WO2021097729A1 - 两级控制信道发送方法、终端设备及通信装置 - Google Patents

两级控制信道发送方法、终端设备及通信装置 Download PDF

Info

Publication number
WO2021097729A1
WO2021097729A1 PCT/CN2019/119796 CN2019119796W WO2021097729A1 WO 2021097729 A1 WO2021097729 A1 WO 2021097729A1 CN 2019119796 W CN2019119796 W CN 2019119796W WO 2021097729 A1 WO2021097729 A1 WO 2021097729A1
Authority
WO
WIPO (PCT)
Prior art keywords
level control
control channel
resources occupied
resource
resource set
Prior art date
Application number
PCT/CN2019/119796
Other languages
English (en)
French (fr)
Inventor
郭文婷
苏宏家
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/119796 priority Critical patent/WO2021097729A1/zh
Priority to CN201980100343.6A priority patent/CN114557070A/zh
Priority to EP19953294.6A priority patent/EP4054257A4/en
Priority to CA3158740A priority patent/CA3158740A1/en
Publication of WO2021097729A1 publication Critical patent/WO2021097729A1/zh
Priority to US17/664,092 priority patent/US20220279486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • This application relates to the field of communications, and in particular to a two-level control channel transmission method, terminal equipment and communication device.
  • V2X communication refers to the communication between the vehicle and anything outside, including vehicle-to-vehicle communication (V2V), vehicle-to-pedestrian communication (V2P), vehicle-to-infrastructure communication (vehicle to infrastructure) , V2I), vehicle to network communication (V2N) and other application scenarios.
  • V2V vehicle-to-vehicle communication
  • V2P vehicle-to-pedestrian communication
  • V2I vehicle-to-infrastructure communication
  • V2N vehicle to network communication
  • the existing LTE V2X communication uses the resource mapping method as shown in FIG. 1.
  • the transmission resource scheduled at one time includes one or multiple consecutive sub-channels in the frequency domain, and each sub-channel includes consecutive multiple resource blocks (resource block, RB), such as 10 RBs, and one in the time domain.
  • the physical sidelink control channel (PSCCH) occupies the two consecutive RBs with the lowest sequence number in the frequency domain, and is used to transmit control information, such as sidelink control information (SCI);
  • SCI sidelink control information
  • the link physical sidelink share channel (PSSCH) occupies the remaining RBs in the subchannels in a frequency division multiplexing (FDM) manner, and is used to transmit data (data) information.
  • FDM frequency division multiplexing
  • the size of the physical resources occupied by the PSCCH channel is fixed, and one data transmission is accompanied by one control information transmission.
  • the receiving end uses sub-channels as the granularity in the entire frequency domain, blindly detects all possible control channels, and decodes the data channel according to the correctly decoded control information to obtain data information.
  • the length of the control information is variable. Therefore, the above resource mapping method is no longer applicable.
  • the embodiments of the application provide a two-level control channel transmission method, terminal equipment, and communication device, which are suitable for V2X, car networking, intelligent networked vehicles, assisted driving, intelligent driving and other fields, and can solve the resource mapping of the second-level control channel
  • the problem is to ensure the reliability of the second-level control channel and effectively reduce the decoding delay of the second-level control channel.
  • a two-level control channel transmission method is provided, which is applied to a first terminal device.
  • the method includes: determining the resources occupied by the second-level control channel and the resources occupied by the data channel in the second resource set.
  • the second resource set is located after the first resource set in the time domain and is adjacent to the first resource set, and the second-level control channel occupies all symbols in the second resource set in the time domain.
  • the second-level control channel and data channel are sent.
  • the average transmit power of the second-level control channel is higher than the average transmit power of the data channel.
  • the first terminal device can determine the resources occupied by the second-level control channel and the data channel from the second resource set that does not overlap with the first resource set in the time domain.
  • Resources the second-level control channel occupies all time-domain symbols in the second resource set, and the average transmit power of the second-level control channel is higher than the average transmit power of the data channel. That is to say, in the scenario where the first-level control channel is power-enhanced, the second-level control channel can avoid the time domain symbols occupied by the first-level control channel, so that the second-level control channel can also be power-enhanced.
  • Improve the decoding success rate of the second-level control channel thereby enhancing the reliability of the second-level control channel.
  • the second-level control channel occupies all the time-domain symbols in the second resource set. Therefore, when the second-level control channel is power-enhanced, the adverse effects of the second-level control channel on the data channel can be reduced, thereby ensuring The reliability of the data channel.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the first resource set includes resources occupied by the first-level control channel
  • the first-level control channel carries the aggregation level (AL) of the second-level control channel.
  • the method provided in the first aspect may further include: determining the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity, and then determining the number of resources occupied by the data channel.
  • determining the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity may include: determining the product of the aggregation level of the second-level control channel and the minimum resource scheduling granularity The number of resources occupied by the second-level control channel.
  • the minimum resource scheduling granularity may be N resource block RBs in the frequency domain, and may be all symbols in the second resource set in the time domain, and N is a positive integer.
  • the method provided in the first aspect may further include: determining the frequency domain position of the resource occupied by the second-level control channel in the second resource set according to the amount of resources occupied by the second-level control channel.
  • the resources occupied by the second-level control channel may be determined from the second resource set according to a preset rule.
  • the second-level control channel may start from the resource block with the smallest number, and occupy one or more resource blocks in the second resource set in ascending order of the resource block number, so as to save resource overhead.
  • both the second-level control channel and the data channel can independently perform multiple input multiple output (MIMO) coding, layer mapping, and resource mapping, that is, the second-level control channel and data channel
  • MIMO coding, layer mapping, and resource mapping can be performed independently on the resources occupied by each, which can simplify the coding and modulation process of the first terminal device when multiple channels are included to improve efficiency.
  • the method provided by the first aspect may further include: mapping the second-level control channel on the resources occupied by the second-level control channel in a manner of frequency domain first and then time domain, and on the resources occupied by the data channel, The data channel is mapped in the frequency domain first and then the time domain.
  • the method provided by the first aspect may further include: sending the first Level control channel.
  • the resources occupied by the first-level control channel are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol.
  • the modulation and coding parameters of the first-level control channel are also pre-configured by the network or predefined by the protocol.
  • the resource configuration information and demodulation and decoding parameters of the first-level control channel are known, and the terminal equipment that receives the first-level control channel, such as the second terminal device provided in the second aspect below, can analyze it accordingly.
  • the first-level control channel obtains the content carried by the first-level control channel, such as the resource configuration information and modulation and coding parameters of the second-level control channel.
  • a two-stage control channel receiving method is provided, which is applied to a second terminal device.
  • the method includes: receiving a second-level control channel and a data channel. Among them, the average transmit power of the second-level control channel is higher than the average transmit power of the data channel. Then, the resources occupied by the second-level control channels in the second resource set are determined, and the second-level control channels are analyzed according to the resources occupied by the second-level control channels to obtain the resources occupied by the data channels in the second resource set.
  • the second resource set is located after the first resource set in the time domain and is adjacent to the first resource set, and the second-level control channel occupies all symbols in the second resource set in the time domain. After that, the data channel is analyzed according to the resources occupied by the data channel, and the data carried by the data channel is obtained.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the first resource set includes resources occupied by the first-level control channel
  • the first-level control channel carries the aggregation level of the second-level control channel.
  • the method provided by the second aspect may further include: determining the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity.
  • determining the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity may include: determining the product of the aggregation level of the second-level control channel and the minimum resource scheduling granularity The number of resources occupied by the second-level control channel.
  • the minimum resource scheduling granularity may be N resource block RBs in the frequency domain, and may be all symbols in the second resource set in the time domain, and N is a positive integer.
  • the method provided by the second aspect may further include: determining the frequency domain position of the resource occupied by the second-level control channel in the second resource set according to the amount of resources occupied by the second-level control channel.
  • the frequency domain position of the resource occupied by the second-level control channel may be determined from the second resource set according to a preset rule.
  • the second-level control channel may start from the resource block with the smallest number, and occupy one or more resource blocks in the second resource set in ascending order of the resource block number. In this way, the second-level control channel occupancy may not be transmitted.
  • the frequency domain location of the resource is indicated to save resource overhead.
  • the second terminal device since the second-level control channel carries the demodulation parameters and resource configuration information of the data channel, the second terminal device needs to analyze the second-level control channel before it can analyze the data channel.
  • a demodulation & decoding process in the reverse order of the modulation and coding process provided in the first aspect can be performed to analyze the second-level control channel and data channel, and obtain the first-level control channel and data channel.
  • the demodulation and decoding process of the second-level control channel and data channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel de-coding. code.
  • the method provided in the second aspect may further include: using the frequency domain first on the resources occupied by the second-level control channel The second-level control channel is demapped in the time domain, and the data channel is demapped in the frequency domain first and then the time domain on the resources occupied by the data channel.
  • the second terminal device needs to analyze the first-level control channel first. Only then can the second-level control channel be analyzed. Therefore, corresponding to the sending of the first-level control channel provided by the first aspect, the method provided by the second aspect further includes: receiving and parsing the first-level control channel.
  • a two-level control channel transmission method includes: selecting resources occupied by a second-level control channel from a first resource set or a second resource set; the first resource set includes resources occupied by the first-level control channel, and the second resource set is located in the first resource set in the time domain. After the resource collection, and adjacent to the first resource collection.
  • the resource occupied by the second-level control channel when the resource occupied by the second-level control channel is selected from the first resource set, the resource occupied by the second-level control channel and the resource occupied by the first-level control channel are adjacent in the frequency domain; or, when the second resource is used
  • the resources occupied by the second-level control channels are selected from the set, and the resources occupied by the second-level control channels are adjacent to the resources occupied by the first-level control channels in the time domain. Then, the first-level control channel and the second-level control channel are transmitted.
  • the resources occupied by the first-level control channel are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol.
  • the modulation and coding parameters of the first-level control channel are also pre-configured by the network or predefined by the protocol.
  • the resource configuration information and demodulation and decoding parameters of the first-level control channel are known, and the terminal device that receives the first-level control channel, such as the second terminal device provided in the following fourth aspect, can analyze it accordingly.
  • the first-level control channel obtains the content carried by the first-level control channel, such as the resource configuration information and modulation and coding parameters of the second-level control channel.
  • the first terminal device can select the resources occupied by the second-level control channel from the first resource set or the second resource set, when the first-level control channel is not power-enhanced .
  • the resources occupied by the second-level control channels can be selected from the first resource set, or, when the power is enhanced for the first-level control channels, the resources occupied by the second-level control channels can be selected from the second resource set to Ensure the reliability of the second-level control channel, and can reduce the decoding delay of the second-level control channel.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the above selection of the resources occupied by the second-level control channel from the first resource set or the second resource set may include: when the total resource of the first resource set and the first-level control channel occupy When the difference between the number of resources is greater than or equal to the number of resources occupied by the second-level control channel, the resources occupied by the second-level control channel are selected from the first resource set to further reduce the decoding delay of the second-level control channel.
  • the time domain start symbol of the resource occupied by the second-level control channel may be the same time domain symbol as the time domain start symbol of the resource occupied by the first-level control channel, that is, the resource occupied by the second-level control channel may be The resources occupied by the first-level control channel are aligned in the time domain. In this way, the indication information of the time-domain start symbol indicating the resources occupied by the second-level control channel can be saved, so as to save resource overhead.
  • the above selection of the resources occupied by the second-level control channel from the first resource set or the second resource set may include: when the total resource of the first resource set and the first-level control channel When the difference in the number of occupied resources is less than the number of resources occupied by the second-level control channel, select the resources occupied by the second-level control channel from the second resource set, that is, when the first resource set is not enough to carry the first-level control channel at the same time With the second-level control channel, the resources occupied by the second-level control channel can be selected from the second resource set, and the time-domain symbols occupied by the first-level control channel can be avoided when the power is enhanced for the first-level control channel , To ensure the reliability of the second-level control channel.
  • the resources occupied by the second-level control channel and the resources occupied by the first-level control channel are adjacent in the time domain, and may include: the time-domain start symbol of the resources occupied by the second-level control channel is the first-level control The next time domain symbol of the time domain end symbol of the resource occupied by the channel, that is, the second level control channel is mapped to the second level control channel from the next symbol of the time domain symbol occupied by the first level control channel, so as to send the second level control as early as possible Channel, thereby reducing the decoding delay of the second-level control channel.
  • the frequency domain start position of the resources occupied by the second-level control channel may be the same as the frequency domain start position of the resources occupied by the first-level control channel, that is, the resources occupied by the second-level control channel may be the same as the first-level control channel.
  • the resources occupied by the control channel are aligned in the frequency domain, which can save the frequency domain starting position indicating the resources occupied by the second-level control channel to save resource overhead.
  • the frequency domain start position of the resources occupied by the second-level control channel can also be the same as the frequency domain start position of the second resource set, that is, the resources occupied by the second-level control channel can be in the frequency domain with the second resource set.
  • the upper alignment can save the start position of the frequency domain indicating the resources occupied by the second-level control channel, so as to save resource overhead.
  • the method provided by the third aspect may further include: obtaining the resources occupied by the data channel according to the resources occupied by the second-level control channel, and sending the data channel on the resources occupied by the data channel.
  • the resources occupied by the data channel may include: resources in the first resource set and the second resource set except for the resources occupied by the first-level control channel, the resources occupied by the second-level control channel, and the resources occupied by the demodulation reference signal. Select in.
  • both the second-level control channel and the data channel can independently perform multiple-input multiple-output MIMO coding, layer mapping, and resource mapping, that is, the second-level control channel and data channel can independently complete channel coding
  • independently performing MIMO coding, layer mapping, and resource mapping on the resources occupied by each can simplify the coding and modulation process of the first terminal device, thereby improving efficiency.
  • the method provided by the third aspect may further include: on the resources occupied by the second-level control channels, mapping the second-level control channels in the frequency domain first and then the time domain, and on the resources occupied by the data channels, The data channel is mapped in the frequency domain first and then the time domain.
  • a two-level control channel receiving method is provided, which is applied to a second terminal device.
  • the method includes: receiving a first-level control channel and a second-level control channel.
  • the first-level control channel is analyzed to obtain the resources occupied by the second-level control channel.
  • the resources occupied by the second-level control channel are selected from the first resource set or the second resource set; the first resource set includes the resources occupied by the first-level control channel, and the second resource set is located in the first resource in the time domain After the collection, and adjacent to the first resource collection.
  • the resource occupied by the second-level control channel when the resource occupied by the second-level control channel is selected from the first resource set, the resource occupied by the second-level control channel and the resource occupied by the first-level control channel are adjacent in the frequency domain; or, when the second resource is used
  • the resources occupied by the second-level control channels are selected from the set, and the resources occupied by the second-level control channels are adjacent to the resources occupied by the first-level control channels in the time domain. After that, the content carried by the second-level control channel is analyzed according to the resources occupied by the second-level control channel.
  • the resources occupied by the first-level control channel are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol.
  • the modulation and coding parameters of the first-level control channel are also pre-configured by the network or predefined by the protocol.
  • the resource configuration information and demodulation and decoding parameters of the first-level control channel are known, and the terminal equipment that receives the first-level control channel, such as the second terminal device provided in the second aspect below, can analyze it accordingly.
  • the first-level control channel obtains the content carried by the first-level control channel, such as the resource configuration information and modulation and coding parameters of the second-level control channel.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the above selection of the resources occupied by the second-level control channel from the first resource set or the second resource set may include: when the total resource of the first resource set and the first-level control channel occupy When the difference between the number of resources is greater than or equal to the number of resources occupied by the second-level control channel, the resources occupied by the second-level control channel are selected from the first resource set to further reduce the decoding delay of the second-level control channel.
  • the time domain start symbol of the resource occupied by the second-level control channel may be the same time domain symbol as the time domain start symbol of the resource occupied by the first-level control channel, that is, the resource occupied by the second-level control channel may be The resources occupied by the first-level control channel are aligned in the time domain. In this way, the indication information of the time-domain start symbol indicating the resources occupied by the second-level control channel can be saved, so as to save resource overhead.
  • the above selection of the resources occupied by the second-level control channel from the first resource set or the second resource set may include: when the total resource of the first resource set and the first-level control channel When the difference in the number of occupied resources is less than the number of resources occupied by the second-level control channel, select the resources occupied by the second-level control channel from the second resource set, that is, when the first resource set is not enough to carry the first-level control channel at the same time With the second-level control channel, the resources occupied by the second-level control channel can be selected from the second resource set, and the time-domain symbols occupied by the first-level control channel can be avoided when the power is enhanced for the first-level control channel , To ensure the reliability of the second-level control channel.
  • the resources occupied by the second-level control channel and the resources occupied by the first-level control channel are adjacent in the time domain, and may include: the time-domain start symbol of the resources occupied by the second-level control channel is the first-level control The next time domain symbol of the time domain end symbol of the resource occupied by the channel, that is, the second level control channel is mapped to the second level control channel from the next symbol of the time domain symbol occupied by the first level control channel, so as to send the second level control as early as possible Channel, thereby reducing the decoding delay of the second-level control channel.
  • the frequency domain start position of the resources occupied by the second-level control channel may be the same as the frequency domain start position of the resources occupied by the first-level control channel, that is, the resources occupied by the second-level control channel may be the same as the first-level control channel.
  • the resources occupied by the control channel are aligned in the frequency domain, which can save the frequency domain starting position indicating the resources occupied by the second-level control channel to save resource overhead.
  • the frequency domain start position of the resources occupied by the second-level control channel can also be the same as the frequency domain start position of the second resource set, that is, the resources occupied by the second-level control channel can be in the frequency domain with the second resource set.
  • the upper alignment can save the start position of the frequency domain indicating the resources occupied by the second-level control channel, so as to save resource overhead.
  • the first-level control channel and the second-level control channel serve for data transmission
  • the second-level control channel carries demodulation parameters and resource configuration information of the data channel. Therefore, in a possible design method, it corresponds to "Acquire the resources occupied by the data channel according to the resources occupied by the second-level control channel, and send the data channel on the resources occupied by the data channel" provided by the third aspect
  • the method provided by the fourth aspect may further include: obtaining the resources occupied by the data channel and demodulation parameters according to the resources occupied by the second-level control channel, and analyzing the data channel according to the resources occupied by the data channel and the demodulation parameters to obtain the data channel Data carried.
  • the resources occupied by the data channel may include: among the first resource set and the second resource set except for the resources occupied by the first-level control channel, the resources occupied by the second-level control channel, and the resources occupied by the demodulation reference signal of the data channel. Select from external resources.
  • a demodulation and decoding process in the reverse order of the modulation and coding process provided by the third aspect can be performed to analyze the second-level control channel and data channel, Obtain the content carried by the second-level control channel and the data carried by the data channel.
  • the demodulation and decoding process of each channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel decoding.
  • the first-level control channel carries the demodulation parameters and resource configuration information of the second-level control channel
  • the first-level control channel needs to be parsed before the second-level control channel can be parsed.
  • the second-level control channel carries the demodulation parameters and resource configuration information of the data channel, the second-level control channel needs to be parsed before the data channel can be parsed.
  • the method provided by the fourth aspect may further include: on the resources occupied by the second-level control channel, using the frequency domain before The second-level control channel is demapped in the time domain, and the data channel is demapped in the frequency domain first and then the time domain on the resources occupied by the data channel.
  • a terminal device in a fifth aspect, includes: a processing module and a transceiver module.
  • the processing module is used to determine the resources occupied by the second-level control channel and the resources occupied by the data channel in the second resource set.
  • the second resource set is located behind the first resource set in the time domain and is the same as the first resource set.
  • the second-level control channel occupies all symbols in the second resource set in the time domain.
  • the transceiver module is used to transmit the second-level control channel and the data channel; wherein the average transmission power of the second-level control channel is higher than the average transmission power of the data channel.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the first resource set includes resources occupied by the first-level control channel
  • the first-level control channel carries the aggregation level of the second-level control channel.
  • the processing module is further configured to determine the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity, and then determine the number of resources occupied by the data channel.
  • the processing module is further configured to determine the product of the aggregation level of the second-level control channel and the minimum resource scheduling granularity as the number of resources occupied by the second-level control channel.
  • the minimum resource scheduling granularity may be N resource block RBs in the frequency domain, and may be all symbols in the second resource set in the time domain, and N is a positive integer.
  • the processing module is further configured to determine the frequency domain position of the resource occupied by the second-level control channel in the second resource set according to the amount of resources occupied by the second-level control channel.
  • the resources occupied by the second-level control channel may be determined from the second resource set according to a preset rule.
  • the second-level control channel may start from the resource block with the smallest number, and occupy one or more resource blocks in the second resource set in ascending order of the resource block number, so as to save resource overhead.
  • both the second-level control channel and the data channel can independently perform multiple-input and multiple-output MIMO coding, layer mapping, and resource mapping. That is, the second-level control channel and data channel can independently perform channel coding and After rate matching, MIMO coding, layer mapping, and resource mapping are performed independently on the resources occupied by each, which can simplify the coding and modulation process of the first terminal device when multiple channels are included, and improve efficiency.
  • the processing module is also used to map the second-level control channel on the resources occupied by the second-level control channel by using the frequency domain first and then the time domain, and for the resources occupied by the data channel, using the first frequency domain
  • the data channel is mapped in the post-time domain.
  • the terminal device provided in the fifth aspect may further include a storage module, and the storage module stores a program or instruction.
  • the processing module executes the program or instruction
  • the terminal device provided in the fifth aspect can execute the method provided in any one of the possible implementation manners in the first aspect.
  • the terminal device provided in the fifth aspect may be an independent terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • a terminal device in a sixth aspect, includes: a processing module and a transceiver module.
  • the transceiver module is used to receive the second-level control channel and data channel.
  • the average transmit power of the second-level control channel is higher than the average transmit power of the data channel.
  • the processing module is configured to determine the resources occupied by the second-level control channels in the second resource set, and analyze the second-level control channels according to the resources occupied by the second-level control channels, and obtain the resources occupied by the data channels in the second resource set.
  • the second resource set is located after the first resource set in the time domain and is adjacent to the first resource set, and the second-level control channel occupies all symbols in the second resource set in the time domain.
  • the processing module is also used to analyze the data channel according to the resources occupied by the data channel, and obtain the data carried by the data channel.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the first resource set includes resources occupied by the first-level control channel
  • the first-level control channel carries the aggregation level of the second-level control channel.
  • the processing module is further configured to determine the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity, and then determine the number of resources occupied by the data channel.
  • the processing module is further configured to determine the product of the aggregation level of the second-level control channel and the minimum resource scheduling granularity as the number of resources occupied by the second-level control channel.
  • the minimum resource scheduling granularity may be N resource block RBs in the frequency domain, and may be all symbols in the second resource set in the time domain, and N is a positive integer.
  • the processing module is further configured to determine the frequency domain position of the resource occupied by the second-level control channel in the second resource set according to the amount of resources occupied by the second-level control channel.
  • the resources occupied by the second-level control channel may be determined from the second resource set according to a preset rule.
  • the second-level control channel may start from the resource block with the smallest number, and occupy one or more resource blocks in the second resource set in ascending order of the resource block number. In this way, the second-level control channel occupancy may not be transmitted.
  • the frequency domain location of the resource is indicated to save resource overhead.
  • a demodulation and decoding process that is reverse to the modulation and coding process provided in the fifth aspect can be performed to analyze the second-level control channel and data channel to obtain the second-level control channel.
  • the content carried and the content carried by the data channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel decoding.
  • the second-level control channel since the second-level control channel carries the demodulation parameters and resource configuration information of the data channel, the second-level control channel needs to be parsed before the data channel can be parsed.
  • the processing module is also used to de-map the second-level control channel in the frequency domain and then the time domain on the resources occupied by the second-level control channel, and to use the first-level control channel on the resources occupied by the data channel.
  • the data channel is demapped in the time domain after the frequency domain.
  • the terminal equipment provided in the sixth aspect needs to analyze the first-level first The control channel can then be analyzed for the second-level control channel. Therefore, the transceiver module is also used to receive the first-level control channel; and the processing module is also used to parse the first-level control channel.
  • the resources occupied by the first-level control channel are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol.
  • the terminal device provided in the sixth aspect may further include a storage module, and the storage module stores a program or instruction.
  • the processing module executes the program or instruction
  • the terminal device provided in the sixth aspect can execute the method provided in any possible implementation manner in the second aspect.
  • the terminal device provided in the sixth aspect may be an independent terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • a terminal device in a seventh aspect, includes: a processing module and a transceiver module.
  • the processing module is used to select the resources occupied by the second-level control channel from the first resource set or the second resource set; the first resource set includes the resources occupied by the first-level control channel, and the second resource set is in the time domain It is located after and adjacent to the first resource set.
  • the resource occupied by the second-level control channel when the resource occupied by the second-level control channel is selected from the first resource set, the resource occupied by the second-level control channel and the resource occupied by the first-level control channel are adjacent in the frequency domain; or, when the second resource is used
  • the resources occupied by the second-level control channels are selected from the set, and the resources occupied by the second-level control channels are adjacent to the resources occupied by the first-level control channels in the time domain.
  • the transceiver module is used to send the first-level control channel and the second-level control channel.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the processing module is also used for when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel is greater than or equal to the number of resources occupied by the second-level control channel,
  • the resources occupied by the second-level control channel are selected from the first resource set to further reduce the decoding delay of the second-level control channel.
  • the time-domain start symbol of the resource occupied by the second-level control channel and the time-domain start symbol of the resource occupied by the first-level control channel are the same time-domain symbol, that is, the resource occupied by the second-level control channel can be the same as the time domain start symbol of the resource occupied by the first-level control channel.
  • the resources occupied by the first-level control channel are aligned in the time domain. In this way, the indication information of the time-domain start symbol indicating the resources occupied by the second-level control channel can be saved, so as to save resource overhead.
  • the processing module is also used for when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel is less than the number of resources occupied by the second-level control channel, from Select the resources occupied by the second-level control channel in the second resource set, that is, when the first resource set is not enough to carry the first-level control channel and the second-level control channel at the same time, the second-level control can be selected from the second resource set
  • the resources occupied by the channel can avoid the time domain symbols occupied by the first-level control channel when the power of the first-level control channel is enhanced, so as to ensure the reliability of the second-level control channel.
  • the resources occupied by the second-level control channel and the resources occupied by the first-level control channel are adjacent in the time domain, and may include: the time-domain start symbol of the resources occupied by the second-level control channel is the first-level control The next time domain symbol of the time domain end symbol of the resource occupied by the channel, that is, the second level control channel is mapped to the second level control channel from the next symbol of the time domain symbol occupied by the first level control channel, so as to send the second level control as early as possible Channel, thereby reducing the decoding delay of the second-level control channel.
  • the frequency domain start position of the resources occupied by the second-level control channel may be the same as the frequency domain start position of the resources occupied by the first-level control channel, that is, the resources occupied by the second-level control channel may be the same as the first-level control channel.
  • the resources occupied by the control channel are aligned in the frequency domain, which can save the frequency domain starting position indicating the resources occupied by the second-level control channel to save resource overhead.
  • the frequency domain start position of the resources occupied by the second-level control channel can also be the same as the frequency domain start position of the second resource set, that is, the resources occupied by the second-level control channel can be in the frequency domain with the second resource set.
  • the upper alignment can save the start position of the frequency domain indicating the resources occupied by the second-level control channel to save resource overhead.
  • both the second-level control channel and the data channel can independently perform multiple-input and multiple-output MIMO coding, layer mapping, and resource mapping. That is, the second-level control channel and data channel can independently perform channel coding and After the rate is matched, MIMO coding, layer mapping and resource mapping are performed independently on the resources occupied by each, which can simplify the coding and modulation process of the terminal equipment provided in the seventh aspect, thereby improving efficiency.
  • the processing module is also used to map the second-level control channel on the resources occupied by the second-level control channel by using the frequency domain first and then the time domain, and for the resources occupied by the data channel, using the first frequency domain
  • the data channel is mapped in the post-time domain.
  • the terminal device provided in the seventh aspect may further include a storage module, and the storage module stores a program or instruction.
  • the processing module executes the program or instruction
  • the terminal device provided in the seventh aspect can execute the method provided in any possible implementation manner of the third aspect.
  • the terminal device provided in the seventh aspect may be an independent terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • a terminal device in an eighth aspect, includes: a processing module and a transceiver module.
  • the transceiver module is used to receive the first-level control channel and the second-level control channel.
  • the processing module is used to analyze the first-level control channel and obtain the resources occupied by the second-level control channel.
  • the processing module is configured to select resources occupied by the second-level control channel from the first resource set or the second resource set; the first resource set includes the resources occupied by the first-level control channel, and the second resource set is in the time domain
  • the upper is located after the first resource set and is adjacent to the first resource set.
  • the resource occupied by the second-level control channel when the resource occupied by the second-level control channel is selected from the first resource set, the resource occupied by the second-level control channel and the resource occupied by the first-level control channel are adjacent in the frequency domain; or, when the second resource is used
  • the resources occupied by the second-level control channels are selected from the set, and the resources occupied by the second-level control channels are adjacent to the resources occupied by the first-level control channels in the time domain.
  • the processing module is also used to analyze the content carried by the second-level control channel according to the resources occupied by the second-level control channel.
  • the resources occupied by the first-level control channel are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the processing module is also used for when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel is greater than or equal to the number of resources occupied by the second-level control channel,
  • the resources occupied by the second-level control channel are selected from the first resource set to further reduce the decoding delay of the second-level control channel.
  • the time domain start symbol of the resource occupied by the second-level control channel may be the same time domain symbol as the time domain start symbol of the resource occupied by the first-level control channel, that is, the resource occupied by the second-level control channel may be The resources occupied by the first-level control channel are aligned in the time domain. In this way, the indication information of the time-domain start symbol indicating the resources occupied by the second-level control channel can be saved, so as to save resource overhead.
  • the processing module is also used for when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel is less than the number of resources occupied by the second-level control channel, from Select the resources occupied by the second-level control channel in the second resource set, that is, when the first resource set is not enough to carry the first-level control channel and the second-level control channel at the same time, the second-level control can be selected from the second resource set
  • the resources occupied by the channel can avoid the time domain symbols occupied by the first-level control channel when the power of the first-level control channel is enhanced, so as to ensure the reliability of the second-level control channel.
  • the resources occupied by the second-level control channel and the resources occupied by the first-level control channel are adjacent in the time domain, and may include: the time-domain start symbol of the resources occupied by the second-level control channel is the first-level control The next time domain symbol of the time domain end symbol of the resource occupied by the channel, that is, the second level control channel is mapped to the second level control channel from the next symbol of the time domain symbol occupied by the first level control channel, so as to send the second level control as early as possible Channel, thereby reducing the decoding delay of the second-level control channel.
  • the frequency domain start position of the resources occupied by the second-level control channel may be the same as the frequency domain start position of the resources occupied by the first-level control channel, that is, the resources occupied by the second-level control channel may be the same as the first-level control channel.
