である。
また、実施の形態1におけるモータ駆動制御システム1では、モータの負荷トルクの事前測定を行わなくても、ブレーキ解除失敗および忘れ等の異常を検知して、モータ駆動を防止することができるので、初回配線時であっても未解除状態でのブレーキの摩耗、またはモータの故障を防止することができる。
実施の形態2.
以下、本願の実施の形態2のモータ駆動制御装置200について説明する。図4は、実施の形態2のモータ駆動制御システム1を示すブロック構成図である。実施の形態2のモータ駆動制御装置200は、摩擦トルク推定部232が摩擦トルク推定値処理部234を備える点が、実施の形態1のモータ駆動制御装置200と異なる。その他の構成については、実施の形態1の構成と同一であるため説明を省略する。
以下、本願の実施の形態2のモータ駆動制御装置200について説明する。図4は、実施の形態2のモータ駆動制御システム1を示すブロック構成図である。実施の形態2のモータ駆動制御装置200は、摩擦トルク推定部232が摩擦トルク推定値処理部234を備える点が、実施の形態1のモータ駆動制御装置200と異なる。その他の構成については、実施の形態1の構成と同一であるため説明を省略する。
摩擦トルク推定部232は、摩擦トルク推定値処理部234を用いて、モータ302の摩擦トルクのうちブレーキによる摩擦トルクの推定値を算出し、より高精度に摩擦トルクを算出する。
本願のモータ駆動制御装置200は、モータ302の事前測定を行わずに、ブレーキ301の状態の判定を行うが、実際のモータ302使用時において、モータ302を加減速回転させる場合がある。モータ302が加減速回転した場合、モータ302には加減速トルクが発生する。この加減速トルクは、ブレーキ301によって発生する摩擦トルクとは無関係である。従って、摩擦トルク推定値処理部234は、回転数取得部221が取得するモータ302の回転数と、電流値取得部222が取得する電流値等に基づいて加減速トルクを算出したのち、摩擦トルクの推定値から加減速トルクを排除して、より正確な摩擦トルクの推定値を算出する。なお、加減速トルクの算出方法は、たとえば特許第5591400号にて既知であり、加減速トルクの算出方式は限定しない。
また、例えばエレベータの巻上機のように、モータ302が物体を上下させるようなモータ駆動制御システム1に用いられる場合、モータ302には、重力トルクが発生する。この重力トルクは、ブレーキ301による摩擦トルクとは無関係である。従って、摩擦トルク推定値処理部234は、回転数取得部221が取得するモータ302の回転数と、電流値取得部222が取得する電流値等に基づいて重力トルクを算出したのち、摩擦トルクの推定値から重力トルクを排除して、より正確な摩擦トルクの推定値を算出する。なお、重力トルクの算出方法は、たとえば特許文献1にて既知であり、本願では重力トルクの算出方式は限定しない。
摩擦トルク推定値処理部234により、加減速トルクまたは重力トルク、またはその両方を算出し、それらを除去したより正確な摩擦トルクの推定値を算出できるため、ブレーキ解除判定部233は、より正確にブレーキの状態を判定することができる。
以上説明した本実施の形態2におけるモータ駆動制御装置200では、摩擦トルク推定値処理部234にて、より正確な摩擦トルクの推定値を算出できるので、より正確にブレーキ301の状態の判定を行うことが可能となる。
実施の形態3.
以下、本願の実施の形態3のモータ駆動制御装置200について説明する。図5は、実施の形態3のモータ駆動制御システム1を示すブロック構成図である。実施の形態3のモータ駆動制御装置200は、通信部240に閾値取得部223を備え、コントローラ100が操作部130を備える点が、実施の形態1のモータ駆動制御装置200と異なる。その他の構成については、実施の形態1の構成と同一であるため説明を省略する。
以下、本願の実施の形態3のモータ駆動制御装置200について説明する。図5は、実施の形態3のモータ駆動制御システム1を示すブロック構成図である。実施の形態3のモータ駆動制御装置200は、通信部240に閾値取得部223を備え、コントローラ100が操作部130を備える点が、実施の形態1のモータ駆動制御装置200と異なる。その他の構成については、実施の形態1の構成と同一であるため説明を省略する。
実施の形態3のモータ駆動制御システム1では、ユーザがモータの仕様書に記載された許容トルクまたは瞬間最大トルク等を参照して任意の値を摩擦トルクの閾値としてコントローラ100の操作部130を用いて入力する。なお、この操作部130とは数値を入力できるユーザインターフェースであればよく、タッチパネルまたはテンキーなどである。
ユーザが操作部130にて入力した摩擦トルクの閾値は、通信部110がモータ駆動制御装置200に送信され、閾値取得部223は摩擦トルクの閾値をユーザの操作情報から取得する。閾値取得部223が取得した摩擦トルクの閾値は記憶部250の閾値記憶部251にて記憶される。そして、ブレーキ解除判定部233は、閾値記憶部251から摩擦トルクの閾値の値を取得して、ブレーキ301の状態の判定を行う。
以上実施の形態3におけるモータ駆動制御装置200では、ユーザが操作部130にて摩擦トルクの閾値を入力することで摩擦トルクの閾値を設定することができる。したがって、モータ302またはエンコーダ303に摩擦トルクの閾値が保存されていなくても、モータ302の事前測定を行うことなく、ブレーキ301の状態の判定を行うことができる。
実施の形態4.
