WO2021031855A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021031855A1
WO2021031855A1 PCT/CN2020/107095 CN2020107095W WO2021031855A1 WO 2021031855 A1 WO2021031855 A1 WO 2021031855A1 CN 2020107095 W CN2020107095 W CN 2020107095W WO 2021031855 A1 WO2021031855 A1 WO 2021031855A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission resource
information
control information
data
terminal device
Prior art date
Application number
PCT/CN2020/107095
Other languages
English (en)
French (fr)
Inventor
郭文婷
张锦芳
苏宏家
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2022002021A priority Critical patent/MX2022002021A/es
Priority to JP2022509728A priority patent/JP7358623B2/ja
Priority to KR1020227008671A priority patent/KR20220049555A/ko
Priority to EP20854272.0A priority patent/EP4017043A4/en
Publication of WO2021031855A1 publication Critical patent/WO2021031855A1/zh
Priority to US17/651,134 priority patent/US20220173870A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • V2X communication refers to the communication between the vehicle and anything outside, including vehicle-to-vehicle communication (V2V), vehicle-to-pedestrian communication (V2P), vehicle-to-infrastructure communication (vehicle to infrastructure) , V2I), vehicle to network communication (V2N) and other application scenarios.
  • V2V vehicle-to-vehicle communication
  • V2P vehicle-to-pedestrian communication
  • V2I vehicle-to-infrastructure communication
  • V2N vehicle to network communication
  • the existing LTE V2X communication uses the resource mapping method as shown in FIG. 1.
  • the resource for one transmission includes one or consecutive multiple subchannels in the frequency domain, and includes one subframe in the time domain.
  • the physical sidelink control channel (PSCCH) channel occupies the two consecutive RBs with the lowest sequence number in the frequency domain, and is used to transmit control information, such as sidelink assignment (SA); sidelink
  • SA sidelink assignment
  • PSSCH link physical sidelink share channel
  • the size of the physical resources occupied by the PSCCH channel is fixed, and one data transmission is accompanied by one control information transmission.
  • the receiving end uses sub-channels as the granularity in the entire frequency domain, blindly detects all possible control channels, and decodes the data channel according to the correctly decoded control information to obtain data information.
  • the embodiments of the present application provide a communication method and device, which are used to provide a resource mapping method that supports control information with a variable length, so as to reduce control channel overhead.
  • an embodiment of the present application provides a communication method, which can be applied to a first terminal device, and the method includes: the first terminal device generates first control information and second information, and the second information includes data and/ Or second control information, where the second control information is located in front of the second information; the first terminal device maps the first control information to the first transmission resource; the first terminal device maps the second information to the second transmission resource and The third transmission resource, the second information is preferentially mapped to the second transmission resource, and the first terminal device sends the first control information and the second information to the second terminal device.
  • the first transmission resource, the second transmission resource, and the third transmission resource are located in the same scheduling unit, the second transmission resource and the first transmission resource do not overlap in the time domain, and the third transmission resource and the first transmission resource overlap in the time domain and are There is no overlap in the frequency domain.
  • the first terminal device can map the second information including the second control information and data to the second transmission resource and the third transmission resource, and can map the second information to the first
  • the transmission resources are on the second transmission resource whose time domain does not overlap.
  • the second control information can be transmitted with a higher transmission power, thereby enhancing reliability.
  • the decoding delay can be effectively reduced.
  • the first terminal device generating first control information and second information may include: the first terminal device generating first control information, second control information, and Data; the first terminal device cascades the second control information and the data to form the second information.
  • the second information in the embodiment of the present application can be obtained by cascading the second control information and data.
  • the first terminal device can cascade the second control information before the data.
  • mapping the second information to the second transmission resource and the third transmission resource by the first terminal device may include: the first terminal device maps the second information Layer mapping, multiple-input multiple-output MIMO coding, and resource mapping are performed uniformly, and are mapped to the second transmission resource and the third transmission resource. It can be seen that the second control information and the data are cascaded and then layer mapping, MIMO encoding and resource mapping are performed uniformly, so that the second control information can be multiplexed with the data channel where the data is located, and the DMRS of the data channel is used for reception and demodulation. , Thereby enhancing reliability.
  • the first terminal device maps the second information to the second transmission resource and the third transmission resource, which may further include: the first terminal device according to the first frequency In the post-domain time domain, and the sequence numbers of the resource blocks and symbols are from small to large, the second information is mapped to the second transmission resource and the third transmission resource.
  • the first terminal device may also map the second information to the fourth transmission resource, and the fourth transmission resource is the first symbol in the scheduling unit
  • the transmission resource is located before the first transmission resource.
  • the first terminal device may map the second information to the fourth transmission resource when the first transmission resource does not include the first symbol in the scheduling unit.
  • the sequence of mapping the second information by the first terminal device is to first map the second transmission resource, then map the fourth transmission resource, and finally map the third transmission resource.