  • the resources occupied by the control channel are aligned in the frequency domain, which can save the frequency domain starting position indicating the resources occupied by the second-level control channel to save resource overhead.
  • the frequency domain start position of the resources occupied by the second-level control channel can also be the same as the frequency domain start position of the second resource set, that is, the resources occupied by the second-level control channel can be in the frequency domain with the second resource set.
  • the upper alignment can save the start position of the frequency domain indicating the resources occupied by the second-level control channel, so as to save resource overhead.
  • the processing module is also used to obtain the resources occupied by the data channel and demodulation parameters according to the resources occupied by the second-level control channel, and to analyze the resources and demodulation parameters occupied by the data channel Data channel, to obtain the data carried by the data channel.
  • the resources occupied by the data channel may include: among the first resource set and the second resource set except for the resources occupied by the first-level control channel, the resources occupied by the second-level control channel, and the resources occupied by the demodulation reference signal of the data channel. Select from external resources.
  • the demodulation and decoding process in the reverse order of the modulation and coding process provided by the seventh aspect can be performed to analyze the second-level control channel and data channel to obtain the second-level control channel.
  • the content carried and the data carried by the data channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel decoding.
  • the first-level control channel carries the demodulation parameters and resource configuration information of the second-level control channel
  • the first-level control channel needs to be parsed before the second-level control channel can be parsed.
  • the second-level control channel carries the demodulation parameters and resource configuration information of the data channel, the second-level control channel needs to be parsed before the data channel can be parsed.
  • the processing module is also used to demap the second-level control channel in the frequency domain and then the time domain on the resources occupied by the second-level control channel, and to use the first-level control channel on the resources occupied by the data channel.
  • the data channel is demapped in the time domain after the frequency domain.
  • a communication device in a ninth aspect, includes at least one processor, and the at least one processor is coupled with at least one memory.
  • the at least one processor is configured to execute at least one computer program or instruction stored in the memory, so that the communication device provided in the ninth aspect executes the method provided in any one of the possible implementation manners of the first aspect to the fourth aspect .
  • a communication device in a tenth aspect, includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor; the processor is used to run the code instructions to execute the method provided in any one of the possible implementation manners of the first aspect to the fourth aspect.
  • a chip system including: a processor, the processor is coupled with a memory, the memory is used to store programs or instructions, the chip system may further include an interface circuit, the interface circuit is used to receive The code instruction is transmitted to the processor; when the program or instruction is executed by the processor, the chip system is made to implement the method provided by any one of the possible implementation manners of the first aspect to the fourth aspect.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • a readable storage medium for storing instructions, and when the instructions are executed, the method provided in any one of the possible implementation manners of the first to fourth aspects is implemented.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute any one of the possible implementation manners of the first aspect to the fourth aspect. Methods.
  • a communication system in a fourteenth aspect, includes a sending terminal, such as the aforementioned first terminal device, and one or more receiving terminals, such as the aforementioned second terminal device.
  • the sending terminal is used to execute the method of the first terminal device in the first aspect to the fourth aspect
  • the receiving terminal is used to execute the method of the second terminal device in the first aspect to the fourth aspect.
  • Any one of the at least two terminal devices may be an independent terminal device, such as a mobile phone, or may be a device, module, or other component installed in the terminal device, such as a chip or a chip system, or a vehicle-mounted module.
  • the communication system may also include network equipment, such as a base station, a roadside unit (RSU), and so on.
  • network equipment such as a base station, a roadside unit (RSU), and so on.
  • Figure 1 is a schematic diagram of the resource mapping method of LTE V2X
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application.
  • FIG. 3 is a first schematic flowchart of a two-level control channel sending method provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of a frame structure of a time unit provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram 1 of resource distribution based on the frame structure shown in FIG. 4 according to an embodiment of the application;
  • FIG. 6 is a second schematic diagram of resource distribution based on the frame structure shown in FIG. 4 according to an embodiment of the application;
  • FIG. 7 is a third schematic diagram of resource distribution based on the frame structure shown in FIG. 4 according to an embodiment of the application;
  • FIG. 8 is a schematic diagram of a coding and modulation process provided by an embodiment of the application.
  • FIG. 9 is a second schematic flowchart of a two-level control channel sending method provided by an embodiment of the application.
  • FIG. 10 is a fourth schematic diagram of resource distribution based on the frame structure shown in FIG. 4 according to an embodiment of the application;
  • FIG. 11 is a schematic diagram 5 of resource distribution based on the frame structure shown in FIG. 4 according to an embodiment of the application;
  • FIG. 12 is a sixth schematic diagram of resource distribution based on the frame structure shown in FIG. 4 according to an embodiment of the application;
  • FIG. 13 is a schematic diagram 7 of resource distribution based on the frame structure shown in FIG. 4 according to an embodiment of the application;
  • FIG. 14 is a schematic diagram 8 of resource distribution based on the frame structure shown in FIG. 4 according to an embodiment of the application;
  • FIG. 15 is a schematic diagram 9 of resource distribution based on the frame structure shown in FIG. 4 according to an embodiment of the application;
  • FIG. 16 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WIMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • the technical solutions of the embodiments of this application can be applied to unmanned driving, driver assistance (ADAS), intelligent driving, connected driving, and intelligent network driving. ), car sharing, smart/intelligent car, digital car, unmanned car/driverless car/pilotless car/automobile, Internet of vehicles (IoV) , Autonomous vehicles (self-driving car, autonomous car), cooperative vehicle infrastructure (CVIS), intelligent transportation (intelligent transport system, ITS), vehicle communication (vehicular communication) and other technical fields.
  • IoV Internet of vehicles
  • Autonomous vehicles self-driving car, autonomous car
  • CVIS cooperative vehicle infrastructure
  • intelligent transportation intelligent transportation
  • ITS vehicle communication
  • vehicle communication vehicle communication
  • the technical solutions provided by the embodiments of the present application can be applied to a cellular link, and can also be applied to a link between devices, such as a device to device (D2D) link.
  • D2D link or V2X link can also be called side link, auxiliary link or side link.
  • the aforementioned terms all refer to links established between devices of the same type, and have the same meaning.
  • the so-called equipment of the same type can be a link between an independent terminal device and a terminal device, a link between a base station and a base station, or a link between a relay node and a relay node, etc.
  • the embodiments of this application do not limit this.
  • D2D links defined by 3GPP's release (Rel)-12/13, and there are also car-to-car, car-to-mobile, or car-to-anything defined by 3GPP for the Internet of Vehicles.
  • Physical V2X links including Rel-14/15. It also includes the V2X link based on the NR system of Rel-16 and subsequent versions that are currently being studied by 3GPP.
  • FIG. 2 is a schematic diagram of a network architecture of a communication system to which an embodiment of the application is applicable. It should be noted that some scenarios in the embodiments of the present application are described by taking the scenario in the communication system shown in FIG. 2 as an example. It should be pointed out that the solutions in the embodiments of the present application can also be applied to other mobile communication systems, and the corresponding names can also be replaced with the names of corresponding functions in other mobile communication systems.
  • the communication system includes a first terminal device and a second terminal device.
  • the terminal device and the terminal device can communicate directly through the PC5 interface, and the direct communication link between the terminal device and the terminal device is the side link (SL).
  • Communication based on the side link can use at least one of the following channels: physical sidelink shared channel (PSSCH), used to carry data; physical sidelink control channel (physical sidelink) control channel, PSCCH), used to carry sidelink control information (SCI).
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • SCI sidelink control information
  • the communication system further includes a network device (not shown in FIG. 2) for providing timing synchronization and resource scheduling for terminal devices.
  • the network device can communicate with at least one terminal device (such as the first terminal device) through the Uu interface.
  • the communication link between the network device and the terminal device includes an uplink (UL) and a downlink (DL).
  • the terminal device and the terminal device can also realize indirect communication through the forwarding of the network device.
  • the first terminal device can send data to the network device through the Uu interface, and then send the data to the application server through the network device for processing, and then the application server The processed data is delivered to the network device, and sent to the second terminal device through the network device.
  • the network device that forwards the uplink data from the first terminal device to the application server and the network device that forwards the downlink data delivered by the application server to the second terminal device may be the same network device or Different network devices can be determined by the application server.
  • the aforementioned network device may be an access network device, such as a base station.
  • the access network equipment corresponds to different equipment in different systems, for example, the 5G system corresponds to the access network equipment in 5G, such as gNB.
  • the network device may provide services for multiple terminal devices, and the embodiment of the present application does not limit the number of terminal devices in the communication system.
  • the terminal device in FIG. 2 is illustrated by taking a vehicle-mounted terminal device or a vehicle as an example.
  • the terminal device in the embodiment of the present application is not limited to this, and the terminal device may also be a vehicle-mounted module, a roadside unit, or Pedestrian handheld device. It should be understood that the embodiments of the present application are not limited to 4G or 5G systems, and are also applicable to subsequent evolved communication systems.
  • Terminal equipment which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, a vehicle user device, and so on.
  • terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • the terminal device in the embodiments of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit that is built into a vehicle as one or more components or units, and the vehicle passes through the built-in vehicle-mounted module, vehicle-mounted Modules, on-board components, on-board chips, or on-board units can implement the method of the present application.
  • a network device is a device in the network that is used to connect terminal devices to the wireless network.
  • the network device may be a node in a radio access network, may also be called a base station, or may be called a radio access network (radio access network, RAN) node (or device).
  • the network device can be used to convert received air frames and Internet Protocol (IP) packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as
  • LTE long term evolution
  • LTE-A evolved LTE system
  • the traditional macro base station eNB and the micro base station eNB in the heterogeneous network scenario may also include the next generation node B (next generation) in the new radio (NR) system of the fifth generation mobile communication technology (5th generation, 5G).
  • NR new radio
  • node B node B, gNB
  • TRP transmission reception point
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit BBU
  • baseband pool BBU pool or WiFi access point (access point, AP), etc.
  • CU centralized unit
  • CU distributed unit
  • CU cloud access network
  • CloudRAN cloud radio access network
  • DU distributed unit
  • a network device in a V2X technology is a roadside unit (RSU).
  • the RSU may be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • control information there are two types of control information, the first control information and the second control information.
  • control information there are two levels of control channels in one time unit, which are respectively used to carry the first control information and the second control information.
  • the time unit refers to a collection of resources scheduled for one data transmission.
  • a time unit may include one or more consecutive sub-channels in the frequency domain, and a sub-channel may include several consecutive RBs in the frequency domain.
  • a time unit can include one or more time units in the time domain.
  • the time unit can consist of a slot, a mini-slot, a subframe, a radio frame, and a transmission A time unit composed of multiple possible time granularities such as transmission time interval (TTI).
  • TTI transmission time interval
  • the first control information is suitable for broadcast (broadcast), unicast (unicast), multicast (multicast, which may be called multicast) and other scenarios, and may be basic control information required for V2X communication.
  • the first control information may Including L1 layer destination user ID (destination identity), data channel frequency domain bandwidth, resource reservation information, initial transmission and retransmission time interval, etc.
  • the first control information is carried on a first-level control channel, and the first-level control channel may be, for example, a first-level PSCCH channel.
  • the second control information is applicable to scenarios such as unicast and multicast, and may be additional link maintenance information required in scenarios such as unicast and multicast, so as to improve the reliability of the link.
  • the second control information may include the modulation and coding scheme (MCS) of the data channel, the hybrid automatic repeat request (HARQ) version number and the new transmission or retransmission indication of the data channel, etc. .
  • MCS modulation and coding scheme
  • HARQ hybrid automatic repeat request
  • the second control information is carried on a second-level control channel, and the second-level control channel may be, for example, a second-level PSCCH channel.
  • the first terminal device may only send the first control information to the second terminal device; in the unicast and multicast scenarios, the first terminal device needs to send the first control information and the first control information to the second terminal device.
  • the second control information may be used to send the first control information and the first control information to the second terminal device.
  • the data may be specific service data sent by the first terminal device to the second terminal device in scenarios such as broadcast, unicast, and multicast.
  • Data is carried on a data channel in a time unit, and the data channel may be, for example, a PSSCH channel.
  • the first terminal device and the second terminal device are both vehicles, the first terminal device can adjust some of its own position, speed, intention (including turning, merging, and reversing), posture (such as uphill, downhill), etc.
  • the information is sent to the second terminal device.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects. And the descriptions of “first” and “second” do not limit the objects to be different.
  • FIG. 3 is a first schematic flowchart of a two-level control channel sending method provided by an embodiment of the application.
  • the two-level control channel transmission method is suitable for the communication system shown in FIG. 2 to realize the communication between the first terminal device and the second terminal device.
  • the following uses the first terminal device as the transmitting terminal and the second terminal device as the receiving terminal as an example to describe in detail the two-level control channel transmission method provided in the embodiment of the present application.
  • the method includes S301 to S306:
  • the first terminal device determines the resources occupied by the second-level control channel and the resources occupied by the data channel in the second resource set.
  • FIG. 4 is a schematic diagram of a frame structure of a time unit provided in an embodiment of the application, and FIG. 4 only shows the first-level control channel and the data channel.
  • the first-level control channel and data channel are mapped on all symbols in part A in a frequency division multiplexing manner.
  • part B shown in Fig. 4 only the data channel exists, and there is no Level 1 control channel.
  • the resource mapped to the first control information in the time unit is the resource occupied by the first-level control channel, which can be pre-configured by the network device.
  • FIGS. 5 to 7 are schematic diagrams 1 to 3 of resource distribution based on the frame structure shown in FIG. 4 provided by embodiments of the application.
  • a time unit includes a time slot in the time domain, and the time slot includes 14 time domain symbols.
  • the 14 used symbols are numbered from left to right from 0 to 13, in the frequency domain.
  • the time domain position of the last symbol included in the resources occupied by the first-level control channel (that is, the end position of the time domain of the resources occupied by the first-level control channel) is used as the boundary.
  • the unit is divided into part A and part B from the time domain.
  • the resources occupied by the first-level control channel may include part or all of the time domain resources of the A part.
  • the resources occupied by the first-level control channel may include part of the frequency domain resources in the A part.
  • the resource size of the resources occupied by the first-level control channel is fixed, which can be embodied as a rectangle formed by multiple resource blocks in a time unit in the figure.
  • the frequency domain start resource block of the resources occupied by the first-level control channel may be the same or different from the frequency domain start resource block of the time unit, which is not limited in this application. That is, the resources occupied by the first-level control channel may include the resource block numbered 0 at the top of the time unit, or may not include the resource block numbered 0 at the top of the time unit. Alternatively, it can also be understood that the resources occupied by the first-level control channel may be aligned or not aligned with the start position of the frequency domain of the time unit.
  • the resources occupied by the first-level control channel may include the resources on the first symbol in the time unit, or may not include the resources on the first symbol in the time unit.
  • the resources occupied by the first-level control channel may include the first symbol in the time unit (symbol 0). ), that is, the first control information can be mapped to the resource of the first symbol in the time unit, or it can also be understood that the first-level control channel can be mapped from the first symbol in the time unit .
  • the resources occupied by the first-level control channel may not include the resources on the first symbol (symbol 0) in the time unit.
  • a control information can avoid the first symbol of the time unit and start mapping from the second symbol (symbol 1) in the time unit, or it can also be understood as the first-level control channel avoids the first symbol of the time unit.
  • a symbol starts mapping from the second symbol in the time unit.
  • the first symbol can be mapped to the dedicated AGC symbol as shown in Figure 6, or it can be mapped as shown in Figure 7.
  • the dedicated AGC symbol or data used for AGC is mapped on all resource blocks on the first symbol.
  • the dedicated AGC symbol can be mapped to a sequence for AGC generated according to a preset method, such as a pseudo-random sequence, or it can be other functional symbols, such as a copy or copy of other symbols in the time slot.
  • the data used for AGC can be data that needs to be demodulated and decoded at the receiving end (valid data), or data that is only used for AGC and does not require demodulation and decoding at the receiving end (invalid data).
  • valid data data that needs to be demodulated and decoded at the receiving end
  • invalid data data that is only used for AGC and does not require demodulation and decoding at the receiving end
  • the resources of part A shown in FIG. 4 to FIG. 7 can also be referred to as the first resource set in the time unit, and the resources of part B can also be referred to as the time unit in the embodiment of the present application.
  • the second collection of resources. 4-7 it can be known that the second resource set is located behind the first resource set in the time domain and is adjacent to the first resource set, and the second-level control channel occupies the second resource in the time domain. All symbols in the collection. That is, the first resource set includes resources occupied by the first-level control channels, and the second resource set includes resources occupied by the second-level control channels.
  • the first resource set can occupy the n to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1 symbol in the time unit.
  • n is 0 or 1
  • k is a positive integer.
  • the method shown in FIG. 3 may further include:
  • the first terminal device determines the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity, and then determines the number of resources occupied by the data channel.
  • the minimum resource scheduling granularity may be N resource block RBs in the frequency domain, and may be all symbols in the second resource set in the time domain, and N is a positive integer.
  • the aggregation level refers to the multiple of the number of resources occupied by the second-level control channel and the minimum resource scheduling granularity, and the value can be 1, 2, 4, 8, or 32.
  • the minimum resource scheduling granularity is 1 RB in the frequency domain, it can be all symbols in the second resource set in the time domain, and the aggregation level is 1, then the number of resources occupied by the second-level control channel is the smallest
  • the number of resources defined by the resource scheduling granularity is the resource corresponding to a row of RBs in the second resource set shown in any one of FIG. 5 to FIG. 7.
  • the foregoing determining the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity may include:
  • the first terminal device determines the product of the aggregation level of the second-level control channel and the minimum resource scheduling granularity as the number of resources occupied by the second-level control channel.
  • the frequency-domain position of the resources occupied by the second-level control channel can be determined according to the number of resources occupied by the second-level control channel, as shown in FIG. 3
  • the method can also include:
  • the first terminal device determines the frequency domain position of the resource occupied by the second-level control channel in the second resource set according to the number of resources occupied by the second-level control channel. Specifically, starting from a preset frequency domain position, the frequency domain position of the resource occupied by the second-level control channel may be determined from the second resource set. For example, the second-level control channel may start from the resource block with the smallest number, and occupy one or more resource blocks in the second resource set in ascending order of the resource block number, so as to save resource overhead.
  • the resources occupied by the data channel can be determined.
  • the resources occupied by the data channel may include: the resources occupied by the first-level control channel, the resources occupied by the second-level control channel, the resources occupied by the demodulation reference signal (DMRS), and no mapping in the time unit.
  • FIG. 8 is a schematic diagram of a process of independently encoding and modulating the second control channel and data according to an embodiment of the application.
  • First perform channel coding, channel multiplexing, scrambling, layer mapping, multiple-input multiple-output (MIMO) coding, and resource mapping for the first-level control channel and data channel, respectively, and then complete the resource mapping.
  • the first-level control channel and data channel are used for inverse fast fourier transform (IFFT) and cycle prefix (CP) operations. among them.
  • IFFT inverse fast fourier transform
  • CP cycle prefix
  • the first terminal device determines that the resources occupied by the second-level control channel and the resources occupied by the data channel in the second resource set occur before the channel coding step shown in FIG. 8.
  • channel coding, channel multiplexing, scrambling, layer mapping, MIMO coding, and IFFT+CP can refer to existing implementations, which will not be repeated in the embodiments of this application.
  • the resource mapping shown in Figure 8 refers to mapping the second-level control channel and data channel to their respective resources.
  • the second-level control channel can be mapped to the second-level control channel in the order of frequency domain first and then time domain.
  • On the resources occupied by the level control channel and map the data channel to the resources occupied by the data channel.
  • the second-level control channel and data channel can independently perform MIMO coding, layer mapping and resource mapping, that is, the second-level control channel and data channel can independently complete channel coding and rate matching, and then each occupy
  • MIMO coding, layer mapping, and resource mapping are performed independently to simplify the coding and modulation process of the first terminal device when multiple channels are included, thereby improving transmission efficiency.
  • the method shown in FIG. 3 may further include: mapping the second-level control channel on the resources occupied by the second-level control channel in the frequency domain first and then the time domain, and on the resources occupied by the data channel, The data channel is mapped in the frequency domain first and then the time domain.
  • the frequency domain first and then the time domain may be used in a manner of increasing order mapping. Specifically, starting from the first symbol in the resources occupied by the second-level control channel, the first-level control channel is sequentially mapped to each resource block on the symbol according to the order of the number of the resource block, until After mapping all resource blocks on the symbol, map the next symbol. On the next symbol, the second-level control channel is mapped to each resource block on the symbol in order according to the number of the resource block from small to large, until all the resource blocks on the symbol are mapped. It can be deduced in turn until the second-level control channel is mapped to all symbols in the resources occupied by the second-level control channel.
  • the frequency domain first, then the time domain, and the method of increasing order mapping may also be adopted.
  • the data channel is mapped to each resource block on the symbol in order according to the number of the resource block, until the symbol on the symbol is mapped. All resource blocks are mapped to the next symbol afterwards.
  • the data channel is mapped to each resource block on the symbol in order according to the number of the resource block from small to large, until all the resource blocks on the symbol are mapped. It can be deduced in turn until the data channel is mapped to all the symbols in the resources occupied by the data channel. This will be described in detail below with reference to Figs. 5-7.
  • the resources occupied by the second-level control channel include RBs (RB0 and RB1) with RB numbers 0 and 1 on the 4th to 13th symbols (symbols 3 to 12) of the time unit, then the first A terminal device sequentially maps the second-level control channel to RB0, RB1 on symbol 3, RB0, RB1, ... on symbol 4, to RB0, RB1 on symbol 12.
  • the resources occupied by the data channel include RB8 and RB9 on the 1st to 3rd symbols (symbol 0 to symbol 2) of the time unit, and the 4th to 13th symbols (symbol 3 to symbol 12).
  • the first terminal device sequentially maps the data channel to RB8 and RB9 on symbol 0, RB8 and RB9 on symbol 1, RB8 and RB9 on symbol 2, RB2 to RB9 on symbol 3, and symbol 4 RB2 to RB9, ... until RB2 to RB9 on symbol 12.
  • the resources occupied by the second-level control channel include RB0 and RB1 on the 5th to 13th symbols (symbol 4 to symbol 12) of the time unit, and the first terminal device sets the second-level control channel It is sequentially mapped to RB0, RB1 on symbol 4, RB0, RB1, ... on symbol 5, to RB0, RB1 on symbol 12.
  • the resources occupied by the data channel include RB8 and RB9 on the 2nd to 4th symbols (symbol 1 to symbol 3) of the time unit, and the 5th to 13th symbols (symbol 4 to symbol 12).
  • the first terminal device sequentially maps the data channel to RB8 and RB9 on symbol 1, RB8 and RB9 on symbol 2, RB8 and RB9 on symbol 3, RB2 to RB9 on symbol 4, and symbol 5 RB2 to RB9, ... until RB2 to RB9 on symbol 12.
  • the resources occupied by the second-level control channel include RB0 and RB1 on the 5th to 13th symbols (symbols 4 to 12) of the time unit, and the first terminal device sets the second-level control channel It is sequentially mapped to RB0, RB1 on symbol 4, RB0, RB1, ... on symbol 5, to RB0, RB1 on symbol 12.
  • the resources occupied by the data channel include all RBs (RB0 to RB9) on the first symbol of the time unit, RB8 and RB9 on the second to fourth symbols (symbol 1 to symbol 3), and the fifth symbol.
  • the first terminal device sequentially maps the data channel to RB0 to RB9 on symbol 0, RB8 and RB9 on symbol 1, and RB8 on symbol 2. , RB9, RB8 and RB9 on symbol 3, RB2 to RB9 on symbol 4, RB2 to RB9 on symbol 5, ..., up to RB2 to RB9 on symbol 12.
  • the first terminal device sends the second-level control channel and the data channel to the second terminal device.
  • the average transmit power of the second level control channel is higher than the average transmit power of the data channel.
  • the first terminal device sends the PSSCH to the second terminal device.
  • the PSSCH carries the second-level control channel and data channel.
  • the first terminal device may also send a PSCCH corresponding to the PSSCH to the second terminal device.
  • the PSCCH carries the first-level control channel.
  • the second-level control channel when power enhancement is performed on the first-level control channel, the second-level control channel may also be power-enhanced to improve the reliability of the second-level control channel.
  • the average transmission power may be one of the following: average transmission power per resource block RB, and average transmission power per resource element (resource element, RE).
  • the second-level control channel can be scattered and mapped to all the time-domain symbols in the second resource set , That is, as shown in FIG. 5 to FIG. 7, the resources occupied by the second-level control channel include all symbols in the second resource set in the time domain.
  • the method shown in FIG. 3 may further include:
  • the first terminal device sends the first level control channel to the second terminal device.
  • the resources occupied by the first-level control channel are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol.
  • the second terminal device receives the second-level control channel and the data channel from the first terminal device. Among them, the average transmit power of the second-level control channel is higher than the average transmit power of the data channel.
  • the method shown in FIG. 3 may further include:
  • the second terminal device receives and parses the first-level control channel from the first terminal device, and obtains the content carried by the first-level control channel, such as resource configuration information and demodulation parameters of the second-level control channel.
  • S304 The second terminal device determines resources occupied by the second-level control channel in the second resource set.
  • the second resource set is located after the first resource set in the time domain and is adjacent to the first resource set, and the second-level control channel occupies all symbols in the second resource set in the time domain.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be saved.
  • the first resource set includes resources occupied by the first-level control channel
  • the first-level control channel carries the aggregation level of the second-level control channel.
  • the method shown in FIG. 3 may further include: the second terminal device determines the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity.
  • the above-mentioned second terminal device determines the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity, which may include: the second terminal device determines the aggregation level of the second-level control channel The product of the minimum resource scheduling granularity is determined as the number of resources occupied by the second-level control channel.
  • the minimum resource scheduling granularity may be N resource block RBs in the frequency domain, and may be all symbols in the second resource set in the time domain, and N is a positive integer.
  • the method shown in FIG. 3 may further include: the second terminal device determines the frequency domain position of the resource occupied by the second-level control channel in the second resource set according to the amount of resources occupied by the second-level control channel.
  • the resources occupied by the second-level control channel may be determined from the second resource set according to a preset rule.
  • the second-level control channel may start from the resource block with the smallest number, and occupy one or more resource blocks in the second resource set in ascending order of the resource block number. In this way, the second-level control channel occupancy may not be transmitted.
  • the frequency domain location of the resource is indicated to save resource overhead.
  • the method shown in FIG. 3 may further include: on the resources occupied by the second-level control channel, the second terminal device demaps the second-level control channel in the frequency domain first and then the time domain.
  • the second-level control channel can be parsed according to the demodulation & decoding process in the reverse order of the modulation and coding process shown in FIG. 8 to obtain the second-level control.
  • the content carried by the channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel decoding.
  • de-resource mapping MIMO decoding and de-layer mapping
  • descrambling de-channel multiplexing
  • de-rate matching de-rate matching
  • channel decoding For each step of the demodulation and decoding process, reference may be made to the relevant content of the modulation and coding process shown in FIG. 8 in S301, which will not be repeated here.
  • the second terminal device analyzes the second-level control channel according to the resources occupied by the second-level control channel, and obtains the resources occupied by the data channel in the second resource set.
  • the data channel can be parsed according to the demodulation & decoding process in the reverse order of the modulation and coding process shown in FIG. 8 to obtain the data carried by the data channel.
  • the demodulation and decoding process of each channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel decoding.
  • the second terminal device may also obtain the demodulation parameters of the data channel.
  • the method shown in FIG. 3 may also include: receiving and analyzing The first level control channel.
  • the resources occupied by the first-level control channel are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol.
  • S306 The second terminal device analyzes the data channel according to the resources occupied by the data channel, and obtains the data carried by the data channel.
  • the second terminal device since the second-level control channel carries the demodulation parameters of the data channel and the configuration information of the radio resources, the second terminal device needs to analyze the second-level control channel before it can analyze the data channel.
  • the method provided in the second aspect may further include: on the resources occupied by the data channel, demapping the data channel in a manner of frequency domain first and then time domain.
  • the first terminal device can determine the resources occupied by the second-level control channel and the data channel from the second resource set that does not overlap with the first resource set in the time domain.
  • Resources the second-level control channel occupies all time-domain symbols in the second resource set, and the average transmit power of the second-level control channel is higher than the average transmit power of the data channel. That is to say, in the scenario where the first-level control channel is power-enhanced, the second-level control channel can avoid the time domain symbols occupied by the first-level control channel, so that the second-level control channel can also be power-enhanced. Improve the decoding success rate and reliability of the second-level control channel.
  • the second-level control channel occupies all the time-domain symbols in the second resource set, in the scenario where the second-level control channel is power-enhanced, the adverse effects of the second-level control channel on the data channel can be reduced to ensure The reliability of the data channel.
  • FIG. 9 is a second schematic flowchart of a two-level control channel sending method provided by an embodiment of the application.
  • the two-level control channel transmission method is suitable for the communication system shown in FIG. 2 to realize the communication between the first terminal device and the second terminal device.
  • the following uses the first terminal device as the transmitting terminal and the second terminal device as the receiving terminal as an example to describe in detail the two-level control channel transmission method provided in the embodiment of the present application.
  • the method includes S901 to S906:
  • the first terminal device selects resources occupied by the second-level control channel from the first resource set or the second resource set.
  • the following describes the first resource set or the second resource set to which the method shown in FIG. 9 is applicable with reference to the frame structure of the time unit shown in FIG. 4.
  • FIG. 10 to FIG. 12 are schematic diagrams 4 to 6 of resource distribution based on the frame structure shown in FIG. 4 provided by embodiments of the application.
  • a time unit includes a time slot in the time domain, and the time slot includes 14 time domain symbols.
  • the 14 used symbols are numbered from 0 to 13 from left to right.
  • In the frequency domain Including 20 RBs, these 20 RBs are numbered from 0 to 19 from top to bottom.
  • the time domain position of the last symbol in the resources occupied by the first-level control channel (that is, the end position of the time domain of the resources occupied by the first-level control channel) is used as the boundary, and the time can be
  • the unit is divided into part A and part B from the time domain.
  • the resources occupied by the first-level control channel may include part or all of the time domain resources of the A part.
  • the resources occupied by the first-level control channel may include part of the frequency domain resources in the A part.
  • the resource size of the resources occupied by the first-level control channel is fixed, which can be embodied as a rectangle formed by multiple resource blocks in a time unit in the figure.
  • the frequency domain start resource block of the resources occupied by the first-level control channel may be the same or different from the frequency domain start resource block of the time unit, which is not limited in this application. That is, the resources occupied by the first-level control channel may include the resource block numbered 0 at the top of the time unit, or may not include the resource block numbered 0 at the top of the time unit. Alternatively, it can also be understood that the resources occupied by the first-level control channel may be aligned or not aligned with the start position of the frequency domain of the time unit.
  • the resources occupied by the first-level control channel may include the resources on the first symbol in the time unit, or may not include the resources on the first symbol in the time unit.
  • the resources occupied by the first-level control channel may include the resource on the first symbol (symbol 0) in the time unit, that is, the first control channel.
  • the information can be mapped to the resource of the first symbol in the time unit, or it can also be understood that the first-level control channel can be mapped from the first symbol in the time unit.
  • the resources occupied by the first-level control channel may not include the resources on the first symbol (symbol 0) in the time unit.
  • a control information can avoid the first symbol of the time unit and start mapping from the second symbol (symbol 1) in the time unit, or it can also be understood as the first-level control channel avoids the first symbol of the time unit.
  • a symbol starts mapping from the second symbol in the time unit.
  • the first symbol can be mapped to the dedicated AGC symbol as shown in Figure 11, or it can be mapped as shown in Figure 12.
  • the dedicated AGC symbol or data used for AGC is mapped on all resource blocks on the first symbol.
  • the dedicated AGC symbol can be mapped to a sequence for AGC generated according to a preset method, such as a pseudo-random sequence, or it can be other functional symbols, such as a copy or copy of other symbols in the time slot.
  • the data used for AGC can be data that needs to be demodulated and decoded at the receiving end (valid data), or data that is only used for AGC and does not require demodulation and decoding at the receiving end (invalid data).
  • valid data data that needs to be demodulated and decoded at the receiving end
  • invalid data data that is only used for AGC and does not require demodulation and decoding at the receiving end
  • the resources of part A shown in FIG. 10 to FIG. 12 can also be referred to as the first resource set in the time unit, and the resources of part B can also be referred to as the time unit in the embodiment of the present application.
  • the second collection of resources. 10-12 it can be known that the second resource set is located behind the first resource set in the time domain and is adjacent to the first resource set, and the second level control channel occupies the second resource in the time domain. All symbols in the collection. That is, the first resource set includes resources occupied by the first-level control channels, and the second resource set includes resources occupied by the second-level control channels.
  • the first resource set can occupy the n to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1 symbol in the time unit, n is 0 or 1, and k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the second-level control channel in order to take into account the reliability of the second-level control channel and the decoding delay, it can be based on different scenarios, and can be based on the total amount of resources in the first resource set, the number of resources occupied by the first-level control channel, and the second level of control channel.
  • the relevant content in S901 which will not be repeated here.
  • the resources occupied by the second-level control channels are selected from the first resource set, the resources occupied by the second-level control channels and the resources occupied by the first-level control channels are adjacent in the frequency domain.
  • This solution is suitable for scenarios where the power of the first-level control channel is not enhanced, and the first resource set can map the first-level control channel and the second-level control channel at the same time.
  • the second-level control channel may not avoid the first-level control channel, so it can occupy part of the first resource set in the manner of frequency division multiplexing with the first-level control channel at the same time to reduce the second level.
  • the decoding delay of the level control channel is suitable for scenarios where the power of the first-level control channel is not enhanced, and the first resource set can map the first-level control channel and the second-level control channel at the same time.
  • the foregoing selection of the resources occupied by the second-level control channel from the first resource set or the second resource set may include: when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel When the value is greater than or equal to the number of resources occupied by the second-level control channel, the resources occupied by the second-level control channel are selected from the first resource set.