以下、本願の実施の形態4のモータ駆動制御装置200について説明する。図6は、実施の形態4のモータ駆動制御システム1を示すブロック構成図である。実施の形態4のモータ駆動制御装置200は、記憶部250を設けていない点が、実施の形態1のモータ駆動制御装置200と異なる。その他の構成については、実施の形態1の構成と同一であるため説明を省略する。
以下、本願の実施の形態4のモータ駆動制御装置200について説明する。図6は、実施の形態4のモータ駆動制御システム1を示すブロック構成図である。実施の形態4のモータ駆動制御装置200は、記憶部250を設けていない点が、実施の形態1のモータ駆動制御装置200と異なる。その他の構成については、実施の形態1の構成と同一であるため説明を省略する。
以上実施の形態4のモータ駆動制御システム1では、ブレーキ解除判定部233がブレーキ301の状態の判定を行うたびに閾値取得部223から摩擦トルクの閾値を取得し、ブレーキ解除の判定を行う。実施の形態4におけるモータ駆動制御装置200では、記憶部250が必要ないので、低コストでモータ駆動制御装置200を構成して、モータ302の事前測定を行うことなく、ブレーキ301の状態の判定を行うことができる。
以下、図7を用いて実施の形態1から4のモータ駆動制御装置200のハードウェア構成について説明する。図7は、実施の形態1から4のモータ駆動制御装置200のハードウェア構成図である。モータ駆動制御装置200は入力装置901、出力装置902、記憶装置903、及び処理装置904を備える。
入力装置901は、モータ駆動制御装置200の取得部220と通信部240が備える、情報が入力されるインターフェースである。このインターフェースとしては、LANケーブルまたは同軸ケーブル等の有線通信ネットワークでも、無線通信技術を用いた無線通信ネットワークでもよい。
出力装置902は、駆動部210と通信部240が備える。出力装置902は制御信号または通信インターフェースである。通信部240については、入力装置901にてすでに説明したので省略する。駆動部210、特にモータ駆動部211は、モータ302に電力を供給することができるインターフェース、例えば電源供給用の導線等とする。
記憶装置903は、記憶部250が備える。ワーキングメモリなどに該当し、情報を記憶する装置である。例えば、RAM、ROM、フラッシュメモリー等の不揮発性または揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク等が該当する。
処理装置904は、処理部230が備える。処理装置904は専用のハードウェアであっても、記憶装置903に記録されるプログラムを実行するCPU(CentralProcessingUnit)であってもよい。
処理装置904が専用のハードウェアである場合、処理装置904は、例えば、単一回路、複合回路、プログラム化したプロセッサー、並列プログラム化したプロセッサー、ASIC、FPGA、またはこれらを組み合わせたものが該当する。
処理装置904がCPUの場合、処理部230の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、記憶装置903に記録される。処理装置904は記憶装置903に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。
なお、処理部230の各機能は、一部をハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。
例えば、制御指示生成部231については専用のハードウェアとし、摩擦トルク推定部232とブレーキ解除判定部233については記憶装置903に記録されたプログラムとして記述してその機能を実現してもよい。
このように、処理装置904はハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
以上のようにして、本発明のモータ駆動制御装置200によれば、ブレーキ解除時のモータ負荷トルクを事前に測定せずに、配線後初回駆動時においてもブレーキ解除の失敗および忘れの検知を行うことが可能となる。
1 モータ駆動制御システム
100 コントローラ
110 通信部
120 表示部
130 操作部
200 モータ駆動制御装置
210 駆動部
211 モータ駆動部
212 ブレーキ駆動部
220 取得部
221 回転数取得部
222 電流値取得部
223 閾値取得部
230 処理部
231 制御指示生成部
232 摩擦トルク推定部
233 ブレーキ解除判定部
234 摩擦トルク推定値処理部
240 通信部
241 駆動指令受信部
242 判定情報送信部
250 記憶部
251 閾値記憶部
300 サーボモータ
301 ブレーキ
302 モータ
303 エンコーダ
901 入力装置
902 出力装置
903 記憶装置
904 処理装置
100 コントローラ
110 通信部
120 表示部
130 操作部
200 モータ駆動制御装置
210 駆動部
211 モータ駆動部
212 ブレーキ駆動部
220 取得部
221 回転数取得部
222 電流値取得部
223 閾値取得部
230 処理部
231 制御指示生成部
232 摩擦トルク推定部
233 ブレーキ解除判定部
234 摩擦トルク推定値処理部
240 通信部
241 駆動指令受信部
242 判定情報送信部
250 記憶部
251 閾値記憶部
300 サーボモータ
301 ブレーキ
302 モータ
303 エンコーダ
901 入力装置
902 出力装置
903 記憶装置
904 処理装置
Claims (12)
- モータ駆動時における前記モータの摩擦トルクの推定値を算出する摩擦トルク推定部と、
前記摩擦トルク推定部が算出した前記摩擦トルクの推定値と、前記モータを制動するブレーキの状態を判定するための摩擦トルクの閾値とを用いて、前記ブレーキの状態を判定するブレーキ解除判定部と、
