WO2021099896A1 - セパレー夕、燃料電池及びセパレー夕の製造方法 - Google Patents
セパレー夕、燃料電池及びセパレー夕の製造方法 Download PDFInfo
- Publication number
- WO2021099896A1 WO2021099896A1 PCT/IB2020/060656 IB2020060656W WO2021099896A1 WO 2021099896 A1 WO2021099896 A1 WO 2021099896A1 IB 2020060656 W IB2020060656 W IB 2020060656W WO 2021099896 A1 WO2021099896 A1 WO 2021099896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protective layer
- fuel cell
- substrate
- self
- evening
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
- H01M8/0254—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0276—Sealing means characterised by their form
- H01M8/0278—O-rings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a separate-evening, fuel cell and separate-evening manufacturing method.
- a polymer electrolyte fuel cell consists of a membrane electrode assembly that generates electricity by chemically reacting fuel gas, and a pair of electrodes placed on both sides of the membrane electrode assembly. And. On the surface of the separator in contact with the membrane electrode assembly, a recess forming a flow path for fuel gas is provided by press working or the like.
- Patent Document 1 Japanese Patent No. 4 4 5 8 8 7 7 [Summary of Invention]
- An object of the present invention is to provide a separable evening having excellent corrosion resistance and fuel gas sealing property.
- One aspect of the present invention is for a fuel cell comprising a conductive substrate (4 1) and a protective layer (4 2) covering at least a part of the surface of the substrate (4 1). Separation-Evening (4), said protective layer (4 2) contains self-healing material.
- Another aspect of the present invention is a conductive fuel cell battery (40), which includes a self-healing material inside.
- a fuel cell (100) including a plurality of membrane electrode assemblies (3), which are arranged on both sides of the membrane electrode assembly (3).
- the membrane electrode assembly (3) is equipped with a pair of separations (4) with recesses (4 3) on the surface, and the separation (4) is a conductive substrate (4). It comprises 1) and a protective layer (4 2) provided on at least a portion of the surface of the substrate (4 1), the protective layer (4 2) containing a self-healing material.
- Another aspect of the present invention is a fuel cell (100) including a plurality of membrane electrode assemblies (3), which are arranged on both sides of the membrane electrode assembly (3) and have the membrane electrode assembly.
- 0 0 1 3 Another aspect of the present invention includes a conductive substrate (4 1) and a protective layer (4 2) provided on at least a part of the surface of the substrate (4 1).
- the step of forming the protective layer (4 2) on the surface of at least a part of the substrate (41) and the protective layer (4 2) are
- the protective layer (42) contains a self-healing material, including a step of molding the formed substrate (4 1).
- FIG. 1 is a cross-sectional view showing the configuration of the fuel cell of the first embodiment.
- FIG. 2 is a cross-sectional view showing a cell configuration.
- FIG. 3 is an enlarged cross-sectional view showing a separation-evening configuration in the first embodiment.
- FIG. 4 is a diagram schematically showing a manufacturing process of separate-evening.
- FIG. 5 is a cross-sectional view showing the configuration of a cell in the second embodiment.
- FIG. 6 is a side view showing a manufacturing process of a force-bon separator.
- FIG. 7 is a side view showing a manufacturing process of a force-bon separator.
- FIG. 8 is an enlarged view of a force-bon separation-evening recess.
- FIG. 1 shows the configuration of the fuel cell 100 of the present embodiment.
- the fuel cell of the present embodiment is mounted on a moving body such as a vehicle, and supplies driving power of the moving body by chemically reacting fuel gas to generate electricity.
- the fuel cell is not limited to the moving body, and is not limited to the moving body, such as a stationary power generation system.
- the present invention can also be applied to the fuel cell of the above.
- the fuel cell 100 is composed of a plurality of stacked cells 10 and a pair of current collectors arranged on both sides of each cell 10 in the stacking direction. It is equipped with a pre-stack 1 1, a pair of insulators pre-stack 1 2 and a pair of end blurs 1 3.
- the fuel cell 100 is provided with a gas pipe 1 4 attached to at least one end brake 1 3.
- the gas pipe 1 4 communicates with a manifold (not shown).
- the fuel cell 1 0 0 is a seal material between each member of the current collector pre- ⁇ 1 1, the insulator pre- ⁇ 1 2, the end pre- ⁇ 1 3 and the gas pipe 1 4. 1 5 is provided.
- the seal material 15 is, for example, a 0 ring that surrounds the outside of the through holes 1 to 4, and is made of an elastomer material. Sealing material 1 5 is tangentially attached to each adjacent member and through hole 1 ⁇
- a pair of end presses 1 3 are tightened by tightening members such as bolts and nuts, and the fuel cell 100 has a tightening force in the stacking direction of each member of the fuel cell 100 sandwiched by the end brakes 1 3 It works. By this tightening force, the stack structure of each member between the end presses 13 is fixed, and the fuel gas is sealed in the fuel cell 100.
- FIG. 1 shows the configuration of cell 10.
- Cell 10 contains a Membrane Electrode Assembly (MEA) 3, a pair of SEA ° les located on both sides of MEA 3, and a sub-gasket 5 that surrounds the outer periphery of MEA 3. , Equipped with.
- M E A 3 includes an electrolyte membrane 1 and a pair of electrodes 2.
- a pair of electrodes 2 sandwich an electrolyte membrane 1.
- the electrolyte membrane 1 is an ionic conductive polymer electrolyte membrane.
- the polymer electrolyte that can be used for the electrolyte membrane 1 include perfluo ⁇ sulfonate polymer such as Nafion (registered trademark) and Aquivion (registered trademark); sulfonated polyeter-telketone (SPEEK), sulfonated polyimide, etc.
- the electrolyte membrane 1 can be a composite membrane obtained by impregnating a porous base material 1a with a polymer electrolyte.
- the porous base material 1a is not particularly limited as long as it has voids capable of supporting the polymer electrolyte, and a porous film, a woven fabric, a non-woven fabric, a fibril, or the like can be used.
- the material of the porous base material 1a is not particularly limited, but the polymer electrolyte as described above can be used from the viewpoint of enhancing ionic conductivity.
- polytetrafluo ⁇ ethylene polytetrafluo ⁇ ethylene ku ⁇ ⁇ trifluo ⁇ ethylene copolymer, and polychromo ⁇ trifluo ⁇ fluorine-based polymers such as ethylene are excellent in strength and shape stability.
- one electrode 2 is an electrode and is also called a fuel electrode.
- the other electrode 2 is a cassette, also called an air electrode.
- As fuel gas hydrogen gas is supplied to the anode and air containing oxygen gas is supplied to the cathode. ⁇ 0 2021/099896 ⁇ (: 17132020/060656)
- the electrode 2 includes a catalyst layer 21.
- the electrode 2 of the present embodiment includes a gas diffusion layer 2 2 in order to improve the diffusivity of the fuel gas.
- the gas diffusion layer 2 2 is arranged on the side of the catalyst layer 21 on the 4th floor.
- the catalyst layer 2 1 promotes the reaction of hydrogen gas and oxygen gas by the catalyst.
- the catalyst layer 21 contains a catalyst, a carrier that carries a catalyst, and an ionomer that coats them.
- the hornworm medium include metals such as platinum (se), ruthenium (Ru), iridium (I "), rhodium (), radium ( ⁇ 1), and tungsten, mixtures of these metals, alloys, and the like.
- platinum, a mixture containing platinum, an alloy, etc. are preferable from the viewpoints of catalytic activity, toxicity to carbon oxide, heat resistance, and the like.
- Examples of the carrier include conductive porous metal compounds having pores such as mesoporous carbon and seblack. Mesoporous carbon is preferable from the viewpoint of good dispersibility, large surface area, and small particle growth at high temperature even when the amount of catalyst supported is large.
- a polymer electrolyte having ionic conductivity similar to that of the electrolyte membrane 1 can be used.
- the gas diffusion layer 2 2 can evenly diffuse the fuel gas supplied to cell 10 over the entire surface of the catalyst layer 21.
- the gas diffusion layer 2 2 can be formed by placing a sheet for the gas diffusion layer as the outermost layer of IV!
- the gas spreading layer sheath include a force having conductivity, gas permeability and gas diffusivity-a porous fiber such as a bon fiber, and a metal such as a foamed metal and an expanded metal. Examples include metal materials.