  • the first transmission resource occupies the nth to n+k symbols in the scheduling unit, and the time domain start symbol of the second transmission resource is in the scheduling unit
  • the n+k+1th symbol of, the n is 0 or 1
  • the k is a positive integer.
  • the first transmission resource and the second transmission resource may be adjacent in the time domain.
  • the second terminal device can determine that the second control information is mapped on the first symbol after the first transmission resource, thereby saving the transmission resources occupied by the second control information Indication information of the position in the second transmission resource.
  • the first control information may include information for indicating the size of the transmission resource occupied by the second control information, for example, it may be the location where the second control information is located.
  • the length of the second control information in the embodiments of the present application can be variable, and can be sent at different code rates.
  • the first control information indicates the size of the transmission resource occupied by the second control information, which can reduce the control channel Overhead.
  • an embodiment of the present application provides a communication device that has the function of the first terminal device in the first aspect or any possible design of the first aspect.
  • the communication device may be a handheld terminal device, a vehicle-mounted terminal device, or a vehicle user equipment, or a device included in the terminal device, such as a chip, or a device including a terminal device.
  • the functions of the above-mentioned terminal equipment can be realized by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing module and a transceiver module, wherein the processing module is configured to support the communication device to perform the first aspect or the first terminal in any of the first aspects of the design.
  • the transceiver module is used to support the communication between the communication device and other communication devices. For example, when the communication device is the first terminal device, it can send the first control information and the second information to the second terminal device.
  • the communication device may also include a storage module, which is coupled with the processing module, which stores program instructions and data necessary for the communication device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • the structure of the communication device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and may be used to execute computer program instructions stored in the memory, so that the communication device executes the foregoing first aspect or any one of the possible design methods of the first aspect.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the communication device is a chip included in the terminal device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, the chip system may further include an interface circuit, the interface circuit Used to receive code instructions and transmit them to the processor; when the program or instructions are executed by the processor, the chip system is made to implement the first aspect or any one of the possible design methods of the first aspect.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • an embodiment of the present application provides a computer-readable storage medium having computer-readable instructions stored in the computer storage medium.
  • the computer reads and executes the computer-readable instructions, the computer executes the first The method in any possible design of the aspect or the first aspect, or the method in any possible design of the second, fourth, or sixth aspect described above.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes the first aspect or any one of the possible design methods in the first aspect.
  • an embodiment of the present application provides a communication system, which includes the foregoing first terminal device and second terminal device.
  • the communication system may also include network equipment.
  • Figure 1 is a schematic diagram of a resource mapping method in the existing LTE V2X technology
  • FIG. 2 is a schematic diagram of a network architecture to which an embodiment of the application is applicable;
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of a structure of second information provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a processing flow of second control information and data provided by an embodiment of this application.
  • 6a to 6c are schematic diagrams of the positions of the first transmission resource, the second transmission resource, the third transmission resource, and the fourth transmission resource in an embodiment of the application;
  • 7a to 7c are schematic diagrams of transmission resources occupied by second control information in an embodiment of this application.
  • FIG. 8 is a schematic diagram of a mapping sequence of second information provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a mapping manner of second information provided by an embodiment of the application.
  • 10a to 10c are schematic diagrams of transmission resources occupied by second control information according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of a frame structure provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of another structure of a communication device provided by an embodiment of this application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WIMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • the technical solutions of the embodiments of the present application can be applied to unmanned driving (unmanned driving), driver assistance (ADAS), intelligent driving (intelligent driving), connected driving, and intelligent network driving (Intelligent Network Driving). ), car sharing (car sharing), smart/intelligent car, digital car, unmanned car/driverless car/pilotless car/automobile, Internet of vehicles (IoV) , Auto-driving car (autonomous car), cooperative vehicle infrastructure (CVIS), intelligent transportation (intelligent transport system, ITS), vehicle communication (vehicular communication) and other technical fields.
  • unmanned driving unmanned driving
  • ADAS driver assistance
  • intelligent driving intelligent driving
  • connected driving and intelligent network driving
  • Intelligent Network Driving Intelligent Network Driving
  • the technical solutions provided by the embodiments of the present application can be applied to cellular links, and can also be applied to links between devices, such as device-to-device (D2D) links.
  • D2D link or V2X link may also be called side link, auxiliary link or side link.
  • the aforementioned terms all refer to links established between devices of the same type, and have the same meaning.
  • the so-called devices of the same type can be the link between the terminal device and the terminal device, the link between the base station and the base station, and the link between the relay node and the relay node. This application The embodiment does not limit this.
  • V2X link For the link between the terminal device and the terminal device, there are D2D links defined by 3GPP version (Rel)-12/13, and there are also car-to-car, car-to-mobile, or car-to-any entity defined by 3GPP for the Internet of Vehicles.
  • V2X link including Rel-14/15. It also includes the V2X link based on the NR system of Rel-16 and subsequent versions that are currently being studied by 3GPP.
  • FIG. 2 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable.
  • the communication system includes a terminal device 210 and a terminal device 220.