  • the resources occupied by the demodulation reference signal DMRS, and the resources on the first symbol that does not map valid data as long as the remaining resources in the first resource set are sufficient to carry the second Level control channel, that is, the second level control channel can be mapped to the first resource set.
  • the time domain start symbol of the resource occupied by the second-level control channel may be the same time domain symbol as the time domain start symbol of the resource occupied by the first-level control channel, that is, the resource occupied by the second-level control channel may be the same as the time domain start symbol of the resource occupied by the first-level control channel.
  • the resources occupied by the first-level control channel are aligned in the time domain. In this way, the indication information of the time-domain start symbol indicating the resources occupied by the second-level control channel can be saved, so as to save resource overhead.
  • the resources occupied by the second-level control channel may include RB8 to RB12 on the first to second symbols (symbol 0 to symbol 1) of the time unit.
  • the resources occupied by the second-level control channel may include RB8 to RB12 on the second to third symbols (symbol 1 to symbol 2) of the time unit.
  • the resources occupied by the second-level control channels are selected from the second resource set, the resources occupied by the second-level control channels are adjacent to the resources occupied by the first-level control channels in the time domain. .
  • This solution is suitable for scenarios where the power of the first-level control channel is enhanced.
  • the second-level control channel needs to avoid the first-level control channel, that is, the second-level control channel needs to occupy the resources in the second resource set to ensure the second level of control channels.
  • Level control channel reliability In this scenario, the second-level control channel can occupy the first resource in the time domain in the second resource set, for example, occupy the resource on one or more consecutive time domain symbols in the first resource set in the second resource set. In order to reduce the decoding delay of the second-level control channel.
  • the foregoing selection of the resources occupied by the second-level control channel from the first resource set or the second resource set may include: when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel When the value is less than the number of resources occupied by the second-level control channel, select the resources occupied by the second-level control channel from the second resource set, that is, when the first resource set is not enough to carry the first-level control channel and the second-level control channel at the same time At this time, the resources occupied by the second-level control channel can be selected from the second resource set, so that when the power of the first-level control channel is enhanced, the time-domain symbols occupied by the first-level control channel can be avoided to ensure the second-level control The reliability of the channel.
  • the resources occupied by the second level control channel and the resources occupied by the first level control channel are adjacent in the time domain, and may include: the time domain start symbol of the resources occupied by the second level control channel is the first level The next time domain symbol of the time domain end symbol of the resource occupied by the control channel, that is, the second level control channel is mapped from the next symbol of the time domain symbol occupied by the first level control channel, so as to send the second level as early as possible Control channel, thereby reducing the decoding delay of the second-level control channel.
  • the frequency domain start position of the resources occupied by the second-level control channel may be the same as the frequency domain start position of the resources occupied by the first-level control channel, that is, the resources occupied by the second-level control channel may be the same as the first-level control channel.
  • the resources occupied by the control channel are aligned in the frequency domain, which can save the frequency domain starting position indicating the resources occupied by the second-level control channel to save resource overhead.
  • the frequency domain start position of the resources occupied by the second-level control channel can also be the same as the frequency domain start position of the second resource set, that is, the resources occupied by the second-level control channel can be in the frequency domain with the second resource set.
  • the upper alignment can save the start position of the frequency domain indicating the resources occupied by the second-level control channel to save resource overhead.
  • FIG. 13 to FIG. 15 are schematic diagrams 4 to 6 of resource distribution based on the frame structure shown in FIG. 4 provided by an embodiment of the application.
  • the time unit in FIG. 13 to FIG. 15 includes 10 RBs, and the RB numbers are RB0 to RB9 from top to bottom.
  • the resources occupied by the second-level control channel include RB0 to RB4 on the 4th to 5th symbols (symbol 3 to symbol 4) of the time unit.
  • the resources occupied by the second-level control channel include RB0 to RB4 on the 5th to 6th symbols (symbol 4 to symbol 5) of the time unit.
  • the resources occupied by the data channel can be determined.
  • the resources occupied by the data channel may include: the resources occupied by the first-level control channel, the resources occupied by the second-level control channel, the resources occupied by the demodulation reference signal DMRS, and the first one that does not map valid data in the time unit. Resources on symbols, resources other than resources on GAP symbols.
  • Resource mapping refers to mapping the second-level control channel and data channel to their respective resources.
  • the second-level control channel can be mapped to the resources occupied by the second-level control channel in the order of frequency domain first and then time domain. And map the data channel to the resources occupied by the data channel.
  • the first-level control channel, the second-level control channel, and the data channel can all independently perform multiple-input multiple-output MIMO coding, layer mapping, and resource mapping, that is, the first-level control channel, the second-level control channel, All data channels can independently perform MIMO coding, layer mapping and resource mapping on the resources occupied by each channel after independently completing channel coding and rate matching. This can simplify the coding and modulation process of the first terminal device when multiple channels are included to improve effectiveness.
  • the method shown in FIG. 9 may further include: the first terminal device uses the frequency domain first and then the time domain to map the second-level control channel on the resources occupied by the second-level control channel, and the data channel occupation In terms of resources, the data channel is mapped in the frequency domain first and then the time domain. This will be described in detail below with reference to Figs. 10-15.
  • the resources occupied by the second-level control channel include RB8 to RB12 on the first to second symbols (symbol 0 to symbol 1) of the time unit, and the first terminal device sequentially Map to RB8 to RB12 on symbol 0, and RB8 to RB12 on symbol 1.
  • the resources occupied by the data channel include RB13 to RB19 on the first to second symbols (symbol 0 to symbol 1) of the time unit, RB8 to RB19 on the third symbol (symbol 2), and the fourth symbol.
  • the first terminal device sequentially maps the data channel to RB13 to RB19 on symbol 0, RB13 to RB19 on symbol 1, and RB8 on symbol 2.
  • RB19 RB0 to RB19 on symbol 3, RB0 to RB19 on symbol 4, ..., up to RB0 to RB19 on symbol 12.
  • the resources occupied by the second-level control channel include RB8 to RB12 on the second to third symbols (symbol 1 to symbol 2) of the time unit, and the first terminal device sequentially Mapped to RB8 to RB12 on symbol 1, and RB8 to RB12 on symbol 2.
  • the resources occupied by the data channel include RB13 to RB19 on the second to third symbols (symbol 1 to symbol 2) of the time unit, RB8 to RB19 on the fourth symbol (symbol 3), and the fifth symbol.
  • the first terminal device sequentially maps the data channel to RB13 to RB19 on symbol 1, RB13 to RB19 on symbol 2, and RB8 on symbol 3.
  • RB19 RB0 to RB19 on symbol 4, RB0 to RB19 on symbol 5, ..., up to RB0 to RB19 on symbol 12.
  • the resources occupied by the second-level control channel include RB8 to RB12 on the second to third symbols (symbol 1 to symbol 2) of the time unit, and the first terminal device sequentially Mapped to RB8 to RB12 on symbol 1, and RB8 to RB12 on symbol 2.
  • the resources occupied by the data channel include RB0 to RB19 on the first symbol (symbol 0) of the time unit, RB13 to RB19 on the second to third symbols (symbol 1 to symbol 2), and the fourth RB8 to RB19 on the symbol (symbol 3), and RB0 to RB19 on the 5th to 13th symbols (symbol 4 to symbol 12), the first terminal device maps the data channel to RB0 to RB19 on the symbol 0 in sequence , RB13 to RB19 on symbol 1, RB13 to RB19 on symbol 2, RB8 to RB19 on symbol 3, RB0 to RB19 on symbol 4, RB0 to RB19 on symbol 5, ... until RB0 to RB0 on symbol 12 RB19.
  • the resources occupied by the second-level control channel include RB0 to RB4 on the 4th to 5th symbols (symbol 3 to symbol 4) of the time unit, and the first terminal device sequentially Map to RB0 to RB4 on symbol 3, and RB0 to RB4 on symbol 4.
  • the resources occupied by the data channel include RB8 to RB9 on the 1st to 3rd symbols (symbol 0 to symbol 2) of the time unit, and RB5 on the 4th to 5th symbols (symbol 3 to symbol 4).
  • the first terminal device sequentially maps the data channel to RB8 to RB9 on symbol 0, and RB8 to RB9 on symbol 1 , RB8 to RB19 on symbol 2, RB5 to RB9 on symbol 3, RB5 to RB9 on symbol 4, RB0 to RB9 on symbol 5, ..., up to RB0 to RB9 on symbol 12.
  • the resources occupied by the second-level control channel include RB0 to RB4 on the 5th to 6th symbols (symbol 4 to symbol 5) of the time unit, and the first terminal device sequentially Map to RB0 to RB4 on symbol 4, and RB0 to RB4 on symbol 5.
  • the resources occupied by the data channel include RB8 to RB9 on the second to fourth symbols (symbol 1 to symbol 3) of the time unit, and RB5 on the fifth to sixth symbols (symbol 4 to symbol 5).
  • the first terminal device sequentially maps the data channel to RB8 to RB9 on symbol 1, and RB8 to RB9 on symbol 2. , RB8 to RB9 on symbol 3, RB5 to RB9 on symbol 4, RB5 to RB9 on symbol 5, RB0 to RB9 on symbol 6, ..., up to RB0 to RB9 on symbol 12.
  • the resources occupied by the second-level control channel include RB0 to RB4 on the 5th to 6th symbols (symbol 4 to symbol 5) of the time unit, and the first terminal device sequentially Map to RB0 to RB4 on symbol 4, and RB0 to RB4 on symbol 5.
  • the resources occupied by the data channel include RB0 to RB9 on the first symbol (symbol 0) of the time unit, RB8 to RB9 on the second to fourth symbols (symbol 1 to symbol 3), and RB8 to RB9 on the first symbol (symbol 0) of the time unit.
  • the first terminal device maps the data channel to the symbols in turn RB0 to RB9 on 0, RB8 to RB9 on symbol 1, RB8 to RB9 on symbol 2, RB8 to RB9 on symbol 3, RB5 to RB9 on symbol 4, RB5 to RB9 on symbol 5, on symbol 6 RB0 to RB9, ... until RB0 to RB9 on symbol 12.
  • the first terminal device sends the first level control channel and the second level control channel to the second terminal device.
  • the first terminal device may send PSCCH and PSSCH to the second terminal device.
  • the PSCCH carries the first-level control channel
  • the PSSCH carries the second-level control channel and the data channel.
  • the second terminal device receives the first-level control channel and the second-level control channel from the first terminal device.
  • the second terminal device may receive the first-level control channel and the second-level control channel on the side link.
  • the second terminal device parses the first-level control channel, and obtains resources occupied by the second-level control channel.
  • the resources occupied by the first-level control channels are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol, that is, the resources occupied by the first-level control channels are known.
  • the first-level control channel is usually sent by broadcast, and its modulation and coding scheme is also known.
  • the second terminal device can demodulate and decode the first-level control channel according to the resources occupied by the first-level control channel and the modulation and coding scheme to obtain the content carried by the first-level control channel, such as the second-level control channel.
  • Channel resource configuration information and demodulation parameters are usually used to obtain the content carried by the first-level control channel.
  • the second terminal device may select the resources occupied by the second-level control channel from the first resource set or the second resource set; the first resource set includes the resources occupied by the first-level control channel, and the first resource set includes the resources occupied by the first-level control channel.
  • the second resource set is located behind and adjacent to the first resource set in the time domain.
  • the resource occupied by the second-level control channel when the resource occupied by the second-level control channel is selected from the first resource set, the resource occupied by the second-level control channel and the resource occupied by the first-level control channel are adjacent in the frequency domain; or, when the second resource is used
  • the resources occupied by the second-level control channels are selected from the set, and the resources occupied by the second-level control channels are adjacent to the resources occupied by the first-level control channels in the time domain.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the above selection of the resources occupied by the second-level control channel from the first resource set or the second resource set may include: when the total resource of the first resource set and the first-level control channel occupy When the difference between the number of resources is greater than or equal to the number of resources occupied by the second-level control channel, the resources occupied by the second-level control channel are selected from the first resource set to further reduce the decoding delay of the second-level control channel.
  • the time domain start symbol of the resource occupied by the second-level control channel may be the same time domain symbol as the time domain start symbol of the resource occupied by the first-level control channel, that is, the resource occupied by the second-level control channel may be The resources occupied by the first-level control channel are aligned in the time domain. In this way, the indication information of the time-domain start symbol indicating the resources occupied by the second-level control channel can be saved, so as to save resource overhead.
  • the above selection of the resources occupied by the second-level control channel from the first resource set or the second resource set may include: when the total resource of the first resource set and the first-level control channel When the difference in the number of occupied resources is less than the number of resources occupied by the second-level control channel, select the resources occupied by the second-level control channel from the second resource set, that is, when the first resource set is not enough to carry the first-level control channel at the same time With the second-level control channel, the resources occupied by the second-level control channel can be selected from the second resource set, and the time-domain symbols occupied by the first-level control channel can be avoided when the power is enhanced for the first-level control channel , To ensure the reliability of the second-level control channel.
  • the resources occupied by the second-level control channel and the resources occupied by the first-level control channel are adjacent in the time domain, and may include: the time-domain start symbol of the resources occupied by the second-level control channel is the first-level control The next time domain symbol of the time domain end symbol of the resource occupied by the channel, that is, the second level control channel is mapped to the second level control channel from the next symbol of the time domain symbol occupied by the first level control channel, so as to send the second level control as early as possible Channel, thereby reducing the decoding delay of the second-level control channel.
  • the frequency domain start position of the resources occupied by the second-level control channel may be the same as the frequency domain start position of the resources occupied by the first-level control channel, that is, the resources occupied by the second-level control channel may be the same as the first-level control channel.
  • the resources occupied by the control channel are aligned in the frequency domain, which can save the frequency domain starting position indicating the resources occupied by the second-level control channel to save resource overhead.
  • the frequency domain start position of the resources occupied by the second-level control channel can also be the same as the frequency domain start position of the second resource set, that is, the resources occupied by the second-level control channel can be in the frequency domain with the second resource set.
  • the upper alignment can save the start position of the frequency domain indicating the resources occupied by the second-level control channel to save resource overhead.
  • the second terminal device analyzes the second-level control channel according to the resources occupied by the second-level control channel, and obtains the content carried by the second-level control channel.
  • the content carried by the second-level control channel may include: resources occupied by the data channel and demodulation parameters. It should be noted that, for the specific implementation of determining the number of resources occupied by the data channel, the time domain position, and the frequency domain position by the second terminal device, please refer to Figures 10-15 and related text descriptions in S901, which will not be repeated here. Go into details.
  • a demodulation & decoding process in the reverse order of the modulation and coding process shown in Fig. 8 can be performed to analyze the second-level control channel to obtain the second-level control.
  • the content carried by the channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel decoding.
  • the first-level control channel and the second-level control channel serve for data transmission
  • the second-level control channel carries demodulation parameters and resource configuration information of the data channel.
  • the resource configuration information of the data channel is used to obtain the resources occupied by the data channel.
  • the resources occupied by the data channel may include: resources in the first resource set and the second resource set except for the resources occupied by the first-level control channel, the resources occupied by the second-level control channel, and the resources occupied by the demodulation reference signal of the data channel. Select from resources.
  • the second terminal device analyzes the data channel according to the resources occupied by the data channel, and obtains the data carried by the data channel.
  • a demodulation & decoding process in the reverse order of the modulation and coding process shown in FIG. 8 can be performed to analyze the data channel and obtain the data carried by the data channel.
  • the demodulation and decoding process of the data channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel decoding.
  • the first terminal device can select the resources occupied by the second-level control channel from the first resource set or the second resource set. For example, when the first-level control channel is not power-enhanced When the second-level control channel can be selected from the first resource set, the resources occupied by the second-level control channel can be selected, or when the first-level control channel is power-enhanced, the second-level control channel can be selected from the second resource set. In order to ensure the reliability of the second-level control channel while reducing the decoding delay of the second-level control channel.
  • the two-level control channel transmission method provided by the embodiment of the present application is described in detail above with reference to FIGS. 3 to 15.
  • the terminal device provided by the embodiment of the present application will be described in detail below in conjunction with FIG. 16, and the communication device provided by the embodiment of the present application will be described in detail in conjunction with FIG. 17.
  • FIG. 16 is a schematic structural diagram of a terminal device provided in an embodiment of this application.
  • the terminal device 1600 includes: a transceiver module 1610 and a processing module 1620.
  • the terminal device 1600 may be used to implement the functions of the first terminal device or the second terminal device involved in the foregoing method embodiments.
  • the terminal device 1600 may be an independent terminal device, such as a handheld terminal device, a vehicle-mounted terminal device, a vehicle user equipment, etc., or a chip included in the terminal device, or the terminal device 1600 may be a vehicle-mounted device, for example, built in a car. On-board module or on-board unit.
  • the processing module 1620 is configured to determine the second level of control in the second resource set The resources occupied by the channel and the resources occupied by the data channel.
  • the second resource set is located after the first resource set in the time domain and is adjacent to the first resource set, and the second-level control channel occupies the second resource set in the time domain Of all symbols.
  • the transceiver module 1610 is used to send the second-level control channel and the data channel; wherein the average transmission power of the second-level control channel is higher than the average transmission power of the data channel.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the first resource set includes resources occupied by the first-level control channel
  • the first-level control channel carries the aggregation level of the second-level control channel.
  • the processing module 1620 is further configured to determine the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity, and then determine the number of resources occupied by the data channel.
  • the processing module 1620 is further configured to determine the product of the aggregation level of the second-level control channel and the minimum resource scheduling granularity as the number of resources occupied by the second-level control channel.
  • the minimum resource scheduling granularity may be N resource block RBs in the frequency domain, and may be all symbols in the second resource set in the time domain, and N is a positive integer.
  • the processing module 1620 is further configured to determine the frequency domain position of the resource occupied by the second-level control channel in the second resource set according to the amount of resources occupied by the second-level control channel.
  • the resources occupied by the second-level control channel may be determined from the second resource set according to a preset rule.
  • the second-level control channel may start from the resource block with the smallest number, and occupy one or more resource blocks in the second resource set in ascending order of the resource block number, so as to save resource overhead.
  • the first-level control channel, the second-level control channel, and the data channel can independently perform multiple-input and multiple-output MIMO coding, layer mapping, and resource mapping, that is, the first-level control channel, the second-level control Channels and data channels can independently perform MIMO coding, layer mapping and resource mapping on the resources they occupy after independently completing channel coding and rate matching, which can simplify the coding and modulation process of the first terminal device when multiple channels are included. To improve efficiency.
  • the processing module 1620 is further configured to map the second-level control channel in the frequency domain first and then the time domain on the resources occupied by the second-level control channel, and use the first frequency on the resources occupied by the data channel.
  • the data channel is mapped in the time domain after the domain.
  • the transceiver module 1610 is used to receive the second-level control channel and the data channel .
  • the average transmit power of the second-level control channel is higher than the average transmit power of the data channel.
  • the processing module 1620 is configured to determine the resources occupied by the second-level control channels in the second resource set, and analyze the second-level control channels according to the resources occupied by the second-level control channels, and obtain the resources occupied by the data channels in the second resource set.
  • the second resource set is located after the first resource set in the time domain and is adjacent to the first resource set, and the second-level control channel occupies all symbols in the second resource set in the time domain.
  • the processing module 1620 is further configured to analyze the data channel according to the resources occupied by the data channel, and obtain the data carried by the data channel.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the first resource set includes resources occupied by the first-level control channel
  • the first-level control channel carries the aggregation level of the second-level control channel.
  • the processing module 1620 is further configured to determine the number of resources occupied by the second-level control channel according to the aggregation level of the second-level control channel and the minimum resource scheduling granularity, and then determine the number of resources occupied by the data channel.
  • the processing module 1620 is further configured to determine the product of the aggregation level of the second-level control channel and the minimum resource scheduling granularity as the number of resources occupied by the second-level control channel.
  • the minimum resource scheduling granularity may be N resource block RBs in the frequency domain, and may be all symbols in the second resource set in the time domain, and N is a positive integer.
  • the processing module 1620 is further configured to determine the frequency domain position of the resource occupied by the second-level control channel in the second resource set according to the amount of resources occupied by the second-level control channel.
  • the resources occupied by the second-level control channel may be determined from the second resource set according to a preset rule.
  • the second-level control channel may start from the resource block with the smallest number, and occupy one or more resource blocks in the second resource set in ascending order of the resource block number. In this way, the second-level control channel occupancy may not be transmitted.
  • the frequency domain location of the resource is indicated to save resource overhead.
  • the demodulation & decoding process can be performed in the reverse order of the modulation and coding process, and the second level control channel and data channel can be analyzed to obtain the second level The content carried by the control channel and the content carried by the data channel.
  • the demodulation and decoding process of each channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel decoding.
  • the second-level control channel since the second-level control channel carries the demodulation parameters of the data channel and the configuration information of the radio resources, the second-level control channel needs to be parsed before the data channel can be parsed.
  • the processing module 1620 is further configured to demap the second-level control channel in the frequency domain first and then the time domain on the resources occupied by the second-level control channel, and use the resources occupied by the data channel The data channel is demapped in the frequency domain first and then the time domain.
  • the terminal device 1600 shown in FIG. 16 needs to parse the first-level control channel first. Level control channel, and then the second level control channel can be parsed. Therefore, the transceiver module 1610 is also used to receive the first-level control channel.
  • the processing module 1620 is also used to analyze the first-level control channel. Among them, the resources occupied by the first-level control channel are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol.
  • the processing module 1620 is configured to collect data from the first resource collection or the second resource
  • the resources occupied by the second-level control channel are selected in the set; the first resource set includes the resources occupied by the first-level control channel, and the second resource set is located behind and adjacent to the first resource set in the time domain.
  • the resource occupied by the second-level control channel when the resource occupied by the second-level control channel is selected from the first resource set, the resource occupied by the second-level control channel and the resource occupied by the first-level control channel are adjacent in the frequency domain; or, when the second resource is used
  • the resources occupied by the second-level control channels are selected from the set, and the resources occupied by the second-level control channels are adjacent to the resources occupied by the first-level control channels in the time domain.
  • the transceiver module 1610 is used to send the first-level control channel and the second-level control channel.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the processing module 1620 is also used for when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel is greater than or equal to the number of resources occupied by the second-level control channel Select the resources occupied by the second-level control channel from the first resource set to further reduce the decoding delay of the second-level control channel.
  • the time-domain start symbol of the resource occupied by the second-level control channel and the time-domain start symbol of the resource occupied by the first-level control channel are the same time-domain symbol, that is, the resource occupied by the second-level control channel can be the same as the time domain start symbol of the resource occupied by the first-level control channel.
  • the resources occupied by the first-level control channel are aligned in the time domain. In this way, the indication information of the time-domain start symbol indicating the resources occupied by the second-level control channel can be saved, so as to save resource overhead.
  • the processing module 1620 is further configured to: when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel is less than the number of resources occupied by the second-level control channel, Select the resources occupied by the second-level control channel from the second resource set, that is, when the first resource set is not enough to carry the first-level control channel and the second-level control channel at the same time, the second-level control channel can be selected from the second resource set
  • the resources occupied by the control channel can avoid the time domain symbols occupied by the first-level control channel when the power of the first-level control channel is enhanced, so as to ensure the reliability of the second-level control channel.
  • the resources occupied by the second-level control channel and the resources occupied by the first-level control channel are adjacent in the time domain, and may include: the time-domain start symbol of the resources occupied by the second-level control channel is the first-level control The next time domain symbol of the time domain end symbol of the resource occupied by the channel, that is, the second level control channel is mapped to the second level control channel from the next symbol of the time domain symbol occupied by the first level control channel, so as to send the second level control as early as possible Channel, thereby reducing the decoding delay of the second-level control channel.
  • the frequency domain start position of the resources occupied by the second-level control channel may be the same as the frequency domain start position of the resources occupied by the first-level control channel, that is, the resources occupied by the second-level control channel may be the same as the first-level control channel.
  • the resources occupied by the control channel are aligned in the frequency domain, which can save the frequency domain starting position indicating the resources occupied by the second-level control channel to save resource overhead.
  • the frequency domain start position of the resources occupied by the second-level control channel can also be the same as the frequency domain start position of the second resource set, that is, the resources occupied by the second-level control channel can be in the frequency domain with the second resource set.
  • the upper alignment can save the start position of the frequency domain indicating the resources occupied by the second-level control channel to save resource overhead.
  • the first-level control channel, the second-level control channel, and the data channel can independently perform multiple-input and multiple-output MIMO coding, layer mapping, and resource mapping, that is, the first-level control channel, the second-level control Channels and data channels can independently perform MIMO coding, layer mapping and resource mapping on the resources they occupy after independently completing channel coding and rate matching, which can simplify the coding and modulation process of the first terminal device when multiple channels are included. To improve efficiency.
  • the processing module 1620 is further configured to map the second-level control channel in the frequency domain first and then the time domain on the resources occupied by the second-level control channel, and use the first frequency on the resources occupied by the data channel.
  • the data channel is mapped in the time domain after the domain.
  • the transceiver module 1610 is configured to receive the first level control channel and the second level control channel. Level control channel.
  • the processing module 1620 is configured to analyze the first-level control channel and obtain resources occupied by the second-level control channel. Specifically, the processing module 1620 is configured to select resources occupied by the second-level control channel from the first resource set or the second resource set; the first resource set includes the resources occupied by the first-level control channel, and the second resource set is in time The domain is located behind the first resource set and adjacent to the first resource set.
  • the resource occupied by the second-level control channel when the resource occupied by the second-level control channel is selected from the first resource set, the resource occupied by the second-level control channel and the resource occupied by the first-level control channel are adjacent in the frequency domain; or, when the second resource is used
  • the resources occupied by the second-level control channels are selected from the set, and the resources occupied by the second-level control channels are adjacent to the resources occupied by the first-level control channels in the time domain.
  • the processing module 1620 is further configured to analyze the content carried by the second-level control channel according to the resources occupied by the second-level control channel.
  • the resources occupied by the first-level control channel are located in the first resource set, and are usually resources pre-configured by the network or predefined by the protocol.
  • the first resource set may occupy the nth to n+k symbols in the time unit, and the time domain start symbol of the second resource set is the n+k+1th symbol in the time unit, and n is 0. Or 1, k is a positive integer. In this way, the indication information of the time domain start position of the second resource set can be saved, and resource overhead can be reduced.
  • the processing module 1620 is also used for when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel is greater than or equal to the number of resources occupied by the second-level control channel Select the resources occupied by the second-level control channel from the first resource set to further reduce the decoding delay of the second-level control channel.
  • the time domain start symbol of the resource occupied by the second-level control channel may be the same time domain symbol as the time domain start symbol of the resource occupied by the first-level control channel, that is, the resource occupied by the second-level control channel may be The resources occupied by the first-level control channel are aligned in the time domain. In this way, the indication information of the time-domain start symbol indicating the resources occupied by the second-level control channel can be saved, so as to save resource overhead.
  • the processing module 1620 is further configured to: when the difference between the total amount of resources in the first resource set and the number of resources occupied by the first-level control channel is less than the number of resources occupied by the second-level control channel, Select the resources occupied by the second-level control channel from the second resource set, that is, when the first resource set is not enough to carry the first-level control channel and the second-level control channel at the same time, the second-level control channel can be selected from the second resource set
  • the resources occupied by the control channel can avoid the time domain symbols occupied by the first-level control channel when the power of the first-level control channel is enhanced, so as to ensure the reliability of the second-level control channel.
  • the resources occupied by the second-level control channel and the resources occupied by the first-level control channel are adjacent in the time domain, and may include: the time-domain start symbol of the resources occupied by the second-level control channel is the first-level control The next time domain symbol of the time domain end symbol of the resource occupied by the channel, that is, the second level control channel is mapped to the second level control channel from the next symbol of the time domain symbol occupied by the first level control channel, so as to send the second level control as early as possible Channel, thereby reducing the decoding delay of the second-level control channel.
  • the frequency domain start position of the resources occupied by the second-level control channel may be the same as the frequency domain start position of the resources occupied by the first-level control channel, that is, the resources occupied by the second-level control channel may be the same as the first-level control channel.
  • the resources occupied by the control channel are aligned in the frequency domain, which can save the frequency domain starting position indicating the resources occupied by the second-level control channel to save resource overhead.
  • the frequency domain start position of the resources occupied by the second-level control channel can also be the same as the frequency domain start position of the second resource set, that is, the resources occupied by the second-level control channel can be in the frequency domain with the second resource set.
  • the upper alignment can save the start position of the frequency domain indicating the resources occupied by the second-level control channel to save resource overhead.
  • the processing module 1620 is also used to obtain the resources occupied by the data channel and demodulation parameters according to the resources occupied by the second-level control channel, and according to the resources and demodulation parameters occupied by the data channel Analyze the data channel to obtain the data carried by the data channel.
  • the resources occupied by the data channel may include: among the first resource set and the second resource set except for the resources occupied by the first-level control channel, the resources occupied by the second-level control channel, and the resources occupied by the demodulation reference signal of the data channel. Select from external resources.
  • the second-level control channel and data channel can be parsed according to the demodulation & decoding process in the reverse order of the modulation and coding process provided by the third aspect to obtain the second The content carried by the level control channel and the data carried by the data channel.
  • the demodulation and decoding process of each channel may include the following steps: de-resource mapping, MIMO decoding and de-layer mapping, descrambling, de-channel multiplexing, de-rate matching, and channel decoding.
  • the first-level control channel carries the demodulation parameters and resource configuration information of the second-level control channel
  • the first-level control channel needs to be parsed before the second-level control channel can be parsed.
  • the second-level control channel carries the demodulation parameters and resource configuration information of the data channel, the second-level control channel needs to be parsed before the data channel can be parsed.
  • the processing module 1620 is further configured to demap the second-level control channel in the frequency domain first and then the time domain on the resources occupied by the second-level control channel, and use the resources occupied by the data channel The data channel is demapped in the frequency domain first and then the time domain.
  • the technical effect of the terminal device 1600 shown in FIG. 16 may refer to the technical effect of the method provided in the third aspect, which will not be repeated here.
  • the terminal device 1600 shown in FIG. 16 may further include a storage module (not shown in FIG. 16), and the storage module stores programs or instructions.
  • the processing module 1620 executes the program or instruction
  • the terminal device 1600 shown in FIG. 16 can execute the two-level control channel sending method shown in FIG. 3 or FIG. 9.
  • the terminal device 1600 shown in FIG. 16 may be an independent terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • the terminal device 1600 shown in FIG. 16 may also be referred to as a communication device.
  • the processing module 1620 involved in the communication device may be implemented by a processor or processor-related circuit components, and may be a processor or a processing unit;
  • the transceiver module 1610 may be implemented by a transceiver or transceiver-related circuit components, and may be a transceiver or a transceiver. unit.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 3 or FIG. 9 respectively. For the sake of brevity, it will not be repeated here.
  • FIG. 17 is a schematic structural diagram of a communication device provided in an embodiment of this application.
  • the communication device may specifically be a terminal device, such as the terminal device shown in FIG. 16. It is easy to understand and easy to illustrate.
  • the communication device uses a mobile phone as an example.
  • the communication device 1700 includes a processor, and may also include a memory. Of course, it may also include a radio frequency circuit, an antenna, an input/output device, and the like.
  • the processor is mainly used to process communication protocols and communication data, control the communication device 1700, execute software programs, and process data of the software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of communication devices 1700 may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 17 only one memory and processor are shown in FIG. 17. In the actual communication device 1700, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver unit of the communication device 1700, and the processor with the processing function may be regarded as the processing unit of the communication device 1700.
  • the communication device 1700 includes a transceiving unit 1710 and a processing unit 1720.
  • the transceiving unit 1710 may also be referred to as a transceiver, a transceiver, a transceiving device, a transceiving circuit, and the like.
  • the processing unit 1720 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1710 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1710 as the sending unit, that is, the transceiver unit 1710 includes a receiving unit and a sending unit.
  • the receiving unit may sometimes be called a receiver, a receiver, a receiving device, or a receiving circuit.
  • the transmitting unit may also be called a transmitter, a transmitter, a transmitting device, or a transmitting circuit, etc. sometimes.
  • transceiving unit 1710 is configured to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1720 is configured to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • An embodiment of the present application further provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • each step in the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiments of the present application also provide a computer-readable storage medium having computer-readable instructions stored in the computer-readable storage medium, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the above-mentioned methods The method in the embodiment.
  • the embodiments of the present application also provide a computer program product, which when the computer reads and executes the computer program product, causes the computer to execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system.
  • the communication system includes a sending terminal, such as the aforementioned first terminal device, and one or more receiving terminals, such as the aforementioned second terminal device.
  • the sending terminal is used to perform the function of the first terminal device in the foregoing method embodiment
  • the receiving terminal is used to perform the function of the second terminal device in the foregoing method embodiment.
  • Any one of the at least two terminal devices may be an independent terminal device, such as a mobile phone, or may be a device, module, or other component installed in the terminal device, such as a chip or chip system, or a vehicle-mounted module.
  • the communication system may also include network equipment, such as a base station, a roadside unit (RSU), and so on.
  • network equipment such as a base station, a roadside unit (RSU), and so on.
  • processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请提供一种两级控制信道发送方法、终端设备及通信装置,适用于V2X、车联网、智能网联车、辅助驾驶以及智能驾驶等领域,该方法包括:第一终端设备可以从与第一资源集合在时域上不重叠的第二资源集合中确定第二级控制信道占用的资源和数据信道占用的资源,第二级控制信道占用第二资源集合中的所有时域符号,且第二级控制信道的平均发射功率高于数据信道的平均发射功率,如此,可以在对第一级控制信道做功率增强的场景下,使得第二级控制信道可以避开第一级控制信道,获得更高的发射功率,从而增强了第二级控制信道的可靠性。