- Sub-gasket 5 a resin having low conductivity can be used.
- the resin material is not particularly limited, and examples thereof include polyphenylene sulfoid (5), polypropylene containing glass (10), polyester (), the month of silicone planting, and the month of fluorine-based planting.
- (Sehachi. Le-Yu) Sehachi ° Le-Yu 4 is also called Paibo Love Rate.
- the surface of the separator 4 is provided with a plurality of recesses 4 3 communicating with through holes 1 to 4. Separation when the surface of the separator 4 provided with the recess 4 3 faces the ME 8 3.
- Time (It is also the discharge channel of the water generated by this chemical reaction. Cooling of the fuel cell 100 (when this cooling water is used, the flow path is also used as the cooling water passage.
- FIG. 3 is an enlarged cross-sectional view showing the layer structure of Separation-4. As shown in Fig. 3, the panel 4 is provided with a conductive substrate 4 1 and a protective layer 4 2.
- the substrate 41 is made of a conductive material, for example, a metal such as stainless steel, titanium, aluminum, copper, nickel, or steel.
- the substrate 4 1 may be provided with a metal layer formed on the surface by metal plating embedding from the viewpoint of corrosion resistance and adhesion to the protective layer 4 2.
- metal plating include tin plating, nickel plating, multi-layer plating thereof, alloy plating, and the like.
- the substrate 4 1 may be provided with an etching layer, a polishing layer, etc. formed on the surface by a phosphate treatment or the like from the viewpoint of adhesion to the protective layer 4 2.
- the thickness of the substrate 41 is not particularly limited, but can be set to 0.05 to 0.5 from the viewpoint of achieving both moldability and weight reduction.
- the protective layer 4 2 is provided on the surface of the substrate 4 1 to suppress oxidation of the surface and enhance the corrosion resistance of the substrate 4 1.
- the protective layer 42 can close defects such as cracks in the substrate 41 and reduce the leakage of fuel gas to the outside.
- the protective layer 4 2 contains a self-healing material.
- Self-healing refers to the function of recombining and recovering the cut site even if the molded product containing a self-healing material such as protective layer 42 2 is damaged.
- the recombination may be, for example, a covalent bond, a hydrogen bond, an ionic bond or a coordination bond, or a bond by an electrostatic interaction, a hydrophobic interaction, a II electron interaction or an intermolecular interaction other than these. There may be.
- the stresser 4 is manufactured by processing molding such as a press caroe for forming the recesses 4 3 and a hole caro for forming the through holes 1 to 4, but the substrate 4 is manufactured during the processing molding. Defects such as pinholes, voids, and cracks may occur in the protective layer 42 due to the action of compressive stress to 1 or local tensile stress due to plastic deformation. In addition, the above-mentioned caroforming may cause defects such as cracks and voids inside or on the surface of the substrate 41.
- the force to melt the resin component in the protective layer 42 2 is not required for the repair of defects caused by processing and molding.
- the process of force heat treatment can be reduced, and the manufacturing cost can be reduced.
- Examples of the self-healing material include organic materials such as polymers and inorganic materials such as ceramics and metals, and known materials can be used.
- Known organic materials include, for example, an ethylene segment made of a hard polymer having a glass transition temperature of 150 ° C or higher, and a soft segment made of a soft polymer having a glass transition temperature of 130 ° C or lower.
- a multi-block copolymer having a certain amount of disulfide bond see Japanese Patent Laid-Open No. 2 0 1 8 -9 8 7 6), a cross-linked polymer crosslinked by interaction with a host group and a guest group. Containing polymer materials (see International Publication No.
- an alumina ceramic-based composite material in which metallic titanium is dispersed for example, an alumina ceramic-based composite material in which metallic titanium is dispersed
- the self-healing material is preferably a self-healing material even when water molecules are present and no action for self-healing is input from the outside. Separation for fuel cell 100-evening 4 is in an environment where hydrogen gas is supplied during power generation and water is generated, but according to the above self-healing material, self-repair is possible even in such an environment. is there.
- the self-repairing material is bonded and repaired by contact between the self-repairing materials.
- the separator 4 is also tightened in the stacking direction. Therefore, the protective layer 4 2 is easily crushed by the members on both sides of the separation 4 due to the shaking of the vehicle during running, the thermal expansion of the electrolytic film 1 during power generation, and the wet expansion. Since the crushed protective layer 4 2 spreads in the in-plane direction, contact with the self-healing material in the protective layer 4 2 is likely to occur, and it occurs naturally even when no external action of the fuel cell 100 is input. Self-repair is easy.
- the tightening member for tightening the protective layer 4 2 may be a fixing member for fixing the stack of cell 10 and the tightening direction is not the stack direction but the in-plane of cell 10 It may be a direction. Also, the fuel cell ⁇ 0 2021/099896 ⁇ (: 17132020/060656)
- a tightening member provided separately from the tightening member for fixing each member of 100 may apply a tightening force for promoting tangential insects of the self-healing material to the protective layer 42.
- Examples of the self-healing material that binds by contact even when water molecules are present and no external action is input include the above-mentioned copolymer of ethylene and anisylp ⁇ pyrene.
- the above-mentioned ethylene and anisylp ⁇ pyrene copolymer is 1 1 ⁇ ⁇ 30 ( ⁇ ) or 1 even in water. It has been confirmed that even in the presence of 0 ⁇ , it exhibits the same self-healing property as under dry conditions. It has also been confirmed that the self-repair of the above ethylene and anisylp ⁇ pyrene copolymer does not require external action such as irradiation with ultraviolet rays, and occurs spontaneously by contact with the cut site.
- the protective layer 4 2 of the present embodiment is provided on both sides of the substrate 4 1 to cover the entire surface, but the protective layer 4 2 is provided on at least a part of the surface of the base plate 4 1. I just need to be there.
- the protective layer 4 2 is preferably provided in at least a part of the recess 4 3. Since the recesses 4 3 are prone to defects, the self-healing material in the protective layer 4 2 (the repair of the defects contributes greatly to the maintenance of the corrosion resistance and the fuel gas sealing property of the separation 4.
- the protective layer 42 2 preferably further contains a conductive filler.
- the conductive filler can suppress the decrease in conductivity of the 8 ° C. Examples of the conductive filler include force-bon, metal carbide, metal oxide, metal nitride, metal fiber, metal powder and the like.
- the 12 power Bon for example graphite, the force over the pump rack, power Bon fibers, force over carbon nanofibers' -, and force Bon'nanochu - Bed and the like.
- metal carbides include tungsten carbide, silicon carbide, calcium carbide, zirconium carbide, tantalum carbide, titanium carbide, niobium carbide, molybdenum carbide and the like.
- examples of the metal oxide include titanium oxide, ruthenium oxide, and indium oxide
- examples of the metal nitride include chromium nitride, aluminum nitride, molybdenum nitride, zirconium nitride, tantalum nitride, and titanium nitride.
- examples of metal fibers include iron fibers, copper fibers, stainless steel fibers and the like.
- Examples of the metal powder include nickel powder, tin powder, evening powder, niobium powder and the like.
- the force-bon is preferable because it has excellent conductivity and corrosion resistance.
- the content of the conductive filler in the protective layer 42 2 can be 5 to 99% by volume. Within this range, conductivity and moldability tend to be good.
- the thickness of the protective layer 4 2 is preferably 10 to 200. Within this range, sufficient corrosion resistance can be easily obtained, and it is easy to make the fuel cell 100 compact.
- the manufacturing method for the evening 4 is a step of forming a protective layer 4 2 on the surface of at least a part of the substrate 4 1 and a protective layer 4 2 Includes the step of forming the forming force of the substrate 4 1 on which the above is formed.
- Examples of the molding process include press processing, hole processing, and cutting processing.
- the order of each step is not particularly limited, but when processing and molding after forming the protective layer 42, it is possible to manufacture by the mouth-to-le method and the production efficiency is high. ,preferable. As described above, when the protective layer 4 2 is formed first, defects are more likely to occur in the protective layer 4 2 than when the processing molding is performed first. However, such defects also ⁇ 0 2021/099896 ⁇ (: 17132020/060656)
- FIG. 4 shows the manufacturing process of Separation-Evening 4 by the ⁇ -le-to-mouth-le method.
