WO2021098086A1 - 一种用于石墨烯纤维取向排列的导热片制备的装置 - Google Patents

一种用于石墨烯纤维取向排列的导热片制备的装置 Download PDF

Info

Publication number
WO2021098086A1
WO2021098086A1 PCT/CN2020/078635 CN2020078635W WO2021098086A1 WO 2021098086 A1 WO2021098086 A1 WO 2021098086A1 CN 2020078635 W CN2020078635 W CN 2020078635W WO 2021098086 A1 WO2021098086 A1 WO 2021098086A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
connecting rod
conductive sheet
block
clamping
Prior art date
Application number
PCT/CN2020/078635
Other languages
English (en)
French (fr)
Inventor
郭志军
黄国伟
陈文斌
杨兰贺
Original Assignee
苏州鸿凌达电子科技有限公司
深圳市汉华热管理科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州鸿凌达电子科技有限公司, 深圳市汉华热管理科技有限公司 filed Critical 苏州鸿凌达电子科技有限公司
Priority to US17/053,077 priority Critical patent/US11104045B1/en
Priority to JP2020561719A priority patent/JP7057842B2/ja
Publication of WO2021098086A1 publication Critical patent/WO2021098086A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3272Component parts, details or accessories; Auxiliary operations driving means
    • B29C2043/3283Component parts, details or accessories; Auxiliary operations driving means for moving moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3405Feeding the material to the mould or the compression means using carrying means
    • B29C2043/3411Feeding the material to the mould or the compression means using carrying means mounted onto arms, e.g. grippers, fingers, clamping frame, suction means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0072Shaping techniques involving a cutting or machining operation combined with rearranging and joining the cut parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/122Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles microfibres or nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/18Fillers oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/18Heat-exchangers or parts thereof

