WO2021097875A1 - 一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用 - Google Patents

一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用 Download PDF

Info

Publication number
WO2021097875A1
WO2021097875A1 PCT/CN2019/120887 CN2019120887W WO2021097875A1 WO 2021097875 A1 WO2021097875 A1 WO 2021097875A1 CN 2019120887 W CN2019120887 W CN 2019120887W WO 2021097875 A1 WO2021097875 A1 WO 2021097875A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
bio
flame
resin precursor
retardant epoxy
Prior art date
Application number
PCT/CN2019/120887
Other languages
English (en)
French (fr)
Inventor
刘小青
代金月
腾娜
彭云燕
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2021097875A1 publication Critical patent/WO2021097875A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3236Heterocylic compounds

Definitions

  • the invention belongs to the field of bio-based thermosetting special epoxy resins, and particularly relates to a bio-based flame-retardant epoxy resin precursor based on natural flavonoids and a preparation method thereof.
  • Epoxy resin (EP) is a kind of thermosetting resin with a very wide range of uses. Because of its excellent comprehensive properties, it is widely used in anti-corrosion coatings, adhesives, microelectronics, aerospace and other fields. It is a very important type of thermosetting resin. material. However, most epoxy resins at this stage are prepared from bisphenol A compounds. Bisphenol A compounds are mainly derived from petroleum resources. Petroleum resources are an unsustainable resource. As its reserves are declining, it will inevitably Caused by the continuous increase in the cost of polymer materials derived from petroleum resources. In addition, bisphenol A has an estrogen-like effect, which can cause endocrine disorders and threaten the health of fetuses and children. Obesity caused by cancer and metabolic disorders is also thought to be related to this.
  • Flavonoids are a class of naturally occurring polyphenols. Most plants contain flavonoids, which play an important role in plant growth, development, flowering, fruiting, antibacterial and disease prevention. Flavonoids are also a class of substances beneficial to the human body. They have outstanding advantages such as delaying female aging, improving menopausal symptoms, osteoporosis, elevated blood lipids, breast cancer, prostate cancer, heart disease, porosity, and cardiovascular diseases. Therefore, it has very strong application prospects in the preparation of bio-based thermosetting epoxy resins.
  • the patent application document with publication number CN 108559061 A discloses a bio-based flame-retardant epoxy resin precursor based on natural isoflavone compounds, which is achieved by combining natural isoflavone compounds, malononitrile and epichlorohydrin in two steps. It is prepared by reaction, and the finally obtained epoxy resin has good flame retardant properties.
  • the bio-based system not only requires a two-step reaction to introduce cyano groups, but also requires curing at high temperature to allow the cyano groups to participate in the reaction to increase the crosslinking density of the cured product to achieve the purpose of flame retardancy. Therefore, its preparation process is complicated and curing Issues such as harsh conditions.
  • the purpose of the present invention is to provide a bio-based flame-retardant epoxy resin precursor based on natural flavonoids and its application in the preparation of epoxy resins.
  • the obtained bio-based epoxy resin has excellent flame-retardant properties. Further broaden the application field of epoxy resin.
  • Another object of the present invention is to provide a method for preparing the above-mentioned bio-based flame-retardant epoxy resin precursor, which uses bio-based natural flavonoids as raw materials to obtain a high-performance intrinsic flame-retardant epoxy resin precursor in one step.
  • the preparation method is simple, the operation is easy to understand, the reaction conditions are controllable, and it is easy to implement, and is suitable for large-scale industrial production.
  • a bio-based flame-retardant epoxy resin precursor based on natural flavonoids has the following structure (I) or (II):
  • R 1 ⁇ R 6 are all
  • R 1 , R 2 , R 4 , R 5 , R 6 are R 3 is hydrogen;
  • R 1 , R 2 , R 4 , R 6 are R 3 and R 5 are hydrogen;
  • R 1 , R 2 , R 3 , R 4 are R 5 and R 6 are hydrogen;
  • R 1 , R 2 , R 4 are R 3 , R 5 , and R 6 are hydrogen;
  • R 1 , R 2 are R 3 ⁇ R 6 are hydrogen;
  • R 7 ⁇ R 9 are all
  • R 7 is R 8 is hydrogen, and R 9 is methoxy (-OCH 3 ).
  • the bio-based high-performance intrinsic flame-retardant epoxy resin precursor structure based on natural flavonoids of the present invention contains a benzopyrone group (rigid and antibacterial), and the epoxy resin obtained based on the precursor is relatively Traditional bisphenol A epoxy resin has a huge improvement in performance, especially the improvement of glass transition temperature and flame retardancy. It can be used in occasions that require flame retardancy. Due to the difference in the structure and number of R in the structure, the glass transition temperature and flame retardant properties are also quite different. R is the structure of C 3 H 5 O 2 , the glass transition temperature and flame retardant performance of epoxy resin The better the performance.
  • the overall heat resistance and mechanical properties of the material are significantly improved; the most important thing is that compounds containing this structure will undergo isomerization under high-temperature combustion.
  • the ring structure thus acts as a barrier to heat insulation, and thus has the effect of preventing combustion.
  • the invention also discloses a preparation method of the bio-based flame-retardant epoxy resin precursor based on natural flavonoids, which includes: under the action of a phase transfer catalyst, the natural flavonoids and epichlorohydrin are combined in the presence of alkali
  • the bio-based flame-retardant epoxy resin precursor is prepared by the following reaction; the natural flavonoids are myricetin, quercetin, kaempferol, luteolin, apigenin, chrysin, genistein, thorn Any of the stalk flowers.
  • the phase transfer catalyst is selected from tetraethyl ammonium chloride, tetrabutyl ammonium bromide, benzyl triethyl ammonium chloride, benzyl trimethyl ammonium chloride, triphenyl methyl bromide Any one or more of phosphorus, triphenylethylphosphonium bromide, benzyltriphenylphosphonium chloride, benzyltriphenylphosphonium bromide, and cetyltrimethylammonium bromide; further preferred It is cetyl trimethyl ammonium bromide.