- the mouthpiece of the substrate 4 1 is unwound by the unwinder 6 1 and conveyed by the mouth roller 6 2.
- the conveyed substrate 4 1 is subjected to pretreatment such as cleaning and drying in the pretreatment device 6 3.
- the pretreated substrate 4 1 is further transported to the device 6 4.
- the ink for forming the protective layer 4 2 containing the self-healing material and the conductive filler is coated on the substrate 4 1 and dried, and the protective layer 4 2 is formed. It is formed.
- the ink may contain a solvent, a dispersant and the like, if necessary.
- the substrate 4 1 on which the protective layer 4 2 is formed is conveyed to the processing device 6 5 and molded in the processing device 6 5. For example, the substrate 4 1 is pressed and a recess 4 3 is provided on the surface of the substrate 4 1. In addition, the substrate 41 is hole-processed to provide through holes 1 to 4. Finally, the substrate 4 1 is cut to a predetermined size to produce the separator 4.
- Fig. 4 shows that all processes are continuous processes, but the process is not limited to this. For example, it is divided into a process of winding up the substrate 4 1 on which the protective layer 4 2 is formed and a process of winding the wound substrate 4 1 and transporting the wound substrate 4 1 at regular intervals to form a carowel. Hirate.
- the fuel cell 100 is manufactured by placing a pair of cellars 4 on both sides of 1 ⁇ / 1.
- ME 8 3 is coated with ink containing the material of the hornworm medium layer 2 1 on both sides of the electrolyte membrane 1 and dried, and a gas diffusion layer seal is attached to the catalyst layer 2 1 to diffuse gas. Obtained by forming layer 22.
- the fuel cell 100 of the first embodiment is provided with a protective layer 4 2 containing a self-healing material on at least a part of the surface of the substrate 41. Equipped with 4. Since defects in the protective layer 4 2 are repaired even if they occur, there are few defects in the protective layer 4 2 not only during manufacturing but also after manufacturing, and it is possible to provide a separation 4 having excellent corrosion resistance and fuel gas sealing property. .. In addition, since it does not require a process such as heat treatment for repairing defects in the protective layer 42, it can be manufactured not only by the patch method but also by the ⁇ -le toe ⁇ -le method. It is also possible to increase the production efficiency of.
- FIG. 5 shows the configuration of cell 100 in the fuel cell of the second embodiment.
- Cell 100 is provided with a conductive force-bon-made se-eight-evening 4 (:. Separation-evening 4 (other than:) instead of the se-eight-eighth-evening 4 in the first embodiment.
- the configuration of cell 10 (: is the same as that of cell 10 of the first embodiment. The same configuration (this has the same reference numerals and the detailed description thereof will be omitted).
- a recess 4 3 is provided on the surface of the force-bon separator 4 (similar to the metal separator 4.
- the force-bon separator 40 can be manufactured by molding.
- FIGS. 6 and 7 motor - force by field shaping - Bon made Se eight ° les -. Evening 4 (as shown in FIG. 6 illustrating the manufacturing process of 3, the lower first mold 5 . 0 to separator material 4 0 Se eight ° Correlator material 4 0 to be inserted, the force - is a composition comprising carbon and resin Next, as shown in FIG. 7, Se eight ° les -. evening material 4 0 Upper mold
- FIG. 8 shows an example of the recess 4 a (an example of the defect that has occurred. As shown in Fig. 8, there is a recess 7 1 called sink marks (Sink Marks) at the corner of the recess 4 a. (This has cracks 72. Such defects may become the starting point, and defects may grow due to vibration of the vehicle mounted after manufacturing, differential pressure in the flow path, deviation of tightening force, etc. ..
- Force-Bon Separation-Evening 4 C contains a self-healing material inside. Since the self-healing material is the same material as the metal separation-4 described above, detailed description thereof will be omitted. Even if a defect after manufacture during or manufacturing occurs, Se eight ° les including self-repairing material - evening 4 C is without any external action, the defective part is self-repairing material between recombined to repair. Therefore, the corrosion resistance and the sealing property of the fuel gas can be maintained for a long time, and the reliability of the fuel cell 100 is improved. Incidentally, separator - evening 4 C also, Se eight ° Le - like the evening 4, tightening force acts. Tangential insects are likely to occur due to the tightening force, and self-repair is easy.