Definitions

  • the invention relates to the technical field of thermally conductive sheet preparation devices, and in particular to a device for preparing a thermally conductive sheet for oriented alignment of graphene fibers.
  • Ordinary thermal conductive sheets generally have a high filling amount of inorganic powder, and high filling will lead to problems of poor physical properties such as flexibility, toughness, and elasticity of the gasket.
  • the thermal conductivity of traditional filler powders such as alumina, aluminum nitride, boron nitride, etc. are all below 300W/mk, and the thermal conductivity of the thermally conductive sheet filled with it is generally below 10W/mk, and when its thermal conductivity exceeds 8W When /mk, the temperature resistance and stability of the thermal conductive sheet will be poor. Therefore, there is less of a preparation device that can improve the thermal conductivity of the thermally conductive sheet.
  • the invention provides a device for preparing a thermally conductive sheet with graphene fiber orientation arrangement, which is used for manufacturing a thermally conductive sheet with high thermal conductivity.
  • a device for preparing a thermally conductive sheet with oriented graphene fibers comprising: a first mold and a second mold,
  • the first mold is used to press the first block
  • the second mold is used to press the first block pressed by the first mold multiple times.
  • the first mold is provided with a first mold groove
  • the open end cover of the first mold groove is provided with a first mold cover
  • the first mold cover and the first mold are used for pressing the first mold. Square.
  • one side of the second mold is provided with a second mold groove, and the open end of the second mold groove is provided with a second mold cover,
  • the second mold cover is provided with a finite thickness block on a side close to the second mold groove, and the thickness finite block is used to be clamped in the second mold groove.
  • the first square is made of a mixture with high thermal conductivity
  • the mixture with high thermal conductivity includes a mixture of matrix resin, carbon fiber, and thermally conductive powder.
  • the second mold groove is characterized by a concave-convex type and has two openings, and movable thickness limiting blocks can be placed at the openings on both sides.
  • the width of the second cavity of the second mold is consistent with the width of the first mold.
  • it further includes an operating table, a turning device, and a cutting table.
  • the first mold, the second mold, the turning device, and the cutting table are all set on the upper surface of the operating table.
  • outriggers With outriggers;
  • the turning device is provided on one side of the first mold and the second mold, the cutting table is provided on one side of the turning device, the cutting table is provided with a cutting board, and the cutting board is close to the cutting board.
  • the turning device is used to turn the second mold upside down on the cutting board, and the cutting table is used to cut the first square on the cutting board.
  • the turning device includes: a turning driving device, a sprocket, a first rotating shaft and a turning plate,
  • the turning drive device stands on the upper surface of the operating table through a second fixed rod; the telescopic end of the turning drive device is connected to a first connecting rod, and the other end of the first connecting rod is connected to a chain, and the chain is far away One end of the first connecting rod is fixed on one of the gears in the circumferential direction of the sprocket;
  • a first rotating shaft is connected to the axial center of the sprocket. Both ends of the first rotating shaft stand on the operating table through a first fixing plate.
  • the first fixing plate is provided with a rotating shaft for the first rotating shaft.
  • the end of the first rotating shaft close to the second mold is provided with an extension end, and the end of the extension end away from the first fixing plate is connected to the flap, the extension end is also sleeved with a spring, one end of the spring Fixed on the outer side of the first fixing plate, and the other end is fixed on the flip plate;
  • a clamping drive device is connected to the end of the flipping plate away from the spring, and the telescopic end of the clamping drive device is connected to a mold clamp, and the mold clamp is used to clamp or loosen the second mold.
  • the mold clamp includes a third connecting rod, a connecting platform and a clamping assembly, the connecting platform is used to connect the clamping assembly and the third connecting rod, and the end of the third connecting rod away from the connecting platform is connected Clamping drive device;
  • the clamping assembly is symmetrically arranged on both sides of the connecting platform, and is used to clamp or loosen the second mold, and the outer side of the clamping assembly and the connecting platform is provided with a shell, and the shell is used for Installing the clamping assembly and the connecting table as a whole;
  • the clamping assembly includes: a first clamping block, a second clamping block, and a second connecting rod.
  • One end of the first clamping block is provided with a clamping head and the other end is provided with a first movable groove;
  • the second clamping block One end is provided with a second movable groove, and the other end is movably connected to the connecting platform;
  • a second connecting rod is provided in the first movable groove and the second movable groove, and the second connecting rod is rotatably connected in the first movable groove and the second movable groove through a connecting shaft;
  • the first clamping block and the second clamping block are respectively provided with two connecting shafts, and the connecting shafts are fixed on the inner wall of the housing;
  • One connecting shaft is used for the second connecting rod to move in the first movable groove and the second moving groove, and the other connecting shaft is used for the first clamping block and the second clamping block to rotate on the connecting shaft;
  • the connecting shaft for the rotation of the first clamping block and the second clamping block is arranged close to the connecting platform;
  • a connecting tube is provided at one end of the second clamping block away from the second connecting rod, a second rotating shaft is arranged in the connecting platform, and the connecting tube is rotatably sleeved on the circumferential outer wall of the second rotating shaft, A third movable groove is arranged inside the connecting platform, and the third movable groove is used for the second clamping block to rotate on both sides of the connecting platform.
  • the cutting table includes a connecting rod assembly, a base and a cutter head, and the lower surface of the base is slidably arranged on the first slide rail;
  • One end of the first slide rail is connected to the cutting board, and a ninth connecting rod is provided on the side of the base away from the cutting board, and the ninth connecting rod is used to connect the cutting table driving device;
  • One end of the base close to the ninth connecting rod is cut through and rotatably provided with a third rotating shaft, one end of the third rotating shaft is connected to the motor, the other end is connected to one end of the fourth connecting rod, and the other end of the fourth connecting rod rotates Connect one end of the fifth connecting rod;
  • the other end of the fifth link is rotatably connected to one end of the sixth link, and the other end of the sixth link is connected to the eighth link;
  • the top of the base close to the cutting board is provided with a cutter head limiting table extending outward, and the top of the base is provided with a connecting rod limiting table;
  • the connecting rod limiting platform is set in a triangular structure, and a seventh connecting rod is arranged on the outer side of one end of the triangular structure away from the base, and the other end of the seventh connecting rod is rotatably connected to the center of the sixth connecting rod position.
  • the bottom of the cutting board is further provided with a backing board, and the upper surface of the backing board is provided with a second slide rail,
  • the lower surface of the cutting board is provided with rollers at intervals, and the rollers reciprocate in the second slide rail;
  • a movable cavity penetrates through the center of the cutting board, the upper surface and the lower surface of the movable cavity are both provided with rack plates, the ninth connecting rod is set as a screw, and the base is provided for the ninth connecting rod.
  • the screw hole that matches the thread of the rod;
  • the end of the ninth connecting rod away from the pushing motor is rotatably connected to the fourth rotating shaft, the end of the fourth rotating shaft away from the ninth connecting rod is fixed with a turntable, the rotating disk is provided with meshing teeth, and the meshing teeth are arranged at intervals On the outer wall around the turntable;
  • the distribution angle of the meshing teeth on the outer wall of the circumference of the turntable is 100°-135°.
  • the thermal conductivity of the material itself is very good.
  • the thermal conductivity of carbon fiber in the axial direction can reach 600-1200W/m.k.
  • the thermal conductivity on the plane can theoretically reach 5000W/m.k. If this type of carbon material can be neatly arranged and distributed in the thermally conductive sheet, its heat transfer efficiency will be higher than that of powder-filled, and the improvement in thermal conductivity will be huge.
  • the thermally conductive sheet obtained by the method for preparing a thermally conductive sheet provided by the present invention has been repeatedly used to align the fourth square with the second mold, thereby achieving a thermally conductive sheet with a higher thermal conductivity, which greatly improves The thermal conductivity of the thermal pad.
  • Figure 1 is a schematic diagram of the first mold structure of the present invention
  • Figure 2 is a schematic diagram of the second mold structure of the present invention.
  • Figure 3 is a schematic diagram of the preparation morphology and structure of the thermal conductive sheet of the present invention.
  • Figure 4 is an electron micrograph of the oriented thermally conductive sheet of the present invention.
  • FIG. 5 is a top view of the console of the present invention.
  • Figure 6 is a schematic diagram of the structure of the turning device of the present invention.
  • Figure 7 is a three-dimensional view of the mold clamp of the present invention.
  • FIG. 8 is a schematic diagram of the structure of the mold clamp shell of the present invention.
  • Fig. 9 is a schematic diagram of the structure of the connecting station of the present invention.
  • FIG. 10 is a schematic diagram of the structure of the cutting table of the present invention.
  • FIG. 11 is a schematic diagram of the control circuit of the present invention.
  • Figure 12 is a schematic diagram of the structure of the backing plate of the present invention.
  • the embodiment of the present invention provides a device for preparing a thermally conductive sheet with graphene fiber orientation arrangement, including: a first mold 1 and a second mold,
  • the first mold 1 is used to press the first block 3, and the second mold is used to press the first block 3 pressed by the first mold 1 multiple times.
  • the thermal conductivity of the material itself is very good.
  • the thermal conductivity of carbon fiber in the axial direction can reach 600-1200W/m.k.
  • the thermal conductivity on the plane can theoretically reach 5000W/m.k. If this type of carbon material can be neatly arranged and distributed in the thermally conductive sheet, its heat transfer efficiency will be higher than that of powder-filled, and the improvement in thermal conductivity will be huge.
  • the thermally conductive sheet obtained by the method for preparing a thermally conductive sheet provided by the present invention has been repeatedly used to align the fourth square 10 with the second mold, thereby realizing a thermally conductive sheet with a higher thermal conductivity, which greatly improves The thermal conductivity of the thermal pad is improved.
  • the first mold 1 is provided with a first mold slot 2, and the open end cover of the first mold slot 2 is provided with a first mold cover 54, the first mold cover 54 and The first mold 1 is used to press the first square 3.
  • one side of the second mold is provided with a second mold groove 6, and the open end of the second mold groove 6 is provided with a second mold cover 7,
  • a thickness limiting block 12 is provided on a side of the second mold cover 7 close to the second mold groove 6, and the thickness limiting block 12 is used to be clamped in the second mold groove 6.
  • the first block 3 is made of a high thermal conductivity mixture, and the high thermal conductivity mixture includes a mixture of matrix resin, carbon fiber, and thermally conductive powder.
  • the second mold groove 6 is characterized by a concave-convex type and has two openings, and movable thickness limiting blocks 12 can be placed at the openings on both sides.
  • the width of the second mold groove 6 of the second mold is the same as the width of the first mold 1.
  • the present invention also includes a method for manufacturing a thermally conductive sheet with high thermal conductivity, and the method for a thermally conductive sheet includes the following steps:
  • Step one prepare a high thermal conductivity mixture
  • Step two adding the high thermal conductivity mixture into the first cavity 2 of the first mold 1,
  • Step three cover the first mold cover 54 on the open end of the first mold cavity 2 of the first mold 1; at room temperature, the first mold cover 54 performs treatment on the high thermal conductivity mixture in the first mold cavity 2 of the first mold 1 Press for 5-15 minutes to form the first square 3;
  • Step 4 Remove the first mold cover 54 and take the formed first square 3 out of the first mold cavity 2 of the first mold 1;
  • Step 5 Put the first block 3 into the second mold groove 6 of the second mold again, and use the second mold cover 7 to mold the two sides and top of the first block 3 for 5-15 minutes, and form a second strip shape Block 8;
  • Step 6 remove the second mold cover 7, and take the formed second strip block 8 out of the second mold slot 6 of the second mold;
  • Step 7 cutting the length of the second strip block 8 to form a plurality of third strip blocks 9;
  • Step 8 cutting and forming a plurality of fourth squares 10 along the orientation direction of the third strip-shaped block 9;
  • Step 9 Put the fourth block 10 into the second mold slot 6 of the second mold, and use the top of the second mold cover 7 and the thickness limiting blocks 12 on both sides to mold the fourth block 10 for 5-15 minutes, and form The fifth box 11;
  • Step 10 Take the fifth block 11 out of the second mold slot 6 of the second mold, and put it in an oven to cure for 0.8-1.6 hours;