  • the said alkali is sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, more preferably sodium hydroxide.
  • the molar ratio of the natural flavonoids, epichlorohydrin, base and phase transfer catalyst is 1:(5-20):(10-20):(0.1-0.5).
  • the reaction temperature is 80-130°C, and the reaction time is 6-24h.
  • the invention also discloses the application of the biomarker flame-retardant epoxy resin precursor based on natural flavonoids in preparing the biomarker flame-retardant epoxy resin.
  • the biomarker flame-retardant epoxy resin precursor is heated and cured with an amine curing agent at 80-120° C. for 6-12 hours to obtain the biomarker flame-retardant epoxy resin.
  • the present invention has the following beneficial effects:
  • the present invention directly uses bio-based natural flavonoids as raw materials to prepare the bio-based flame-retardant epoxy resin precursor in one step.
  • the preparation method is very simple and efficient, easy to operate, well-controlled, and utilizes the existing chemical industry.
  • the equipment can be produced on a large scale, has the advantages of high yield and simple process, is suitable for large-scale industrial production, and can also reduce the existing petroleum-based epoxy resin's dependence on petrochemical resources and its environmental pollution.
  • the epoxy resin finally prepared by the present invention using the bio-based flame-retardant epoxy resin precursor based on natural flavonoids not only has good thermodynamic properties, but also exhibits excellent flame-retardant properties.
  • Fig. 1 is a proton nuclear magnetic resonance spectrum 1 H-NMR of the glycidyl ether genistein resin precursor prepared in Example 1.
  • Example 2 is a photograph of a vertical combustion experiment of the glycidyl ether genistein-DDM epoxy resin prepared in Example 1.
  • Figure 3 is a photo of the cone calorimetry experiment of the glycidyl ether genistein-DDM epoxy resin prepared in Example 1.
  • (a) is the photo of the surface morphology of the resin sample after burning, and
  • (b) is the burning of the resin sample Lateral height photo.
  • the present invention provides a bio-based flame-retardant epoxy resin precursor based on natural flavonoids and a preparation method and application thereof.
  • Those skilled in the art can learn from the content of this article and appropriately improve the structure and method parameters.
  • all similar replacements and modifications are obvious to those skilled in the art, and they all fall within the protection scope of the present invention.
  • the invention discloses a preparation method of a flame-retardant epoxy resin precursor based on biological basic signs of natural flavonoids, which comprises: glycidolizing natural flavonoids, epichlorohydrin and potassium carbonate under the action of a phase transfer catalyst Etherification reaction produces a biologically basic flame-retardant epoxy resin precursor.
  • the natural flavonoids, epichlorohydrin, alkali and phase transfer catalyst are mixed and heated to carry out the glycidyl etherification reaction, and after post-treatment, the precursor of biologically basic flame-retardant epoxy resin can be prepared.
  • the natural flavonoids are myricetin (Myricetin, CAS number: 529-44-2), quercetin (Quercetin, CAS number: 117-39-5), kaempferol (Kaempferol, CAS number: 520- 18-3), Luteolin (Luteolin, CAS number: 491-70-3), Apigenin (Apigenin, CAS number: 520-36-5), Chrysin (Chrysin, CAS number: 480-40-0) , Genistein (Genistein, CAS number: 446-72-0), Formononetin (Formononetin, CAS number: 485-72-3).
  • phase transfer catalyst does not specifically limit the phase transfer catalyst, as long as the phase transfer catalyst is well-known to those skilled in the art and can be used in the glycidyl etherification reaction, it can be specifically selected from tetraethylammonium chloride and tetrabutyl bromide.
  • benzyl triethyl ammonium chloride benzyl trimethyl ammonium chloride
  • triphenyl methyl phosphorous bromide triphenyl ethyl phosphorous bromide
  • benzyl triphenyl phosphorous chloride benzyl tris
  • phenylphosphonium bromide or cetyltrimethylammonium bromide preferably cetyltrimethylammonium bromide.
  • the present invention does not specifically limit the base, as long as the base is well known to those skilled in the art that can be used in the glycidyl etherification reaction, and can be specifically selected from sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, preferably Sodium hydroxide.
  • the molar ratio of the natural flavonoids to epichlorohydrin, alkali and phase transfer catalyst is 1:(2-30):(5-30):(0.1-0.8), preferably 1:(5-20) ): (10-20): (0.2-0.5).
  • the present invention does not specifically limit the reaction temperature and reaction time.
  • the reaction temperature and reaction time are related to specific raw materials.
  • the heating reaction temperature is 65 to 150°C, preferably 80 to 130°C; the heating reaction time is 1 to 48h, preferably 6-24h.
  • the present invention does not have any special restrictions on the reaction vessel, as long as those skilled in the art are well-known for the glycidyl etherification reaction; the present invention does not have any special restrictions on the pressure in the reaction vessel, as long as the reaction pressure is well-known to those skilled in the art. In the present invention, normal pressure is preferred.
  • the present invention has no special restrictions on the heating method, as long as the heating method is well known to those skilled in the art, the present invention is preferably water bath heating; the present invention has no special restrictions on other conditions of the reaction. In order to ensure a smooth reaction process, it is preferably Stirring is carried out during the reaction; the present invention has no particular limitation on the stirring method, as long as the stirring method is well known to those skilled in the art.
  • the present invention has no special restrictions on the conditions of the post-treatment process. It is preferable to filter and remove excess epichlorohydrin after the reaction, and then add deionized water for washing and drying to obtain a refined bio-based flame-retardant epoxy resin precursor .
  • the present invention has no particular limitation on the method of filtration, as long as it is a filtration method well known to those skilled in the art; the present invention has no particular limitation on the method for removing epichlorohydrin, and it is sufficient to use a solvent removal method well known to those skilled in the art. In the present invention, it is preferable to remove epichlorohydrin by rotary evaporation under reduced pressure.