- the force-bon-made separation-evening 4 C contains a self-healing material inside. Since cell defect in eight ° Correlator 4 C also Lee ginseng recovery occurs after manufacture not only during manufacture also separator 4 C less defects, has excellent sealing properties of corrosion resistance and fuel gas separator - evening 4 Can provide C.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
耐食性及び燃料ガスの封止性に優れたセパレー夕を提供する。 導電性の基板(41)と、前記基板(41)の表面の少なくとも一部を覆う保護層(42)と、を備える燃料電池用セパレー夕(4)であって、前記保護層(42)は、自己修復性材料を含む、セパレー夕(4)。
Description
\¥0 2021/099896 卩(:17132020 /060656
1
【書類名】明細書
【発明の名称】セ八 °レ-夕、燃料電池及びセパレ-夕の製造方法 【技術分野】
[ 0 0 0 1 ] 本発明は、セパレ-夕、燃料電池及びセパレ-夕の製造方法に関する。
【背景技術】
[ 0 0 0 2 ] 固体高分子型燃料電池は、一般的に、燃料ガスを化学反応させて発電する膜電極接合体と、その 両側に酉己置された 1対のセ八 °レ-夕とを備える。膜電極接合体と接するセパレータの表面には、燃料ガスの 流路を形成する凹部がプレス加工等によって設けられる。
【 0 0 0 3】 燃料電池の使用環境下では、金属製のセパレ-夕の表面に腐食による酸化膜が形成されることがある 。酸化膜は、 電極との接触抵抗を高め、セ八 °レ-夕の集電性能を低下させやすい。そのため、導電性フイラ -を含む樹月旨層によりセパレータの表面を被覆して、セパレータの耐食性を高めることが提案されている (例 えば、特許文献 1参照) 。
【先行技術文献】
【特許文献】
【 0 0 0 4】
【特許文献 1】特許第 4 4 5 8 8 7 7号公報 【発明の概要】
【発明が解決しようとする課題】
[ 0 0 0 5 ] 樹脂層の形成後にカット加工及びプレス加工等の加工成形を行うと、樹脂層の内部にピンホ-ルやボ イド、クラック等の欠陥が発生しやすい。このような樹脂層中の欠陥を修復するには、上記特許文献 1の ように樹脂層中の樹脂を溶融させる加熱処理が必要であり、製造]ストがかかる。
\¥0 2021/099896 卩(:17132020 /060656
2
[ 0 0 0 6 ]
—方、加工成形後に樹脂層を形成すれば、加工成形による欠陥は発生しない。しかし、製造時に欠 陥を修復するか、欠陥の発生を回避できたとしても、樹脂層自体が脆いため、製造後(こクラック等の欠陥 が生じて腐食が生じる可能性がある。基板自体に欠陥が生じることもあり、この場合は基板及び樹脂層 の欠陥部分から燃料ガスが外部へ漏れる可能性がある。
[ 0 0 0 7 ] 金属製ではなく、力ーボン製のセ八 °レータにおいても、製造時又は製造後に欠陥が生じることがある。
【0 0 0 8】 本発明は、耐食性及び燃料ガスの封止性に優れたセパレ-夕の提供を目的とする。
【課題を角军決するための手段】
[ 0 0 0 9 ] 本発明の一態様は、導電性の基板 (4 1) と、前記基板 (4 1) の表面の少なくとも一部を覆う 保護層 (4 2) と、を備える燃料電池用セパレ-夕 (4) であって、前記保護層 (4 2) は、 自己修 復性材料を含む。
【0 0 1 0】 本発明の他の一態様は、導電性の燃料電池用セ八 °レ-夕 (4 〇 であって、内部に自己修復性材 料を含む。
【0 0 1 1】 本発明の他の一態様は、複数の膜電極接合体 (3) を含む燃料電池 ( 1 0 0) であって、前記 膜電極接合体 (3) の両側に配置され、前記膜電極接合体 (3) 側の表面に凹部 (4 3) が設 けられた 1対のセパレ-夕 (4) を備え、前記セパレ-夕 (4) は、導電性の基板 (4 1) と、前記基板 (4 1) の表面の少なくとも一部に設けられた保護層 (4 2) と、を備え、前記保護層 (4 2) は、 自己修復性材料を含む。
[ 0 0 1 2 ]
\¥02021/099896 卩(:17132020 /060656
3 本発明の他の一態様は、複数の膜電極接合体 (3) を含む燃料電池 ( 1 0 0) であって、前記 膜電極接合体 (3) の両側に配置され、前記膜電極接合体 (3) 側の表面に凹部 (4 3) が設 けられた 1対のセパレ-夕 (4 〇 を備え、前記セパレ-夕 (4 〇 は、内部(こ自己修復性材料を含む。 【0 0 1 3】 本発明の他の一態様は、導電性の基板 (4 1) と、前記基板 (4 1) の表面の少なくとも一部に 設けられた保護層 (4 2) と、を備える燃料電池用セパレ-夕 (4) の製造方法であって、前記基板 ( 4 1) の少なくとも一部の表面上に保護層 (4 2) を形成するステップと、前記保護層 (4 2) が形 成された前記基板 (4 1) を成形加工するステップと、を含み、前記保護層 (4 2) は、 自己修復性 材料を含む。
【発明の効果】
【0 0 1 4】 本発明によれば、耐食性及び燃料ガスの封止性に優れたセパレ-夕を提供することができる。
【図面の簡単な説明】
【0 0 1 5】
【図 1】第 1実施形態の燃料電池の構成を示す断面図である。
【図 2】セルの構成を示す断面図である。
【図 3】第 1実施形態におけるセパレ-夕の構成を示す拡大断面図である。
【図 4】セパレ-夕の製造過程を模式的に示す図である。
【図 5】第 2実施形態におけるセルの構成を示す断面図である。
【図 6】力ーボン製セパレータの製造過程を示す側面図である。
【図 7】力ーボン製セパレータの製造過程を示す側面図である。
【図 8】力-ボン製セパレ-夕の凹部の拡大図である。
【発明を実施するための形態】
[0 0 1 6]
\¥0 2021/099896 卩(:17132020 /060656
4 以下、本発明のセ八 °レ-夕、燃料電池及びセパレ-夕の製造方法の実施の形態について、図面を参照 して説明する。以下に説明する構成は、本発明の一例 (代表例) であり、これに限定されない。
【 0 0 1 7】
〔第 1実施形態〕
(燃料電池) 図 1は、本実施形態の燃料電池 1 0 0の構成を示す。 本実施形態の燃料電池は、例えば車両等の移動体に搭載され、燃料ガスを化学反応させて発電す ることにより移動体の駆動電力を供給するが、移動体に限らず、定置発電システム等の燃料電池にも本 発明を適用できる。
【 0 0 1 8】 図 1に示すように、燃料電池 1 0 0は、スタックされた複数のセル 1 0と、各セル 1 0のスタック方向の 両側にそれぞれ配置された 1対の集電体プレ-卜 1 1、 1対の絶縁体プレ-卜 1 2及び 1対のエンドブレ -卜 1 3とを備える。また、燃料電池 1 0 0は、少なくとも一方側のエンドブレ-卜 1 3に取り付けられるガ ス管 1 4を備える。ガス管 1 4は図示しないマニホ-ルドに連通する。
【 0 0 1 9】 セル 1 0、ガス管 1 4側の集電体プレ-卜 1 1、絶縁体プレート 1 2及びエンドプレ-卜 1 3には、ガス 管 1 4に連通し、セル 1 0のスタック方向に貫通する 4つの貫通孑し 1〜 4が設けられる。これらの貫 通孔 1〜 4を通じて、燃料ガスの供給と排出が行われる。
[ 0 0 2 0 ] 燃料電池 1 0 0は、集電体プレ-卜 1 1、絶縁体プレ-卜 1 2、エンドプレ-卜 1 3及びガス管 1 4の 各部材間に、シ -ル材 1 5を備える。シ -ル材 1 5は、例えば貫通孔 1〜 4の外側を囲む 0リング であり、エラストマー材料を含んで _成される。シール材 1 5が隣接する各部材に接角虫して貫通孔 1〜
P 4の外周を封止することにより、貫通孑し 1〜 4からのガス漏れを抑えることができる。
[ 0 0 2 1 ]
1対のエンドプレ-卜 1 3はボルトとナット等の締め付け部材により締め付けられ、燃料電池 1 0 0には エンドブレ-卜 1 3により挟まれる燃料電池 1 0 0の各部材のスタック方向に締め付け力が作用する。この 締め付け力により、エンドプレ-卜 1 3間の各部材のスタック構造が固定されるとともに、燃料ガスが燃料 電池 1 0 0内に封止される。
[ 0 0 2 2 ] 図 2は、セル 1 0の構成を示す。 セル 1 0は、膜電極接合体 (M E A : Membrane Electrode Assembly) 3と、 M E A 3の両側 に配置された 1対のセ八 °レ-夕 4と、 M E A 3の外周縁を囲むサブガスケット 5と、を備える。 M E A 3は、 電解質膜 1及び 1対の電極 2を備える。 1対の電極 2は電解質膜 1を挟持する。