  • Step eleven take the fifth square 11 out of the oven, and slice it along the vertical direction of the orientation direction with a slicing knife, and finally obtain an oriented thermally conductive sheet in the thickness direction.
  • the carbon fiber used in this embodiment has an average diameter of 10um and an average length of 150um.
  • the carbon fiber of this specification has a small effect on the viscosity of the mixed high thermal conductivity mixture, and the carbon fiber is easier to align in the flow process.
  • Use silica gel as the matrix resin add necessary heat-conducting powder such as aluminum powder, alumina, and fibrous carbon fiber, and mix in a mixer to obtain a highly thermally conductive mixture.
  • the high thermal conductivity mixture is put into the first mold cavity 22 of the first mold 11 with a length, width, and height of 100 mm, and the high thermal conductivity mixture is placed in the first mold cavity 22 of the first mold 11 by using the first mold cover 544 at room temperature. Mold pressing for 10 minutes; get the first square 33 of 100mm*100mm*100mm.
  • a 500*100*20 second strip-shaped block 88 is obtained, and the second strip-shaped block 88 is cut into 5 sections of 100*100*20 third strip-shaped blocks 99 along the length direction, that is, the orientation direction.
  • the five third strip-shaped blocks 99 are superimposed along the orientation direction to form a fourth block 1010.
  • the orientation direction of the fourth block 1010 is the same as the length direction of the second mold groove 66.
  • a thickness limit block 1212 with a thickness of 40; the mold is pressed for 10 minutes.
  • the thermal conductivity of a thermally conductive sheet with a thickness of 1mm is tested according to ASTM D 5470 and its thermal conductivity is 12W/m.k.
  • the fourth block 1010 is obtained, and the fourth block 1010 is put into the second mold groove 66 of the second mold 5, and the orientation direction of the fourth block 1010 is consistent with the length direction of the second mold groove 66.
  • the second strip-shaped block 88 cuts the second strip-shaped block 88 into a third strip-shaped block 99, and the fourth block 1010 is superimposed in the orientation direction again.
  • Put the fourth block 1010 into the second mold groove 66 of the second mold 5 the orientation direction of the fourth block 1010 is consistent with the length direction of the second mold groove 66, and the block is molded for 10 minutes to obtain a block size of 40*100*250.
  • the curing of the fifth block 1111 is the same as that of the first embodiment.
  • the thermal conductivity of a thermally conductive sheet with a thickness of 1mm is 16W/m.k.
  • Example 2 has one more molding orientation than Example 1.
  • another orientation molding is added to the fourth block 1010.
  • the rest is the same as in Example 2.
  • the thermal conductivity test of the 1mm thickness thermal conductive sheet is 18W/m.k.
  • This example is a comparative example.
  • the preparation of the high thermal conductivity mixture is the same as in Example 1.
  • the high thermal conductivity mixture is directly molded into a thermally conductive sheet with a thickness of 1 mm using a flat die press.
  • the thermal conductivity of the test is 5W/m.k.
  • Example 4 shows that ordinary compression molding cannot obtain a thermally conductive sheet with carbon fiber orientation arrangement, and the carbon fiber is in a disorderly arrangement state in the gasket, which causes its thermal conductivity to not reach the desired effect.
  • the direction of compression and flow of the material is controlled in a specific mold so that the carbon fibers are aligned in a certain direction.
  • the number of molding orientations is increased, which improves the thermal conductivity of the final thermal conductive sheet, which shows that increasing the number of molding orientations can improve the regularity of the carbon fiber arrangement.
  • the carbon fiber used in this embodiment has an average diameter of 10um and an average length of 150um.
  • the carbon fiber of this specification has a small effect on the viscosity of the mixed high thermal conductivity mixture, and the carbon fiber is easier to align in the flow process.
  • Use silica gel as the matrix resin add necessary heat-conducting powder such as aluminum powder, alumina, and fibrous carbon fiber, and mix in a mixer to obtain a highly thermally conductive mixture.
  • the high thermal conductivity mixture was added to a mold 1 with a length, width, and height of 100 mm, and molded at room temperature for 10 minutes. Get 100mm*100mm*100mm square 1.
  • a thickness limit block 12 of 40 thickness is placed on both sides of the groove. Molding for 10min. Get 40*100*250 blocks 5. The block 5 was put into a 140 degree oven and cured for 1 hour, and then taken out and sliced in the vertical direction of the orientation direction with a slicing knife to obtain a thermally conductive sheet oriented in the thickness direction. The thermal conductivity of a thermally conductive sheet with a thickness of 1mm is tested according to ASTM D 5470 and its thermal conductivity is 12W/m.k.
  • Example 1 Obtain the square object 4 according to Example 1. Place the square object 4 in the middle of the mold 2. The orientation direction of the square object 4 is consistent with the length of the groove, and the strips 2 are obtained again by molding, and the strips 2 are cut into The small elongated objects 3 are again superimposed into a square object 4 along the orientation direction. Put the square object 4 into the middle of the mold 2 and keep the orientation direction of the square object 4 consistent with the length of the groove, and press for 10 minutes to obtain a block object 5 with a block size of 40*100*250. The solidification of the block 5 is the same as that of the slicing example 1. The thermal conductivity of a thermally conductive sheet with a thickness of 1mm is 16W/m.k.
  • Example 2 has one more molding orientation than Example 1.
  • the orientation molding is added to the square 4 again.
  • the rest is the same as in Example 2.
  • the thermal conductivity test of the 1mm thickness thermal conductive sheet is 18W/m.k.
  • This example is a comparative example.
  • the preparation of the high thermal conductivity mixture is the same as in Example 1.
  • the high thermal conductivity mixture is directly molded into a thermally conductive sheet with a thickness of 1 mm using a flat die press.
  • the thermal conductivity of the test is 5W/m.k.
  • Example 4 shows that ordinary compression molding cannot obtain a thermally conductive sheet with carbon fiber orientation arrangement, and the carbon fiber is in a disorderly arrangement state in the gasket, which causes its thermal conductivity to not reach the desired effect.
  • the direction of compression and flow of the material is controlled in a specific mold so that the carbon fibers are aligned in a certain direction.
  • the number of molding orientations is increased, which improves the thermal conductivity of the final thermal conductive sheet, which shows that increasing the number of molding orientations can improve the regularity of the carbon fiber arrangement.
  • the present invention further includes an operating table 13, a turning device, and a cutting table 26.
  • the first mold 1, the second mold, the turning device, and the cutting table 26 are all set at On the upper surface of the operating table 13, the operating table 13 is set in a flat structure, and legs are provided below;
  • the turning device is provided on one side of the first mold 1 and the second mold, the cutting table 26 is provided on one side of the turning device, the cutting table 26 is provided with a cutting board 27, the The cutting board 27 is arranged close to the second mold;
  • the turning device is used to turn the second mold upside down on the cutting board 27, and the cutting table 26 is used to cut the first square 3 on the cutting board 27.
  • the first block 3 is formed in a mold cavity 2, and then the first block 3 in the first mold cavity 2 is taken out; then the first block 3 is put into the second mold cavity 6 of the second mold for secondary molding, After the secondary molding of the second mold, the second strip block 8 is formed, and then the second strip block 8 in the second mold is poured on the cutting table 26 through the reversing device, and the cutting table is used 26.
  • the cutting table 26 is used to The workpiece is cut multiple times to finally achieve the purpose of improving the thermal conductivity of the workpiece; reducing manual operations from the first mold 1, the second mold and the cutting table 26 repeatedly, greatly improving the production efficiency of the thermal conductive sheet .
  • the turning device includes: a turning driving device 14, a sprocket 17, a first rotating shaft 22 and a turning plate 20,
  • the turning driving device 14 is erected on the upper surface of the operating table 13 through the second fixing rod 25; the telescopic end of the turning driving device 14 is connected to the first connecting rod 15, and the other end of the first connecting rod 15 is connected to A chain 16, one end of the chain 16 away from the first connecting rod 15 is fixed on one of the gears of the sprocket 17 in the circumferential direction;
  • the sprocket 17 is connected to the axial center with a first rotating shaft 22, and both ends of the first rotating shaft 22 stand on the operating table 13 through a first fixing plate, and the first fixing plate is provided with The through hole through which the first rotating shaft 22 rotates;
  • the end of the first rotating shaft 22 close to the second mold is provided with an extension end, and the end of the extension end far away from the first fixing plate is connected to the flap 20, and the extension end is also sleeved with a spring 19, the One end of the spring 19 is fixed on the outer side of the first fixing plate, and the other end is fixed on the flap 20;
  • One end of the flap 20 away from the spring 19 is connected to a clamping drive device 18, and the telescopic end of the clamping drive device 18 is connected to a mold clamp 21, which is used to hold the second mold clamp 21 Tighten or loosen.
  • the first step is to start the turning drive device 14.
  • the spring 19 is a torsion spring
  • the first connecting rod 15 is moved to the The torsion spring moves in the direction of the sprocket 17;
  • the torsion spring is linked by the sprocket 17 and the chain 16 and the first link 15; once the first link 15 moves toward the sprocket 17, so
  • the torsion spring drives the flap 20 to turn over; when the turning drive device 14 drives the first link 15 to fully contract, the length of the first link 15 and the chain 16 is the longest;
  • the turning drive device 14 drives the first connecting rod 15 to be pulled apart, the chain 16 loses the pull of the turning drive device 14 and is rolled toward the sprocket 17 by the force of the torsion spring.
  • the workpiece in the present invention is the high thermal conductivity mixture used to prepare the thermally conductive sheet; it may be the first mold 1 or the first block 3, the second strip block 8, the third strip block 9, the fourth block 10, the fifth block 11, etc. molded by the second mold; it can also be the fifth block 11 and then the first block
  • the mold 1 and the second mold are a block formed by multiple compression molding.
  • the turning drive device 14 is preferably a hydraulic cylinder or a linear drive device.
  • the mold clamp 21 includes a third connecting rod 32, a connecting platform 33, and a clamping assembly.
  • the connecting platform 33 is used to connect the clamping assembly and the third connecting rod 32.
  • One end of the three connecting rod 32 away from the connecting platform 33 is connected to the clamping drive device 18;
  • the clamping assembly is symmetrically arranged on both sides of the connecting platform 33, and is used to clamp or loosen the second mold.
  • a housing 37 is provided on the outside of the clamping assembly and the connecting platform 33. The housing 37 is used to install the clamping assembly and the connecting platform 33 as a whole;
  • the clamping assembly includes a first clamping block 29, a second clamping block 34, and a second connecting rod 31.
  • One end of the first clamping block 29 is provided with a clamping head 28, and the other end is provided with a first movable groove 30;
  • One end of the second clamping block 34 is provided with a second movable groove 36, and the other end is movably connected to the connecting platform 33;
  • the first movable groove 30 and the second movable groove 36 are provided with a second connecting rod 31, and the second connecting rod 31 is rotatably connected to the first movable groove 30 and the second movable groove through a connecting shaft 35.
  • the first clamping block 29 and the second clamping block 34 are respectively provided with two connecting shafts 35, and the connecting shafts 35 are fixed on the inner wall of the housing 37;
  • One connecting shaft 35 is used for the second connecting rod 31 to move in the first movable groove 30 and the second moving groove 36, and the other connecting shaft 35 is used for the first clamping block 29 and the second clamping block 34 to move in The connecting shaft 35 rotates upward; the connecting shaft 35 for the rotation of the first clamping block 29 and the second clamping block 34 is arranged close to the connecting platform 33;
  • the end of the second clamping block 34 away from the second connecting rod 31 is provided with a connecting tube 41
  • the connecting platform 33 is provided with a second rotating shaft 38
  • the connecting tube 41 is rotatably sleeved on the second connecting rod.
  • a peripheral wall of the rotating shaft 38 is provided with a third movable groove 39 inside the connecting platform 33, and the third movable groove 39 is used for the second clamping block 34 to rotate on both sides of the connecting platform 33.
  • the drive end of the clamping drive device 18 is connected to the third link 32, and the third link 32 realizes reciprocating motion when driven by the clamping drive device 18, which can be symmetrically arranged
  • the clamping components on both sides of the third connecting rod 32 are driven, so as to achieve the purpose of clamping the second mold with the clamping components;
  • the third connecting rod 32 moves in the direction of the clamping drive device 18, because the first clamping block 29 and the second clamping block 34 are both rotated and arranged on the inner wall of the housing 37 through the connecting shaft 35 And the second clamping block 34 and the connecting platform 33 are movably connected; the connecting platform 33 and the third connecting rod 32 are fixedly connected; therefore, the third connecting rod 32 is clamped when working ,
  • the second connecting rod 31 will move in the direction of the third connecting rod 32 in the first movable groove 30 of the first clamping block 29 and the second movable groove 36 of the second clamping block 34 via the connecting shaft 35
  • the first clamping block 29 and the second clamping block 34 will also be linked with the connecting shaft 35 close to one end of the chuck 28; so that the chuck 28 can respectively face the third connecting
  • the rod 32 moves in the axial direction, thereby achieving the purpose of clamping;