Description

两级控制信道发送方法、终端设备及通信装置 技术领域
本申请涉及通信领域,尤其涉及一种两级控制信道发送方法、终端设备及通信装置。
背景技术
在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术的网络下,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出。V2X通信是指车辆与外界的任何事物的通信,包括车与车的通信(vehicle to vehicle,V2V)、车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、车与网络的通信(vehicle to network,V2N)等多种应用场景。
现有的LTE V2X通信采用如图1所示的资源映射方式。一次调度的传输资源在频域上包括一个或连续的多个子信道(sub-channel),每个子信道包括连续的多个资源块(resource block,RB),如10个RB,时域上包括一个子帧(subframe)。物理侧行链路控制信道(physical sidelink control channel,PSCCH)占用频域上序号最低的连续两个RB,用于传输控制信息,如侧行链路控制信息(sidelink control information,SCI);侧行链路物理共享信道(physical sidelink share channel,PSSCH)以频分复用(frequency division multiplexing,FDM)的方式占用子信道中的剩余RB,用于传输数据(data)信息。在这种资源映射方式中,PSCCH信道占用的物理资源的大小是固定的,一次数据传输伴随一次控制信息传输。接收端在整个频域范围内以子信道为粒度,对所有可能的控制信道进行盲检测,并根据正确译码的控制信息,对数据信道进行解码,以获得数据信息。
在新空口(new radio,NR)V2X通信中,由于帧结构发生变化,为了支持更多种业务类型,控制信息的长度是可变的。因此,上述资源映射方式已不再适用。
发明内容
本申请实施例提供一种两级控制信道发送方法、终端设备及通信装置,适用于V2X、车联网、智能网联车、辅助驾驶以及智能驾驶等领域,能够解决第二级控制信道的资源映射问题,以确保第二级控制信道的可靠性,且可以有效降低第二级控制信道的译码时延。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种两级控制信道发送方法,应用于第一终端设备。该方法包括:确定第二资源集合中第二级控制信道占用的资源和数据信道占用的资源。其中,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻,第二级控制信道在时域上占用第二资源集合中的所有符号。然后,发送第二级控制信道和数据信道。其中,第二级控制信道的平均发射功率高于数据信道的平均发射功率。
基于第一方面提供的两级控制信道发送方法,第一终端设备可以从与第一资源集 合在时域上不重叠的第二资源集合中确定第二级控制信道占用的资源和数据信道占用的资源,第二级控制信道占用第二资源集合中的所有时域符号,且第二级控制信道的平均发射功率高于数据信道的平均发射功率。也就是说,在对第一级控制信道做功率增强的场景下,第二级控制信道可以避开第一级控制信道占用的时域符号,以便对第二级控制信道也做功率增强,可以提高第二级控制信道的译码成功率,从而增强了第二级控制信道的可靠性。此外,第二级控制信道占用第二资源集合中的所有时域符号,因此在对第二级控制信道做功率增强的场景下,可以降低第二级控制信道对数据信道的不良影响,从而保证数据信道的可靠性。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计方法中,第一资源集合包括第一级控制信道占用的资源,第一级控制信道承载第二级控制信道的聚合等级(aggregation level,AL)。相应地,第一方面提供的方法还可以包括:根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,进而确定数据信道占用的资源数量。
可选地,上述根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,可以包括:将第二级控制信道的聚合等级和最小资源调度粒度的乘积确定为第二级控制信道占用的资源数量。
其中,最小资源调度粒度在频域上可以为N个资源块RB,在时域上可以为第二资源集合中的所有符号,N为正整数。
进一步地,第一方面提供的方法还可以包括:根据第二级控制信道占用的资源数量,确定第二资源集合中第二级控制信道占用的资源的频域位置。具体地,可以按照预设规则,从第二资源集合中确定第二级控制信道占用的资源。例如,第二级控制信道可以从编号最小的资源块开始,按照资源块编号从小到大顺序占用第二资源集合中一个或多个资源块,以节省资源开销。
在一种可能的设计方法中,第二级控制信道和数据信道均可以独立进行多输入多输出(multiple input multiple output,MIMO)编码、层映射和资源映射,即第二级控制信道、数据信道均可以在独立完成信道编码和速率匹配后,在各自占用的资源上,独立进行MIMO编码、层映射和资源映射,可以简化包含多个信道时第一终端设备的编码调制流程,以提高效率。
可选地,第一方面提供的方法还可以包括:在第二级控制信道占用的资源上,采用先频域后时域的方式映射第二级控制信道,以及在数据信道占用的资源上,采用先频域后时域的方式映射数据信道。
需要说明的是,鉴于第二级控制信道的解调参数(如MCS)和资源配置信息(如聚合等级)承载在第一级控制信道上,第一方面提供的方法还可以包括:发送第一级控制信道。其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源。此外,第一级控制信道的调制编码参数也是网络预配置或协议预定义的。也就是说,第一级控制信道的资源配置信息和解调译码参数均是已知的,接收第一级控制信道的终端设备,如下述第二方面提供的第二终端设备可以据此 解析第一级控制信道,获取第一级控制信道承载的内容,如第二级控制信道的资源配置信息和调制编码参数。
第二方面,提供一种两级控制信道接收方法,应用于第二终端设备。该方法包括:接收第二级控制信道和数据信道。其中,第二级控制信道的平均发射功率高于数据信道的平均发射功率。然后,确定第二资源集合中第二级控制信道占用的资源,并根据第二级控制信道占用的资源解析第二级控制信道,获取第二资源集合中数据信道占用的资源。其中,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻,第二级控制信道在时域上占用第二资源集合中的所有符号。之后,根据数据信道占用的资源解析数据信道,获取数据信道承载的数据。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计方法中,第一资源集合包括第一级控制信道占用的资源,第一级控制信道承载第二级控制信道的聚合等级。相应地,第二方面提供的方法还可以包括:根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量。
可选地,上述根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,可以包括:将第二级控制信道的聚合等级和最小资源调度粒度的乘积确定为第二级控制信道占用的资源数量。
其中,最小资源调度粒度在频域上可以为N个资源块RB,在时域上可以为第二资源集合中的所有符号,N为正整数。
进一步地,第二方面提供的方法还可以包括:根据第二级控制信道占用的资源数量,确定第二资源集合中第二级控制信道占用的资源的频域位置。具体地,可以按照预设规则,从第二资源集合中确定第二级控制信道占用的资源的频域位置。例如,第二级控制信道可以从编号最小的资源块开始,按照资源块编号从小到大顺序占用第二资源集合中的一个或多个资源块,如此,则可以不传输第二级控制信道占用的资源的频域位置的指示信息,以节省资源开销。
需要说明的是,鉴于第二级控制信道承载了数据信道的解调参数和资源配置信息,第二终端设备需要先解析第二级控制信道,然后才可以解析数据信道。
在一种可能的设计方法中,在完成FFT和解CP之后,可以执行与第一方面提供的调制编码流程顺序相反的解调译码(demodulation&decoding)流程解析第二级控制信道和数据信道,获取第二级控制信道承载的内容和数据信道承载的数据。其中,按照先后顺序,第二级控制信道和数据信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。
可选地,与第一方面提供的第二级控制信道和数据信道的映射方式相对应,第二方面提供的方法还可以包括:在第二级控制信道占用的资源上,采用先频域后时域的方式对第二级控制信道解映射,以及在数据信道占用的资源上,采用先频域后时域的方式对数据信道解映射。
需要说明的是,鉴于第二级控制信道的资源配置信息(如聚合等级)和解调参数 (如MCS)承载在第一级控制信道上,第二终端设备需要先解析第一级控制信道,然后才能解析第二级控制信道。因此,与第一方面提供的发送第一级控制信道相对应,第二方面提供的方法还包括:接收并解析第一级控制信道。
第二方面提供的方法的技术效果可以参考第一方面提供的方法的技术效果,此处不再赘述。
第三方面,提供一种两级控制信道发送方法。该方法包括:从第一资源集合或第二资源集合中选择第二级控制信道占用的资源;第一资源集合包括第一级控制信道占用的资源,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻。其中,当从第一资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在频域上相邻;或者,当从第二资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻。然后,发送第一级控制信道和第二级控制信道。
其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源。此外,第一级控制信道的调制编码参数也是网络预配置或协议预定义的。也就是说,第一级控制信道的资源配置信息和解调译码参数均是已知的,接收第一级控制信道的终端设备,如下述第四方面提供的第二终端设备可以据此解析第一级控制信道,获取第一级控制信道承载的内容,如第二级控制信道的资源配置信息和调制编码参数。
基于第三方面提供的两级控制信道发送方法,第一终端设备可以从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,当不对第一级控制信道做功率增强时,可以从第一资源集合中选择第二级控制信道占用的资源,或者,当对第一级控制信道做功率增强时,可以从第二资源集合中选择第二级控制信道占用的资源,以确保第二级控制信道的可靠性,且可以降低第二级控制信道的译码时延。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计方法中,上述从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,可以包括:当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值大于或等于第二级控制信道占用的资源数量时,从第一资源集合中选择第二级控制信道占用的资源,以进一步降低第二级控制信道的译码时延。
可选地,第二级控制信道占用的资源的时域起始符号可以与第一级控制信道占用的资源的时域起始符号为同一时域符号,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在时域上对齐,如此,可以节省指示第二级控制信道占用的资源的时域起始符号的指示信息,以节省资源开销。
在另一种可能的设计方法中,上述从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,可以包括:当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值小于第二级控制信道占用的资源数量时,从第二资源集合中选择第二级控制信道占用的资源,即当第一资源集合不足以同时承载第一级控制信道和第二级控制信道时,可以从第二资源集合中选择第二级控制信道占用的资源,可以在对第 一级控制信道做功率增强时,避开第一级控制信道占用的时域符号,以确保第二级控制信道的可靠性。
进一步地,上述第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻,可以包括:第二级控制信道占用的资源的时域起始符号为第一级控制信道占用的资源的时域结束符号的下一个时域符号,即从第一级控制信道占用的时域符号的下一个符号开始映射第二级控制信道,以便尽可能早地发送第二级控制信道,从而降低第二级控制信道的译码时延。
再进一步地,第二级控制信道占用的资源的频域起始位置可以与第一级控制信道占用的资源的频域起始位置相同,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
同理,第二级控制信道占用的资源的频域起始位置也可以与第二资源集合的频域起始位置相同,即第二级控制信道占用的资源可以与第二资源集合在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
需要说明的是,第一级控制信道和第二级控制信道是为数据传输服务的,且第二级控制信道承载了数据信道的解调参数和资源配置信息。因此,在一种可能的设计方法中,第三方面提供的方法还可以包括:根据第二级控制信道占用的资源,获取数据信道的占用的资源,并在数据信道占用的资源发送数据信道。其中,数据信道占用的资源可以包括:第一资源集合和第二资源集合中除第一级控制信道占用的资源、第二级控制信道占用的资源、解调参考信号占用的资源之外的资源中选取。
在一种可能的设计方法中,第二级控制信道和数据信道均可以独立进行多输入多输出MIMO编码、层映射和资源映射,即第二级控制信道和数据信道均可以在独立完成信道编码和速率匹配后,在各自占用的资源上,独立进行MIMO编码、层映射和资源映射,可以简化第一终端设备的编码调制流程,从而提高效率。
可选地,第三方面提供的方法还可以包括:在第二级控制信道占用的资源上,采用先频域后时域的方式映射第二级控制信道,以及在数据信道占用的资源上,采用先频域后时域的方式映射数据信道。
第四方面,提供一种两级控制信道接收方法,应用于第二终端设备。该方法包括:接收第一级控制信道和第二级控制信道。然后,解析第一级控制信道,获取第二级控制信道占用的资源。具体地,从第一资源集合或第二资源集合中选择第二级控制信道占用的资源;第一资源集合包括第一级控制信道占用的资源,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻。其中,当从第一资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在频域上相邻;或者,当从第二资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻。之后,根据第二级控制信道占用的资源解析第二级控制信道承载的内容。
其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源。此外,第一级控制信道的调制编码参数也是网络预配置或协议预定义的。也就是说,第一级控制信道的资源配置信息和解调译码参数均是已知的,接 收第一级控制信道的终端设备,如下述第二方面提供的第二终端设备可以据此解析第一级控制信道,获取第一级控制信道承载的内容,如第二级控制信道的资源配置信息和调制编码参数。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计方法中,上述从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,可以包括:当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值大于或等于第二级控制信道占用的资源数量时,从第一资源集合中选择第二级控制信道占用的资源,以进一步降低第二级控制信道的译码时延。
可选地,第二级控制信道占用的资源的时域起始符号可以与第一级控制信道占用的资源的时域起始符号为同一时域符号,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在时域上对齐,如此,可以节省指示第二级控制信道占用的资源的时域起始符号的指示信息,以节省资源开销。
在另一种可能的设计方法中,上述从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,可以包括:当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值小于第二级控制信道占用的资源数量时,从第二资源集合中选择第二级控制信道占用的资源,即当第一资源集合不足以同时承载第一级控制信道和第二级控制信道时,可以从第二资源集合中选择第二级控制信道占用的资源,可以在对第一级控制信道做功率增强时,避开第一级控制信道占用的时域符号,以确保第二级控制信道的可靠性。
进一步地,上述第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻,可以包括:第二级控制信道占用的资源的时域起始符号为第一级控制信道占用的资源的时域结束符号的下一个时域符号,即从第一级控制信道占用的时域符号的下一个符号开始映射第二级控制信道,以便尽可能早地发送第二级控制信道,从而降低第二级控制信道的译码时延。
再进一步地,第二级控制信道占用的资源的频域起始位置可以与第一级控制信道占用的资源的频域起始位置相同,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
同理,第二级控制信道占用的资源的频域起始位置也可以与第二资源集合的频域起始位置相同,即第二级控制信道占用的资源可以与第二资源集合在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
需要说明的是,第一级控制信道和第二级控制信道是为数据传输服务的,且第二级控制信道承载了数据信道的解调参数和资源配置信息。因此,在一种可能的设计方法中,与第三方面提供的"根据第二级控制信道占用的资源,获取数据信道的占用的资源,并在数据信道占用的资源发送数据信道"相对应,第四方面提供的方法还可以包括:根据第二级控制信道占用的资源,获取数据信道的占用的资源和解调参数,以及根据数据信道占用的资源和解调参数解析数据信道,获取数据信道承载的数据。其 中,数据信道占用的资源可以包括:第一资源集合和第二资源集合中除第一级控制信道占用的资源、第二级控制信道占用的资源、数据信道的解调参考信号占用的资源之外的资源中选取。
在一种可能的设计方法中,在完成FFT和解CP之后,可以执行与第三方面提供的调制编码流程顺序相反的解调译码(demodulation and decoding)流程解析第二级控制信道和数据信道,获取第二级控制信道承载的内容和数据信道承载的数据。其中,按照先后顺序,各信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。
需要说明的是,鉴于第一级控制信道承载了第二级控制信道的解调参数和资源配置信息,需要先解析第一级控制信道,然后才可以解析第二级控制信道。同理,鉴于第二级控制信道承载了数据信道的解调参数和资源配置信息,需要先解析第二级控制信道,然后才可以解析数据信道。
可选地,与第三方面提供的第二级控制信道和数据信道的映射方式相对应,第四方面提供的方法还可以包括:在第二级控制信道占用的资源上,采用先频域后时域的方式对第二级控制信道解映射,以及在数据信道占用的资源上,采用先频域后时域的方式对数据信道解映射。
第四方面提供的方法的技术效果可以参考第三方面提供的方法的技术效果,此处不再赘述。
第五方面,提供一种终端设备。该终端设备包括:处理模块和收发模块。其中,处理模块,用于确定第二资源集合中第二级控制信道占用的资源和数据信道占用的资源,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻,第二级控制信道在时域上占用第二资源集合中的所有符号。收发模块,用于发送第二级控制信道和数据信道;其中,第二级控制信道的平均发射功率高于数据信道的平均发射功率。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计中,第一资源集合包括第一级控制信道占用的资源,第一级控制信道承载第二级控制信道的聚合等级。相应地,处理模块,还用于根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,进而确定数据信道占用的资源数量。
可选地,处理模块,还用于将第二级控制信道的聚合等级和最小资源调度粒度的乘积确定为第二级控制信道占用的资源数量。
其中,最小资源调度粒度在频域上可以为N个资源块RB,在时域上可以为第二资源集合中的所有符号,N为正整数。
进一步地,处理模块,还用于根据第二级控制信道占用的资源数量,确定第二资源集合中第二级控制信道占用的资源的频域位置。具体地,可以按照预设规则,从第二资源集合中确定第二级控制信道占用的资源。例如,第二级控制信道可以从编号最小的资源块开始,按照资源块编号从小到大顺序占用第二资源集合中一个或多个资源块,以节省资源开销。
在一种可能的设计中,第二级控制信道和数据信道均可以独立进行多输入多输出MIMO编码、层映射和资源映射,即第二级控制信道和数据信道均可以在独立完成信道编码和速率匹配后,在各自占用的资源上,独立进行MIMO编码、层映射和资源映射,可以简化包含多个信道时第一终端设备的编码调制流程,提高效率。
可选地,处理模块,还用于在第二级控制信道占用的资源上,采用先频域后时域的方式映射第二级控制信道,以及在数据信道占用的资源上,采用先频域后时域的方式映射数据信道。
可选地,第五方面提供的终端设备还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第五方面提供的终端设备可以执行第一方面中任一种可能的实现方式提供的方法。
需要说明的是,第五方面提供的终端设备可以是独立的终端设备,也可以是设置于终端设备中的芯片或芯片系统,本申请对此不做限定。
第五方面提供的终端设备的技术效果可以参考第一方面提供的方法的技术效果,此处不再赘述。
第六方面,提供一种终端设备。该终端设备包括:处理模块和收发模块。其中,收发模块,用于接收第二级控制信道和数据信道。其中,第二级控制信道的平均发射功率高于数据信道的平均发射功率。处理模块,用于确定第二资源集合中第二级控制信道占用的资源,并根据第二级控制信道占用的资源解析第二级控制信道,获取第二资源集合中数据信道占用的资源。其中,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻,第二级控制信道在时域上占用第二资源集合中的所有符号。处理模块,还用于根据数据信道占用的资源解析数据信道,获取数据信道承载的数据。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计中,第一资源集合包括第一级控制信道占用的资源,第一级控制信道承载第二级控制信道的聚合等级。相应地,处理模块,还用于根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,进而确定数据信道占用的资源数量。
可选地,处理模块,还用于将第二级控制信道的聚合等级和最小资源调度粒度的乘积确定为第二级控制信道占用的资源数量。
其中,最小资源调度粒度在频域上可以为N个资源块RB,在时域上可以为第二资源集合中的所有符号,N为正整数。
进一步地,处理模块,还用于根据第二级控制信道占用的资源数量,确定第二资源集合中第二级控制信道占用的资源的频域位置。具体地,可以按照预设规则,从第二资源集合中确定第二级控制信道占用的资源。例如,第二级控制信道可以从编号最小的资源块开始,按照资源块编号从小到大顺序占用第二资源集合中的一个或多个资源块,如此,则可以不传输第二级控制信道占用的资源的频域位置的指示信息,以节省资源开销。
在一种可能的设计中,在完成FFT和解CP之后,可以执行与第五方面提供的调 制编码流程顺序相反的解调译码流程解析第二级控制信道和数据信道,获取第二级控制信道承载的内容和数据信道承载的内容。其中,按照先后顺序,各信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。
需要说明的是,鉴于第二级控制信道承载了数据信道的解调参数和资源配置信息,需要先解析第二级控制信道,然后才可以解析数据信道。
可选地,处理模块,还用于在第二级控制信道占用的资源上,采用先频域后时域的方式对第二级控制信道解映射,以及在数据信道占用的资源上,采用先频域后时域的方式对数据信道解映射。
需要说明的是,鉴于第二级控制信道的资源配置信息(如聚合等级)和解调参数(如MCS)承载在第一级控制信道上,第六方面提供的终端设备需要先解析第一级控制信道,然后才能解析第二级控制信道。因此,收发模块,还用于接收第一级控制信道;以及,处理模块,还用于解析第一级控制信道。其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源。
可选地,第六方面提供的终端设备还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第六方面提供的终端设备可以执行第二方面中任一种可能的实现方式提供的方法。
需要说明的是,第六方面提供的终端设备可以是独立的终端设备,也可以是设置于终端设备中的芯片或芯片系统,本申请对此不做限定。
第六方面提供的终端设备的技术效果可以参考第一方面提供的方法的技术效果,此处不再赘述。
第七方面,提供一种终端设备。该终端设备包括:处理模块和收发模块。其中,处理模块,用于从第一资源集合或第二资源集合中选择第二级控制信道占用的资源;第一资源集合包括第一级控制信道占用的资源,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻。其中,当从第一资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在频域上相邻;或者,当从第二资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻。收发模块,用于发送第一级控制信道和第二级控制信道。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计中,处理模块,还用于当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值大于或等于第二级控制信道占用的资源数量时,从第一资源集合中选择第二级控制信道占用的资源,以进一步降低第二级控制信道的译码时延。
可选地,第二级控制信道占用的资源的时域起始符号与第一级控制信道占用的资源的时域起始符号为同一时域符号,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在时域上对齐,如此,可以节省指示第二级控制信道占用的资源的时 域起始符号的指示信息,以节省资源开销。
在另一种可能的设计中,处理模块,还用于当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值小于第二级控制信道占用的资源数量时,从第二资源集合中选择第二级控制信道占用的资源,即当第一资源集合不足以同时承载第一级控制信道和第二级控制信道时,可以从第二资源集合中选择第二级控制信道占用的资源,可以在对第一级控制信道做功率增强时,避开第一级控制信道占用的时域符号,以确保第二级控制信道的可靠性。
进一步地,上述第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻,可以包括:第二级控制信道占用的资源的时域起始符号为第一级控制信道占用的资源的时域结束符号的下一个时域符号,即从第一级控制信道占用的时域符号的下一个符号开始映射第二级控制信道,以便尽可能早地发送第二级控制信道,从而降低第二级控制信道的译码时延。
再进一步地,第二级控制信道占用的资源的频域起始位置可以与第一级控制信道占用的资源的频域起始位置相同,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
同理,第二级控制信道占用的资源的频域起始位置也可以与第二资源集合的频域起始位置相同,即第二级控制信道占用的资源可以与第二资源集合在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
在一种可能的设计中,第二级控制信道和数据信道均可以独立进行多输入多输出MIMO编码、层映射和资源映射,即第二级控制信道和数据信道均可以在独立完成信道编码和速率匹配后,在各自占用的资源上,独立进行MIMO编码、层映射和资源映射,可以简化第七方面提供的终端设备的编码调制流程,从而提高效率。
可选地,处理模块,还用于在第二级控制信道占用的资源上,采用先频域后时域的方式映射第二级控制信道,以及在数据信道占用的资源上,采用先频域后时域的方式映射数据信道。
可选地,第七方面提供的终端设备还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第七方面提供的终端设备可以执行第三方面中任一种可能的实现方式提供的方法。
需要说明的是,第七方面提供的终端设备可以是独立的终端设备,也可以是设置于终端设备中的芯片或芯片系统,本申请对此不做限定。
第七方面提供的终端设备的技术效果可以参考第三方面提供的方法的技术效果,此处不再赘述。
第八方面,提供一种终端设备。该终端设备包括:处理模块和收发模块。其中,收发模块,用于接收第一级控制信道和第二级控制信道。处理模块,用于解析第一级控制信道,获取第二级控制信道占用的资源。具体地,处理模块,用于从第一资源集合或第二资源集合中选择第二级控制信道占用的资源;第一资源集合包括第一级控制信道占用的资源,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻。其中,当从第一资源集合中选择第二级控制信道占用的资源,第二级控制信道 占用的资源与第一级控制信道占用的资源在频域上相邻;或者,当从第二资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻。处理模块,还用于根据第二级控制信道占用的资源解析第二级控制信道承载的内容。其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计中,处理模块,还用于当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值大于或等于第二级控制信道占用的资源数量时,从第一资源集合中选择第二级控制信道占用的资源,以进一步降低第二级控制信道的译码时延。
可选地,第二级控制信道占用的资源的时域起始符号可以与第一级控制信道占用的资源的时域起始符号为同一时域符号,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在时域上对齐,如此,可以节省指示第二级控制信道占用的资源的时域起始符号的指示信息,以节省资源开销。
在另一种可能的设计中,处理模块,还用于当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值小于第二级控制信道占用的资源数量时,从第二资源集合中选择第二级控制信道占用的资源,即当第一资源集合不足以同时承载第一级控制信道和第二级控制信道时,可以从第二资源集合中选择第二级控制信道占用的资源,可以在对第一级控制信道做功率增强时,避开第一级控制信道占用的时域符号,以确保第二级控制信道的可靠性。
进一步地,上述第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻,可以包括:第二级控制信道占用的资源的时域起始符号为第一级控制信道占用的资源的时域结束符号的下一个时域符号,即从第一级控制信道占用的时域符号的下一个符号开始映射第二级控制信道,以便尽可能早地发送第二级控制信道,从而降低第二级控制信道的译码时延。
再进一步地,第二级控制信道占用的资源的频域起始位置可以与第一级控制信道占用的资源的频域起始位置相同,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
同理,第二级控制信道占用的资源的频域起始位置也可以与第二资源集合的频域起始位置相同,即第二级控制信道占用的资源可以与第二资源集合在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
需要说明的是,第一级控制信道和第二级控制信道是为数据传输服务的,且第二级控制信道承载了数据信道的解调参数和资源配置信息。因此,在一种可能的设计中,处理模块,还用于根据第二级控制信道占用的资源,获取数据信道的占用的资源和解调参数,以及根据数据信道占用的资源和解调参数解析数据信道,获取数据信道承载的数据。其中,数据信道占用的资源可以包括:第一资源集合和第二资源集合中除第 一级控制信道占用的资源、第二级控制信道占用的资源、数据信道的解调参考信号占用的资源之外的资源中选取。
在一种可能的设计中,在完成FFT和解CP之后,可以执行与第七方面提供的调制编码流程顺序相反的解调译码流程解析第二级控制信道和数据信道,获取第二级控制信道承载的内容和数据信道承载的数据。其中,按照先后顺序,各信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。
需要说明的是,鉴于第一级控制信道承载了第二级控制信道的解调参数和资源配置信息,需要先解析第一级控制信道,然后才可以解析第二级控制信道。同理,鉴于第二级控制信道承载了数据信道的解调参数和资源配置信息,需要先解析第二级控制信道,然后才可以解析数据信道。
可选地,处理模块,还用于在第二级控制信道占用的资源上,采用先频域后时域的方式对第二级控制信道解映射,以及在数据信道占用的资源上,采用先频域后时域的方式对数据信道解映射。
第八方面提供的终端设备的技术效果可以参考第三方面提供的方法的技术效果,此处不再赘述。
第九方面,提供一种通信装置。该通信装置包括至少一个处理器,该至少一个处理器与至少一个存储器耦合。其中,该至少一个处理器,用于执行至少一个存储器中存储的计算机程序或指令,以使得第九方面提供的通信装置执行第一方面至第四方面中任一种可能的实现方式提供的方法。