を備えることを特徴とするモータ駆動制御装置。 - 前記摩擦トルク推定部は、前記ブレーキによる前記摩擦トルクの推定値を算出する摩擦トルク推定値処理部をさらに備える、
ことを特徴とする請求項1に記載のモータ駆動制御装置。 - 前記摩擦トルク推定値処理部は、前記モータが加減速回転した場合、前記モータの加減速トルクを除去して前記摩擦トルクの推定値を算出する
ことを特徴とする請求項2に記載のモータ駆動制御装置。 - 前記摩擦トルク推定値処理部は、前記モータの重力トルクを除去して前記摩擦トルクの推定値を算出する
ことを特徴とする請求項2または3に記載のモータ駆動制御装置。 - 前記摩擦トルクの閾値を取得する閾値取得部をさらに備える
ことを特徴とする請求項1から4のいずれか1項に記載のモータ駆動制御装置。 - 前記閾値取得部は、前記摩擦トルクの閾値を前記モータから取得する
ことを特徴とする請求項5項に記載のモータ駆動制御装置。 - 前記閾値取得部は、前記摩擦トルクの閾値を前記モータのエンコーダから取得する
ことを特徴とする請求項5項に記載のモータ駆動制御装置。 - 前記閾値取得部は、前記摩擦トルクの閾値をユーザの操作情報から取得する
ことを特徴とする請求項5項に記載のモータ駆動制御装置。 - 前記ブレーキの駆動を制御するブレーキ駆動部を更に備え、
前記ブレーキ解除判定部は、前記摩擦トルクの推定値が前記摩擦トルクの閾値よりも大きく、前記ブレーキ駆動部が前記ブレーキを作動させていないとき、前記ブレーキが未解除状態であると判定する
ことを特徴とする請求項1から8のいずれか1項に記載のモータ駆動制御装置。 - 前記モータに電力を供給し、前記モータを駆動するモータ駆動部と、
前記モータの駆動中に前記モータ駆動部から前記モータへ供給される電流値を取得する電流値取得部と、
前記モータの駆動中に前記モータの回転数を取得する回転数取得部と、をさらに備え、
前記摩擦トルク推定部は、前記電流値取得部が取得した前記電流値と、前記回転数取得部が取得した前記回転数とを用いて、前記摩擦トルクの推定値を算出する
ことを特徴とする請求項1から9のいずれか1項に記載のモータ駆動制御装置。 - 前記モータ駆動部は、前記ブレーキ解除判定部が、前記ブレーキが未解除状態であると判定したとき、前記モータへの電力供給を停止する
ことを特徴とする請求項10に記載のモータ駆動制御装置。 - 請求項1から11のいずれか1項に記載のモータ駆動制御装置と、
前記モータ駆動制御装置に前記モータの駆動および停止指令を送信するコントローラとを備え、
前記コントローラは、前記モータ駆動制御装置から、前記ブレーキが未解除状態であるという判定情報を受信したとき、前記モータ駆動制御装置に前記モータの停止指令を送信する
ことを特徴とするモータ駆動制御システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/045206 WO2021100106A1 (ja) | 2019-11-19 | 2019-11-19 | モータ駆動制御装置、及びモータ駆動制御システム |
CN201980102222.5A CN114667677B (zh) | 2019-11-19 | 2019-11-19 | 电动机驱动控制装置及电动机驱动控制系统 |
JP2020573053A JP6892029B1 (ja) | 2019-11-19 | 2019-11-19 | モータ駆動制御装置、及びモータ駆動制御システム |
TW109139137A TWI771796B (zh) | 2019-11-19 | 2020-11-10 | 馬達驅動控制裝置及馬達驅動控制系統 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/045206 WO2021100106A1 (ja) | 2019-11-19 | 2019-11-19 | モータ駆動制御装置、及びモータ駆動制御システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021100106A1 true WO2021100106A1 (ja) | 2021-05-27 |
Family
ID=75981537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045206 WO2021100106A1 (ja) | 2019-11-19 | 2019-11-19 | モータ駆動制御装置、及びモータ駆動制御システム |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6892029B1 (ja) |
CN (1) | CN114667677B (ja) |
TW (1) | TWI771796B (ja) |
WO (1) | WO2021100106A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110717A (ja) * | 1993-08-19 | 1995-04-25 | Fanuc Ltd | モータの制御方式 |
WO2018008456A1 (ja) * | 2016-07-06 | 2018-01-11 | アイシン精機株式会社 | 電動オイルポンプ装置 |
JP2019022281A (ja) * | 2017-07-13 | 2019-02-07 | ファナック株式会社 | ブレーキ検査装置およびモータ制御装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000324885A (ja) * | 1999-05-12 | 2000-11-24 | Amada Co Ltd | ブレーキ付きサーボモータにおけるブレーキ故障検出方法およびその装置 |