  • the bio-based flame-retardant epoxy resin precursor obtained by the post-processing and refining is structurally characterized, and the 400 AVANCE III Spectrometer (Spectrometer) of Bruker is used to measure the 1 H-NMR of the hydrogen nuclear magnetic resonance spectrum. 400MHz, deuterated chloroform (CDCl 3 ).
  • Yield mass of epoxy resin precursor/(moles of flavonoid polyphenol compound ⁇ molar mass of epoxy resin precursor) ⁇ 100%.
  • the invention also discloses the application of the bio-based flame-retardant epoxy resin precursor to the bio-based flame-retardant special epoxy resin.
  • the present invention preferably uses the biomarker flame-retardant
  • the epoxy resin precursor is mixed with a curing agent and heated and cured to prepare an epoxy resin.
  • the curing agent is preferably an amine curing agent.
  • the source of the amine curing agent in the present invention is not particularly limited, as long as it is purchased on the market, it is preferably a common amine curing agent on the market, and more preferably diaminodiphenylmethane (DDM) or diaminodiphenyl sulfone (DDS).
  • DDM diaminodiphenylmethane
  • DDS diaminodiphenyl sulfone
  • the present invention has no special restrictions on the feed ratio of the bio-based flame-retardant epoxy resin precursor to the curing agent.
  • the feed ratio is well known to those skilled in the art.
  • the present invention is preferably based on the molar ratio of epoxy to NH. 1:1 for feeding.
  • the present invention has no particular restrictions on the heating and curing conditions.
  • the specific curing conditions can be adjusted by those skilled in the art according to the type of specific curing agent.
  • the preferred curing conditions of the present invention are heating to 80-120°C and curing for 6-12 hours to obtain a ring. Oxy resin.
  • the present invention does not particularly limit the heating and curing method, as long as the heating method is well known to those skilled in the art, the present invention is preferably heating in a blast oven.
  • the performance indicators of the cured product epoxy resin prepared by curing the bio-based flame-retardant epoxy resin precursor are all tested in accordance with the method specified in the national standard, and the specific testing standards are as follows:
  • the flame retardant performance of epoxy resin is tested according to the technical requirements of the national standard "GB/T5455-1997 Textile Burning Performance Test Vertical Method”; the epoxy resin is tested according to the technical requirements of the national standard "GBT9341-2000-Plastic Bending Performance Test Method” The mechanical properties of the resin are tested.
  • glycidyl ether genistein and curing agent DDM diaminodiphenylmethane
  • DDM diaminodiphenylmethane
  • the glass transition of the cured product obtained by detecting the curing is 223°C, and the bending strength is 141Mpa, which has good mechanical properties.
  • the vertical combustion experiment photo of the cured product is shown in Figure 2. In Figure 2, from left to right, ignition start, ignition 5s, ignition 10s, and ignition 11s; the second ignition, ignition 5s, ignition 10s, and ignition 11s.
  • the cone-shaped calorimetry experiment photo of the cured product is shown in Figure 3. It can be seen from the figure that the cured product in Example 1 has very excellent flame retardant performance, and its flame retardant performance level is V0.
  • the obtained glycidyl ether chrysin and curing agent DDM (diaminodiphenylmethane) are mixed uniformly according to the molar ratio of epoxy and NH at a one-to-one ratio, and then heated and cured in a blast oven, and finally cured at 180°C.
  • the glycidyl ether chrysin-DDM epoxy resin was obtained.
  • the obtained cured product had a glass transition of 205°C, a bending strength of 131 MPa, and a flame retardant performance level of V0.
  • the obtained glycidyl ether quercetin and curing agent DDM (diaminodiphenylmethane) are mixed uniformly according to the molar ratio of epoxy and NH at a one-to-one ratio, and then heated and cured in a blast oven, and finally cured at 180°C. , Get glycidyl ether quercetin-DDM epoxy resin.
  • the obtained cured product had a glass transition of 235° C., a bending strength of 152 MPa, and a flame retardant performance level of V0.
  • the obtained glycidyl ether luteolin and curing agent DDM (diaminodiphenylmethane) were mixed uniformly at a molar ratio of epoxy and NH at a ratio of one to one, and then heated and cured in a blast oven, and finally cured at 180°C. , To obtain glycidyl ether luteolin-DDM epoxy resin.
  • the obtained cured product had a glass transition of 228° C., a bending strength of 147 MPa, and a flame retardant performance level of V0.
  • the obtained glycidyl ether myricetin and curing agent DDM (diaminodiphenylmethane) were mixed uniformly at a molar ratio of epoxy and NH at a one-to-one ratio, and then heated and cured in a blast oven, and finally cured at 180°C.
  • the glycidyl ether myricetin-DDM epoxy resin was obtained.
  • the obtained cured product had a glass transition of 241° C., a bending strength of 165 MPa, and a flame retardant performance level of V0.
  • the obtained glycidyl ether apigenin and curing agent DDM (diaminodiphenylmethane) are mixed uniformly according to the molar ratio of epoxy and NH at a one-to-one ratio, and then heated and cured in a blast oven, and finally cured at 180°C.
  • the glycidyl ether apigenin-DDM epoxy resin is obtained.
  • the obtained cured product had a glass transition of 221°C, a bending strength of 140 MPa, and a flame retardant performance level of V0. Comparative example 1
  • the obtained glycidyl ether bisphenol A and curing agent DDM (diaminodiphenylmethane) are mixed uniformly according to the molar ratio of epoxy and NH at a one-to-one ratio, and then heated and cured in a blast oven, and finally cured at 180°C. , To obtain glycidyl ether bisphenol A-DDM epoxy resin.
  • the obtained cured product had a glass transition of 165°C, a bending strength of 110 MPa, and no flame retardant performance level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明公开了一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其在制备环氧树脂中的应用,所述前驱体具有如下式(Ⅰ)和(Ⅱ)所示的结构。本发明还公开了所述生物基本征阻燃环氧树脂前驱体的制备方法,包括:将天然黄酮类化合物与环氧氯丙烷经过一步反应制备得到所述生物基本征阻燃环氧树脂前驱体。本发明的制备流程简单、可控制性好、易于实施,适用于大规模工业化生产。本发明所述生物基本征阻燃环氧树脂前驱体固化后得到的热固性环氧树脂具备优异的热力学性能和阻燃性能,具有替代现有石油基高端环氧产品的可能性,使用范围广泛。