  • the third connecting rod 32 When loosened, the third connecting rod 32 is moved toward the chuck 28, and the second clamping block 34 first passes through the second rotating shaft 38, the third movable groove 39 and the connecting platform 33 on the connecting platform 33.
  • the connecting pipe 41 rotates, so that the second clamping block 34 rotates around the connecting shaft 35 near one end of the connecting platform 33; at this time, the second clamping block 34 will drive the second connecting rod 31 during the movement.
  • the second connecting rod 31 moves, it is linked in the first movable groove 30 of the first clamping block 29 and the movable groove of the second clamping block 34, which drives the first clamping block 29 to pass close to the clamping block.
  • the connecting shaft 35 at one end of the head 28 rotates, so that the chuck 28 loosens the second mold, and thus the second mold can be loosened and placed on the cutting table 26 or on the side of the first mold 1 for Position of molding. It greatly reduces the worker's purpose of manually moving the workpiece multiple times or taking the workpiece multiple times; reducing the deformation of the workpiece due to the worker's holding process; greatly improving the quality and production efficiency of the thermal conductive sheet during the preparation process.
  • the housing can also be configured to directly connect to the motor housing, and thus be integrated with the motor.
  • the third connecting rod, the connecting platform, the first clamping block, the second clamping block and the second The connecting rods are wrapped and protected, and the third connecting rod, the connecting table, the first clamping block, the second clamping block, and the second connecting rod can be linked to the purpose of clamping the second mold; After the second mold can be turned over, the workpiece in the second cavity of the second mold is poured on the cutting board, which facilitates the purpose of orientation cutting of the workpiece by the cutting table.
  • the cutting table 26 includes a connecting rod assembly, a base 49 and a cutter head 48, and the lower surface of the base 49 is slidably arranged on the first slide rail 24;
  • One end of the first slide rail 24 is connected to the cutting board 27, a ninth connecting rod 52 is provided on the side of the base 49 away from the cutting board 27, and the ninth connecting rod 52 is used to connect the cutting table 26 to drive Device
  • One end of the base 49 close to the ninth connecting rod 52 is cut through and rotatably provided with a third rotating shaft 42.
  • One end of the third rotating shaft 42 is connected to the motor, and the other end is connected to one end of the fourth connecting rod 43.
  • the other end of the rod 43 is rotatably connected to one end of the fifth connecting rod 44;
  • the other end of the fifth link 44 is rotatably connected to one end of the sixth link 45, and the other end of the sixth link 45 is connected to the eighth link 47;
  • the top of the base 49 close to the cutting board 27 is provided with a cutter head limiting table 50 extending outward, and a connecting rod limiting table 51 is provided on the top of the base 49;
  • the connecting rod limiter 51 is set in a triangular structure, and a seventh connecting rod 46 is provided on the outer side of one end of the triangular structure away from the base 49, and the other end of the seventh connecting rod 46 is rotatably connected to the sixth The center position of the connecting rod 45.
  • the thermally conductive sheet produced in the present invention is formed by the first mold 1 or the second mold for multiple times of mutual compression molding and multiple times of cutting and molding, and finally realizes the improvement of heat conduction efficiency; therefore, multiple times of molding and cutting of the workpiece, if it is Manual work is very cumbersome; and the second mold is clamped by the clamping device, and the second mold is displaced and turned to the cutting table 26 by the turning device, and then the cutting table 26 is used to cut the workpiece, which greatly Reduce the cumbersome manual reciprocating operation of the workpiece;
  • the cutting table 26 is also provided with a sensor, and the sensor senses that when the turning device and the clamping device put the workpiece into the cutting table 26, the sensor transmits the signal to the controller, so The controller activates the pushing motor connected to the ninth link 52 to push the base 49, and the base 49 uses the first slide rail 24 to approach the cutting board 27; when the base 49 approaches the base 49 After the cutting board 27, the pushing motor can stop working and start the motor connected to the third rotating shaft 42. After the motor is driven, the third rotating shaft 42 is driven to rotate.
  • the third shaft 42 can be driven to rotate away from the fourth link 43 fixedly connected to one end of the motor, and the fourth link 43 rotates to drive the movably connected fifth link 44 Linkage; after the movement of the fifth link 44 can drive the movement of the movably connected sixth link 45; after the movement of the sixth link 45, it can drive the sixth link 45 fixedly connected to the first
  • the eight connecting rod 47 moves up and down; at the same time, in order to facilitate the up and down movement of the eighth connecting rod 47, the cutter head 48 will not be thrown randomly, so a connecting rod limit table 51 is provided on the top of the base 49
  • a rotating shaft is fixed on the connecting rod limit table 51, a seventh connecting rod 46 is rotatably connected to the rotating shaft, and the other end of the seventh connecting rod 46 is rotatably connected to the center position of the sixth connecting rod 45, In this way, the purpose of limiting the position of the sixth connecting rod 45 is achieved; and the eighth connecting rod 47 can smoothly drive the cutter head 48 to cut the workpiece on the cutting board
  • the bottom of the cutting board 27 is also provided with a backing plate 58, and the upper surface of the backing plate 58 is provided with a second slide rail 59,
  • the lower surface of the cutting board 27 is provided with rollers 57 at intervals, and the rollers 57 reciprocate in the second slide rail 59;
  • a movable cavity 60 penetrates through the center of the cutting board 27, a rack plate 53 is provided on the upper and lower surfaces of the movable cavity 60, the ninth connecting rod 52 is set as a screw, and the base 49 is provided with a A screw hole matched with the thread of the ninth connecting rod 52;
  • the end of the ninth connecting rod 52 away from the pushing motor is rotatably connected to the fourth rotating shaft 55.
  • An end of the fourth rotating shaft 55 away from the ninth connecting rod 52 is fixed with a turntable 56 on which meshing teeth 54 are provided.
  • the meshing teeth 54 are arranged on the outer wall of the turntable 56 at intervals;
  • the distribution angle of the meshing teeth 54 on the outer wall of the turntable 56 is 100°-135°.
  • the fourth rotating shaft 55 can be driven by the motor of the ninth connecting rod 52, or can be connected to a single motor for operation.
  • a single motor is used for driving, only the rotor end of the motor needs to be connected to the motor.
  • the fourth rotating shaft 55 when the motor drives the rotor end, can drive the fourth rotating shaft to rotate, so as to realize the meshing of the meshing teeth of the turntable with the rack plates provided on the upper and lower walls of the movable cavity, The purpose of the cutting board moving back and forth above the backing board is realized.
  • the rotation speed of the motor can be set according to the cutting distance, and the specifications of the meshing teeth of the rack plate and the turntable can be set by the cutting distance.
  • the ninth link 52 is a telescopic link, and the multi-link structure for connecting the ninth link 52 is also provided with a slider and a sliding block.
  • the ninth connecting rod 52 will not be able to drive the turntable 56 due to mutual autobiography when the ninth connecting rod 52 is working; the driving motor rotates clockwise to drive the ninth connecting rod 52 to rotate. After the ninth link 52 rotates, it can drive the turntable 56 to rotate. After the turntable 56 rotates, the meshing teeth 54 on the outer wall of the turntable 56 rotate accordingly.
  • the cutting plate 27 When meshing with the rack plate 53 in the upper part of the movable cavity 60, the cutting plate 27 is driven to move to the left; when the meshing tooth 54 turns to the bottom and is in contact with the lower teeth in the movable cavity 60 When the strip 53 is engaged, the cutting board 27 is driven to move to the right; thus, the purpose of the cutting board 27 moving back and forth on the backing plate 58 can be realized;
  • the roller 57 moves in the second slide rail 59 above the backing plate 58 with the movement of the rack plate 53 and the meshing teeth 54 on the turntable 56, which greatly improves the number of cuts of the thermal conductive sheet during the manufacturing process. Work efficiency; and further reduce the inconsistency of cutting accuracy caused by manual operation by workers, greatly improving the production quality and efficiency of the thermal conductive sheet.
  • Both sides of the second mold are also provided with grooves that facilitate the clamping of the clamping assembly, and the clamping of the clamping assembly in the groove facilitates the clamping assembly to firmly hold the second
  • the purpose of clamping the mold is to reduce the situation that the second mold is released from the clamping assembly during the overturning displacement process.
  • the turning drive device 14, the gripping drive device 18, the motor, the pushing motor, and the sensor are all connected to a controller, and the controller is used to control and drive the turning drive device 14, the gripping drive device 18, and the The motor and the pushing motor perform work.
  • the sensor is an infrared sensor; the infrared sensor includes a receiving end and a transmitting end;
  • the cutter head limit table 50 is provided with a plurality of receiving ends, the cutting board 27 is correspondingly provided with a plurality of sending ends, and the receiving ends are connected with the controller.
  • the transmitting terminal signal received by the receiving terminal is transmitted to the controller, which facilitates the controller to drive the turning drive device 14, the clamping drive device 18, the motor and the pushing motor.
  • the controller 45 is also provided with a control circuit, and a control chip is provided in the controller, and the control chip is connected to the control circuit.
  • the control circuit includes: resistors R1, R2 , R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, capacitors C1, C2, C3, C4, C5, C6, C7, C8, Transistor V1, V2, V3, V4, V5, V6, and diodes D1, D2, D3,
  • resistor R1 One end of the resistor R1 is the input terminal, the other end of the resistor R1 is connected to the base of the transistor V1, the collector of the transistor V1 is connected to the resistor R2, and the emitter of the transistor V1 is connected to the resistor R3;
  • the other end of the resistor R2 is connected to the resistor R4 and the cathode of the diode D1, and the other end of the resistor R3 is connected to the capacitor C1;
  • the other end of the resistor R4 is connected to the cathode of the diode D4, the anode of the diode D4 is connected to the resistor R5, and a capacitor C2 and a resistor R7 are respectively connected in parallel between the resistor R5 and the anode of the diode D4,
  • the other end of the capacitor C2 is connected to the base of the transistor V2, the collector of the transistor V2 is connected to the anode of the diode D2, the emitter of the transistor V2 is connected in parallel with the resistor R7; the anode of the diode D2 and the collector of the transistor V2 are connected in parallel respectively There are resistors R6 and R9, and the other end of the resistor R6 is connected in parallel between the resistor R4 and the cathode of the diode D4;
  • the other end of the resistor R9 is connected to the base of the transistor V3, the collector of the transistor V3 is connected to the capacitor C3, and the other end of the capacitor C3 is respectively connected to the anode of the diode D1 and the cathode of the diode D2;
  • resistor R5 is connected in parallel with the resistor R8, the other end of the resistor R8 is connected with the capacitor C4, the emitter of the transistor V2 is connected in parallel between the capacitor C4 and the resistor R8, and the emitter of the transistor V2 is also connected in parallel with the resistors R7 and R7 respectively.
  • the other end of the resistor R10 is connected to the base of the transistor V4, the collector of the transistor V4 is connected to the capacitor C5, the other end of the capacitor C5 is connected to the resistor R11, and the other end of the resistor R11 is connected to the emitter of the transistor V3,
  • the collector of the transistor V3 is connected in parallel between the capacitor C3 and the resistor R17, and the emitter of the transistor V4 is connected in parallel between the capacitor C4 and the resistor R16;
  • a resistor R12 and a resistor R13 are respectively connected in parallel between the capacitor C3 and the resistor R17, the other end of the resistor R12 is connected to the capacitor C6, the other end of the capacitor C6 is connected to the capacitor C7, and the other end of the capacitor C7 is connected in parallel Between capacitor C4 and resistor R16;
  • a resistor R15 is connected in parallel between the capacitor C4 and the resistor R16.
  • the other end of the resistor R15 is connected to the collector of the transistor V5.
  • the base of the transistor V5 is connected in parallel between the capacitor C6 and the resistor R12.
  • the emitter of V5 is connected to resistor R13;
  • a resistor R14 is also connected in parallel between the emitter of the transistor V5 and the resistor R13, and the other end of the resistor R14 is connected in parallel with the resistor R17, the resistor R16 and the capacitor C8 in parallel with the cathode of the diode D3;
  • the other end of the capacitor C8 is connected in parallel between the resistor R15 and the collector of the transistor V5, the anode of the diode D3 is connected to the resistor R18, and the other end of the resistor R18 is the output terminal.
  • the signal When working, the signal is first input through the resistor R1, the electrical signal is amplified by the transistor V1 after passing through the resistor R1, filtered by the RC circuit, and then enters the transistor V2, and then amplified by the transistor V2, and then divided into two ways to enter the transistor V3 and The transistor V4 is rectified, and finally output through the transistor V5, and output through the diode D3 and the resistor R8; the resulting signal can reduce signal distortion, improve the stability of the signal transmission process, and reduce the data loss caused by the distortion of the data signal Circumstances, thereby affecting the accuracy of data collection; further reducing the control abnormalities caused by inaccurate data.