【 0 0 2 3】 電解質膜 1は、イオン伝導性の高分子電解質の膜である。電解質膜 1に使用できる高分子電解質 としては、例えばナフィオン (登録商標) 、アクイヴィオン (登録商標) 等のパ-フルオ □スルホン酸ポリマ- ; スルホン化ポリエ-テルエ-テルケトン ( S P E E K ) 、スルホン化ポリイミド等の芳香族系ポリマ- ; ポリ ビニルスルホン酸、ポリビニルリン酸等の脂肪族系ポリマ-等が挙げられる。
【 0 0 2 4】 電解質膜 1は、 耐久性向上の観点か S、 多孔質基材 1 aに高分子電解質を含浸させた複合膜で あることができる。 多孔質基材 1 aとしては、高分子電解質を担持できる空隙を有するのであれば特に限 定されず、 多孔質状、織布状、不織布状、 フィブリル状等の膜を用いることができる。多孔質基材 1 aの 材料としても特に限定されないが、イオン伝導性を高める観点から、上述したような高分子電解質を用い ることができる。なかでも、ポリテトラフルオ □エチレン、ポリテトラフルオ □エチレンーク □ □トリフルオ □エチレン共 重合体、及びポリクロ □トリフルオ □エチレン等のフッ素系ポリマ-は、強度及び形状安定性に優れる。
[ 0 0 2 5 ]
1対の電極 2のうち、 一方の電極 2はアノ-ドであり、燃料極とも呼ばれる。他方の電極 2はカソ-ドで あり、空気極とも呼ばれる。燃料ガスとして、 アノードには水素ガスが供給され、カソードには酸素ガスを含む 空気が供給される。
\¥0 2021/099896 卩(:17132020 /060656
6
[ 0 0 2 6 ] アノ-ドでは、水素ガス (㈠〇 から電子 ( 6一) とプロトン (1~1 +) を生成する反応が生じる。電子は 、 図示しない外部回路を経由してカソ-ドへ移動する。この電子の移動により外部回路では電流が発生 する。プロトンは電解質膜 1を経由してカソードへ移動する。
[ 0 0 2 7 ] カソ-ドでは、外部回路から移動してきた電子により、酸素ガス (〇 2) から酸素イオン (〇 2一) が生 成される。酸素イオンは、 電解質膜 1から移動してきたプロトン ( 2 ^ と結合して、水 (㈠ 〇) にな る
【0 0 2 8】 電極 2は、触媒層 2 1を備える。本実施形態の電極 2は、燃料ガスの拡散性向上のため、ガス拡散 層 2 2を備える。ガス拡散層 2 2は、触媒層 2 1のセ八レ-夕 4側に配置される。
[ 0 0 2 9 ] 触媒層 2 1は、触媒によって水素ガス及び酸素ガスの反応を促進する。触媒層 2 1は、触媒と、触 媒を担持する担体及びこれらを被覆するアイオノマーを含む。 角虫媒としては、例えば白金 ( セ) 、ルテニウム ( R u) 、イリジウム ( I 「) 、 ロジウム ( ) 、パ ラジウム ( 〇1) 、タングステン 等の金属、これら金属の混合物、合金等が挙げられる。なかでも、 触媒活性、 _酸化炭素に対する耐被毒性、耐熱性等の観点から、 白金、 白金を含む混合物、合金 等が好ましい。
【 0 0 3 0】 担体としてはメソポ-ラスカ-ボン、 セブラック等の細孔を有する導電性の多孔性金属化合物が挙げ られる。分散性が良好で表面積が大きく、触媒の担持量が多い場合でも高温での粒子成長が少ない観 点からは、メソポーラスカーボンが好ましい。 アイオノマーとしては、 電解質膜 1 と同様のイオン伝導性の高分子電解質を使用することができる。
【 0 0 3 1】
\¥0 2021/099896 卩(:17132020 /060656
7 ガス拡散層 2 2は、セル 1 0に供給された燃料ガスを触媒層 2 1の全面に均一に拡散させることがで ぎる。 ガス拡散層 2 2は、 IV!巳 八 3の最表層としてガス拡散層用シートを酉己置することで形成できる。ガス拡 散層用シ-卜としては、例えば導電性、ガス透過性及びガス拡散性を有する力-ボン繊維等の多孔性繊 維シ-卜の他、発泡金属、エキスパンドメタル等の金属製のシ -卜材等が挙げられる。
【 0 0 3 2】 サブガスケット
能する。サブガスケット 5の材料としては、導電性が低い樹脂を用いることができる。樹脂材料としては特に 限定されず、例えばポリフエニレンスルフイド ( 5) 、ガラス入りポリプロピレン ( 一〇) 、ポリスチレ ン ( ) 、シリコーン植す月旨、フッ素系植す月旨等が挙げられる。
【 0 0 3 3】
(セ八。レ-夕) セ八 °レ-夕 4はパイボーラブレートとも呼ばれる。セ八レータ 4の表面には、貫通孔 1〜 4に連通する 複数の凹部 4 3が設けられる。セ八 °レータ 4の凹部 4 3が設けられた面が M E 八 3と対面したとき、セパレ
時(こ化学反応により生成された水の排出路でもある。燃料電池 1 〇 〇の冷却(こ冷却水が使用される場 合、流路は冷却水の通路としても使用される。
【 0 0 3 4】 図 3は、セパレ-夕 4の層構造を示す拡大断面図である。 図 3に示すように、セ八 °レ-夕 4は、 導電性の基板 4 1と保護層 4 2とを備える。
【 0 0 3 5】 第 1実施形態において、基板 4 1は、 導電性材料、例えばステンレス鋼、チタン、アルミニウム、銅、 ニッ ケル、鋼等の金属により構成される。
【 0 0 3 6】
\¥0 2021/099896 卩(:17132020 /060656
8 基板 4 1は、 耐食性、保護層 4 2との密着性の観点から、金属メッキ処埋により表面に形成されたメ ッキ層を備えてもよい。金属メッキとしては、例えぱ錫メッキ、 ニッケルメッキ又はこれらの複層化メッキ、合金 化メッキ等が挙げられる。また、基板 4 1は、保護層 4 2との密着性の観点か 6、 リン酸塩処理等により 表面に形成されたエッチング層、研磨層等を備えてもよい。
【 0 0 3 7】 基板 4 1の厚さは、特に限定されないが、成形性と軽量化の両立の観点から、 0 . 0 5〜 0 . 5 とすることができる。
【 0 0 3 8】
(保護層) 保護層 4 2は、基板 4 1の表面に設けられて表面の酸化を抑え、基板 4 1の耐食性を高める。また 、保護層 4 2は、基板 4 1のクラック等の欠陥を塞ぎ、燃料ガスの外部への漏浅を減らすことができる。
【 0 0 3 9】
(自己修復性材料) 保護層 4 2は、 自己修復性材料を含む。 自 己修復性とは、保護層 4 2のような自己修復性材料 を含む成形体が損傷した場合でも切断部位を再結合して回復する機能をいう。再結合は、例えば共有 結合、水素結合、イオン結合又は配位結合であってもよいし、静電相互作用、疎水性相互作用、 II電 子相互作用又はこれら以外の分子間相互作用による結合であってもよい。
【 0 0 4 0】 セ八 °レータ 4は、 凹部 4 3を形成するためのプレスカロエ、貫通孔 1〜 4を形成するためのホールカロ エ等の加工成形によって製造されるが、加工成形時には基板 4 1への圧縮応力又は塑性変形に伴う 局所的な引張応力の作用等により、保護層 4 2中にピンホ-ルやボイド、 クラック等の欠陥が生じることが ある。 また、 上記カロェ成形によって基板 4 1の内部又は表面にクラックやボイド等の欠陥が発生すること がある。
【 0 0 4 1】
このように製造時又は製造後に欠陥が生じた場合でも、保護層 4 2中の自己修復性材料同士が再 結合して欠陥部分を修復するため、セパレ-夕 4の耐食性及び燃料ガスの封止性を長く維持することがで き、燃料電池 1 0 0の信頼性が向上する。
【0 0 4 2】 上記加工成形に起因する欠陥を修復できるため、加工成形後に保護層 4 2を形成して加工成形に よる欠陥の発生を避ける必要もなく、保護層 4 2の形成は成形加工の前後どちらでもよいため、製造エ 程の自由度が向上する。保護層 4 2の形成後に加工成形する場合は、生産効率が高い □-ル·トゥ·口 -ル方式を採用できる。
【0 0 4 3】 また、 自己修復性材料によれば、加工成形により生じた欠陥の修復のために、保護層 4 2中の樹脂 成分を溶融させる力 □熱処理も不要である。力卩熱処理の工程を減 Sすことができ、製造コストを下げること ができる。
【0 0 4 4】 自己修復性材料としては、ポリマ-等の有機材料、セラミックス、金属等の無機材料があり、公知の材 料を使用できる。公知の有機材料としては、例えぱガラス転移温度が 1 5 0 °C以上である硬質ポリマ-か らなる八ードセグメントと、ガラス転移温度が一 3 0°C以下である軟質ポリマーからなるソフトセグメントと、を 有し、一定量のジスルフィド結合を有するマルチブロック共重合体 (特開 2 0 1 8 - 3 9 8 7 6参照) 、ホスト基及びゲスト基との相互作用によって架橋された架橋重合体を含む高分子材料 (国際公開第 2 0 1 7/ 1 5 9 3 4 6号参照) 、スカンジウム角虫媒を使用したエチレンとアニシルプ □ピレンの共重合 体 (「Synthesis of SelT-Heanng Polvmers by Scandium-Catalyzed Copolymerization of Ethylene and Anisylpropylenes」、 Haobing Wang 外 5名、 J. Am. Chem. Soc.、 American Chemical Society、 2 0 1 9年、 1 4 1、 p. 3 2 4 9 - 3 2 5 7参照) 等が挙げられるが、これら に限定されない。
【0 0 4 5】
また、公知の無機材料としては、例えば金属チタンを分散したアルミナセラミックス基複合材料 (
Electrochemica lly Assisted Room - Temperatu re Lrack Hea ling of Ceramic - Based Composites, Shengfang Shi, Tomoyo Goto, Su ng Hu n Cho, Tohru Sekino, J. Am. Ceram. Soc., Jou rnal of the American Ceramic Society (2019年 1 月 9 日オンライン) 、 https://doi.org/10.1 1 1 1/jace.16264参照) 等が挙げられるが、これらに限定されない。