Description

一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用 技术领域
本发明属于生物基热固性特种环氧树脂领域,特别涉及基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法。
背景技术
环氧树脂(EP)是一种用途非常广泛的热固性树脂,因其具有优异的综合性能等被广泛应用于防腐涂料、粘接剂、微电子、航天航空等领域,是一类非常重要的热固性材料。然而,现阶段大多数的环氧树脂树脂都由双酚A化合物制备得到,双酚A化合物主要源于石油资源,而石油资源是一种不可持续资源,伴随着其储量的日益减少,必然会造成来源于石油资源的高分子材料成本的不断升高。此外,双酚A具有雌激素样作用,能够导致内分泌失调,威胁着胎儿和儿童的健康。癌症和新陈代谢紊乱导致的肥胖也被认为与此有关。欧盟认为含双酚A奶瓶会诱发性早熟,从2011年3月2日起,禁止生产含化学物质双酚A(BPA)的婴儿奶瓶。因此,开发新型的生物基单体替代双酚A制备生物基环氧树脂变得越来越重要,相关研究和开发利用越来越受人们的重视。
此外,环氧树脂的许多应用领域均要求其具有良好的阻燃性能,然而,环氧树脂的极限氧指数(LOI)仅为19.8%,属于易燃材料,这极大地限制了它们的应用。为了进一步拓展环氧树脂的应用领域,亟待开发出一类生物基高性能的特种环氧树脂,因此,制备一种生物基高性能特种环氧树脂已经成为一个紧迫的问题,在国内外引发了广泛的关注。
黄酮类化合物是一类天然存在的多酚类化合物。绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方面起着重要的作用。黄酮类化合物还是一类对人体有益的物质,具有延缓女性衰老、改善更年期症状、骨质疏松、血脂升高、乳腺癌、前列腺癌、心脏病、疏松症、心血管疾病等突出优点。因此,其在制备生物基热固性环氧树脂中具有极强的应用前景。
如公开号为CN 108559061 A的专利申请文献公开了一种基于天然异黄酮化合物的生物基阻燃环氧树脂前驱体,其通过将天然异黄酮化合物、丙二腈以及环氧氯丙烷经过两步反应制备得到,最终得到的环氧树脂具有较好的阻燃性能。但是,该生物基体系不仅需要两步反应引入氰基,还需要在高温下固化使氰基参与反应从而提升固化物的交联密度才能达到阻燃的目的,因此,其存在制备工艺复杂以及固化条件苛刻等问题。
综上所述,为了进一步扩展环氧树脂的应用领域,亟待开发出一种制备工艺简单、更具备普适性的多功能生物基单体替代双酚A制备高性能能的特种生物基环氧树脂。
发明内容
本发明的目的在于提供了一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其在制备环氧树脂中的应用,得到的生物基环氧树脂具有优异的阻燃性能,进一步扩宽了环氧树脂的应用领域。
本发明的另一目的在于提供了上述生物基本征阻燃环氧树脂前驱体的制备方法,以生物基来源天然黄酮类化合物为原料,一步反应即可得到高性能本征阻燃环氧树脂前驱体,其制备方法简单,操作易懂,反应条件可控,易于实施,适于大规模工业化生产。
本发明采用以下技术方案:
一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体,具 有如下式(Ⅰ)或式(Ⅱ)所示的结构:
Figure PCTCN2019120887-appb-000001
式(Ⅰ)中,R 1~R 6均为
Figure PCTCN2019120887-appb-000002
或,R 1、R 2、R 4、R 5、R 6
Figure PCTCN2019120887-appb-000003
R 3为氢;
或,R 1、R 2、R 4、R 6
Figure PCTCN2019120887-appb-000004
R 3、R 5为氢;
或,R 1、R 2、R 3、R 4
Figure PCTCN2019120887-appb-000005
R 5、R 6为氢;
或,R 1、R 2、R 4
Figure PCTCN2019120887-appb-000006
R 3、R 5、R 6为氢;
或,R 1、R 2
Figure PCTCN2019120887-appb-000007
R 3~R 6为氢;
式(Ⅱ)中,R 7~R 9均为
Figure PCTCN2019120887-appb-000008
或,R 7
Figure PCTCN2019120887-appb-000009
R 8为氢,R 9为甲氧基(-OCH 3)。
本发明所述基于天然黄酮类化合物的生物基高性能本征阻燃环氧树脂前驱体结构中含有苯并吡喃酮基团(刚性和抗菌),基于该前驱体所得的环氧树脂相对于传统的双酚A环氧树脂在性能上有巨大提高,尤其是玻璃化温度、阻燃性能的改善,可被用于在对阻燃有要求的场合。由于结构中R的结构与数目的不同,所述玻璃化温度和阻燃性能也有较大的差别,R均为C 3H 5O 2的结构,环氧树脂所表现的玻璃化温度和阻燃性能越好。
本发明所述天然黄酮类化合物引入到高分子聚合物中后,显著提高了材料的整体耐热性能和机械性能;最重要的是含此结构的化合物在高温燃烧下下会发生异构生成稠环结构从而起到阻隔热量的作用,进而起到阻止燃烧的效果。
本发明还公开了所述基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体的制备方法,包括:在相转移催化剂作用下,将天然黄酮类化合物与环氧氯丙烷在碱的存在下反应制得所述生物基本征阻燃环氧树脂前驱体;所述天然黄酮类化合物为杨梅素、槲皮素、山奈酚、木犀草素、芹菜素、白杨素、染料木素、刺芒柄花素中的任意一种。
优选地,所述的相转移催化剂选自四乙基氯化铵、四丁基溴化铵、苄基三乙基氯化铵、苄基三甲基氯化铵、三苯基甲基溴化磷、三苯基乙基溴化磷、苄基三苯基氯化磷、苄基三苯基溴化磷、十六烷基三甲基溴化铵中的任意一种或多种;进一步优选为十六烷基三甲基溴化铵。