第十方面,提供一种通信装置。该通信装置包括处理器和接口电路。其中,接口电路,用于接收代码指令并传输至处理器;处理器用于运行代码指令以执行第一方面至第四方面中任一种可能的实现方式提供的方法。
第十一方面,提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,该芯片系统还可包括接口电路,所述接口电路用于接收代码指令并传输至处理器;当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面至第四方面中任一种可能的实现方式提供的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第十二方面,提供一种可读存储介质,用于存储指令,当指令被执行时,使得第一方面至第四方面中任一种可能的实现方式提供的方法被实现。
第十三方面,提供一种计算机程序产品,计算机程序产品包括:计算机程序代码, 当计算机程序代码在计算机上运行时,使得计算机执行第一方面至第四方面中任一种可能的实现方式提供的方法。
第十四方面,提供一种通信系统,该通信系统包括一个发送终端,如上述第一终端设备,以及一个或多个接收终端,如上述第二终端设备。其中,发送终端用于执行上述第一方面至第四方面中第一终端设备的方法,接收终端用于执行上述第一方面至第四方面中第二终端设备的方法。该至少两个终端设备中的任一终端设备可以为独立的终端设备,如手机,也可以为设置与终端设备内部的装置、模块或其他部件,如芯片或芯片系统、或车载模块等。
可选地,该通信系统中还可以包括网络设备,如基站、路侧单元(roadside unit,RSU)等。
附图说明
图1为LTE V2X的资源映射方式的示意图;
图2为本申请实施例提供的通信系统的架构示意图;
图3为本申请实施例提供的两级控制信道发送方法的流程示意图一;
图4为本申请实施例提供的时间单元的帧结构的示意图;
图5为本申请实施例提供的基于图4所示的帧结构的资源分布示意图一;
图6为本申请实施例提供的基于图4所示的帧结构的资源分布示意图二;
图7为本申请实施例提供的基于图4所示的帧结构的资源分布示意图三;
图8为本申请实施例提供的编码调制流程的示意图;
图9为本申请实施例提供的两级控制信道发送方法的流程示意图二;
图10为本申请实施例提供的基于图4所示的帧结构的资源分布示意图四;
图11为本申请实施例提供的基于图4所示的帧结构的资源分布示意图五;
图12为本申请实施例提供的基于图4所示的帧结构的资源分布示意图六;
图13为本申请实施例提供的基于图4所示的帧结构的资源分布示意图七;
图14为本申请实施例提供的基于图4所示的帧结构的资源分布示意图八;
图15为本申请实施例提供的基于图4所示的帧结构的资源分布示意图九;
图16为本申请实施例提供的终端设备的结构示意图;
图17为本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,"示例地"、"例如"等词用于表示作例子、例证或说明。本申请中被描述为"示例"的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,"信息(information)","信号(signal)","消息(message)", "信道(channel)"、"信令(signaling)"有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。"的(of)","相应的(corresponding to,relevant to)"和"对应的(corresponding to)"有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),或者应用于未来的通信系统或其它类似的通信系统等。
本申请实施例的技术方案可以应用于无人驾驶(unmanned driving)、辅助驾驶(driver assistance,ADAS)、智能驾驶(intelligent driving)、网联驾驶(connected driving)、智能网联驾驶(Intelligent network driving)、汽车共享(car sharing)、智能汽车(smart/intelligent car)、数字汽车(digital car)、无人汽车(unmanned car/driverless car/pilotless car/automobile)、车联网(Internet of vehicles,IoV)、自动汽车(self-driving car、autonomous car)、车路协同(cooperative vehicle infrastructure,CVIS)、智能交通(intelligent transport system,ITS)、车载通信(vehicular communication)等技术领域。
另外,本申请实施例提供的技术方案可以应用于蜂窝链路,也可以应用于设备间的链路,例如设备到设备(device to device,D2D)链路。D2D链路或V2X链路,也可以称为边链路、辅链路或侧行链路等。在本申请实施例中,上述的术语都是指相同类型的设备之间建立的链路,其含义相同。所谓相同类型的设备,可以是独立的终端设备到终端设备之间的链路,也可以是基站到基站之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。对于终端设备和终端设备之间的链路,有3GPP的版本(release,Rel)-12/13定义的D2D链路,也有3GPP为车联网定义的车到车、车到手机、或车到任何实体的V2X链路,包括Rel-14/15。还包括目前3GPP正在研究的Rel-16及后续版本的基于NR系统的V2X链路等。
图2为本申请实施例适用的一种通信系统的网络架构示意图。需要说明的是,本申请实施例中部分场景以图2所示的通信系统中的场景为例进行说明的。应当指出的是,本申请实施例中的方案还可以应用于其他移动通信系统中,相应的名称也可以用其他移动通信系统中的对应功能的名称进行替代。
如图2所示,该通信系统包括第一终端设备和第二终端设备。终端设备与终端设 备之间可通过PC5接口进行直接通信,终端设备与终端设备之间的直连通信链路即为侧行链路(sidelink,SL)。基于侧行链路的通信可以使用如下信道中的至少一个:物理侧行链路共享信道(physical sidelink shared channel,PSSCH),用于承载数据(data);物理侧行链路控制信道(physical sidelink control channel,PSCCH),用于承载侧行链路控制信息(sidelink control information,SCI)。
可选的,该通信系统还包括网络设备(图2中未示出),用于为终端设备提供定时同步和资源调度。网络设备可通过Uu接口与至少一个终端设备(如第一终端设备)进行通信。网络设备与终端设备之间的通信链路包括上行链路(uplink,UL)和下行链路(downlink,DL)。终端设备与终端设备之间还可以通过网络设备的转发实现间接通信,例如,第一终端设备可将数据通过Uu接口发送至网络设备,通过网络设备发送至应用服务器进行处理后,再由应用服务器将处理后的数据下发至网络设备,并通过网络设备发送给第二终端设备。在基于Uu接口的通信方式下,转发第一终端设备至应用服务器的上行数据的网络设备和转发应用服务器下发至第二终端设备的下行数据的网络设备可以是同一个网络设备,也可以是不同的网络设备,可以由应用服务器决定。
上述网络设备可以为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在5G系统中对应5G中的接入网设备,例如gNB。尽管只在图2中示出了第一终端设备和第二终端设备,应理解,网络设备可以为多个终端设备提供服务,本申请实施例对通信系统中终端设备的数量不作限定。同理,图2中的终端设备是以车载终端设备或车辆为例进行说明的,也应理解,本申请实施例中的终端设备不限于此,终端设备也可以为车载模块、路侧单元或行人手持设备。应当理解,本申请实施例并不限定于4G或5G系统,还适用于后续演进的通信系统。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备
终端设备,又可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。所述终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。例如,终端设备可以是具有无线连接功能的手持式设备、车载设备、车辆用户设备等。目前,一些终端设备的示例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例中的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
2)网络设备
网络设备是网络中用于将终端设备接入到无线网络的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB,或者也可以包括第五代移动通信技术(5th generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或WiFi接入点(access point,AP)等,再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。再例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU),RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其它实体交换消息。
3)两级控制信道和数据信道
本申请实施例中,存在第一控制信息和第二控制信息两种类型的控制信息。相应的,一个时间单元中存在两级控制信道,分别用于承载第一控制信息和第二控制信息。所述时间单元是指一次数据传输调度的资源的集合。
具体地,一个时间单元在频域上可包括一个或多个连续的子信道(sub-channel),一个子信道可包括频域上连续的若干个RB。一个时间单元在时域上可包括一个或多个时间单元,该时间单元可以由时隙(slot)、微时隙(mini-slot)、子帧(subframe)、无线帧(radio frame)、发送时间间隔(transmission time interval,TTI)等多种可能的时间粒度构成的时间单元。应理解,本申请实施例对时间单元的带宽不作具体限定,时间单元中包括的子信道的数量、以及每个子信道的大小均可由网络设备进行配置或预配置。
第一控制信息适用于广播(broadcast)、单播(unicast)、组播(multicast,可称之为多播)等场景,可以为V2X通信所需的基础控制信息,例如,第一控制信息可包括L1层目的用户ID(destination identity)、数据信道频域带宽、资源预留信息、初传和重传时间间隔等。第一控制信息承载在第一级控制信道上,该第一级控制信道例如可以为第一级PSCCH信道。
第二控制信息适用于单播、组播等场景,可以为单播、组播等场景中所需的额外的链路维护信息,用以提高链路的可靠性。例如,第二控制信息可包括数据信道的调制和编码策略(modulation and coding scheme,MCS)、数据信道的混合自动重传请求(hybrid automatic repeat request,HARQ)版本号和新传或重传指示等。第二控制信息承载在第二级控制信道上,该第二级控制信道例如可以为第二级PSCCH信道。应理解,在广播场景下,第一终端设备可以仅向第二终端设备发送第一控制信息;在单播和多播场景下,第一终端设备需要向第二终端设备发送第一控制信息和第二控制信息。
所述数据可以为广播、单播、组播等场景中,第一终端设备向第二终端设备发送 的具体的业务数据。数据承载在时间单元中的数据信道上,该数据信道例如可以是PSSCH信道。例如,若第一终端设备和第二终端设备均为车辆,第一终端设备可将自身的一些例如位置、速度、意图(包括转弯、并线、倒车)、姿态(如上坡、下坡)等信息发送给第二终端设备。
需要说明的是,本申请实施例中的术语"系统"和"网络"可被互换使用。"多个"是指两个或两个以上,鉴于此,本申请实施例中也可以将"多个"理解为"至少两个"。"至少一个",可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于"至少一种"等描述的理解,也是类似的。"和/或",描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符"/",如无特殊说明,一般表示前后关联对象是一种"或"的关系。
除非有相反的说明,本申请实施例提及"第一"、"第二"等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且"第一"、"第二"的描述也并不限定对象一定不同。
图3为本申请实施例提供的两级控制信道发送方法的流程示意图一。该两级控制信道发送方法适用于图2所示的通信系统,实现第一终端设备与第二终端设备之间的通信。下面以第一终端设备为发送终端,以第二终端设备为接收终端为例,详细说明本申请实施例提供的两级控制信道发送方法。
如图3所示,该方法包括S301至S306:
S301,第一终端设备确定第二资源集合中第二级控制信道占用的资源和数据信道占用的资源。
示例性地,图4为本申请实施例提供的时间单元的一种帧结构的示意图,在图4中仅示出了第一级控制信道和数据信道。在图4中所示的A部分,第一级控制信道和数据信道以频分复用的方式映射在A部分的所有符号上,在图4中所示的B部分只存在数据信道,没有第一级控制信道。其中,时间单元中映射第一控制信息的资源即为第一级控制信道占用的资源,可以由网络设备进行预配置。
示例性地,图5至图7为本申请实施例提供的基于图4所示的帧结构的资源分布示意图一至三。在图5至图7中,一个时间单元在时域上包括一个时隙,该时隙包括14个时域符号,这14个使用符号从左到右依次编号为0至13,在频域上包括10个RB,这10个RB从上到下依次编号为0至9。
如图5至图7所示,以第一级控制信道占用的资源包括的最后一个符号所在时域位置(即第一级控制信道占用的资源的时域结束位置)作为分界,可将该时间单元从时域上分为A部分和B部分。
在时域上,第一级控制信道占用的资源可以包括该A部分的部分或全部时域资源。在频域上,第一级控制信道占用的资源可以包括该A部分中的部分频域资源。通常第一级控制信道占用的资源的资源大小是固定的,在图示中可以体现为一个时间单元中由多个资源块构成的长方形。
应理解,第一级控制信道占用的资源的频域起始资源块可以与该时间单元的频域起始资源块相同或不同,本申请并不限定。也就是说,第一级控制信道占用的资源可以包括该时间单元中最上方编号为0的资源块,也可以不包括时间单元中最上方的编号为0的资源块。或者,也可以理解为第一级控制信道占用的资源可以与时间单元的频域起始位置对齐或不对齐。
还应理解,第一级控制信道占用的资源中可以包括时间单元中第一个符号上的资源,也可以不包括时间单元中第一个符号上的资源。例如,如图5所示,若不考虑自动增益控制(automatic gain control,AGC)对第一级控制信道的影响,第一级控制信道占用的资源可包括时间单元中第一个符号(符号0)上的资源,即第一控制信息可以映射到该时间单元中的第一个符号的资源上,或者也可以理解为第一级控制信道可以从该时间单元中的第一个符号上开始映射。
再例如,如图6和图7所示,若考虑AGC对第一级控制信道的影响,第一级控制信道占用的资源可不包括时间单元中第一个符号(符号0)上的资源,第一控制信息可以避开该时间单元的第一个符号,从时间单元中的第二个符号(符号1)上开始映射,或者也可以理解为第一级控制信道避开该时间单元上的第一个符号,从时间单元中的第二个符号上开始映射。
需要说明的是,在时间单元的第一个符号(符号0)用于AGC的场景下,该第一个符号上可以映射如图6所示的专用AGC符号,也可以映射如图7所示的数据。该专用AGC符号或用于AGC的数据映射在该第一个符号上的所有资源块上。其中,专用AGC符号可以映射根据预设方法生成的用于AGC的序列,如伪随机序列,也可以是其他的功能符号,如该时隙中其他符号的复制、拷贝等。用于AGC的数据可以是需要接收端作解调译码的数据(有效数据),也可以是仅用于AGC,且不需要接收端作解调译码的数据(无效数据),本申请实施例对此不作限定。
应理解,图4至图7中所示的A部分的资源也可以称之为该时间单元中的第一资源集合,B部分的资源也可以称之为该时间单元中视为本申请实施例中的第二资源集合。其中,参考图4至图7,可以得知:第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻,第二级控制信道在时域上占用第二资源集合中的所有符号。也就是说,第一资源集合包括第一级控制信道占用的资源,第二资源集合包括第二级控制信道占用的资源。
参考图5至图7,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计方法中,若第一级控制信道承载第二级控制信道的聚合等级,则图3所示的方法还可以包括:
第一终端设备根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,进而确定数据信道占用的资源数量。
其中,最小资源调度粒度在频域上可以为N个资源块RB,在时域上可以为第二资源集合中的所有符号,N为正整数。聚合等级是指,第二级控制信道占用的资源数量与最小资源调度粒度的倍数,取值可以为1、2、4、8、或32等。例如,假定最小 资源调度粒度在频域上为1个RB,在时域上可以为第二资源集合中的所有符号,且聚合等级为1,则第二级控制信道占用的资源数量即为最小资源调度粒度所定义的资源数量,也就是图5至图7中任一项所示的第二资源集合中的一行RB所对应的资源。
可选地,上述根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,可以包括:
第一终端设备将第二级控制信道的聚合等级和最小资源调度粒度的乘积确定为第二级控制信道占用的资源数量。
进一步地,倘若获知第二级控制信道从预设频域位置开始映射,则可以根据第二级控制信道占用的资源数量确定第二级控制信道占用的资源的频域位置,即图3所示的方法还可以包括:
第一终端设备根据第二级控制信道占用的资源数量,确定第二资源集合中第二级控制信道占用的资源的频域位置。具体地,可以从预设频域位置开始,从第二资源集合中确定第二级控制信道占用的资源的频域位置。例如,第二级控制信道可以从编号最小的资源块开始,按照资源块编号从小到大顺序占用第二资源集合中一个或多个资源块,以节省资源开销。
在确定第二级控制信道占用的资源之后,即可确定数据信道占用的资源。其中,数据信道占用的资源可以包括:该时间单元中除第一级控制信道占用的资源、第二级控制信道占用的资源、解调参考信号(demodulation reference signal,DMRS)占用的资源、不映射有效数据的第一个符号上的资源、保护间隔(GAP)符号上的资源之外的资源。
图8为本申请实施例提供的对第二控制信道和数据独立进行编码调制的流程示意图。首先针对第一级控制信道和数据信道,分别进行信道编码、信道复用、加扰、层映射和多输入多输出(multiple-input multiple-output,MIMO)编码、资源映射,然后将完成资源映射的第一级控制信道和数据信道作快速傅里叶逆变(inverse fast fourier transform,IFFT)和循环前缀(cycle prefix,CP)操作。其中。上述S301,第一终端设备确定第二资源集合中第二级控制信道占用的资源和数据信道占用的资源发生在图8所示的信道编码步骤之前。其中,信道编码、信道复用、加扰、层映射、MIMO编码、IFFT+CP可以参考现有实现方式,本申请实施例不再赘述。
图8中所示的资源映射是指,将第二级控制信道和数据信道分别映射至各自的资源上,如可以按照先频域后时域的顺序,将第二级控制信道映射至第二级控制信道占用的资源上,且将数据信道映射至数据信道占用的资源上。
也就是说,第二级控制信道和数据信道均可以独立进行MIMO编码、层映射和资源映射,即第二级控制信道和数据信道均可以在独立完成信道编码和速率匹配后,在各自占用的资源上,独立进行MIMO编码、层映射和资源映射,以简化包含多个信道时第一终端设备的编码调制流程,从而提高发送效率。
可选地,图3所示的方法还可以包括:在第二级控制信道占用的资源上,采用先频域后时域的方式映射第二级控制信道,以及在数据信道占用的资源上,采用先频域后时域的方式映射数据信道。
本申请实施例中,第一终端设备在对第二级控制信道进行资源映射时,可采用先 频域后时域,并且增序映射的方式。具体地,从第二级控制信道占用的资源中的第一个符号开始,按照资源块的编号从小到大的顺序,将第一级控制信道依次映射到该符号上的各个资源块上,直至映射完该符号上的所有资源块,之后再映射下一个符号。在下一个符号上,也是按照资源块的编号从小到大的顺序,将第二级控制信道依次映射到该符号上的各个资源块上,直至映射完该符号上的所有资源块。依次类推,直到将第二级控制信道映射到第二级控制信道占用的资源中的所有符号上。
同理,第一终端设备在对数据信道进行资源映射时,也可采用先频域后时域,并且增序映射的方式。具体地,从数据信道占用的资源中的第一个符号开始,按照资源块的编号从小到大的顺序,将数据信道依次映射到该符号上的各个资源块上,直至映射完该符号上的所有资源块,之后再映射下一个符号。在下一个符号上,也是按照资源块的编号从小到大的顺序,将数据信道依次映射到该符号上的各个资源块上,直至映射完该符号上的所有资源块。依次类推,直到将数据信道映射到数据信道占用的资源中的所有符号上。下面结合图5至图7详细说明。
如图5所示,第二级控制信道占用的资源包括该时间单元的第4至第13个符号(符号3至符号12)上RB编号为0和1的RB(RB0和RB1),则第一终端设备将第二级控制信道依次映射到符号3上的RB0、RB1,符号4上的RB0、RB1,…,直至符号12上的RB0、RB1。同理,数据信道占用的资源包括该时间单元的第1至第3个符号(符号0至符号2)上的RB8和RB9,以及第4至第13个符号(符号3至符号12)上的RB2至RB9,则第一终端设备将数据信道依次映射到符号0上的RB8、RB9,符号1上的RB8、RB9,符号2上的RB8、RB9,符号3上的RB2至RB9,符号4上的RB2至RB9,…,直至符号12上的RB2至RB9。
如图6所示,第二级控制信道占用的资源包括该时间单元的第5至第13个符号(符号4至符号12)上的RB0和RB1,则第一终端设备将第二级控制信道依次映射到符号4上的RB0、RB1,符号5上的RB0、RB1,…,直至符号12上的RB0、RB1。同理,数据信道占用的资源包括该时间单元的第2至第4个符号(符号1至符号3)上的RB8和RB9,以及第5至第13个符号(符号4至符号12)上的RB2至RB9,则第一终端设备将数据信道依次映射到符号1上的RB8、RB9,符号2上的RB8、RB9,符号3上的RB8、RB9,符号4上的RB2至RB9,符号5上的RB2至RB9,…,直至符号12上的RB2至RB9。
如图7所示,第二级控制信道占用的资源包括该时间单元的第5至第13个符号(符号4至符号12)上的RB0和RB1,则第一终端设备将第二级控制信道依次映射到符号4上的RB0、RB1,符号5上的RB0、RB1,…,直至符号12上的RB0、RB1。同理,数据信道占用的资源包括该时间单元的第1个符号上的所有RB(RB0至RB9),第2至第4个符号(符号1至符号3)上的RB8和RB9,以及第5至第13个符号(符号4至符号12)上的RB2至RB9,则第一终端设备将数据信道依次映射到符号0上的RB0至RB9,符号1上的RB8、RB9,符号2上的RB8、RB9,符号3上的RB8、RB9,符号4上的RB2至RB9,符号5上的RB2至RB9,…,直至符号12上的RB2至RB9。
S302,第一终端设备向第二终端设备发送第二级控制信道和数据信道。其中,第 二级控制信道的平均发射功率高于数据信道的平均发射功率。
示例性地,第一终端设备向第二终端设备发送PSSCH。其中,PSSCH承载第二级控制信道和数据信道。
需要说明的是,第一终端设备还可以向第二终端设备发送与PSSCH对应的PSCCH。其中,PSCCH承载第一级控制信道。
在本申请实施例中,当对第一级控制信道做功率增强时,也可以对第二级控制信道做功率增强,以提高第二级控制信道的可靠性。
此外,现有协议规定:同一符号上的发射功率是固定的。也就是说,当对第二级控制信道做功率增强时,必须同时降低与第二级控制信道位于同一符号上的数据信道的发射功率,即第二级控制信道的平均发射功率高于数据信道的平均发射功率。其中,平均发射功率可以为如下一种:每资源块RB上的平均发射功率、每资源单元(resource element,RE)上的平均发射功率。
进一步地,为了使得第二级控制信道获得较大幅度的功率增强,且降低对数据信道的发射功率的挤占,可以将第二级控制信道分散映射到第二资源集合中的所有时域符号上,即如图5至图7所示,第二级控制信道占用的资源在时域上包括第二资源集合中的所有符号。
需要说明的是,鉴于第二级控制信道的资源配置信息(如聚合等级)和解调参数(如MCS)承载在第一级控制信道上,图3所示的方法还可以包括:
第一终端设备向第二终端设备发送第一级控制信道。其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源。
S303,第二终端设备接收来自第一终端设备的第二级控制信道和数据信道。其中,第二级控制信道的平均发射功率高于数据信道的平均发射功率。
需要说明的是,鉴于第二级控制信道的资源配置信息(如聚合等级)和解调参数(如MCS)承载在第一级控制信道上,图3所示的方法还可以包括:
第二终端设备接收并解析来自第一终端设备的第一级控制信道,获取第一级控制信道承载的内容,如第二级控制信道的资源配置信息和解调参数。
S304,第二终端设备确定第二资源集合中第二级控制信道占用的资源。
其中,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻,第二级控制信道在时域上占用第二资源集合中的所有符号。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,节省资源开销。
在一种可能的设计方法中,第一资源集合包括第一级控制信道占用的资源,第一级控制信道承载第二级控制信道的聚合等级。相应地,图3所示的方法还可以包括:第二终端设备根据第二级控制信道的聚合等级和最小资源调度粒度,确定第二级控制信道占用的资源数量。
可选地,上述第二终端设备根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,可以包括:第二终端设备将第二级控制信道的聚合等级和最小资源调度粒度的乘积确定为第二级控制信道占用的资源数量。
其中,最小资源调度粒度在频域上可以为N个资源块RB,在时域上可以为第二资源集合中的所有符号,N为正整数。
进一步地,图3所示的方法还可以包括:第二终端设备根据第二级控制信道占用的资源数量,确定第二资源集合中第二级控制信道占用的资源的频域位置。
具体地,可以按照预设规则,从第二资源集合中确定第二级控制信道占用的资源。例如,第二级控制信道可以从编号最小的资源块开始,按照资源块编号从小到大顺序占用第二资源集合中的一个或多个资源块,如此,则可以不传输第二级控制信道占用的资源的频域位置的指示信息,以节省资源开销。
需要说明的是,上述第二终端设备确定第二级控制信道占用的资源的数量、时域位置、频域位置的具体实现方式,可以参考S301中图4-图7以及相关的文字描述,此处不再赘述。
可选地,图3所示的方法还可以包括:第二终端设备在第二级控制信道占用的资源上,采用先频域后时域的方式对第二级控制信道解映射。
在一种可能的设计方法中,在完成FFT和解CP之后,可以按照与图8所示的调制编码流程顺序相反的解调译码(demodulation&decoding)流程解析第二级控制信道,获取第二级控制信道承载的内容。其中,按照先后顺序,第二级控制信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。解调译码流程的各个步骤可以参考S301中图8所示的调制编码流程的相关内容,此处不再赘述。
S305,第二终端设备根据第二级控制信道占用的资源解析第二级控制信道,获取第二资源集合中数据信道占用的资源。
其中,上述第二终端设备确定数据信道占用的资源的数量、时域位置、频域位置的具体实现方式,可以参考S301中图4-图7以及相关的文字描述,此处不再赘述。
在一种可能的设计方法中,在完成FFT和解CP之后,可以按照与图8所示的调制编码流程顺序相反的解调译码(demodulation&decoding)流程解析数据信道,获取数据信道承载的数据。其中,按照先后顺序,各信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。
此外,鉴于第二级控制信道还承载数据信道的解调参数,因此在执行S305后,第二终端设备还可以获取数据信道的解调参数。
需要说明的是,鉴于第二级控制信道的解调参数(如MCS)和资源配置信息(如聚合等级)承载在第一级控制信道上,图3所示的方法还可以包括:接收并解析第一级控制信道。其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源。
S306,第二终端设备根据数据信道占用的资源解析数据信道,获取数据信道承载的数据。
需要说明的是,鉴于第二级控制信道承载了数据信道的解调参数和无线资源的配置信息,第二终端设备需要先解析第二级控制信道,然后才可以解析数据信道。
可选地,第二方面提供的方法还可以包括:在数据信道占用的资源上,采用先频 域后时域的方式对数据信道解映射。
基于图3所示的两级控制信道发送方法,第一终端设备可以从与第一资源集合在时域上不重叠的第二资源集合中确定第二级控制信道占用的资源和数据信道占用的资源,第二级控制信道占用第二资源集合中的所有时域符号,且第二级控制信道的平均发射功率高于数据信道的平均发射功率。也就是说,在对第一级控制信道做功率增强的场景下,第二级控制信道可以避开第一级控制信道占用的时域符号,以便对第二级控制信道也做功率增强,从而提高第二级控制信道的译码成功率和可靠性。
此外,鉴于第二级控制信道占用第二资源集合中的所有时域符号,在对第二级控制信道做功率增强的场景下,可以降低第二级控制信道对数据信道的不良影响,以保证数据信道的可靠性。
图9为本申请实施例提供的一种两级控制信道发送方法的流程示意图二。该两级控制信道发送方法适用于图2所示的通信系统,实现第一终端设备与第二终端设备之间的通信。下面以第一终端设备为发送终端,以第二终端设备为接收终端为例,详细说明本申请实施例提供的两级控制信道发送方法。
如图9所示,该方法包括S901至S906:
S901,第一终端设备从第一资源集合或第二资源集合中选择第二级控制信道占用的资源。
下面参考图4所示的时间单元的帧结构,说明图9所示的方法所适用的第一资源集合或第二资源集合。
示例性地,图10至图12为本申请实施例提供的基于图4所示的帧结构的资源分布示意图四至六。在图10至图12中,一个时间单元在时域上包括一个时隙,该时隙包括14个时域符号,这14个使用符号从左到右依次编号为0至13,在频域上包括20个RB,这20个RB从上到下依次编号为0至19。
如图10至图12所示,以第一级控制信道占用的资源中的最后一个符号所在时域位置(即第一级控制信道占用的资源的时域结束位置)作为分界,可将该时间单元从时域上分为A部分和B部分。
在时域上,第一级控制信道占用的资源可以包括该A部分的部分或全部时域资源。在频域上,第一级控制信道占用的资源可以包括该A部分中的部分频域资源。通常第一级控制信道占用的资源的资源大小是固定的,在图示中可以体现为一个时间单元中由多个资源块构成的长方形。
应理解,第一级控制信道占用的资源的频域起始资源块可以与该时间单元的频域起始资源块相同或不同,本申请并不限定。也就是说,第一级控制信道占用的资源可以包括该时间单元中最上方编号为0的资源块,也可以不包括时间单元中最上方的编号为0的资源块。或者,也可以理解为第一级控制信道占用的资源可以与时间单元的频域起始位置对齐或不对齐。
还应理解,第一级控制信道占用的资源中可以包括时间单元中第一个符号上的资源,也可以不包括时间单元中第一个符号上的资源。例如,如图10所示,若不考虑AGC对第一级控制信道的影响,第一级控制信道占用的资源可包括时间单元中第一个符号(符号0)上的资源,即第一控制信息可以映射到该时间单元中的第一个符号的 资源上,或者也可以理解为第一级控制信道可以从该时间单元中的第一个符号上开始映射。
再例如,如图11和图12所示,若考虑AGC对第一级控制信道的影响,第一级控制信道占用的资源可不包括时间单元中第一个符号(符号0)上的资源,第一控制信息可以避开该时间单元的第一个符号,从时间单元中的第二个符号(符号1)上开始映射,或者也可以理解为第一级控制信道避开该时间单元上的第一个符号,从时间单元中的第二个符号上开始映射。
需要说明的是,在时间单元的第一个符号(符号0)用于AGC的场景下,该第一个符号上可以映射如图11所示的专用AGC符号,也可以映射如图12所示的数据。该专用AGC符号或用于AGC的数据映射在该第一个符号上的所有资源块上。其中,专用AGC符号可以映射根据预设方法生成的用于AGC的序列,如伪随机序列,也可以是其他的功能符号,如该时隙中其他符号的复制、拷贝等。用于AGC的数据可以是需要接收端作解调译码的数据(有效数据),也可以是仅用于AGC,且不需要接收端作解调译码的数据(无效数据),本申请实施例对此不作限定。
应理解,图10至图12中所示的A部分的资源也可以称之为该时间单元中的第一资源集合,B部分的资源也可以称之为该时间单元中视为本申请实施例中的第二资源集合。其中,参考图10至图12,可以得知:第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻,第二级控制信道在时域上占用第二资源集合中的所有符号。也就是说,第一资源集合包括第一级控制信道占用的资源,第二资源集合包括第二级控制信道占用的资源。
参考图10至图12,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
本申请实施例中,为兼顾第二级控制信道的可靠性和译码时延,可以依据不同场景,可以根据第一资源集合的资源总量、第一级控制信道占用的资源数量、第二级控制信道占用的资源数量,以及是否对第一级控制信道做功率增强中的一项或多项,分别从第一资源集合或第二资源集合中选择第二级控制信道占用的资源。其中,第二级控制信道占用的资源数量的计算方法,可以参考S901中的相关内容,此处不再赘述。