Abstract

一种用于石墨烯纤维取向排列的导热片制备的装置,包括:第一模具(1)和第二模具(5),所述第一模具用于压制第一方块(3),所述第二模具用于将所述第一模具压制的第一方块进行多次压制;用以提高导热片的导热系数;该装置制作的导热片,经多次重复的利用第二模具进行取向排列,由此实现较高导热系数的导热片,大大提高了导热片的导热效率。

Description

一种用于石墨烯纤维取向排列的导热片制备的装置 技术领域
本发明涉及导热片制备装置技术领域,特别涉及一种用于石墨烯纤维取向排列的导热片制备的装置。
背景技术
随着大数据、5G、AI、物联网等的快速发展,电子元器件的热源功率越来越大,散热要求进一步提高,界面热传导材料的传热效率要求更高。常规的导热片已经满足不了功能要求,迫切需要导热系数更高的导热片来满足散热要求。
普通的导热片普遍存在无机粉体填充量高的情况,而高填充会导致垫片的柔性、韧性、弹性等物理性能差的问题。传统填充粉体如氧化铝、氮化铝、氮化硼等,其导热系数均在300W/m.k以下,其填充制作的导热片的导热系数一般在10W/m.k以下,并且当其导热系数超过8W/m.k时,导热片的耐温性、稳定性均会很差。因此却少一种能够提高导热片导热性能的制备装置。
发明内容
本发明提供一种用于石墨烯纤维取向排列的导热片制备的装置,用以制作高导热系数的导热片。
一种用于石墨烯纤维取向排列的导热片制备的装置,包括:第一模具和第二模具,
所述第一模具用于压制第一方块,所述第二模具用于将所述第一 模具压制的第一方块进行多次压制。
优选的,所述第一模具上设置有第一模槽,所述第一模槽的开口端盖设有第一模盖,所述第一模盖和所述第一模具用于压制第一方块。
优选的,所述第二模具其中一面设置有第二模槽,所述第二模槽的开口端设有第二模盖,
所述第二模盖靠近所述第二模槽的一面设置有限厚块,所述限厚块用于卡设在所述第二模槽内。
优选的,所述第一方块为高导热性混合物制备而成,所述高导热性混合物包括基体树脂、碳纤维、导热性粉体的混合物。
优选的,所述的第二模槽的特征为凹凸型且两侧开口,两侧开口处可放置活动的限厚块。第二模具的第二模槽宽度与第一模具的宽度一致。
优选的,还包括操作台、翻转装置和切割台,所述第一模具、第二模具、翻转装置和切割台均设在所述操作台的上表面,所述操作台设为平板结构,下方设有支腿;
所述翻转装置设在所述第一模具和所述第二模具的一侧,所述切割台设在所述翻转装置的一侧,所述切割台设有切割板,所述切割板靠近所述第二模具设置;
所述翻转装置用于将所述第二模具翻转倒置在所述切割板上,所述切割台用于对所述切割板上的第一方块进行切割。
优选的,所述翻转装置包括:翻转驱动装置、链轮、第一转轴和翻板,
所述翻转驱动装置通过第二固定杆立在所述操作台的上表面;所述翻转驱动装置的伸缩端连接第一连杆,所述第一连杆的另一端连接链条,所述链条远离第一连杆的一端固定在所述链轮的周向其中一个 齿轮上;
所述链轮轴向中心连接有第一转轴,所述第一转轴的两端通过第一固定板立在所述操作台上,所述第一固定板上设有供所述第一转轴转动的贯穿孔;
所述第一转轴靠近所述第二模具的一端设有延伸端,所述延伸端远离所述第一固定板的一端连接翻板,所述延伸端还套设有弹簧,所述弹簧的一端固定在所述第一固定板的外侧面,另一端固定在翻板上;
所述翻板远离所述弹簧的一端连接有夹取驱动装置,所述夹取驱动装置的伸缩端连接模具夹,所述模具夹用于将所述第二模具夹紧或松开。
优选的,所述模具夹包括第三连杆、连接台和夹取组件,所述连接台用于连接所述夹取组件和第三连杆,所述第三连杆远离连接台的一端连接夹取驱动装置;
所述夹取组件对称设在所述连接台的两侧,并用于对第二模具进行夹取或松开,所述夹取组件和所述连接台的外侧设置有外壳,所述外壳用于将所述夹取组件和所述连接台安装为一体;
所述夹取组件包括:第一夹块、第二夹块和第二连杆,所述第一夹块其中一端设有夹头,另一端设有第一活动槽;所述第二夹块的其中一端设有第二活动槽,另一端活动连接所述连接台;
所述第一活动槽和所述第二活动槽内设有第二连杆,所述第二连杆通过连接轴转动连接在所述第一活动槽和所述第二活动槽内;
所述第一夹块和所述第二夹块上分别设有两个连接轴,所述连接轴固定在所述外壳的内壁上;
其中一个连接轴用于所述第二连杆在第一活动槽和第二活动槽内活动,另一个连接轴用于所述第一夹块和第二夹块在所述连接轴上 转动;用于所述第一夹块和所述第二夹块转动的连接轴靠近所述连接台设置;
所述第二夹块远离所述第二连杆的一端设有连接管,所述连接台内设有第二转轴,所述连接管转动的套设在所述第二转轴的周向外壁,所述连接台的内部设有第三活动槽,所述第三活动槽用于所述第二夹块在所述连接台的两侧转动。
优选的,所述切割台包括连杆组件、底座和刀头,所述底座的下表面滑动设在所述第一滑轨上;
所述第一滑轨的一端连接所述切割板,所述底座远离所述切割板的一面设有第九连杆,所述第九连杆用于连接切割台驱动装置;
所述底座靠近所述第九连杆一端贯穿切且转动设有第三转轴,所述第三转轴一端连接电机,另一端连接第四连杆的一端,所述第四连杆的另一端转动连接第五连杆的一端;
所述第五连杆的另一端转动连接第六连杆的一端,所述第六连杆的另一端连接第八连杆;
所述底座靠近所述切割板的一面顶部向外延伸设置有刀头限位台,所述底座的顶部设置有连杆限位台;
所述连杆限位台设为三角形结构,所述三角形结构远离所述底座的一端外侧转动设有第七连杆,所述第七连杆的另一端转动连接所述第六连杆的中心位置。
优选的,所述切割板的底部还设置有垫板,所述垫板的上表面设置有第二滑轨,
所述切割板的下表面间隔设置有滚轮,所述滚轮在所述第二滑轨内往复运动;
所述切割板的中心贯穿有活动腔,所述活动腔的上表面和下表面 均设置有齿条板,所述第九连杆设置为螺杆,所述底座上设置有用于所述第九连杆的螺纹相配合的螺孔;
所述第九连杆远离推动电机的一端转动连接第四转轴,所述第四转轴远离所述第九连杆的一端固定有转盘,所述转盘上设置有啮合齿,所述啮合齿间隔布置在所述转盘周向外壁;
所述啮合齿位于所述转盘周向外壁的分布角度为100°~135°。
本发明的有益效果:
对于纤维类、片类的碳材料,如碳纤维、石墨片、石墨烯等,其材料自身的导热系数非常优良。碳纤维在轴向的导热系数可以达到600-1200W/m.k,对于片形的石墨烯,其在平面上的导热系数在理论上可达5000W/m.k。此类的碳材料如果能在导热片中整齐排列分布,其热传导效率将会比粉体填充的更高,在导热性能上的提升将会是巨大的。而通过本发明提供的制备导热片的方法得到的导热片,在经多次重复的利用第二模具对所述第四方块进行取向排列,由此实现较高导热系数的导热片,大大提高了导热片的导热效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明的第一模具结构示意图;
图2为本发明的第二模具结构示意图;
图3为本发明的导热片制备形态结构示意图;
图4为本发明的取向化导热片的电镜图;
图5为本发明的操作台俯视图;
图6为本发明的翻转装置结构示意图;
图7为本发明的模具夹立体图;
图8为本发明的模具夹外壳结构示意图;
图9为本发明的连接台结构示意图;
图10为本发明的切割台结构示意图;
图11为本发明的控制电路示意图;
图12为本发明的垫板结构示意图;
其中,1-第一模具,2-第一模槽,3-第一方块,4-第一模盖,5-第二模具,6-第二模槽,7-第二模盖,8-第二条形块,9-第三条形块,10-第四方块,11-第五方块,12-限厚块,13-操作台,14-翻转驱动装置,15-第一连杆,16-链条,17-链轮,18-夹取驱动装置,19-弹簧,20-翻板,21-模具夹,22-第一转轴,23-第一固定杆,24-第一滑轨,25-第二固定杆,26-切割台,27-切割板,28-夹头,29-第一夹块,30-第一活动槽,31-第二连杆,32-第三连杆,33-连接台,34-第二夹块,35-连接轴,36-第二活动槽,37-外壳,38-第二转轴,39-第三活动槽,41-连接管,42-第三转轴,43-第四连杆,44-第五连杆,45-第六连杆,46-第七连杆,47-第八连杆,48-刀头,49-底座,50-刀头限位台,51-连杆限位台,52-第九连杆,53-齿条板,54-啮合齿,55-第四转轴,56-转盘,57-滚轮,58-垫板,59-第二滑轨,60-活动腔。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
根据图1-4所示,本发明实施例提供了一种用于石墨烯纤维取向排列的导热片制备的装置,包括:第一模具1和第二模具,
所述第一模具1用于压制第一方块3,所述第二模具用于将所述第一模具1压制的第一方块3进行多次压制。
对于纤维类、片类的碳材料,如碳纤维、石墨片、石墨烯等,其材料自身的导热系数非常优良。碳纤维在轴向的导热系数可以达到600-1200W/m.k,对于片形的石墨烯,其在平面上的导热系数在理论上可达5000W/m.k。此类的碳材料如果能在导热片中整齐排列分布,其热传导效率将会比粉体填充的更高,在导热性能上的提升将会是巨大的。而通过本发明提供的制备导热片的方法得到的导热片,在经多次重复的利用第二模具对所述第四方块10进行取向排列,由此实现较高导热系数的导热片,大大提高了导热片的导热效率。
根据图1-4所示,所述第一模具1上设置有第一模槽2,所述第一模槽2的开口端盖设有第一模盖54,所述第一模盖54和所述第一模具1用于压制第一方块3。
根据图1-4所示,所述第二模具其中一面设置有第二模槽6,所述第二模槽6的开口端设有第二模盖7,
所述第二模盖7靠近所述第二模槽6的一面设置有限厚块12,所述限厚块12用于卡设在所述第二模槽6内。
根据图1-4所示,所述第一方块3为高导热性混合物制备而成,所述高导热性混合物包括基体树脂、碳纤维、导热性粉体的混合物。
根据图1-4所示,所述的第二模槽6的特征为凹凸型且两侧开口,两侧开口处可放置活动的限厚块12。第二模具的第二模槽6宽度与 第一模具1的宽度一致。
本发明还包括一种制作高导热性的导热片方法,导热片的方法,包括以下步骤:
步骤一,制备高导热性混合物;
步骤二,将高导热性混合物加入第一模具1的第一模槽2中,
步骤三,将第一模盖54盖设在第一模具1的第一模槽2开口端;室温下,第一模盖54对第一模具1第一模槽2内的高导热性混合物进行模压5~15min,形成第一方块3;
步骤四,移开第一模盖54,并将成型的第一方块3取出第一模具1的第一模槽2内;
步骤五,将第一方块3再次放入第二模具的第二模槽6内,利用第二模盖7对第一方块3的两侧和顶部进行模压5~15min,并形成第二条形块8;
步骤六,移开第二模盖7,并将成型的第二条形块8取出第二模具的第二模槽6内;
步骤七,对第二条形块8的长度方向进行切割,并形成多个第三条形块9;
步骤八,沿第三条形块9的取向方向切割并形成多个第四方块10;
步骤九,将第四方块10放入第二模具的第二模槽6中,利用第二模盖7的顶部和两侧的限厚块12对第四方块10进行模压5-15min,并形成第五方块11;
步骤十,将第五方块11取出第二模具的第二模槽6,并置入烤箱固化0.8~1.6h;
步骤十一,将第五方块11从烤箱中取出,并利用切片刀沿取向 方向的垂直方向切片,最终得到厚度方向的取向导热片。
实施例1
本实施例所用的碳纤维的平均直径为10um,平均长度为150um。此规格的碳纤维对混合后的高导热性混合物的粘度影响程度较小,碳纤维较容易在流动过程中取向排列。以硅胶作基体树脂,加入必要的铝粉、氧化铝等导热粉以及纤维状的碳纤维,在搅拌器中混合均匀制得高导热性混合物。
将高导热性混合物加入长宽高均为100mm的第一模具11的第一模槽22内,室温下利用第一模盖544将高导热性混合物在第一模具11的第一模槽22内模压10min;得100mm*100mm*100mm第一方块33。
将第一方块33放入凹槽宽度100mm、长度600mm的第二模具5的第二模槽66内,第二模具5两侧放置20mm厚的限厚块1212,利用第二模盖77模压10min。
得500*100*20第二条形块88,将第二条形块88沿长度方向即取向方向切成5段100*100*20的第三条形块99。将5段第三条形块99沿取向方向叠加为第四方块1010。
将第四方块1010放入第二模具5的第二模槽66内,第四方块1010的取向方向与第二模槽66长度方向相同。第二模槽66两侧放置厚度为40限厚块1212;模压10min。得40*100*250的第五方块1111。将第五方块1111放入140度烤箱固化1h,取出后用切片刀沿取向方向的垂直方向切片,得到厚度方向上取向的导热片。取厚度为1mm的导热片按ASTM D 5470标准测试其导热系数为12W/m.k。
实施例2
按实施例1得到第四方块1010,将第四方块1010放入第二模具 5的第二模槽66内,第四方块1010的取向方向与第二模槽66长度方向保持一致,模压再次得到第二条形块88,将第二条形块88切成第三条形块99,再次沿取向方向叠加第四方块1010。将第四方块1010放入第二模具5的第二模槽66内,第四方块1010的取向方向与第二模槽66长度方向保持一致,模压10min得到块状物40*100*250的第五方块1111。第五方块1111的固化与切片和实施例1一样。1mm厚度的导热片的导热系数为16W/m.k。
实施例3
实施例2中比实施例1中多了一次模压取向。本实施例在实施例2的基础上,对第四方块1010再增加一次取向模压。其余与实施例2相同。1mm厚度的导热片的导热系数测试为18W/m.k。
比较例
本实施例为比较例。高导热性混合物的制备与实施例1相同。将高导热性混合物直接用平板模压机成型厚度为1mm的导热片。测试其导热系数为5W/m.k。