优选地,所述的碱所述的碱为氢氧化钠、氢氧化钾、碳酸钠或碳酸钾,进一步优选为氢氧化钠。
优选地,所述的天然黄酮类化合物、环氧氯丙烷、碱及相转移催化剂的摩尔比为1:(5~20):(10~20):(0.1~0.5)。
优选地,所述的反应温度为80~130℃,反应时间为6~24h。
在上述反应过程中优选条件的共同作用下,提高了生物基本征阻燃环氧树脂前驱体的产率。
本发明还公开了所述基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体在制备生物基本征阻燃环氧树脂的应用。
优选地,将生物基本征阻燃环氧树脂前驱体在80~120℃条件下与胺类固化剂加热固化6~12h,得到生物基本征阻燃环氧树脂。
与现有技术相比,本发明具有以下有益效果:
(1)本发明直接采用生物基来源的天然黄酮类化合物作为原料一步制得所述生物基阻燃环氧树脂前驱体,制备方法非常简单高效,操作简便,可控制好,利用现有的化工设备就可以大规模生产,具有产率高,工艺简单的优点,适于大规模工业化生产,还可以减少现有石油基环氧树脂对石化资源的依赖及其对环境的污染。
(2)本发明利用所述基于天然黄酮类化合物的生物基阻燃环氧树脂前驱体最终制得的环氧树脂不仅具有良好的热力学性能,还表现出了优异的阻燃性能。
(3)由于天然黄酮类化合物来源于生物质原料,因此,这种生物基环氧树脂类产品的开发能够推动生物基材料的发展,对促进整个高分子材料等领域的可持续发展具有重要意义,是一种生物基、绿色、环保产品,具有节约石油资源和保护环境的双重功效。
附图说明
图1为实施例1制备的缩水甘油醚染料木素树脂前驱体的核磁共振氢谱 1H-NMR。
图2为实施例1中制备的缩水甘油醚染料木素-DDM环氧树脂垂直燃烧实验的照片。
图3为实施例1中制备的缩水甘油醚染料木素-DDM环氧树脂锥形量 热实验的照片;其中,(a)为树脂样品燃烧后表面形貌照片,(b)为树脂样品燃烧后的侧面高度照片。
具体实施方式
本发明提供了一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用,本领域技术人员可以借鉴本文内容,适当改进结构和方法参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都属于本发明保护的范围。
本发明公开了一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体的制备方法,包括:将天然黄酮类化合物、环氧氯丙烷和碳酸钾在相转移催化剂作用下进行缩水甘油醚化反应,制得生物基本征阻燃环氧树脂前驱体。
本发明将天然黄酮类化合物、环氧氯丙烷、碱和相转移催化剂混合加热进行缩水甘油醚化反应,再经过后处理即可制得生物基本征阻燃环氧树脂前驱体。
本发明所有原料,对其来源没有特别限制,在市场上购买的即可。其中,所述天然黄酮类化合物为杨梅素(Myricetin、CAS号:529-44-2)、槲皮素(Quercetin、CAS号:117-39-5)、山奈酚(Kaempferol、CAS号:520-18-3)、木犀草素(Luteolin、CAS号:491-70-3)、芹菜素(Apigenin、CAS号:520-36-5)、白杨素(Chrysin、CAS号:480-40-0)、染料木素(Genistein、CAS号:446-72-0)、刺芒柄花素(Formononetin、CAS号:485-72-3)中的任意一种。
本发明对所述相转移催化剂不做特别限定,以本领域技术人员熟知的可用于缩水甘油醚化反应的相转移催化剂即可,具体可以选自四乙基氯化铵、四丁基溴化铵、苄基三乙基氯化铵、苄基三甲基氯化铵、三苯基甲基溴化磷、三苯基乙基溴化磷、苄基三苯基氯化磷、苄基三苯基溴化磷或十 六烷基三甲基溴化铵中的一种或几种,优选为十六烷基三甲基溴化铵。本发明对所述碱不做特别限定,以本领域技术人员熟知的可用于缩水甘油醚化反应的碱即可,具体可选自氢氧化钠、氢氧化钾、碳酸钠或碳酸钾,优选为氢氧化钠。
所述的天然黄酮类化合物与环氧氯丙烷、碱及相转移催化剂的摩尔比为1:(2~30):(5~30):(0.1~0.8),优选为1:(5~20):(10~20):(0.2~0.5)。本发明对所述反应温度反应时间不做具体限制,反应温度反应时间与具体原料有关,所述的加热反应温度为65~150℃,优选为80~130℃;所述加热反应时间为1~48h,优选为6~24h。
本发明对反应容器没有特别限制,以本领域技术人员熟知的用于缩水甘油醚化反应的容器即可;本发明对反应容器内压力没有特别限制,以本领域技术人员熟知的反应压力即可,本发明中优选为常压。本发明对所述加热的方式没有特别限制,以本领域技术人员熟知的加热方式即可,本发明优选为水浴加热;本发明对反应的其他条件没有特别限制,为保证反应过程平稳,优选在反应过程中进行搅拌;本发明对搅拌的方式没有特别限制,以本领域技术人员熟知的搅拌方式即可。
本发明对后处理过程的条件没有特别限制,优选在反应结束后过滤并去除多余的环氧氯丙烷,再加入去离子水进行水洗并干燥后得到精制的生物基本征阻燃环氧树脂前驱体。本发明对过滤的方法没有特别限制,以本领域技术人员熟知的过滤方法即可;本发明对脱去环氧氯丙烷的方法没有特别限制,以本领域技术人员熟知的脱溶剂的方法即可,本发明优选为减压旋转蒸发脱去环氧氯丙烷。
本发明中,对后处理精制得到的生物基本征阻燃环氧树脂前驱体进行结构表征,采用布鲁克公司(Bruker)的400 AVANCE Ⅲ型波谱仪(Spectrometer)测定核磁共振氢谱 1H-NMR,400MHz,氘代氯仿(CDCl 3)。
本发明所述生物基本征阻燃环氧树脂前驱体的产率计算公式如下:
产率=环氧树脂前驱体质量数/(黄酮类多酚化合物的摩尔数×环氧树脂前驱体的摩尔质量)×100%。
本发明还公开了将所述生物基本征阻燃环氧树脂前驱体制备生物基本征阻燃型特种环氧树脂中的应用。