在一种可能的设计方法中,当从第一资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在频域上相邻。此方案适用于不对第一级控制信道做功率增强,且第一资源集合可以同时映射第一级控制信道和第二级控制信道的场景。在此场景下,第二级控制信道可以不避开第一级控制信道,因此可以与第一级控制信道以频分复用的方式同时占用第一资源集合中的部分资源,以降低第二级控制信道的译码时延。
可选地,上述从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,可以包括:当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值大于或等于第二级控制信道占用的资源数量时,从第一资源集合中选择第二级控制信道占用的资源。也就是说,除第一级控制信道占用的资源、解调参考信号DMRS占用的资源、不映射有效数据的第一个符号上的资源外,只要第一资源集合中的剩余资源足以 承载第二级控制信道,即可将第二级控制信道映射在第一资源集合中。
进一步地,第二级控制信道占用的资源的时域起始符号可以与第一级控制信道占用的资源的时域起始符号为同一时域符号,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在时域上对齐,如此,可以节省指示第二级控制信道占用的资源的时域起始符号的指示信息,以节省资源开销。
如图10所示,第二级控制信道占用的资源可以包括该时间单元的第1至第2个符号(符号0至符号1)上RB8至RB12。如图11和图12所示,第二级控制信道占用的资源可以包括该时间单元的第2至第3个符号(符号1至符号2)上RB8至RB12。
在另一种可能的设计方法中,当从第二资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻。此方案适用于对第一级控制信道做功率增强的场景,第二级控制信道需要避开第一级控制信道,即第二级控制信道需要占用第二资源集合中的资源,以确保第二级控制信道的可靠性。在此场景下,第二级控制信道可以占用第二资源集合中时域位置最靠前的资源,如占用第二资源集合中位置最靠前的一个或连续多个时域符号上的资源,以降低第二级控制信道的译码时延。
可选地,上述从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,可以包括:当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值小于第二级控制信道占用的资源数量时,从第二资源集合中选择第二级控制信道占用的资源,即当第一资源集合不足以同时承载第一级控制信道和第二级控制信道时,可以从第二资源集合中选择第二级控制信道占用的资源,以便对第一级控制信道做功率增强时,避开第一级控制信道占用的时域符号,以确保第二级控制信道的可靠性。
可选地,上述第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻,可以包括:第二级控制信道占用的资源的时域起始符号为第一级控制信道占用的资源的时域结束符号的下一个时域符号,即从第一级控制信道占用的时域符号的下一个符号开始映射第二级控制信道,以便尽可能早地发送第二级控制信道,从而降低第二级控制信道的译码时延。
再进一步地,第二级控制信道占用的资源的频域起始位置可以与第一级控制信道占用的资源的频域起始位置相同,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
同理,第二级控制信道占用的资源的频域起始位置也可以与第二资源集合的频域起始位置相同,即第二级控制信道占用的资源可以与第二资源集合在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
示例性地,图13至图15为本申请实施例提供的基于图4所示的帧结构的资源分布示意图四至六。与图10至图12不同,图13至图15中的时间单元包括10个RB,RB编号从上到下依次为RB0至RB9。
如图13所示,第二级控制信道占用的资源包括该时间单元的第4至第5个符号(符号3至符号4)上RB0至RB4。如图14和图15所示,第二级控制信道占用的资源包括该时间单元的第5至第6个符号(符号4至符号5)上RB0至RB4。
在确定第二级控制信道占用的资源之后,即可确定数据信道占用的资源。其中,数据信道占用的资源可以包括:该时间单元中除第一级控制信道占用的资源、第二级控制信道占用的资源、解调参考信号DMRS占用的资源、不映射有效数据的第一个符号上的资源、GAP符号上的资源之外的资源。
上述确定第二级控制信道占用的资源和数据信道占用的资源可以发生在图8中所示的信道编码步骤之前。资源映射是指,将第二级控制信道和数据信道分别映射至各自的资源上,如可以按照先频域后时域的顺序,将第二级控制信道映射至第二级控制信道占用的资源上,且将数据信道映射至数据信道占用的资源上。
本申请实施例中,第一级控制信道、第二级控制信道、数据信道均可以独立进行多输入多输出MIMO编码、层映射和资源映射,即第一级控制信道、第二级控制信道、数据信道均可以在独立完成信道编码和速率匹配后,在各自占用的资源上,独立进行MIMO编码、层映射和资源映射,可以简化包含多个信道时第一终端设备的编码调制流程,以提高效率。
可选地,图9所示的方法还可以包括:第一终端设备在第二级控制信道占用的资源上,采用先频域后时域的方式映射第二级控制信道,以及在数据信道占用的资源上,采用先频域后时域的方式映射数据信道。下面结合图10至图15详细说明。
如图10所示,第二级控制信道占用的资源包括该时间单元的第1至第2个符号(符号0至符号1)上RB8至RB12,则第一终端设备将第二级控制信道依次映射到符号0上的RB8至RB12,符号1上的RB8至RB12。同理,数据信道占用的资源包括该时间单元的第1至第2个符号(符号0至符号1)上的RB13至RB19,第3个符号(符号2)上的RB8至RB19,以及第4至第13个符号(符号3至符号12)上的RB0至RB19,则第一终端设备将数据信道依次映射到符号0上的RB13至RB19,符号1上的RB13至RB19,符号2上的RB8至RB19,符号3上的RB0至RB19,符号4上的RB0至RB19,…,直至符号12上的RB0至RB19。
如图11所示,第二级控制信道占用的资源包括该时间单元的第2至第3个符号(符号1至符号2)上RB8至RB12,则第一终端设备将第二级控制信道依次映射到符号1上的RB8至RB12,符号2上的RB8至RB12。同理,数据信道占用的资源包括该时间单元的第2至第3个符号(符号1至符号2)上的RB13至RB19,第4个符号(符号3)上的RB8至RB19,以及第5至第13个符号(符号4至符号12)上的RB0至RB19,则第一终端设备将数据信道依次映射到符号1上的RB13至RB19,符号2上的RB13至RB19,符号3上的RB8至RB19,符号4上的RB0至RB19,符号5上的RB0至RB19,…,直至符号12上的RB0至RB19。
如图12所示,第二级控制信道占用的资源包括该时间单元的第2至第3个符号(符号1至符号2)上RB8至RB12,则第一终端设备将第二级控制信道依次映射到符号1上的RB8至RB12,符号2上的RB8至RB12。同理,数据信道占用的资源包括该时间单元的第1个符号(符号0)上的RB0至RB19,第2至第3个符号(符号1至符号2)上的RB13至RB19,第4个符号(符号3)上的RB8至RB19,以及第5至第13个符号(符号4至符号12)上的RB0至RB19,则第一终端设备将数据信道依次映射到符号0上的RB0至RB19,符号1上的RB13至RB19,符号2上的RB13至RB19, 符号3上的RB8至RB19,符号4上的RB0至RB19,符号5上的RB0至RB19,…,直至符号12上的RB0至RB19。
如图13所示,第二级控制信道占用的资源包括该时间单元的第4至第5个符号(符号3至符号4)上RB0至RB4,则第一终端设备将第二级控制信道依次映射到符号3上的RB0至RB4,符号4上的RB0至RB4。同理,数据信道占用的资源包括该时间单元的第1至第3个符号(符号0至符号2)上的RB8至RB9,第4至第5个符号(符号3至符号4)上的RB5至RB9,以及第6至第13个符号(符号5至符号12)上的RB0至RB9,则第一终端设备将数据信道依次映射到符号0上的RB8至RB9,符号1上的RB8至RB9,符号2上的RB8至RB19,符号3上的RB5至RB9,符号4上的RB5至RB9,符号5上的RB0至RB9,…,直至符号12上的RB0至RB9。
如图14所示,第二级控制信道占用的资源包括该时间单元的第5至第6个符号(符号4至符号5)上RB0至RB4,则第一终端设备将第二级控制信道依次映射到符号4上的RB0至RB4,符号5上的RB0至RB4。同理,数据信道占用的资源包括该时间单元的第2至第4个符号(符号1至符号3)上的RB8至RB9,第5至第6个符号(符号4至符号5)上的RB5至RB9,以及第7至第13个符号(符号6至符号12)上的RB0至RB9,则第一终端设备将数据信道依次映射到符号1上的RB8至RB9,符号2上的RB8至RB9,符号3上的RB8至RB9,符号4上的RB5至RB9,符号5上的RB5至RB9,符号6上的RB0至RB9,…,直至符号12上的RB0至RB9。
如图15所示,第二级控制信道占用的资源包括该时间单元的第5至第6个符号(符号4至符号5)上RB0至RB4,则第一终端设备将第二级控制信道依次映射到符号4上的RB0至RB4,符号5上的RB0至RB4。同理,数据信道占用的资源包括该时间单元的第1个符号(符号0)上的RB0至RB9,第2至第4个符号(符号1至符号3)上的RB8至RB9,第5至第6个符号(符号4至符号5)上的RB5至RB9,以及第7至第13个符号(符号6至符号12)上的RB0至RB9,则第一终端设备将数据信道依次映射到符号0上的RB0至RB9,符号1上的RB8至RB9,符号2上的RB8至RB9,符号3上的RB8至RB9,符号4上的RB5至RB9,符号5上的RB5至RB9,符号6上的RB0至RB9,…,直至符号12上的RB0至RB9。
S902,第一终端设备向第二终端设备发送第一级控制信道和第二级控制信道。
示例性地,第一终端设备可以向第二终端设备发送PSCCH和PSSCH。其中,PSCCH承载第一级控制信道,PSSCH承载第二级控制信道和数据信道。
S903,第二终端设备接收来自第一终端设备的第一级控制信道和第二级控制信道。
示例性地,第二终端设备可以在侧行链路上,接收第一级控制信道和第二级控制信道。
S904,第二终端设备解析第一级控制信道,获取第二级控制信道占用的资源。
其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源,即第一级控制信道占用的资源是已知的。此外,第一级控制信道通常通过广播方式发送,其调制编码方案也是已知的。也就是说,第二终端设备可以根据第一级控制信道占用的资源和调制编码方案对第一级控制信道做解调译码,以获取第一级控制信道承载的内容,如第二级控制信道的资源配置信息和解调参数。
在一种可能的设计方法中,第二终端设备可以从第一资源集合或第二资源集合中选择第二级控制信道占用的资源;第一资源集合包括第一级控制信道占用的资源,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻。其中,当从第一资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在频域上相邻;或者,当从第二资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计方法中,上述从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,可以包括:当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值大于或等于第二级控制信道占用的资源数量时,从第一资源集合中选择第二级控制信道占用的资源,以进一步降低第二级控制信道的译码时延。
可选地,第二级控制信道占用的资源的时域起始符号可以与第一级控制信道占用的资源的时域起始符号为同一时域符号,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在时域上对齐,如此,可以节省指示第二级控制信道占用的资源的时域起始符号的指示信息,以节省资源开销。
在另一种可能的设计方法中,上述从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,可以包括:当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值小于第二级控制信道占用的资源数量时,从第二资源集合中选择第二级控制信道占用的资源,即当第一资源集合不足以同时承载第一级控制信道和第二级控制信道时,可以从第二资源集合中选择第二级控制信道占用的资源,可以在对第一级控制信道做功率增强时,避开第一级控制信道占用的时域符号,以确保第二级控制信道的可靠性。
进一步地,上述第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻,可以包括:第二级控制信道占用的资源的时域起始符号为第一级控制信道占用的资源的时域结束符号的下一个时域符号,即从第一级控制信道占用的时域符号的下一个符号开始映射第二级控制信道,以便尽可能早地发送第二级控制信道,从而降低第二级控制信道的译码时延。
再进一步地,第二级控制信道占用的资源的频域起始位置可以与第一级控制信道占用的资源的频域起始位置相同,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
同理,第二级控制信道占用的资源的频域起始位置也可以与第二资源集合的频域起始位置相同,即第二级控制信道占用的资源可以与第二资源集合在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
需要说明的是,上述第二终端设备确定第二级控制信道占用的资源的数量、时域位置、频域位置的具体实现方式,可以参考S901中图10-图15以及相关的文字描述,此处不再赘述。
S905,第二终端设备根据第二级控制信道占用的资源解析第二级控制信道,获取第二级控制信道承载的内容。
其中,第二级控制信道承载的内容可以包括:数据信道的占用的资源和解调参数。需要说明的是,上述第二终端设备确定数据信道占用的资源的数量、时域位置、频域位置的具体实现方式,可以参考S901中图10-图15以及相关的文字描述,此处不再赘述。
在一种可能的设计方法中,在完成FFT和解CP之后,可以执行与图8所示的调制编码流程顺序相反的解调译码(demodulation&decoding)流程解析第二级控制信道,获取第二级控制信道承载的内容。其中,按照先后顺序,数据信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。
需要说明的是,第一级控制信道和第二级控制信道是为数据传输服务的,且第二级控制信道承载了数据信道的解调参数和资源配置信息。其中,数据信道的资源配置信息用于获取数据信道占用的资源。数据信道占用的资源可以包括:第一资源集合和第二资源集合中除第一级控制信道占用的资源、第二级控制信道占用的资源、数据信道的解调参考信号占用的资源之外的资源中选取。
S906,第二终端设备根据数据信道占用的资源解析数据信道,获取数据信道承载的数据。
在一种可能的设计方法中,在完成FFT和解CP之后,可以执行与图8所示的调制编码流程顺序相反的解调译码(demodulation&decoding)流程解析数据信道,获取数据信道承载的数据。其中,按照先后顺序,数据信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。
基于图9所示的两级控制信道发送方法,第一终端设备可以从第一资源集合或第二资源集合中选择第二级控制信道占用的资源,如当不对第一级控制信道做功率增强时,可以从第一资源集合中选择第二级控制信道占用的资源,或者,当对第一级控制信道做功率增强时,可以从第二资源集合中选择第二级控制信道占用的资源,以便在确保第二级控制信道的可靠性的同时,降低第二级控制信道的译码时延。
以上结合图3-图15详细说明了本申请实施例提供的两级控制信道发送方法。以下结合图16详细说明本申请实施例提供的终端设备,以及结合图17详细说明本申请实施例提供的通信装置。
示例性地,图16为本申请实施例提供的终端设备的结构示意图。如图16所示,终端设备1600包括:收发模块1610和处理模块1620。终端设备1600可用于实现上述方法实施例中涉及的第一终端设备或第二终端设备的功能。其中,终端设备1600可以是独立的终端设备,例如手持终端设备、车载终端设备、车辆用户设备等,也可以是终端设备中包括的芯片,或者终端设备1600为车载装置,例如为内置于车内的车载模块或车载单元。
在一种可能的设计中,当图16所示的终端设备1600作为第一终端设备,执行图3所示的方法实施例时,处理模块1620,用于确定第二资源集合中第二级控制信道占 用的资源和数据信道占用的资源,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻,第二级控制信道在时域上占用第二资源集合中的所有符号。
收发模块1610,用于发送第二级控制信道和数据信道;其中,第二级控制信道的平均发射功率高于数据信道的平均发射功率。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计中,第一资源集合包括第一级控制信道占用的资源,第一级控制信道承载第二级控制信道的聚合等级。相应地,处理模块1620,还用于根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,进而确定数据信道占用的资源数量。
可选地,处理模块1620,还用于将第二级控制信道的聚合等级和最小资源调度粒度的乘积确定为第二级控制信道占用的资源数量。
其中,最小资源调度粒度在频域上可以为N个资源块RB,在时域上可以为第二资源集合中的所有符号,N为正整数。
进一步地,处理模块1620,还用于根据第二级控制信道占用的资源数量,确定第二资源集合中第二级控制信道占用的资源的频域位置。具体地,可以按照预设规则,从第二资源集合中确定第二级控制信道占用的资源。例如,第二级控制信道可以从编号最小的资源块开始,按照资源块编号从小到大顺序占用第二资源集合中一个或多个资源块,以节省资源开销。
在一种可能的设计中,第一级控制信道、第二级控制信道、数据信道均可以独立进行多输入多输出MIMO编码、层映射和资源映射,即第一级控制信道、第二级控制信道、数据信道均可以在独立完成信道编码和速率匹配后,在各自占用的资源上,独立进行MIMO编码、层映射和资源映射,可以简化包含多个信道时第一终端设备的编码调制流程,以提高效率。
可选地,处理模块1620,还用于在第二级控制信道占用的资源上,采用先频域后时域的方式映射第二级控制信道,以及在数据信道占用的资源上,采用先频域后时域的方式映射数据信道。
在另一种可能的设计中,当图16所示的终端设备1600作为第二终端设备,执行图3所示的方法实施例时,收发模块1610,用于接收第二级控制信道和数据信道。其中,第二级控制信道的平均发射功率高于数据信道的平均发射功率。处理模块1620,用于确定第二资源集合中第二级控制信道占用的资源,并根据第二级控制信道占用的资源解析第二级控制信道,获取第二资源集合中数据信道占用的资源。其中,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻,第二级控制信道在时域上占用第二资源集合中的所有符号。处理模块1620,还用于根据数据信道占用的资源解析数据信道,获取数据信道承载的数据。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计中,第一资源集合包括第一级控制信道占用的资源,第一级控制信道承载第二级控制信道的聚合等级。相应地,处理模块1620,还用于根据第二级控制信道的聚合等级和最小资源调度粒度确定第二级控制信道占用的资源数量,进而确定数据信道占用的资源数量。
可选地,处理模块1620,还用于将第二级控制信道的聚合等级和最小资源调度粒度的乘积确定为第二级控制信道占用的资源数量。
其中,最小资源调度粒度在频域上可以为N个资源块RB,在时域上可以为第二资源集合中的所有符号,N为正整数。
进一步地,处理模块1620,还用于根据第二级控制信道占用的资源数量,确定第二资源集合中第二级控制信道占用的资源的频域位置。具体地,可以按照预设规则,从第二资源集合中确定第二级控制信道占用的资源。例如,第二级控制信道可以从编号最小的资源块开始,按照资源块编号从小到大顺序占用第二资源集合中的一个或多个资源块,如此,则可以不传输第二级控制信道占用的资源的频域位置的指示信息,以节省资源开销。
在一种可能的设计中,在完成FFT和解CP之后,可以按照与调制编码流程的顺序相反的顺序执行解调译码(demodulation&decoding)流程,解析第二级控制信道和数据信道,获取第二级控制信道承载的内容和数据信道承载的内容。其中,按照先后顺序,各信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。
需要说明的是,鉴于第二级控制信道承载了数据信道的解调参数和无线资源的配置信息,需要先解析第二级控制信道,然后才可以解析数据信道。
可选地,处理模块1620,还用于在第二级控制信道占用的资源上,采用先频域后时域的方式对第二级控制信道解映射,以及在数据信道占用的资源上,采用先频域后时域的方式对数据信道解映射。
需要说明的是,鉴于第二级控制信道的资源配置信息(如聚合等级)和解调参数(如MCS)承载在第一级控制信道上,图16所示的终端设备1600需要先解析第一级控制信道,然后才能解析第二级控制信道。因此,收发模块1610,还用于接收第一级控制信道。处理模块1620,还用于解析第一级控制信道。其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源。
在又一种可能的设计中,当图16所示的终端设备1600作为第一终端设备,执行图9所示的方法实施例时,处理模块1620,用于从第一资源集合或第二资源集合中选择第二级控制信道占用的资源;第一资源集合包括第一级控制信道占用的资源,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻。其中,当从第一资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在频域上相邻;或者,当从第二资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻。
收发模块1610,用于发送第一级控制信道和第二级控制信道。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此, 可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计中,处理模块1620,还用于当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值大于或等于第二级控制信道占用的资源数量时,从第一资源集合中选择第二级控制信道占用的资源,以进一步降低第二级控制信道的译码时延。
可选地,第二级控制信道占用的资源的时域起始符号与第一级控制信道占用的资源的时域起始符号为同一时域符号,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在时域上对齐,如此,可以节省指示第二级控制信道占用的资源的时域起始符号的指示信息,以节省资源开销。
在另一种可能的设计中,处理模块1620,还用于当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值小于第二级控制信道占用的资源数量时,从第二资源集合中选择第二级控制信道占用的资源,即当第一资源集合不足以同时承载第一级控制信道和第二级控制信道时,可以从第二资源集合中选择第二级控制信道占用的资源,可以在对第一级控制信道做功率增强时,避开第一级控制信道占用的时域符号,以确保第二级控制信道的可靠性。
进一步地,上述第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻,可以包括:第二级控制信道占用的资源的时域起始符号为第一级控制信道占用的资源的时域结束符号的下一个时域符号,即从第一级控制信道占用的时域符号的下一个符号开始映射第二级控制信道,以便尽可能早地发送第二级控制信道,从而降低第二级控制信道的译码时延。
再进一步地,第二级控制信道占用的资源的频域起始位置可以与第一级控制信道占用的资源的频域起始位置相同,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
同理,第二级控制信道占用的资源的频域起始位置也可以与第二资源集合的频域起始位置相同,即第二级控制信道占用的资源可以与第二资源集合在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
在一种可能的设计中,第一级控制信道、第二级控制信道、数据信道均可以独立进行多输入多输出MIMO编码、层映射和资源映射,即第一级控制信道、第二级控制信道、数据信道均可以在独立完成信道编码和速率匹配后,在各自占用的资源上,独立进行MIMO编码、层映射和资源映射,可以简化包含多个信道时第一终端设备的编码调制流程,以提高效率。
可选地,处理模块1620,还用于在第二级控制信道占用的资源上,采用先频域后时域的方式映射第二级控制信道,以及在数据信道占用的资源上,采用先频域后时域的方式映射数据信道。
在再一种可能的设计中,当图16所示的终端设备1600作为第一终端设备,执行图9所示的方法实施例时,收发模块1610,用于接收第一级控制信道和第二级控制信道。处理模块1620,用于解析第一级控制信道,获取第二级控制信道占用的资源。具体地,处理模块1620,用于从第一资源集合或第二资源集合中选择第二级控制信道占 用的资源;第一资源集合包括第一级控制信道占用的资源,第二资源集合在时域上位于第一资源集合之后,且与第一资源集合相邻。其中,当从第一资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在频域上相邻;或者,当从第二资源集合中选择第二级控制信道占用的资源,第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻。处理模块1620,还用于根据第二级控制信道占用的资源解析第二级控制信道承载的内容。其中,第一级控制信道占用的资源位于第一资源集合中,且通常为网络预配置或协议预定义的资源。
示例性地,第一资源集合可以占用时间单元中的第n至n+k个符号,第二资源集合的时域起始符号为时间单元中的第n+k+1个符号,n为0或1,k为正整数,如此,可节省第二资源集合的时域起始位置的指示信息,减小资源开销。
在一种可能的设计中,处理模块1620,还用于当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值大于或等于第二级控制信道占用的资源数量时,从第一资源集合中选择第二级控制信道占用的资源,以进一步降低第二级控制信道的译码时延。
可选地,第二级控制信道占用的资源的时域起始符号可以与第一级控制信道占用的资源的时域起始符号为同一时域符号,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在时域上对齐,如此,可以节省指示第二级控制信道占用的资源的时域起始符号的指示信息,以节省资源开销。
在另一种可能的设计中,处理模块1620,还用于当第一资源集合的资源总量与第一级控制信道占用的资源数量的差值小于第二级控制信道占用的资源数量时,从第二资源集合中选择第二级控制信道占用的资源,即当第一资源集合不足以同时承载第一级控制信道和第二级控制信道时,可以从第二资源集合中选择第二级控制信道占用的资源,可以在对第一级控制信道做功率增强时,避开第一级控制信道占用的时域符号,以确保第二级控制信道的可靠性。
进一步地,上述第二级控制信道占用的资源与第一级控制信道占用的资源在时域上相邻,可以包括:第二级控制信道占用的资源的时域起始符号为第一级控制信道占用的资源的时域结束符号的下一个时域符号,即从第一级控制信道占用的时域符号的下一个符号开始映射第二级控制信道,以便尽可能早地发送第二级控制信道,从而降低第二级控制信道的译码时延。
再进一步地,第二级控制信道占用的资源的频域起始位置可以与第一级控制信道占用的资源的频域起始位置相同,即第二级控制信道占用的资源可以与第一级控制信道占用的资源在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
同理,第二级控制信道占用的资源的频域起始位置也可以与第二资源集合的频域起始位置相同,即第二级控制信道占用的资源可以与第二资源集合在频域上对齐,可以节省指示第二级控制信道占用的资源的频域起始位置,以节省资源开销。
需要说明的是,第一级控制信道和第二级控制信道是为数据传输服务的,且第二级控制信道承载了数据信道的解调参数和资源配置信息。因此,在一种可能的设计中,处理模块1620,还用于根据第二级控制信道占用的资源,获取数据信道的占用的资源 和解调参数,以及根据数据信道占用的资源和解调参数解析数据信道,获取数据信道承载的数据。其中,数据信道占用的资源可以包括:第一资源集合和第二资源集合中除第一级控制信道占用的资源、第二级控制信道占用的资源、数据信道的解调参考信号占用的资源之外的资源中选取。
在一种可能的设计中,在完成FFT和解CP之后,可以按照与第三方面提供的调制编码流程顺序相反的解调译码(demodulation&decoding)流程解析第二级控制信道和数据信道,获取第二级控制信道承载的内容和数据信道承载的数据。其中,按照先后顺序,各信道的解调译码流程可以包括如下步骤:解资源映射、MIMO译码和解层映射、解扰、解信道复用、解速率匹配和信道译码。
需要说明的是,鉴于第一级控制信道承载了第二级控制信道的解调参数和资源配置信息,需要先解析第一级控制信道,然后才可以解析第二级控制信道。同理,鉴于第二级控制信道承载了数据信道的解调参数和资源配置信息,需要先解析第二级控制信道,然后才可以解析数据信道。
可选地,处理模块1620,还用于在第二级控制信道占用的资源上,采用先频域后时域的方式对第二级控制信道解映射,以及在数据信道占用的资源上,采用先频域后时域的方式对数据信道解映射。
图16所示的终端设备1600的技术效果可以参考第三方面提供的方法的技术效果,此处不再赘述。
可选地,图16所示的终端设备1600还可以包括存储模块(图16中未示出),该存储模块存储有程序或指令。当处理模块1620执行该程序或指令时,使得图16所示的终端设备1600可以执行图3或图9所示的两级控制信道发送方法。
需要说明的是,图16所示的终端设备1600可以是独立的终端设备,也可以是设置于终端设备中的芯片或芯片系统,本申请对此不做限定。
图16所示的终端设备1600的技术效果可以参考图3或图9所示的两级控制信道发送方法的技术效果,此处不再赘述。
图16所示的终端设备1600也可以称为通信装置。该通信装置中涉及的处理模块1620可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块1610可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。该通信装置中的各个模块的操作和/或功能分别为了实现图3或图9所示方法的相应流程,为了简洁,在此不再赘述。
图17为本申请实施例中提供的通信装置的结构示意图。如图17所示,该通信装置具体可为终端设备,例如图16所示的终端设备。便于理解和图示方便,在图17中,通信装置以手机作为例子。如图17所示,通信装置1700包括处理器,还可以包括存储器,当然,也还可以包括射频电路、天线以及输入输出装置等。处理器主要用于对通信协议以及通信数据进行处理,以及对通信装置1700进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的通信装置1700可以不具有输入输出装 置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置1700时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图17中仅示出了一个存储器和处理器。在实际的通信装置1700中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为通信装置1700的收发单元,将具有处理功能的处理器视为通信装置1700的处理单元。如图17所示,通信装置1700包括收发单元1710和处理单元1720。收发单元1710也可以称为收发器、收发机、收发装置、收发电路等。处理单元1720也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1710中用于实现接收功能的器件视为接收单元,将收发单元1710中用于实现发送功能的器件视为发送单元,即收发单元1710包括接收单元和发送单元。接收单元有时也可以称为接收机、接收器、接收装置或接收电路等。发送单元有时也可以称为发射机、发射器、发射装置、或发射电路等。应理解,收发单元1710用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1720用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处 理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括一个发送终端,如上述第一终端设备,以及一个或多个接收终端,如上述第二终端设备。其中,发送终端用于执行上述方法实施例中第一终端设备的功能,接收终端用于执行上述方法实施例中第二终端设备的功能。该至少两个终端设备中的任一终端设备可以为独立的终端设备,如手机,也可以为设置与终端设备内部的装置、模块或其他部件,如芯片或芯片系统,或者车载模块。
可选地,该通信系统中还可以包括网络设备,如基站、路侧单元(roadside unit,RSU)等。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (19)