【0 0 4 6】 なかでも、 自己修復性材料は、水分子が存在し、外部から自己修復のための作用が入力されない場 合でも、 自己修復性を有する材料であることが好ましい。 燃料電池 1 〇 0用のセパレ-夕 4は、発電時に水素ガスが供給され、水が生じる環境下にあるが、上 記自己修復性材料によればこのような環境下でも自己修復が可能である。また、燃料電池 1 0 0自体 による作用以外の作用、例えば赤外線、紫外線等の照射、加温又は加圧等のエネルギ-を付与する作 用が燃料電池 1 0 0の外部から入力されない場合でも上記自己修復性材料であれば、燃料電池 1 0 0内に配置されたセパレ-夕 4に自己修復のための作用を加える必要がない。よって、燃料電池 1 0 0 とは別に燃料電池 1 0 0の外部から作用をカロえるための装置や作業を省略できる。
【0 0 4 7】 また、 自己修復性材料は、当該自己修復性材料同士の接触により結合し、修復することが好ましい 。上述のように燃料電池 1 0 0は締め付け部材で燃料電池 1 0 0の各部材のスタック方向に締め付け られるため、セパレータ 4もスタック方向に締め付けられる。そのため、走行時の車両の揺れや発電時の電 解質膜 1の熱膨張、湿潤膨張等によってセパレ-夕 4を挟む両側の部材により保護層 4 2が押しつぶさ れやすい。押しつぶされた保護層 4 2は面内方向に広がるため、保護層 4 2中の自己修復性材料同 士の接触が起こりやすく、燃料電池 1 0 0の外部からの作用が入力されない場合でも自然発生的な自 己修復が容易となる。
【0 0 4 8】 なお、保護層 4 2を締め付ける締め付け部材は、セル 1 0のスタックを固定する固定部材であってもよ いし、締め付けられる方向はスタック方向ではなく、セル 1 0の面内方向であってもよい。また、燃料電池
\¥0 2021/099896 卩(:17132020 /060656
11
1 0 0の各部材の固定のための締め付け部材とは別に設けられる締め付け部材によって、 自己修復性 材料の接角虫を促すための締め付け力を保護層 4 2に付与するようにしてもよい。
【0 0 4 9】 水分子が存在し、外部からの作用が入力されない場合でも接触により結合する自己修復性材料とし ては、例えば上記エチレンとアニシルプ □ピレンの共重合体が挙げられる。上記エチレンとアニシルプ □ピレンの 共重合体は、水中でも、 1 1\^の 3 0 ㈠又は 1
0 丨 の存在下でも、乾燥条件下と同様の自己 修復性を示すことが確認されている。また、上記エチレンとアニシルプ □ピレンの共重合体の自己修復は紫 外線の照射等の外部からの作用を必要とせず、切断部位の接触によって自然発生することも確認されて いる。
[ 0 0 5 0 ] 本実施形態の保護層 4 2は、基板 4 1の両面に設けられて表面全体を覆うが、保護層 4 2は、基 板 4 1の表面の少なくとも一部に設けられていればよい。
[ 0 0 5 1 ] 特に、保護層 4 2は、凹部 4 3の少なくとも一部に設けられることが好ましい。凹部 4 3は欠陥が生じ やすいため、保護層 4 2中の自己修復性材料(こよる欠陥の修復がセパレ-夕 4の耐食性及び燃料ガス の封止性の維持に大きく貢献する。
[ 0 0 5 2 ]
(導電性フイラ-) 保護層 4 2は、さらに導鼋性フイラーを含むことが好ましい。導電性フイラーにより、セ八 °レ-夕 4の導電性 の低下を抑えることができる。 導電性フイラ-としては、例えば力-ボン、金属炭化物、金属酸化物、金属窒化物、金属繊維及び金 属粉末等が挙げられる。
【0 0 5 3】
\¥0 2021/099896 卩(:17132020 /060656
12 力ーボンとしては、例えば黒鉛、力ーポンプラック、力ーボン繊維、力ーボンナノファイバ'-、及び力ーボンナノチュ -ブ等が挙げられる。金属炭化物としては、例えばタングステンカーパイト、シリコンカーパイト、炭化カルシウム 、炭化ジルコニウム、炭化タンタル、炭化チタン、炭化ニオブ、及び炭化モリブデン等が挙げられる。
【0 0 5 4】 例えば、金属酸化物としては、酸化チタン、酸化ルテニウム、及び酸化インジウム等が挙げられ、金属窒 化物としては窒化クロム、窒化アルミニウム、窒化モリブデン、窒化ジルコニウム、窒化タンタル、窒化チタン 、窒化ガリウム、窒化ニオブ、窒化バナジウム、及び窒化ホウ素等が挙げられる。金属繊維としては、例え ぱ鉄繊維、銅繊維、及びステンレス繊維等が挙げられる。金属粉末としては、例えばニッケル粉、錫紛、夕 ンタル粉、及びニオブ粉等が挙げられる。 上記導電性フィラ-のなかでは、力-ボンが導電性及び耐食性に優れ、好ましい。
[ 0 0 5 5 ] 保護層 4 2中の導電性フィラ-の含有量は、 5〜 9 9体積%とすることができる。この範囲内であれば 、導電性及び成形性が良好となりやすい。
[ 0 0 5 6 ] 保護層 4 2の厚みは、 1 0〜 2 0 0 が好ましい。この範囲内であれば、十分な耐食性が得られや すく、燃料電池 1 〇 0のコンパクト化も容易である。
[ 0 0 5 7 ]
(セ八 °レ-夕の製造方法) 上記セ八 °レ-夕 4の製造方法は、基板 4 1の少なくとも一部の表面上に保護層 4 2を形成するステッ プと、保護層 4 2が形成された基板 4 1を成形力 □エするステップと、を含む。成形加工としては、例えば プレス加工、ホ-ル加工、及びカット加工等が挙げられる。
【0 0 5 8】 各ステップの順番は特に限定されないが、保護層 4 2の形成後に加工成形する場合、口-ル·トゥ· □- ル方式による製造が可能であり、生産効率が高いため、好ましい。上述のように、保護層 4 2の形成が 先の場合、加工成形が先の場合に比べて保護層 4 2中に欠陥が生じやすい。しかし、このような欠陥も
\¥0 2021/099896 卩(:17132020 /060656
13 自己修復性材料によって修復されるため、セパレ-夕 4の耐食性及び燃料ガスの封止性を長く継続するこ とができる。
[ 0 0 5 9 ] 図 4は、 □-ル·トゥ·口-ル方式によるセパレ-夕 4の製造過程を示す。 図 4に示すように、基板 4 1の口ールがアンワインダー 6 1により巻き出されて、口ーラー 6 2により搬送さ れる。搬送された基板 4 1は、前処理装置 6 3において洗浄及び乾燥等の前処理が施される。
[ 0 0 6 0 ] 前処理後の基板 4 1はさらに]-卜装置 6 4に搬送される。コ-卜装置 6 4においては、 自己修復性 材料及び導電性フィラ-を含む保護層 4 2の形成用のインクが基板 4 1上にコ-卜され、乾燥されて、保 護層 4 2が形成される。インクは、必要に応じて溶媒、分散剤等を含有してもよい。
[ 0 0 6 1 ] 保護層 4 2が形成された基板 4 1は加工装置 6 5に搬送され、加工装置 6 5において成形加工さ れる。例えば、基板 4 1はプレス加工され、基板 4 1の表面に凹部 4 3が設けられる。また、基板 4 1が ホ-ル加工され、貫通孔 1〜 4が設けられる。最後に、基板 4 1が所定のサイズにカツト加工され、 セパレータ 4が製造される。
[ 0 0 6 2 ] 上記口-ル·トゥ·口-ル方式によれば、連続的な生産が可能であり、生産効率が高いとともに、保護層 4 2を形成する面積を大きくしやすい。 なお、図 4はすべての工程を連続工程としたが、これに限定されない。例えば、保護層 4 2が形成され た基板 4 1を巻き取る工程と、この巻き取られた基板 4 1を巻き出して一定間隔で搬送する順送により カロェ成形する工程と、に分けられていてちよい。
【 0 0 6 3】
(燃料電池の製造方法)
\¥0 2021/099896 卩(:17132020 /060656
14 燃料電池 1 0 0は、 1\/1已八 3の両側に 1対のセ八 °レータ 4を酉己置することにより製造される。 M E八 3 は、例えば電解質膜 1の両側に角虫媒層 2 1の材料を含むインクをコートして乾燥し、この触媒層 2 1にガ ス拡散層用シ-卜を貼り合わせてガス拡散層 2 2を形成することにより、得られる。
【0 0 6 4】 以上のように、第 1実施形態の燃料電池 1 0 0は、基板 4 1の表面の少なくとも一部に自己修復 性材料を含む保護層 4 2が設けられたセパレ-夕 4を備える。保護層 4 2に欠陥が生じても修復される ため、製造時だけでなく製造後も保護層 4 2の欠陥が少なく、耐食性及び燃料ガスの封止性に優れた セパレ-夕 4を提供できる。また、保護層 4 2の欠陥の修復のための加熱処理等の工程を必要とせず、パ ツチ方式だけでなく、 □ -ル·トウ· □ -ル方式による製造も可能となるため、セパレータ 4の生産効率を高める こともできる。
[ 0 0 6 5 ]
〔第 2実施形態〕 図 5は、第 2実施形態の燃料電池におけるセル 1 0 0の構成を示す。 セル 1 0 0は、第 1実施形態におけるセ八 °レ-夕 4の代わりに、導電性の力-ボン製セ八 °レ-夕 4(:を備 える。セパレ-夕 4 (:以外のセル 1 0 (:の構成は、第 1実施形態のセル 1 0と同じである。同じ構成(こは 同じ符号を付し、その詳細な説明を省略する。
[ 0 0 6 6 ] 力ーボン製セパレータ 4 (:の表面には、金属製セパレータ 4と同様に、凹部 4 3が設けられる。力ーボン製 セパレータ 4 0は、モールド成形により製造され得る。
[ 0 0 6 7 ] 図 6及び図 7は、モ-ルド成形による力-ボン製セ八 °レ-夕 4(3の製造過程を示す。 図 6に示すように、まず下側のモールド 5 0にセパレータ材料 4 0が流し込まれる。セ八 °レータ材料 4 0は 、力-ボン及び樹脂を含む組成物である。次いで、図 7に示すように、セ八 °レ-夕材料 4 0は上側のモ-ルド
5 0によって熱プレスされ、表面に複数の凹咅^ 4 3が設け 6れたセパレータ 4 0が製造される。
【0 0 6 8】
上記製造過程において加圧及び加熱されるセ八レ-夕 4 0の表面又は内部には、欠陥が発生すること がある。特に厚みが変化する凹部 4 aにおいて欠陥が生じやすい。 図 8は、凹部 4 a(こ生じた欠陥の例を示す。 図 8に示すように、凹部 4 aの角においてヒケ (Sink Marks) と呼ばれる窪み 7 1が生じている。また 、内咅 P(こはクラック 7 2が生じている。このような欠陥が開始点となって、製造後に搭載された車両の振動 や流路における差圧、締め付け力の偏差等により欠陥が成長することがある。