本发明对利用所述生物基本征阻燃环氧树脂前驱体制备环氧树脂的方法没有特别限制,以本领域技术人员熟知的制备方法即可,本发明优选为将所述生物基本征阻燃环氧树脂前驱体与固化剂混合加热固化后制得环氧树脂,所述固化剂优选为胺类固化剂。
本发明对胺类固化剂的来源没有特别限制,在市场上购买的即可,优选为市场上常见的胺类固化剂,进一步优选为二胺基二苯甲烷(DDM)或二氨基二苯砜(DDS)。本发明对所述生物基本征阻燃环氧树脂前驱体与固化剂的投料比没有特别限制,以本领域技术人员熟知的投料比即可,本发明优选为按照环氧和NH的摩尔比为1:1进行投料。
本发明对所述加热固化的条件没有特别限制,具体固化条件本领域技术人员根据具体固化剂的种类而调整即可,本发明优选的固化条件为加热至80~120℃固化6~12h得到环氧树脂。本发明对所述加热固化的方式没有特别限制,以本领域技术人员熟知的加热方式即可,本发明优选为在鼓风烘箱内进行加热。
在本发明中,利用所述生物基本征阻燃环氧树脂前驱体固化制得的固化产物环氧树脂的性能指标均按照国家标准规定的方法进行检测,具体检测标准如下:
按照国家标准《GB/T5455-1997纺织品燃烧性能试验垂直法》的技术要求对环氧树脂的阻燃性能进行检测;按照国家标准《GBT9341-2000-塑料弯曲性能试验方法》的技术要求对环氧树脂的力学性能进行检测。
为了进一步理解本发明,以下结合实施例对本发明提供的制备方法和应用进行详细描述。
实施例1
将1mol染料木素和6mol环氧氯丙烷在10mol碳酸钾和0.2mol四丁基溴化铵的存在下,在80℃下反应24小时,后经过滤、减压旋转蒸发去除多余的环氧氯丙烷,水洗及干燥后得到缩水甘油醚染料木素。
计算得到产物的产率为89%,其核磁共振氢谱 1H-NMR如图1所示,图上的各个峰与缩水甘油醚染料木素结构上面的氢原子都是一一对应的。
将得到的缩水甘油醚染料木素与固化剂DDM(二胺基二苯甲烷)按照环氧和NH一比一的摩尔比下混合均匀后在鼓风烘箱进行加热固化,最终至180℃完全固化,得到缩水甘油醚染料木素-DDM环氧树脂。
检测固化得到的固化产物的玻璃化转变为223℃,弯曲强度为141Mpa,其具有较好的力学性能。该固化产物的垂直燃烧实验照片如图2所示,图2中,从左自右依次为点火开始、点火5s、点火10s、点火11s;第二次点火、点火5s、点火10s、点火11s。该固化产物的锥形量热实验照片如图3所示,由图可知,实施例1中的固化产物具有非常优异的阻燃性能,其阻燃性能级别为V0。
实施例2
将1mol白杨素和5mol环氧氯丙烷在15mol碳酸钾和0.3mol四丁基溴化铵的存在下,在90℃下反应18小时,后经过滤、减压旋转蒸发去除多余的环氧氯丙烷,水洗及干燥后得到缩水甘油醚白杨素,产率为78%。
将得到的缩水甘油醚白杨素与固化剂DDM(二胺基二苯甲烷)按照环氧和NH一比一的摩尔比下混合均匀后在鼓风烘箱进行加热固化,最终至180℃完全固化,得到缩水甘油醚白杨素-DDM环氧树脂。所得的固化产物的玻璃化转变为205℃,弯曲强度为131MPa,阻燃性能级别V0。
实施例3
将1mol槲皮素和15mol环氧氯丙烷在18mol碳酸钾和0.5mol四丁基溴化铵的存在下,在100℃下反应12小时,后经过滤、减压旋转蒸发去除多余的环氧氯丙烷,水洗及干燥后得到缩水甘油醚槲皮素,产率为88%。
将得到的缩水甘油醚槲皮素与固化剂DDM(二胺基二苯甲烷)按照环氧和NH一比一的摩尔比下混合均匀后在鼓风烘箱进行加热固化,最终至180℃完全固化,得到缩水甘油醚槲皮素-DDM环氧树脂。所得的固化产物的玻璃化转变为235℃,弯曲强度为152MPa,阻燃性能级别V0。
实施例4
将1mol木犀草素和12mol环氧氯丙烷在14mol碳酸钾和0.4mol四丁基溴化铵的存在下,在110℃下反应20小时,后经过滤、减压旋转蒸发去除多余的环氧氯丙烷,水洗及干燥后得到缩水甘油醚木犀草素,产率为85%。
将得到的缩水甘油醚木犀草素与固化剂DDM(二胺基二苯甲烷)按照环氧和NH一比一的摩尔比下混合均匀后在鼓风烘箱进行加热固化,最终至180℃完全固化,得到缩水甘油醚木犀草素-DDM环氧树脂。所得的固化产物的玻璃化转变为228℃,弯曲强度为147MPa,阻燃性能级别V0。
实施例5
将1mol杨梅素和20mol环氧氯丙烷在20mol碳酸钾和0.5mol四丁基溴化铵的存在下,在120℃下反应10小时,后经过滤、减压旋转蒸发去除多余的环氧氯丙烷,水洗及干燥后得到缩水甘油醚杨梅素,产率为89%。
将得到的缩水甘油醚杨梅素与固化剂DDM(二胺基二苯甲烷)按照环氧和NH一比一的摩尔比下混合均匀后在鼓风烘箱进行加热固化,最终至180℃完全固化,得到缩水甘油醚杨梅素-DDM环氧树脂。所得的固化产物的玻璃化转变为241℃,弯曲强度为165MPa,阻燃性能级别V0。
实施例6
将1mol芹菜素和14mol环氧氯丙烷在16mol碳酸钾和0.2mol四丁基溴化铵的存在下,在130℃下反应6小时,后经过滤、减压旋转蒸发去除多余的环氧氯丙烷,水洗及干燥后得到缩水甘油醚芹菜素,产率为79%。
将得到的缩水甘油醚芹菜素与固化剂DDM(二胺基二苯甲烷)按照环氧和NH一比一的摩尔比下混合均匀后在鼓风烘箱进行加热固化,最终至180℃完全固化,得到缩水甘油醚芹菜素-DDM环氧树脂。所得的固化产物的玻璃化转变为221℃,弯曲强度为140MPa,阻燃性能级别V0。对比例1
将1mol双酚A和8mol环氧氯丙烷在3mol氢氧化钠和0.5mol四丁基溴化铵的存在下,在100℃下反应8小时,后经过滤、减压旋转蒸发去除多余的环氧氯丙烷,水洗及干燥后得到缩水甘油醚双酚A,产率为80%。
将得到的缩水甘油醚双酚A与固化剂DDM(二胺基二苯甲烷)按照环氧和NH一比一的摩尔比下混合均匀后在鼓风烘箱进行加热固化,最终至180℃完全固化,得到缩水甘油醚双酚A-DDM环氧树脂。所得的固化产物的玻璃化转变为165℃,弯曲强度为110MPa,无阻燃性能级别。