实施例4的测试结果表明普通的模压成型是无法获得碳纤维取向排列的导热片,碳纤维在垫片中是处于无序排列的状态,导致其导热系数达不到理想效果。
本发明实施例中通过在特定的模具中控制物料的压缩流动方向从而使其中的碳纤维按一定的方向取向排列。实施例2和实施例3中增加了模压取向的次数,对最终的导热片的导热系数有提升作用,这说明增加模压取向次数可以提升碳纤维排列的整齐度。
本实施例所用的碳纤维的平均直径为10um,平均长度为150um。此规格的碳纤维对混合后的高导热性混合物的粘度影响程度较小,碳纤维较容易在流动过程中取向排列。以硅胶作基体树脂,加入必要的 铝粉、氧化铝等导热粉以及纤维状的碳纤维,在搅拌器中混合均匀制得高导热性混合物。
将高导热性混合物加入长宽高均为100mm的模具1中,室温下模压10min。得100mm*100mm*100mm方形物1。
将方形物1放入凹槽宽度100mm、长度600mm的模具2中间,模具2两侧放置20mm厚的限厚块12,模压10min。
得500*100*20长条形物2,将长条形物2沿长度方向即取向方向切成5段100*100*20的小长条物3。将5段小长条物3沿取向方向跌成方形物4。
将方形物4放入模具2凹槽中间,方形物4的取向方向与凹槽长度方向相同。凹槽两侧放置厚度为40限厚块12。模压10min。得40*100*250的块状物5。将块状物5放入140度烤箱固化1h,取出后用切片刀沿取向方向的垂直方向切片,得到厚度方向上取向的导热片。取厚度为1mm的导热片按ASTM D 5470标准测试其导热系数为12W/m.k。
实施例2
按实施例1得到方形物4,将方形物4放入模具2中间,方形物4的取向方向与凹槽长度方向保持一致,模压再次得到长条形物2,将长条形物2切成小长条物3,再次沿取向方向叠加成方形物4。将方形物4放入模具2中间,方形物4的取向方向与凹槽长度方向保持一致,模压10min得到块状物40*100*250的块状物5。块状物5的固化与切片和实施例1一样。1mm厚度的导热片的导热系数为16W/m.k。
实施例3
实施例2中比实施例1中多了一次模压取向。本实施例在实施例 2的基础上,对方形物4再增加一次取向模压。其余与实施例2相同。1mm厚度的导热片的导热系数测试为18W/m.k。
比较例
本实施例为比较例。高导热性混合物的制备与实施例1相同。将高导热性混合物直接用平板模压机成型厚度为1mm的导热片。测试其导热系数为5W/m.k。
实施例4的测试结果表明普通的模压成型是无法获得碳纤维取向排列的导热片,碳纤维在垫片中是处于无序排列的状态,导致其导热系数达不到理想效果。
本发明实施例中通过在特定的模具中控制物料的压缩流动方向从而使其中的碳纤维按一定的方向取向排列。实施例2和实施例3中增加了模压取向的次数,对最终的导热片的导热系数有提升作用,这说明增加模压取向次数可以提升碳纤维排列的整齐度。
在另一实施例中,根据图5-10所示,本发明还包括操作台13、翻转装置和切割台26,所述第一模具1、第二模具、翻转装置和切割台26均设在所述操作台13的上表面,所述操作台13设为平板结构,下方设有支腿;
所述翻转装置设在所述第一模具1和所述第二模具的一侧,所述切割台26设在所述翻转装置的一侧,所述切割台26设有切割板27,所述切割板27靠近所述第二模具设置;
所述翻转装置用于将所述第二模具翻转倒置在所述切割板27上,所述切割台26用于对所述切割板27上的第一方块3进行切割。
工作时,首先将高导热性混合物置入第一模具1的第一模槽2,利用第一模盖54进行覆盖并经过一段时间的压合,使得高导热性混合物在第一模具1的第一模槽2内成型形成第一方块3,之后取出第 一模槽2内的第一方块3;再将第一方块3放入第二模具的第二模槽6内进行二次成型,经第二模具的二次成型之后,形成第二条形块8,再经过所述反转装置将所述第二模具内的第二条形块8倾倒在切割台26处,利用所述切割台26对所述第二条形块8进行长度方向切割,并形成第三条形块9;接着再经过所述切割台26对所述第三条形块9的长度方向进行切割,形成第四方块10;根据需求,可选择继续将第四方块10在所述第二模槽6或第一模槽2内进行模压成型至第五方块11,并将模压成型的第五方块11放入烤箱进行固化,并形成导热块,将固化的导热块的厚度方向进行切割即可形成导热片。
通过将所述第一模具1和第二模具放在操作台13,并利用所述翻转装置对所述第二模具内的工件移动并反转至所述切割台26,再利用切割台26对工件进行多次切割,最终实现工件的导热系数提高的目的;减少人工多次重复的从第一模具1、第二模具和切割台26之间进行操作的情况,大大提高了导热片的制作效率。
根据图5-10所示,所述翻转装置包括:翻转驱动装置14、链轮17、第一转轴22和翻板20,
所述翻转驱动装置14通过第二固定杆25立在所述操作台13的上表面;所述翻转驱动装置14的伸缩端连接第一连杆15,所述第一连杆15的另一端连接链条16,所述链条16远离第一连杆15的一端固定在所述链轮17的周向其中一个齿轮上;
所述链轮17轴向中心连接有第一转轴22,所述第一转轴22的两端通过第一固定板立在所述操作台13上,所述第一固定板上设有供所述第一转轴22转动的贯穿孔;
所述第一转轴22靠近所述第二模具的一端设有延伸端,所述延伸端远离所述第一固定板的一端连接翻板20,所述延伸端还套设有 弹簧19,所述弹簧19的一端固定在所述第一固定板的外侧面,另一端固定在翻板20上;
所述翻板20远离所述弹簧19的一端连接有夹取驱动装置18,所述夹取驱动装置18的伸缩端连接模具夹21,所述模具夹21用于将所述第二模具夹21紧或松开。
工作时,参照图5和图6所示,首先是启动所述翻转驱动装置14,所述翻转驱动装置14工作后,所述弹簧19为扭簧;将所述第一连杆15往所述链轮17的方向进行运动;所述扭簧因通过所述链轮17和链条16和所述第一连杆15联动;所述第一连杆15一旦朝向所述链轮17方向运动,所述扭簧即带动所述翻板20进行翻转;所述翻转驱动装置14带动所述第一连杆15完全收缩时,所述第一连杆15和所述链条16的长度最长;当所述翻转驱动装置14带动所述第一连杆15进行拉开时,所述链条16失去了翻转驱动装置14的牵拉,并经扭簧的力量卷向所述链轮17,所述链轮17随着第一转轴22在所述第一固定杆23上转动,由此即实现了所述翻板20翻动的目的;所述翻板20翻转即可带动所述模具夹21进行翻转,由此实现所述模具夹21夹着所述第二模具翻转至切割台26对工件进行切割的目的;本发明中所述工件即为用于制备导热片的高导热性混合物;可以是第一模具1或第二模具模压成型出来的第一方块3、第二条形块8、第三条形块9、第四方块10、第五方块11等;也可以是第五方块11再经第一模具1和第二模具多次模压形成的块状物。所述翻转驱动装置14优选为液压缸或直线驱动装置。
图5-9所示,所述模具夹21包括第三连杆32、连接台33和夹取组件,所述连接台33用于连接所述夹取组件和第三连杆32,所述第三连杆32远离连接台33的一端连接夹取驱动装置18;
所述夹取组件对称设在所述连接台33的两侧,并用于对第二模具进行夹取或松开,所述夹取组件和所述连接台33的外侧设置有外壳37,所述外壳37用于将所述夹取组件和所述连接台33安装为一体;
所述夹取组件包括:第一夹块29、第二夹块34和第二连杆31,所述第一夹块29其中一端设有夹头28,另一端设有第一活动槽30;所述第二夹块34的其中一端设有第二活动槽36,另一端活动连接所述连接台33;
所述第一活动槽30和所述第二活动槽36内设有第二连杆31,所述第二连杆31通过连接轴35转动连接在所述第一活动槽30和所述第二活动槽36内;
所述第一夹块29和所述第二夹块34上分别设有两个连接轴35,所述连接轴35固定在所述外壳37的内壁上;
其中一个连接轴35用于所述第二连杆31在第一活动槽30和第二活动槽36内活动,另一个连接轴35用于所述第一夹块29和第二夹块34在所述连接轴35上转动;用于所述第一夹块29和所述第二夹块34转动的连接轴35靠近所述连接台33设置;
所述第二夹块34远离所述第二连杆31的一端设有连接管41,所述连接台33内设有第二转轴38,所述连接管41转动的套设在所述第二转轴38的周向外壁,所述连接台33的内部设有第三活动槽39,所述第三活动槽39用于所述第二夹块34在所述连接台33的两侧转动。
工作时,所述夹取驱动装置18的驱动端连接所述第三连杆32,所述第三连杆32经所述夹取驱动装置18进行驱动时实现往复运动,即可利用对称设在所述第三连杆32两侧的夹取组件进行驱动,从而 实现利用夹取组件对所述第二模具进行夹紧的目的;
所述第三连杆32朝向所述夹取组件方向推动时,所述夹取组件为松开状态;所述第三连杆32往所述夹取驱动装置18方向收缩时,所述夹取组件为夹紧状态;
夹紧工作时,所述第三连杆32朝向所述夹取驱动装置18的方向运动,由于所述第一夹块29和第二夹块34均通过连接轴35转动设在外壳37的内壁上;且所述第二夹块34和所述连接台33为活动连接;所述连接台33和所述第三连杆32为固定连接;因此,所述第三连杆32夹紧工作时,所述第二连杆31会经连接轴35在所述第一夹块29的第一活动槽30和第二夹块34的第二活动槽36内向所述第三连杆32的方向运动;同时,所述第一夹块29和所述第二夹块34也会随着靠近夹头28一端的所述连接轴35进行联动;使得所述夹头28能够分别朝向所述第三连杆32的轴心方向运动,由此即实现了夹紧的目的;
当松开时,将所述第三连杆32朝向夹头28方向进行运动,所述第二夹块34首先在所述连接台33上通过所述第二转轴38、第三活动槽39和连接管41进行转动,使得所述第二夹块34绕着靠近连接台33一端的连接轴35转动;此时所述第二夹块34在运动过程中会带动所述第二连杆31也随之运动,所述第二连杆31运动后,就在第一夹块29的第一活动槽30和第二夹块34的活动槽中联动,就带动了第一夹块29通过靠近夹头28一端的连接轴35进行转动,从而使得所述夹头28松开第二模具,由此即可实现将第二模具松开并放置在切割台26或者是第一模具1一侧用于成型的位置。大大减少了工人手工多次移动工件或者是多次拿取工件的目的;减少工件因工人手拿过程中对其进行拿取变形的情况;大大提高了导热片制备过程中的 质量和生产效率。
所述外壳还可设置为直接连接所述电机外壳,并由此和所述电机设为一体,将所述第三连杆、连接台、所述第一夹块、第二夹块和第二连杆均包裹和保护起来,并且还能利于所述第三连杆、连接台以及第一夹块、第二夹块、第二连杆能够联动对第二模具进行夹紧的目的;从而利于所述第二模具能够进行翻转后,再将第二模具的第二模槽内工件倾倒在切割板上,并利于切割台对工件进行取向切割的目的。
根据图5和图10所示,所述切割台26包括连杆组件、底座49和刀头48,所述底座49的下表面滑动设在所述第一滑轨24上;
所述第一滑轨24的一端连接所述切割板27,所述底座49远离所述切割板27的一面设有第九连杆52,所述第九连杆52用于连接切割台26驱动装置;
所述底座49靠近所述第九连杆52一端贯穿切且转动设有第三转轴42,所述第三转轴42一端连接电机,另一端连接第四连杆43的一端,所述第四连杆43的另一端转动连接第五连杆44的一端;
所述第五连杆44的另一端转动连接第六连杆45的一端,所述第六连杆45的另一端连接第八连杆47;
所述底座49靠近所述切割板27的一面顶部向外延伸设置有刀头限位台50,所述底座49的顶部设置有连杆限位台51;
所述连杆限位台51设为三角形结构,所述三角形结构远离所述底座49的一端外侧转动设有第七连杆46,所述第七连杆46的另一端转动连接所述第六连杆45的中心位置。
由于本发明中所生产的导热片是经第一模具1或第二模具相互多次模压成型以及多次切割并模压成型,最终实现提高导热效率的;因此多次的模压和切割工件,如果是人工的话非常繁琐;而通过利用 所述夹取装置将第二模具进行夹取,并通过翻转装置将第二模具位移并翻转至切割台26,再利用所述切割台26对工件进行切割,大大减少了人工往复操作工件的繁琐;
具体工作时,所述切割台26上还设置有传感器,所述传感器感应到所述翻转装置和夹取装置将工件放入所述切割台26时,所述传感器将信号传输给控制器,所述控制器启动所述第九连杆52所连接的推动电机将所述底座49进行推动,并将所述底座49利用第一滑轨24靠近所述切割板27;当所述底座49靠近所述切割板27后,所述推动电机即可停止工作,并启动所述第三转轴42连接的电机,所述电机驱动后,带动所述第三转轴42转动,所述第三转轴42在所述底座49上进行转动后,即可带动所述第三转轴42远离所述电机一端固定连接的第四连杆43转动,所述第四连杆43转动后带动活动连接的第五连杆44联动;所述第五连杆44运动后即可带动活动连接的第六连杆45运动;所述第六连杆45运动后,就能够带动所述第六连杆45固定连接的所述第八连杆47上下运动;同时,为了便于所述第八连杆47上下运动时,能够使得所述刀头48不会出现乱甩的情况,因此在底座49顶部设置了连杆限位台51,所述连杆限位台51上固定有转轴,所述转轴上转动连接有第七连杆46,所述第七连杆46的另一端转动连接所述第六连杆45的中心位置,由此实现对所述第六连杆45进行限位的目的;并且使得所述第八连杆47能够顺利的带动刀头48在切割板27上对工件进行切割。所述刀头限位台50可利于所述刀头48减少偏移的情况;大大提高了所述切割台26在切割板27上对工件切割的准确度。
根据图12所示,所述切割板27的底部还设置有垫板58,所述垫板58的上表面设置有第二滑轨59,
所述切割板27的下表面间隔设置有滚轮57,所述滚轮57在所述第二滑轨59内往复运动;