[ 0 0 6 9 ] 力-ボン製セパレ-夕 4 Cは、その内部に自己修復性材料を含む。 自己修復材料は、上述した金属製 セパレ-夕 4と同じ材料であるので、詳細な説明を省略する。製造時又は製造後に欠陥が生じた場合で も、 自己修復性材料を含むセ八 °レ-夕 4 Cは、外部からの作用がなくとも、 自己修復性材料同士が再 結合して欠陥部分を修復する。そのため、セパレ-夕 4 Cの耐食性及び燃料ガスの封止性を長く維持す ることができ、燃料電池 1 0 0の信頼性が向上する。なお、セパレ-夕 4 Cも、セ八 °レ-夕 4と同様に、締め 付け力が作用する。締め付け力により接角虫が起こりやすく、 自己修復しやすい。
[ 0 0 7 0 ] 内部(こ自己修復性材料を含むセパレ-夕 4 Cは、上述した力-ボンと樹脂の組成物中に自己修復材 料を混合してモールド成形することにより得ることができる。成形後のセパレータ 4 Cの表面に自己修復性 材料を塗工することによって、表面が自己修復性材料により覆われたセパレータ 4 Cを得ることもできる。
[ 0 0 7 1 ] 以上のように、第 2実施形態によれば、力-ボン製のセパレ-夕 4 Cが内部に自己修復材料を含む。セ 八 °レータ 4 Cに欠陥が生じてもイ参復されるため、製造時だけでなく製造後もセパレータ 4 Cの欠陥が少なく 、耐食性及び燃料ガスの封止性に優れたセパレ-夕 4 Cを提供できる。
[ 0 0 7 2 ] 以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に 限定されず、その発明の範囲内で種々の変形及び変更が可能である。
【符号の説明】
\¥02021/099896 卩(:17162020 /060656
16
[ 0 0 7 3 ]
1 0 0 · · ·燃料電池、 1 · · ·電解質膜、 2 ···電極、 3 · · ·IV!巳 、 4 · · ·金属製セ八 °レ-夕、 4 1 ·· ·基板、 4 2 · · ·保護層、 4 (3 · · ·力-ボン製セパレータ
Claims
\¥0 2021/099896 卩(:17132020 /060656
17
【書類名】請求の範囲 【請求項 1】 導電性の基板 (4 1) と、前記基板 (4 1) の表面の少なくとも一部を覆う保護層 (4 2) と、 を備える燃料電池用セパレ-夕 (4) であって、 前記保護層 (4 2) は、 自己修復性材料を含む、 セ八。レ-夕 (4) 。
【請求項 2】 前記基板 (4 1) の表面には、凹部 (4 3) が設けられ、 前記保護層 (4 2) は、前記凹部 (4 3) の少なくとも _咅6(こ設けられる、 請求項 1に記載のセパレ-夕 (4) 。
【請求項 3】 導電性の燃料電池用セ八 °レ-夕 (4 〇 であって、 内部に自己修復性材料を含む、 セ八 °レ-夕 (4 。
【請求項 4】 複数の膜電極接合体 (3) を含む燃料電池 ( 1 0 0) であって、 前記膜電極接合体 (3) の両側に配置され、前記膜電極接合体 (3) 側の表面に凹部 (4 3 ) が設けられた 1対のセパレータ (4) を備え、 前記セパレ-夕 (4) は、導電性の基板 (4 1) と、前記基板 (4 1) の表面の少なくとも一部に 設けられた保護層 (4 2) と、を備え、 前記保護層 (4 2) は、 自己修復性材料を含む、 燃料電池 ( 1 0 0) 。
【請求項 5】 複数の膜電極接合体 (3) を含む燃料電池 ( 1 0 0) であって、
\¥0 2021/099896 卩(:17132020 /060656
18 前記膜電極接合体 (3) の両側に配置され、前記膜電極接合体 (3) 側の表面に凹部 (4 3
) が設けられた 1対のセパレータ (4〇 を備え、 前記セパレ-夕 (4 〇 は、内部(こ自己修復性材料を含む、 燃料電池 ( 1 0 0) 。
【請求項 6】 前記自己修復性材料は、水分子が存在し、外部から自己修復のための作用が入力されない場合で も自己修復性を有する、 請求項 4又は 5に記載の燃料電池 ( 1 0 0) 。
【請求項 7】 前記燃料電池 ( 1 0 0) が備える部材により締め付けられ、前記自己修復性材料同士が接触し、 結合する、 請求項 4〜 6のいずれか一項に記載の燃料電池 ( 1 0 0) 。
【請求項 8】 導電性の基板 (4 1) と、前記基板 (4 1) の表面の少なくとも一部に設けられた保護 層 (4 2) と、を備える燃料電池用セパレ-夕 (4) の製造方法であって、 前記基板 (4 1) の少なくとも一部の表面上に保護層 (4 2) を形成するステップと、 前記保護層 (4 2) が形成された前記基板 (4 1) を成形力 □エするステップと、を含み、 前記保護層 (4 2) は、 自己修復性材料を含む、 セ八 °レ-夕 (4) の製造方法。
【請求項 9】 前記基板 (4 1) の口-ルが巻き出されて、搬送され、 前記保護層 (4 2) を形成するステップは、前記搬送される基板 (4 1) に前記保護層 (4 2) を形成し、 前記成形加工するステップは、前記搬送される基板 (4 1) に前記成形加工を行う、 請求項 8に記載のセパレ-夕 (4) の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021558032A JP7522760B2 (ja) | 2019-11-20 | 2020-11-12 | セパレータ、燃料電池及びセパレータの製造方法 |
CN202080080147.XA CN114667618A (zh) | 2019-11-20 | 2020-11-12 | 分隔件、燃料电池和分隔件的制造方法 |
DE112020005686.4T DE112020005686T5 (de) | 2019-11-20 | 2020-11-12 | Separator, Brennstoffzelle und Herstellungsverfahren für einen Separator |
US17/778,432 US20220399550A1 (en) | 2019-11-20 | 2020-11-12 | Separator, fuel cell, and method for manufacturing separator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019209818 | 2019-11-20 | ||
JP2019-209818 | 2019-11-20 | ||
JP2020101107A JP2021082576A (ja) | 2019-11-20 | 2020-06-10 | セパレータ、燃料電池及びセパレータの製造方法 |
JP2020-101107 | 2020-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021099896A1 true WO2021099896A1 (ja) | 2021-05-27 |
Family
ID=75965400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2020/060656 WO2021099896A1 (ja) | 2019-11-20 | 2020-11-12 | セパレー夕、燃料電池及びセパレー夕の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220399550A1 (ja) |
JP (2) | JP2021082576A (ja) |
CN (1) | CN114667618A (ja) |
DE (1) | DE112020005686T5 (ja) |
WO (1) | WO2021099896A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005071780A (ja) * | 2003-08-25 | 2005-03-17 | Toyota Motor Corp | 燃料電池用部品とその製造方法 |
JP4790873B2 (ja) * | 2009-09-01 | 2011-10-12 | パナソニック株式会社 | 膜電極接合体及びその製造方法、並びに燃料電池 |
JP2016030845A (ja) * | 2014-07-28 | 2016-03-07 | 日産自動車株式会社 | 導電部材、その製造方法、並びにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池 |
DE102017118320A1 (de) * | 2017-08-11 | 2019-02-14 | Friedrich-Alexander-Universität Erlangen | Verfahren zur Herstellung von Bauteilen sowie danach hergestellte Bauteile |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030118888A1 (en) * | 2001-12-05 | 2003-06-26 | Gencell Corporation | Polymer coated metallic bipolar separator plate and method of assembly |
JP4458877B2 (ja) | 2004-02-25 | 2010-04-28 | 三菱樹脂株式会社 | 燃料電池用セパレータの製造方法 |
JP4872206B2 (ja) * | 2004-11-05 | 2012-02-08 | トヨタ自動車株式会社 | 燃料電池システム |