Claims (8)

  1. 一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体,其特征在于,具有如下式(Ⅰ)或式(Ⅱ)所示的结构:
    Figure PCTCN2019120887-appb-100001
    式(Ⅰ)中,R 1~R 6均为
    Figure PCTCN2019120887-appb-100002
    或,R 1、R 2、R 4、R 5、R 6
    Figure PCTCN2019120887-appb-100003
    R 3为氢;
    或,R 1、R 2、R 4、R 6
    Figure PCTCN2019120887-appb-100004
    R 3、R 5为氢;
    或,R 1、R 2、R 3、R 4
    Figure PCTCN2019120887-appb-100005
    R 5、R 6为氢;
    或,R 1、R 2、R 4
    Figure PCTCN2019120887-appb-100006
    R 3、R 5、R 6为氢;
    或,R 1、R 2
    Figure PCTCN2019120887-appb-100007
    R 3~R 6为氢;
    式(Ⅱ)中,R 7~R 9均为
    Figure PCTCN2019120887-appb-100008
    或,R 7
    Figure PCTCN2019120887-appb-100009
    R 8为氢,R 9为甲氧基。
  2. 根据权利要求1所述的基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体的制备方法,其特征在于:
    在相转移催化剂作用下,将天然黄酮类化合物与环氧氯丙烷在碱的存在下反应制得所述生物基本征阻燃环氧树脂前驱体;
    所述天然黄酮类化合物为杨梅素、槲皮素、山奈酚、木犀草素、芹菜素、料木素、刺芒柄花素中的任意一种。
  3. 根据权利要求2所述的基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体的制备方法,其特征在于:
    所述的相转移催化剂选自四乙基氯化铵、四丁基溴化铵、苄基三乙基氯化铵、苄基三甲基氯化铵、三苯基甲基溴化磷、三苯基乙基溴化磷、苄基三苯基氯化磷、苄基三苯基溴化磷、十六烷基三甲基溴化铵中的任意一种或多种。
  4. 根据权利要求2所述的基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体的制备方法,其特征在于:
    所述的碱为氢氧化钠、氢氧化钾、碳酸钠或碳酸钾。
  5. 根据权利要求2所述的基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体的制备方法,其特征在于:
    所述的天然黄酮类化合物、环氧氯丙烷、碱及相转移催化剂的摩尔比为1:(5~20):(10~20):(0.1~0.5)。
  6. 根据权利要求2所述的基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体的制备方法,其特征在于:
    所述的反应温度为80~130℃,反应时间为6~24h。
  7. 根据权利要求1所述的基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体在制备生物基本征阻燃环氧树脂的应用。
  8. 根据权利要求7所述的应用,其特征在于:
    将生物基本征阻燃环氧树脂前驱体在80~120℃条件下与胺类固化剂加热固化6~12h,得到生物基本征阻燃环氧树脂。
PCT/CN2019/120887 2019-11-21 2019-11-26 一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用 WO2021097875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911149783.9 2019-11-21
CN201911149783.9A CN110922394B (zh) 2019-11-21 2019-11-21 一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021097875A1 true WO2021097875A1 (zh) 2021-05-27