  1. 一种两级控制信道发送方法,其特征在于,所述方法包括:
    确定第二资源集合中第二级控制信道占用的资源和数据信道占用的资源,所述第二资源集合在时域上位于第一资源集合之后,且与所述第一资源集合相邻,所述第二级控制信道在时域上占用所述第二资源集合中的所有符号;
    发送所述第二级控制信道和所述数据信道;其中,所述第二级控制信道的平均发射功率高于所述数据信道的平均发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述第一资源集合包括第一级控制信道占用的资源,所述第一级控制信道承载所述第二级控制信道的聚合等级;所述方法还包括:
    根据所述第二级控制信道的聚合等级和最小资源调度粒度确定所述第二级控制信道占用的资源数量。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第二级控制信道的聚合等级和最小资源调度粒度确定所述第二级控制信道占用的资源数量,包括:
    将所述第二级控制信道的聚合等级和所述最小资源调度粒度的乘积确定为所述第二级控制信道占用的资源数量。
  4. 根据权利要求2或3所述的方法,其特征在于,所述最小资源调度粒度在频域上为N个资源块RB,在时域上为所述第二资源集合中的所有符号,N为正整数。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第二级控制信道占用的资源数量,确定所述第二资源集合中所述第二级控制信道占用的资源的频域位置。
  6. 根据权利要求1-5中任一项所述的方法,所述第二级控制信道独立进行多输入多输出MIMO编码、层映射和资源映射。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第二级控制信道占用的资源上,采用先频域后时域的方式映射所述第二级控制信道;以及,
    在所述数据信道占用的资源上,采用先频域后时域的方式映射所述数据信道。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一资源集合占用时间单元中的第n至n+k个符号,所述第二资源集合的时域起始符号为所述时间单元中的第n+k+1个符号,所述n为0或1,所述k为正整数。
  9. 一种终端设备,其特征在于,所述终端设备包括:处理模块和收发模块;其中,
    所述处理模块,用于确定第二资源集合中第二级控制信道占用的资源和数据信道占用的资源,所述第二资源集合在时域上位于第一资源集合之后,且与所述第一资源集合相邻,所述第二级控制信道占用所述第二资源集合中的所有时域符号;
    所述收发模块,用于发送所述第二级控制信道和所述数据信道;其中,所述第二级控制信道的平均发射功率高于所述数据信道的平均发射功率。
  10. 根据权利要求9所述的终端设备,其特征在于,所述第一资源集合包括第一级控制信道占用的资源,所述第一级控制信道承载所述第二级控制信道的聚合等级;
    所述处理模块,还用于根据所述第二级控制信道的聚合等级和最小资源调度粒度 确定所述第二级控制信道占用的资源数量。
  11. 根据权利要求10所述的终端设备,其特征在于,
    所述处理模块,还用于将所述第二级控制信道的聚合等级和所述最小资源调度粒度的乘积确定为所述第二级控制信道占用的资源数量。
  12. 根据权利要求10或11所述的终端设备,其特征在于,所述最小资源调度粒度在频域上为N个资源块RB,在时域上为所述第二资源集合中的所有符号,N为正整数。
  13. 根据权利要求10-12中任一项所述的终端设备,其特征在于,
    所述处理模块,还用于根据所述第二级控制信道占用的资源数量确定所述第二资源集合中所述第二级控制信道占用的资源的频域位置。
  14. 根据权利要求9-13中任一项所述的终端设备,所述第二级控制信道独立进行多输入多输出MIMO编码、层映射和资源映射。
  15. 根据权利要求9-14中任一项所述的终端设备,其特征在于,
    所述处理模块,还用于在所述第二级控制信道占用的资源上,采用先频域后时域的方式映射所述第二级控制信道;以及,在所述数据信道占用的资源上,采用先频域后时域的方式映射所述数据信道。
  16. 根据权利要求9-15中任一项所述的终端设备,其特征在于,所述第一资源集合占用时间单元中的第n至n+k个符号,所述第二资源集合的时域起始符号为所述时间单元中的第n+k+1个符号,所述n为0或1,所述k为正整数。
  17. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1-8中任一项所述的方法。
  18. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1-8中任一项所述的方法。
  19. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使得如权利要求1-8中任一项所述的方法被实现。
PCT/CN2019/119796 2019-11-20 2019-11-20 两级控制信道发送方法、终端设备及通信装置 WO2021097729A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/119796 WO2021097729A1 (zh) 2019-11-20 2019-11-20 两级控制信道发送方法、终端设备及通信装置
CN201980100343.6A CN114557070A (zh) 2019-11-20 2019-11-20 两级控制信道发送方法、终端设备及通信装置
EP19953294.6A EP4054257A4 (en) 2019-11-20 2019-11-20 CONTROL CHANNEL TRANSMISSION PROCEDURE AT TWO LEVELS, TERMINAL EQUIPMENT AND COMMUNICATION DEVICE
CA3158740A CA3158740A1 (en) 2019-11-20 2019-11-20 Method for sending two levels of control channels, terminal device, and communications apparatus
US17/664,092 US20220279486A1 (en) 2019-11-20 2022-05-19 Method for Sending Two Levels of Control Channels, Terminal Device, and Communications Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119796 WO2021097729A1 (zh) 2019-11-20 2019-11-20 两级控制信道发送方法、终端设备及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/664,092 Continuation US20220279486A1 (en) 2019-11-20 2022-05-19 Method for Sending Two Levels of Control Channels, Terminal Device, and Communications Apparatus