WO2006135108A1 (ja) * | 2005-06-17 | 2006-12-21 | University Of Yamanashi | 燃料電池用金属セパレータ及び製造方法 |
JP5244078B2 (ja) * | 2009-02-19 | 2013-07-24 | 株式会社神戸製鋼所 | 燃料電池用セパレータおよびその製造方法 |
JP2011054396A (ja) * | 2009-09-01 | 2011-03-17 | Dainippon Printing Co Ltd | 固体アルカリ形燃料電池及びその製造方法並びにその運転方法 |
JP2017073218A (ja) * | 2015-10-05 | 2017-04-13 | 日産自動車株式会社 | 導電部材、その製造方法、ならびにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池 |
JP6636610B2 (ja) | 2016-03-18 | 2020-01-29 | 国立大学法人大阪大学 | 高分子材料及びその製造方法、並びに重合性単量体組成物 |
JP2018039876A (ja) | 2016-09-06 | 2018-03-15 | 国立大学法人秋田大学 | マルチブロック共重合体及びその製造方法、並びに、自己修復性熱可塑性エラストマー |
CN107978779B (zh) * | 2017-11-19 | 2020-03-27 | 湖南辰砾新材料有限公司 | 一种燃料电池用自修复阴离子交换膜及其制备方法 |
CN108336385A (zh) * | 2018-01-10 | 2018-07-27 | 成都新柯力化工科技有限公司 | 一种无机-有机自修复燃料电池质子交换膜及制备方法 |
CN110364749A (zh) * | 2019-07-23 | 2019-10-22 | 南京工业大学 | 基于质子交换膜燃料电池金属双极板的表面复合涂层的制备方法 |
-
2020
- 2020-06-10 JP JP2020101107A patent/JP2021082576A/ja active Pending
- 2020-11-12 JP JP2021558032A patent/JP7522760B2/ja active Active
- 2020-11-12 WO PCT/IB2020/060656 patent/WO2021099896A1/ja active Application Filing
- 2020-11-12 DE DE112020005686.4T patent/DE112020005686T5/de active Pending
- 2020-11-12 CN CN202080080147.XA patent/CN114667618A/zh active Pending
- 2020-11-12 US US17/778,432 patent/US20220399550A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005071780A (ja) * | 2003-08-25 | 2005-03-17 | Toyota Motor Corp | 燃料電池用部品とその製造方法 |
JP4790873B2 (ja) * | 2009-09-01 | 2011-10-12 | パナソニック株式会社 | 膜電極接合体及びその製造方法、並びに燃料電池 |
JP2016030845A (ja) * | 2014-07-28 | 2016-03-07 | 日産自動車株式会社 | 導電部材、その製造方法、並びにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池 |
DE102017118320A1 (de) * | 2017-08-11 | 2019-02-14 | Friedrich-Alexander-Universität Erlangen | Verfahren zur Herstellung von Bauteilen sowie danach hergestellte Bauteile |
Non-Patent Citations (1)
Title |
---|
NEICORPORATION SALES: "Technical Brief White Paper: A New Approach To Using Self-healing Coatings NEI's Approach for Utilizing a Self-Healing Coating to Impart Enhanced Corrosion Protection to Metals NEI Corporation - 2015", 23 March 2015 (2015-03-23), pages 1 - 2, XP055775637, Retrieved from the Internet <URL:https://neicorporation.com/white-papers/NANOMYTE_MEND-RT_Technical_Brief.pdf> [retrieved on 20210212] * |
Also Published As
Publication number | Publication date |
---|---|
US20220399550A1 (en) | 2022-12-15 |
CN114667618A (zh) | 2022-06-24 |
DE112020005686T5 (de) | 2022-09-01 |
JPWO2021099896A1 (ja) | 2021-05-27 |
JP2021082576A (ja) | 2021-05-27 |
JP7522760B2 (ja) | 2024-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5363335B2 (ja) | ガスケットを組み込んだガス拡散層 | |
CN1416604B (zh) | 高分子电解质型燃料电池及其制造方法 | |
EP1766713B1 (en) | Lamination process for manufacture of integrated membrane-electrode-assemblies | |
CN1322619C (zh) | 燃料电池及其制造方法 | |
US20100216048A1 (en) | Method for the production of a membrane electrode unit | |
EP2727173B1 (en) | Apparatus for connecting fuel cells to an external circuit | |
EP2519989B1 (en) | Performance enhancing layers for fuel cells | |
WO2007136135A1 (ja) | 燃料電池用電極及び燃料電池用電極の製造方法、膜-電極接合体及び膜-電極接合体の製造方法、並びに固体高分子型燃料電池 | |
JP2008112604A (ja) | 燃料電池及び燃料電池用ガスケット | |
US10233550B2 (en) | Porous electrode for proton-exchange membrane | |
JP5153130B2 (ja) | 膜電極接合体 | |
US11075395B2 (en) | Fuel cell membrane electrode assembly (MEA) with hexagonal boron nitride thin film | |
US20110165495A1 (en) | Apparatus and methods for connecting fuel cells to an external circuit | |
US8586265B2 (en) | Method of forming membrane electrode assemblies for electrochemical devices | |
US20090035640A1 (en) | Catalyst-loaded support used for forming electrode for fuel cell, and method of producing the same | |
JP2012074235A (ja) | 膜電極接合体及びその製造方法 | |
JP2008146928A (ja) | 燃料電池用ガス拡散電極およびその製造方法 | |
JP5849418B2 (ja) | 膜電極接合体の製造方法 | |
WO2021099896A1 (ja) | セパレー夕、燃料電池及びセパレー夕の製造方法 | |
DK2867947T3 (en) | PROCEDURE FOR MANUFACTURING A COMPOSITE ELECTRODE / PROTON CHANGING MEMBRANE | |
JP5311538B2 (ja) | 多孔質炭素電極基材の製造方法 | |
US20230231156A1 (en) | Sealing member, power generating unit cell, and method of producing fuel cell | |
JP6325025B2 (ja) | 電解質膜・電極構造体の製造方法 | |
JP2010161039A (ja) | 膜電極接合体の製造方法 | |
JP2012084416A (ja) | 燃料電池用の電極の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20829637 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021558032 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20829637 Country of ref document: EP Kind code of ref document: A1 |