Family

ID=69850609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120887 WO2021097875A1 (zh) 2019-11-21 2019-11-26 一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110922394B (zh)
WO (1) WO2021097875A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922394B (zh) * 2019-11-21 2021-04-06 中国科学院宁波材料技术与工程研究所 一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用
CN111875593B (zh) * 2020-08-10 2021-09-28 中国科学院宁波材料技术与工程研究所 一种低粘度生物基阻燃环氧树脂前驱体及其制法和应用
CN112812275A (zh) * 2020-12-30 2021-05-18 合肥学院 一种木犀草素基环氧树脂及其制备方法
CN116622060B (zh) * 2022-08-15 2024-03-12 徐州安联木业有限公司 多功能生物质交联剂、植物蛋白胶黏剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925590A (zh) * 2008-01-24 2010-12-22 吉利德帕洛阿尔托股份有限公司 治疗成瘾的aldh-2抑制剂
US20160032043A1 (en) * 2013-03-14 2016-02-04 Case Western Reserve University Bisphenol polymer precursor replacements
US20180338948A1 (en) * 2017-05-23 2018-11-29 College Of Medicine Pochon Cha University Industry -Academic Cooperation Foundation Methods for treating pulmonary fibrosis using chromenone derivatives
CN110922394A (zh) * 2019-11-21 2020-03-27 中国科学院宁波材料技术与工程研究所 一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158810B2 (en) * 2006-07-27 2012-04-17 Gilead Sciences, Inc. ALDH-2 inhibitors in the treatment of addiction
CN103059265A (zh) * 2013-01-20 2013-04-24 安徽善孚新材料科技有限公司 一种含萘环结构无卤阻燃环氧树脂及其制备方法
CN108559061B (zh) * 2018-03-27 2020-06-16 中国科学院宁波材料技术与工程研究所 一种基于天然异黄酮化合物的生物基阻燃环氧树脂前驱体及其制备方法和应用
CN109384775A (zh) * 2018-08-29 2019-02-26 中国科学院宁波材料技术与工程研究所 一种含环状酰胺结构的生物基环氧树脂前驱体及其制备方法和应用
CN110408003B (zh) * 2019-07-02 2022-03-29 大连理工大学 一种基于天然厚朴衍生物的生物基环氧树脂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925590A (zh) * 2008-01-24 2010-12-22 吉利德帕洛阿尔托股份有限公司 治疗成瘾的aldh-2抑制剂
US20160032043A1 (en) * 2013-03-14 2016-02-04 Case Western Reserve University Bisphenol polymer precursor replacements
US20180338948A1 (en) * 2017-05-23 2018-11-29 College Of Medicine Pochon Cha University Industry -Academic Cooperation Foundation Methods for treating pulmonary fibrosis using chromenone derivatives
CN110922394A (zh) * 2019-11-21 2020-03-27 中国科学院宁波材料技术与工程研究所 一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAI JINYUE, PENG YUNYAN, TENG NA, LIU YUAN, LIU CHUANCHUAN, SHEN XIAOBIN, MAHMUD SAKIL, ZHU JIN, LIU XIAOQING: "High-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, AMERICAN CHEMICAL SOCIETY, US, vol. 6, no. 6, 4 June 2018 (2018-06-04), US, pages 7589 - 7599, XP055813004, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.8b00439 *
YADAV, D.K. ; GAUTAM, A.K. ; KUREEL, J. ; SRIVASTAVA, K. ; SAHAI, M. ; SINGH, D. ; CHATTOPADHYAY, N. ; MAURYA, R.: "Synthetic analogs of daidzein, having more potent osteoblast stimulating effect", BIORGANIC & MEDICINAL CHEMISTRY LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 21, no. 2, 15 January 2011 (2011-01-15), Amsterdam , NL, pages 677 - 681, XP027593533, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2010.12.008 *

Also Published As

Publication number Publication date
CN110922394A (zh) 2020-03-27
CN110922394B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2021097875A1 (zh) 一种基于天然黄酮类化合物的生物基本征阻燃环氧树脂前驱体及其制备方法和应用
CN109734684B (zh) 一种基于天然酚类单体的生物基阻燃环氧树脂前驱体及其制备方法和应用
CN109467674B (zh) 一种白藜芦醇基阻燃环氧树脂及其制备方法
CN110408003A (zh) 一种基于天然厚朴衍生物的生物基环氧树脂的制备方法
CN110128611B (zh) 低温固化生物基苯并噁嗪树脂及其制备方法
CN102382079B (zh) 一种衣康酸缩水甘油酯及其制备方法和应用
CN111825829B (zh) 一种含三嗪环结构的生物基环氧树脂及其制备方法
CN112552482B (zh) 一种生物基磷杂菲联苯型环氧树脂及其制备方法和应用
WO2021121426A1 (zh) 一种基于原儿茶酸的环氧树脂的合成和应用
CN112876509B (zh) 一种生物基阻燃厚朴酚环氧单体及制备方法和在阻燃环氧树脂中的应用
CN108559061B (zh) 一种基于天然异黄酮化合物的生物基阻燃环氧树脂前驱体及其制备方法和应用
CN109384775A (zh) 一种含环状酰胺结构的生物基环氧树脂前驱体及其制备方法和应用
CN110835402B (zh) 一种基于香草醛的低粘度生物基环氧树脂及其制备方法
CN108976418B (zh) 一种基于呋喃衍生物和环三磷腈的三维结构阻燃剂及其制备方法
CN111057050B (zh) 生物基苯并噁嗪树脂的单体、苯并噁嗪树脂及其制备方法
CN111138423B (zh) 苯并噁嗪树脂的单体、苯并噁嗪树脂及其制备方法
CN102408489A (zh) 一种复合变性淀粉的制备方法
CN109734923B (zh) 一种生物基柔性环氧树脂的制备方法
CN110396199A (zh) 改性环氧树脂及其制备方法
CN113292703A (zh) 一种热学和力学性能优异的无磷全生物基阻燃环氧树脂及其绿色制备方法
CN113788823B (zh) 一种基于香草醛的生物基环氧树脂及其制备方法
CN114644743B (zh) 低温快速固化酚醛树脂制备工艺
US10738144B2 (en) Flame-retardant bismaleimide resin and preparation method thereof
CN113024487B (zh) 大麦芽碱基缩水甘油醚及其制备方法和应用
CN104292460A (zh) 天冬氨酸-衣康酸共聚物及其合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953095

Country of ref document: EP

Kind code of ref document: A1