Publications (1)

Publication Number Publication Date
WO2021097729A1 true WO2021097729A1 (zh) 2021-05-27

Family

ID=75980362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119796 WO2021097729A1 (zh) 2019-11-20 2019-11-20 两级控制信道发送方法、终端设备及通信装置

Country Status (5)

Country Link
US (1) US20220279486A1 (zh)
EP (1) EP4054257A4 (zh)
CN (1) CN114557070A (zh)
CA (1) CA3158740A1 (zh)
WO (1) WO2021097729A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200687A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种控制信道资源映射方法、基站及用户设备
CN107736064A (zh) * 2015-07-03 2018-02-23 Lg电子株式会社 用于在终端之间发送信号的方法及其设备
WO2018135905A1 (en) * 2017-01-20 2018-07-26 Samsung Electronics Co., Ltd. A method and device for vehicle to everything (v2x) communications and a transmitting and receiving method and equipment in v2x communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200687A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种控制信道资源映射方法、基站及用户设备
CN107736064A (zh) * 2015-07-03 2018-02-23 Lg电子株式会社 用于在终端之间发送信号的方法及其设备
WO2018135905A1 (en) * 2017-01-20 2018-07-26 Samsung Electronics Co., Ltd. A method and device for vehicle to everything (v2x) communications and a transmitting and receiving method and equipment in v2x communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Sidelink physical structure for NR V2X communication", 3GPP DRAFT; R1-1913255, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20191118 - 20191122, 15 November 2019 (2019-11-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051825704 *

Also Published As

Publication number Publication date
CN114557070A (zh) 2022-05-27
EP4054257A4 (en) 2022-12-14
EP4054257A1 (en) 2022-09-07
CA3158740A1 (en) 2021-05-27
US20220279486A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2021063002A1 (zh) 数据传输的方法和设备
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2020168946A1 (zh) 传输数据的方法和通信装置
WO2021027575A1 (zh) 一种通信方法及装置
CN112970214B (zh) 用于侧链路的反馈信令
WO2020216130A1 (zh) 一种通信方法及装置
WO2020200014A1 (zh) 通信方法及装置
WO2020015494A1 (zh) 一种数据传输方法、网络设备、通信设备及存储介质
WO2021027790A1 (zh) 一种侧行链路通信方法及装置
WO2021032003A1 (zh) 上行控制信息传输方法及通信装置
CN112187401B (zh) 多时间单元传输方法及相关装置
WO2021031855A1 (zh) 一种通信方法及装置
WO2021088091A1 (zh) 通信方法及装置
WO2022213828A1 (zh) 用于资源确定的方法及装置
WO2021000954A1 (zh) 一种数据传输方法及通信装置
WO2022077876A1 (zh) 一种通信方法及装置
WO2021097729A1 (zh) 两级控制信道发送方法、终端设备及通信装置
WO2017041540A1 (zh) 一种数据传输的方法及装置
WO2020103633A1 (zh) 一种控制信息的发送和接收方法及终端设备
RU2802787C1 (ru) Способ отправки двух уровней каналов управления, терминальное устройство и устройство связи
WO2023207774A1 (zh) 一种通信方法及装置
WO2024037571A1 (zh) 资源分配方法、装置以及存储介质
WO2020221344A1 (zh) 信道传输方法及相关设备
WO2024061076A1 (zh) 侧行链路通信的方法及装置
WO2021056579A1 (zh) 一种dmrs样式指示信息的传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3158740

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019953294

Country of ref document: EP

Effective date: 20220603

NENP Non-entry into the national phase

Ref country code: DE