所述切割板27的中心贯穿有活动腔60,所述活动腔60的上表面和下表面均设置有齿条板53,所述第九连杆52设置为螺杆,所述底座49上设置有用于所述第九连杆52的螺纹相配合的螺孔;
所述第九连杆52远离推动电机的一端转动连接第四转轴55,所述第四转轴55远离所述第九连杆52的一端固定有转盘56,所述转盘56上设置有啮合齿54,所述啮合齿54间隔布置在所述转盘56周向外壁;
所述啮合齿54位于所述转盘56周向外壁的分布角度为100°~135°。
工作时,所述第四转轴55可以借用所述第九连杆52的电机进行驱动,也可以单独连接一个电机进行工作,当单独使用一个电机进行驱动时,只需将电机的转子端连接所述第四转轴55,并使得电机驱动转子端时,就能够驱动所述第四转轴进行转动,从而实现所述转盘的啮合齿和所述活动腔上下两壁上设置的齿条板进行啮合,实现所述切割板在垫板的上方进行来回活动的目的。所述电机的转速可以根据切割距离进行设定,以及所述齿条板和所述转盘的啮合齿规格均可以通过切割距离进行设定。
当借用第九连杆52的推动电机进行驱动时,所述第九连杆52为可伸缩的连杆,且用于连接第九连杆52的多连杆结构内还设置有滑块和滑槽,并利于所述第九连杆52在工作时不会出现各连杆相互自传导致不能带动所述转盘56的情况;所述推动电机顺时针转动,即可带动第九连杆52转动,所述第九连杆52转动后,就能带动所述转盘56转动,所述转盘56转动后,所述转盘56周向外壁的啮合齿54 就随之转动,当啮合齿54转到上方并和所述活动腔60内上方的齿条板53进行啮合时,所述切割板27就被带动着向左移动;当所述啮合齿54转到下方并和所述活动腔60内下方的齿条板53进行啮合时,所述切割板27就被带动着向右移动;由此即可实现了所述切割板27在所述垫板58上来回活动的目的;所述切割板27上的滚轮57在所述垫板58上方的第二滑轨59内随着所述齿条板53和转盘56上的啮合齿54运动变化而移动,大大提高了导热片在制作过程中多次切割的工作效率;且进一步减少工人手工操作造成切割精度不一致的情况,大大提高了导热片的生产质量和效率。
所述第二模具的两侧还设有利于所述夹取组件进行夹紧的凹槽,所述夹取组件卡在所述凹槽内利于所述夹取组件能够牢固的将所述第二模具进行夹紧的目的,减少在翻转位移过程中出现第二模具脱开所述夹取组件的情况。
所述翻转驱动装置14、夹取驱动装置18、所述电机、所述推动电机和传感器均连接控制器,所述控制器用于控制并驱动所述翻转驱动装置14、夹取驱动装置18、所述电机和所述推动电机进行工作。
所述传感器为红外感应器;所述红外传感器包括接收端和发射端;
所述刀头限位台50上设置有多个接收端,所述切割板27上对应设置有多个发送端,所述接收端和所述控制器连接。并将所述接收端接收到的发射端信号传输给控制器,并利于所述控制器对所述翻转驱动装置14、夹取驱动装置18、所述电机和所述推动电机进行驱动。
根据图11所示,所述控制器45内还设有控制电路,控制器内设置有控制芯片,所述控制芯片连接控制电路,根据图11所示,所述控制电路包括:电阻R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16、R17、R18、电容C1、C2、C3、C4、 C5、C6、C7、C8、三极管V1、V2、V3、V4、V5、V6、和二极管D1、D2、D3,
所述电阻R1的一端为输入端,所述电阻R1的另一端连接三极管V1的基极,所述三极管V1的集电极连接电阻R2,所述三极管V1的发射极连接电阻R3;
所述电阻R2的另一端连接电阻R4和二极管D1的阴极,所述电阻R3的另一端连接电容C1;
所述电阻R4的另一端连接二极管D4的阴极,所述二极管D4的阳极连接电阻R5,所述电阻R5和所述二极管D4的阳极之间还分别并联有电容C2和电阻R7,
所述电容C2的另一端连接三极管V2的基极,三极管V2的集电极连接二极管D2的阳极,三极管V2的发射极并联电阻R7;所述二极管D2的阳极和三极管V2的集电极之间分别并联有电阻R6、R9,所述电阻R6的另一端并联在所述电阻R4和二极管D4阴极之间;
所述电阻R9的另一端连接三极管V3的基极,所述三极管V3的集电极连接电容C3,所述电容C3的另一端分别连接二极管D1的阳极和二极管D2的阴极;
所述电阻R5的另一端并联电阻R8,所述电阻R8的另一端连接电容C4,所述电容C4和电阻R8之间并联三极管V2发射极,所述三极管V2的发射极还分别并联电阻R7和电阻R10;
所述电阻R10的另一端连接三极管V4的基极,所述三极管V4的集电极连接电容C5,所述电容C5的另一端连接电阻R11,所述电阻R11的另一端连接三极管V3的发射极,所述三极管V3的集电极并联在电容C3和电阻R17之间,三极管V4的发射极并联电容C4和电阻R16之间;
所述电容C3和电阻R17之间还分别并联有电阻R12和电阻R13,所述电阻R12的另一端连接电容C6,所述电容C6的另一端连接电容C7,所述电容C7的另一端并联在电容C4和电阻R16之间;
所述电容C4和电阻R16之间还并联电阻R15,所述电阻R15的另一端连接三极管V5的集电极,所述三极管V5的基极并联在所述电容C6和电阻R12之间,所述三极管V5的发射极连接电阻R13;
三极管V5的发射极和电阻R13之间还并联电阻R14,电阻R14的另一端分别和电阻R17、电阻R16和电容C8并联二极管D3的阴极;
电容C8的另一端并联在电阻R15和三极管V5的集电极之间,所述二极管D3的阳极连接电阻R18,所述电阻R18的另一端为输出端。
工作时,首先信号通过电阻R1进行输入,电信号通过电阻R1后经三极管V1进行放大,并通过RC电路进行滤波后进入三极管V2,再经三极管V2进行放大后分别分为两路进入三极管V3和三极管V4进行整流,最后再经三极管V5输出,并通过二极管D3和电阻R8输出;由此得到的信号能够减少信号失真,提高信号传输过程中的稳定性,减少因数据信号失真造成数据丢包的情况,从而影响数据采集的准确性;进一步减少因数据的不准确造成控制异常的情况。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,包括:第一模具和第二模具,
    所述第一模具用于压制第一方块,所述第二模具用于将所述第一模具压制的第一方块进行多次压制。
  2. 如权利要求1所述的一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,所述第一模具上设置有第一模槽,所述第一模槽的开口端盖设有第一模盖,所述第一模盖和所述第一模具用于压制第一方块。
  3. 如权利要求1所述的一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,所述第二模具其中一面设置有第二模槽,所述第二模槽的开口端设有第二模盖,
    所述第二模盖靠近所述第二模槽的一面设置有限厚块,所述限厚块用于卡设在所述第二模槽内。
  4. 如权利要求1所述的一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,所述第一方块为高导热性混合物制备而成,所述高导热性混合物包括基体树脂、碳纤维、导热性粉体的混合物。
  5. 如权利要求3所述的一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,所述的第二模槽的特征为凹凸型且两侧开口,两侧开口处可放置活动的限厚块。第二模具的第二模槽宽度与第一模具的宽度一致。
  6. 如权利要求1所述的一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,还包括操作台、翻转装置和切割台,所述第一模具、第二模具、翻转装置和切割台均设在所述操作台的上表面,所述操作台设为平板结构,下方设有支腿;
    所述翻转装置设在所述第一模具和所述第二模具的一侧,所述切割台设在所述翻转装置的一侧,所述切割台设有切割板,所述切割板靠近所述第二模具设置;
    所述翻转装置用于将所述第二模具翻转倒置在所述切割板上,所述切割台用于对所述切割板上的第一方块进行切割。
  7. 如权利要求6所述的一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,所述翻转装置包括:翻转驱动装置、链轮、第一转轴和翻板,
    所述翻转驱动装置通过第二固定杆立在所述操作台的上表面;所述翻转驱动装置的伸缩端连接第一连杆,所述第一连杆的另一端连接链条,所述链条远离第一连杆的一端固定在所述链轮的周向其中一个齿轮上;
    所述链轮轴向中心连接有第一转轴,所述第一转轴的两端通过第一固定板立在所述操作台上,所述第一固定板上设有供所述第一转轴转动的贯穿孔;
    所述第一转轴靠近所述第二模具的一端设有延伸端,所述延伸端远离所述第一固定板的一端连接翻板,所述延伸端还套设有弹簧,所述弹簧的一端固定在所述第一固定板的外侧面,另一端固定在翻板上;
    所述翻板远离所述弹簧的一端连接有夹取驱动装置,所述夹取驱动装置的伸缩端连接模具夹,所述模具夹用于将所述第二模具夹紧或松开。
  8. 如权利要求7所述的一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,所述模具夹包括第三连杆、连接台和夹取组件,所述连接台用于连接所述夹取组件和第三连杆,所述第三连杆远离连接台的一端连接夹取驱动装置;
    所述夹取组件对称设在所述连接台的两侧,并用于对第二模具进行夹取或松开,所述夹取组件和所述连接台的外侧设置有外壳,所述外壳用于将所述夹取组件和所述连接台安装为一体;
    所述夹取组件包括:第一夹块、第二夹块和第二连杆,所述第一夹块其中一端设有夹头,另一端设有第一活动槽;所述第二夹块的其中一端设有第二活动槽,另一端活动连接所述连接台;
    所述第一活动槽和所述第二活动槽内设有第二连杆,所述第二连杆通过连接轴转动连接在所述第一活动槽和所述第二活动槽内;
    所述第一夹块和所述第二夹块上分别设有两个连接轴,所述连接轴固定在所述外壳的内壁上;
    其中一个连接轴用于所述第二连杆在第一活动槽和第二活动槽内活动,另一个连接轴用于所述第一夹块和第二夹块在所述连接轴上转动;用于所述第一夹块和所述第二夹块转动的连接轴靠近所述连接台设置;
    所述第二夹块远离所述第二连杆的一端设有连接管,所述连接台内设有第二转轴,所述连接管转动的套设在所述第二转轴的周向外壁,所述连接台的内部设有第三活动槽,所述第三活动槽用于所述第二夹块在所述连接台的两侧转动。
  9. 如权利要求6述的一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,所述切割台包括连杆组件、底座和刀头,所述底座的下表面滑动设在所述第一滑轨上;
    所述第一滑轨的一端连接所述切割板,所述底座远离所述切割板的一面设有第九连杆,所述第九连杆用于连接切割台驱动装置;
    所述底座靠近所述第九连杆一端贯穿切且转动设有第三转轴,所述第三转轴一端连接电机,另一端连接第四连杆的一端,所述第四连 杆的另一端转动连接第五连杆的一端;
    所述第五连杆的另一端转动连接第六连杆的一端,所述第六连杆的另一端连接第八连杆;
    所述底座靠近所述切割板的一面顶部向外延伸设置有刀头限位台,所述底座的顶部设置有连杆限位台;
    所述连杆限位台设为三角形结构,所述三角形结构远离所述底座的一端外侧转动设有第七连杆,所述第七连杆的另一端转动连接所述第六连杆的中心位置。
  10. 如权利要求9述的一种用于石墨烯纤维取向排列的导热片制备的装置,其特征在于,所述切割板的底部还设置有垫板,所述垫板的上表面设置有第二滑轨,
    所述切割板的下表面间隔设置有滚轮,所述滚轮在所述第二滑轨内往复运动;
    所述切割板的中心贯穿有活动腔,所述活动腔的上表面和下表面均设置有齿条板,所述第九连杆设置为螺杆,所述底座上设置有用于所述第九连杆的螺纹相配合的螺孔;
    所述第九连杆远离推动电机的一端转动连接第四转轴,所述第四转轴远离所述第九连杆的一端固定有转盘,所述转盘上设置有啮合齿,所述啮合齿间隔布置在所述转盘周向外壁;
    所述啮合齿位于所述转盘周向外壁的分布角度为100°~135°。
PCT/CN2020/078635 2019-11-18 2020-03-10 一种用于石墨烯纤维取向排列的导热片制备的装置 WO2021098086A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/053,077 US11104045B1 (en) 2019-11-18 2020-03-10 Device for preparing thermally conductive sheet with graphene fibers in an oriented arrangement
JP2020561719A JP7057842B2 (ja) 2019-11-18 2020-03-10 グラフェンファイバー配向配列の熱伝導シートを製造するための装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911130092.4A CN110920126B (zh) 2019-11-18 2019-11-18 一种用于石墨烯纤维取向排列的导热片制备的装置
CN201911130092.4 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021098086A1 true WO2021098086A1 (zh) 2021-05-27