WO2008149414A1 (ja) * | 2007-06-04 | 2008-12-11 | Mitsubishi Electric Corporation | 電力変換装置およびモータ駆動方法 |
CN101944870B (zh) * | 2009-07-10 | 2012-10-17 | 北京大豪科技股份有限公司 | 伺服电机的控制方法与电路 |
KR101489116B1 (ko) * | 2011-05-31 | 2015-02-02 | 미쓰비시덴키 가부시키가이샤 | 구동 기계의 부하 특성 추정 장치 |
JP6933517B2 (ja) * | 2017-07-13 | 2021-09-08 | ファナック株式会社 | モータ制御装置 |
-
2019
- 2019-11-19 WO PCT/JP2019/045206 patent/WO2021100106A1/ja active Application Filing
- 2019-11-19 JP JP2020573053A patent/JP6892029B1/ja active Active
- 2019-11-19 CN CN201980102222.5A patent/CN114667677B/zh active Active
-
2020
- 2020-11-10 TW TW109139137A patent/TWI771796B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110717A (ja) * | 1993-08-19 | 1995-04-25 | Fanuc Ltd | モータの制御方式 |
WO2018008456A1 (ja) * | 2016-07-06 | 2018-01-11 | アイシン精機株式会社 | 電動オイルポンプ装置 |
JP2019022281A (ja) * | 2017-07-13 | 2019-02-07 | ファナック株式会社 | ブレーキ検査装置およびモータ制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6892029B1 (ja) | 2021-06-18 |
JPWO2021100106A1 (ja) | 2021-12-02 |
CN114667677B (zh) | 2022-10-28 |
CN114667677A (zh) | 2022-06-24 |
TWI771796B (zh) | 2022-07-21 |
TW202121824A (zh) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9537431B2 (en) | Brake diagnosis device and brake diagnosis method | |
CN109254574B (zh) | 制动检查装置和马达控制装置 | |
CN102150023B (zh) | 用于检测机器人制动器的方法 | |
JP6077592B2 (ja) | ブレーキの異常を検出する機能を備えたモータ制御システムおよびブレーキ異常検出方法 | |
EP3072845B1 (en) | Electric winch device | |
CN107816929B (zh) | 圆度测量机 | |
EP3001164B1 (en) | Evaluation of static brake torque in a robot | |
JP6892029B1 (ja) | モータ駆動制御装置、及びモータ駆動制御システム | |
US10454401B2 (en) | Motor controller | |
JP2016206842A (ja) | 制御装置 | |
CN112262016B (zh) | 用于确定夹紧力的方法 | |
JP2009104604A (ja) | 工作機械、生産機械および/またはロボット | |
JP7450643B2 (ja) | スリップクラッチ解放イベントを検出するための方法及び電動工具 | |
JP2004314756A (ja) | 電動駐車ブレーキシステム | |
JP2018099748A (ja) | ブレーキ付きモータのブレーキ診断システム及び方法 | |
JP3221795B2 (ja) | エレベータの制動性監視装置 | |
JP4974745B2 (ja) | 乗客コンベア用マグネットブレーキの診断装置 | |
KR20200011878A (ko) | 전기 모터를 모니터링하기 위한 방법, 전자 제어 모듈, 유압식 브레이크 시스템 및 저장 매체 | |
JP2007288829A (ja) | 機械の異常検出方法およびその装置 | |
JP7401499B2 (ja) | 異常判定システム、異常判定装置、異常判定方法 | |
JP6391431B2 (ja) | ブレーキトルク測定装置 | |
WO2023170873A1 (ja) | エレベーターシステム | |
KR100950252B1 (ko) | 상태전이를 이용한 모션제어기용 데이터 제공 방법 | |
JPH05147851A (ja) | エレベータガバナ調整装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020573053 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19952956 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19952956 Country of ref document: EP Kind code of ref document: A1 |