Family

ID=69854237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078635 WO2021098086A1 (zh) 2019-11-18 2020-03-10 一种用于石墨烯纤维取向排列的导热片制备的装置

Country Status (4)

Country Link
US (1) US11104045B1 (zh)
JP (1) JP7057842B2 (zh)
CN (1) CN110920126B (zh)
WO (1) WO2021098086A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111016258B (zh) * 2019-11-18 2020-09-04 苏州鸿凌达电子科技有限公司 应用于石墨烯纤维取向排列挤出成型设备
CN112040722B (zh) * 2020-08-17 2021-05-18 苏州鸿凌达电子科技有限公司 一种高热通量石墨导热膜模组堆叠方法
CN113021725B (zh) * 2021-03-02 2022-07-15 华南理工大学 一种取向可控的超高分子量聚合物异型制件成型设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295921A (ja) * 2008-06-09 2009-12-17 Kaneka Corp 厚み方向にグラファイトが配向した熱伝導シート
CN103117397A (zh) * 2013-02-04 2013-05-22 昆山弗尔赛能源有限公司 一种燃料电池用双极板的制造工艺
CN103922311A (zh) * 2014-04-14 2014-07-16 北京航空航天大学 一种高取向高致密化碳纳米管膜及其制备方法
CN105346101A (zh) * 2015-12-02 2016-02-24 中国商用飞机有限责任公司北京民用飞机技术研究中心 纤维增强热塑性树脂基复合材料层板模压方法及模压装置
CN106810876A (zh) * 2015-12-02 2017-06-09 中国科学院金属研究所 一种填料定向排布的复合材料及其制备方法
CN108192352A (zh) * 2018-02-01 2018-06-22 天津沃尔提莫新材料技术股份有限公司 一种具有取向交错排列碳纳米管的导热片及其制备方法
CN108504016A (zh) * 2016-06-14 2018-09-07 络派模切(北京)有限公司 一种导热垫片及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002715A (en) * 1989-01-03 1991-03-26 Westinghouse Electric Corp. Method for the fabrication of a heat transfer member for electronic systems
US20050040552A1 (en) * 2003-08-22 2005-02-24 Gemberling George J. Method and apparatus for compression molding of a graphite plate
FR2887961B1 (fr) * 2005-06-30 2007-09-21 Valeo Vision Sa Dispositif projecteur multifonctions code, route et aotoroute.
JP2009094110A (ja) * 2007-10-03 2009-04-30 Denki Kagaku Kogyo Kk 放熱部材、及びそのシート、およびその製造方法
WO2009147771A1 (ja) * 2008-06-02 2009-12-10 パナソニック株式会社 グラファイト複合体及びその製造方法
JP4708464B2 (ja) * 2008-09-30 2011-06-22 ファナック株式会社 ワーク把持装置
JP5358388B2 (ja) * 2009-10-08 2013-12-04 株式会社日立製作所 工作機械
CN104943223B (zh) * 2015-06-17 2016-09-07 天津大学 沿平面和厚度方向同时具有高导热系数的石墨片及制备方法
CN107022196A (zh) * 2016-02-02 2017-08-08 中兴通讯股份有限公司 导热材料、其制备方法及导热件
TWM539993U (zh) * 2016-12-21 2017-04-21 Shieh Yih Machinery Industry Co Ltd 沖頭傳動裝置
CN110000388B (zh) * 2019-04-18 2021-04-02 哈尔滨工业大学 一种新型石墨烯纳米片增强金属基复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295921A (ja) * 2008-06-09 2009-12-17 Kaneka Corp 厚み方向にグラファイトが配向した熱伝導シート
CN103117397A (zh) * 2013-02-04 2013-05-22 昆山弗尔赛能源有限公司 一种燃料电池用双极板的制造工艺
CN103922311A (zh) * 2014-04-14 2014-07-16 北京航空航天大学 一种高取向高致密化碳纳米管膜及其制备方法
CN105346101A (zh) * 2015-12-02 2016-02-24 中国商用飞机有限责任公司北京民用飞机技术研究中心 纤维增强热塑性树脂基复合材料层板模压方法及模压装置
CN106810876A (zh) * 2015-12-02 2017-06-09 中国科学院金属研究所 一种填料定向排布的复合材料及其制备方法
CN108504016A (zh) * 2016-06-14 2018-09-07 络派模切(北京)有限公司 一种导热垫片及其制备方法
CN108192352A (zh) * 2018-02-01 2018-06-22 天津沃尔提莫新材料技术股份有限公司 一种具有取向交错排列碳纳米管的导热片及其制备方法

Also Published As

Publication number Publication date
US11104045B1 (en) 2021-08-31
US20210245406A1 (en) 2021-08-12
JP7057842B2 (ja) 2022-04-20
CN110920126A (zh) 2020-03-27
CN110920126B (zh) 2020-08-28
JP2022510527A (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
WO2021098086A1 (zh) 一种用于石墨烯纤维取向排列的导热片制备的装置
CN207273326U (zh) 一种铝塑复合保温板自动开槽机
CN110919951B (zh) 采用模压制备石墨烯纤维取向排列的导热片的方法和模具
CN209006540U (zh) 一种丝杆总成校直夹具
CN217123866U (zh) 一种注塑件加工用水口切除装置
CN210211071U (zh) 一种应用在塑料制品中的毛刺修复装置
CN213107103U (zh) 一种橡胶板固定装置
CN211000155U (zh) 一种具有精确定位功能的精密模具
CN209314801U (zh) 一种酸茶压制分条装置
CN215661924U (zh) 一种保温板生产用粘接装置
CN218020751U (zh) 一种用于塑料用品制造的烫印装置
CN218838532U (zh) 一种复合材料铅笔的笔杆成型设备
CN216465469U (zh) Pbn板材件加工的固定工装
CN213675012U (zh) 一种橡胶加工设备用脱模装置
CN220219365U (zh) 一种弧形结构保温板加工装置
CN111035038A (zh) 一种带有板式换热器的压缩机
CN219276520U (zh) 一种具有修边功能的塑料件注塑模具
CN212706981U (zh) 一种保温板生产切割限位装置
CN217751574U (zh) 一种塑胶注塑件热切机
CN210646669U (zh) 一种新型智能旋转式多用切药机
CN218928387U (zh) 一种易于脱模的液压模压装置
CN216442769U (zh) 一种陶瓷加工用成型模具
CN213500631U (zh) 检波器插头注塑卸模工装
CN220741273U (zh) 一种离型膜生产用裁切定位组件
CN219748193U (zh) 一种消失模泡沫切割装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020561719

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889155

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20889155

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12.07.22)

122 Ep: pct application non-entry in european phase

Ref document number: 20889155

Country of ref document: EP

Kind code of ref document: A1