  • the terminal device and the terminal device can communicate directly through the PC5 interface, and the direct communication link between the terminal device and the terminal device is the side link.
  • Communication based on the side link can use at least one of the following channels: a physical sidelink shared channel (PSSCH) for carrying data; a physical sidelink control channel (physical sidelink) control channel, PSCCH), used to carry sidelink control information (SCI).
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • the communication system further includes a network device 230 for providing timing synchronization and resource scheduling for terminal devices.
  • the network device can communicate with at least one terminal device (such as the terminal device 210) through the Uu interface.
  • the communication link between the network equipment and the terminal equipment includes an uplink (UL) and a downlink (DL).
  • the terminal device and the terminal device can also realize indirect communication through network device forwarding.
  • the terminal device 210 can send data to the network device 230 through the Uu interface, and then send the data to the application server 240 through the network device 230 for processing, and then The application server 240 delivers the processed data to the network device 230 and sends it to the terminal device 220 through the network device 230.
  • the network device 230 that forwards the uplink data from the terminal device 210 to the application server 240 and the network device 230 that forwards the downlink data delivered by the application server 240 to the terminal device 220 may be the same network device, or It can be different network devices and can be determined by the application server.
  • the network device in FIG. 2 may be an access network device, such as a base station.
  • the access network equipment corresponds to different equipment in different systems, for example, in a 5G system, it corresponds to the access network equipment in 5G, such as gNB.
  • 5G such as gNB
  • the terminal device 210 and the terminal device 220 are shown in FIG. 2, it should be understood that the network device can provide services for multiple terminal devices, and the embodiment of the present application does not limit the number of terminal devices in the communication system.
  • the terminal device in FIG. 2 is described by taking a vehicle-mounted terminal device or a vehicle as an example.
  • the terminal device in the embodiment of the present application is not limited to this, and the terminal device may also be a vehicle-mounted module, a roadside unit, or Pedestrian handheld device. It should be understood that the embodiments of the present application are not limited to 4G or 5G systems, and are also applicable to subsequent evolved communication systems.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, a vehicle user device, and so on.
  • terminal devices are: mobile phones (mobile phones), tablets, laptops, palmtop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • the terminal device in the embodiments of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit that is built into a vehicle as one or more components or units. Modules, on-board components, on-board chips or on-board units can implement the method of the present application.
  • Network equipment is the equipment used in the network to connect terminal equipment to the wireless network.
  • the network device may be a node in a radio access network, may also be called a base station, or may also be called a radio access network (RAN) node (or device).
  • the network device can be used to convert received air frames and Internet Protocol (IP) packets to each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as
  • LTE long term evolution
  • LTE-A evolved LTE system
  • the traditional macro base station eNB and the micro base station eNB in the heterogeneous network scenario may also include the next generation node B (next generation) in the fifth generation mobile communication technology (5th generation, 5G) new radio (NR) system.
  • 5th generation, 5G fifth generation mobile communication technology
  • NR new radio
  • node B node B, gNB
  • TRP transmission reception point
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit BBU
  • baseband pool BBU pool or WiFi access point (access point, AP), etc.
  • CU centralized unit
  • CU distributed unit
  • DU cloud radio access network
  • a network device in a V2X technology is a roadside unit (RSU).
  • the RSU may be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • “Multiple” refers to two or more. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the application, including steps S301 to S304:
  • Step S301 The first terminal device generates first control information and second information, where the second information includes data and/or second control information, and the second control information is located at the front of the second information.
  • the scheduling unit refers to a collection of resources scheduled for one data transmission.
  • a scheduling unit may include one or more continuous sub-channels in the frequency domain, and a sub-channel may include several resource blocks (RB) that are continuous in the frequency domain.
  • RB resource blocks
  • a scheduling unit may include a time unit in the time domain, and the time unit may be a time unit composed of multiple possible time granularities such as time slots, mini-slots, subframes, and frames. It should be understood that the embodiment of the present application does not specifically limit the bandwidth of the scheduling unit, and the number of sub-channels included in the scheduling unit and the size of each sub-channel can be configured or pre-configured by the network device.
  • the first control information is suitable for broadcast, unicast, multicast and other scenarios, and may be basic control information required for V2X communication.
  • the first control information may include L1 layer destination identity and data channel frequency domain bandwidth , Resource reservation information, initial transmission and retransmission time interval, etc.
  • the first control information is carried on a first-level control channel, and the first-level control channel may be, for example, a first-level PSCCH channel.
  • the second control information is applicable to scenarios such as unicast and multicast, and may be additional link maintenance information required in scenarios such as unicast and multicast, so as to improve link reliability.
  • the second control information may include the modulation and coding scheme (MCS) of the data channel, the hybrid automatic repeat request (HARQ) version number and the new transmission or retransmission indication of the data channel, etc. .
  • MCS modulation and coding scheme
  • HARQ hybrid automatic repeat request
  • the second control information is carried on a second-level control channel, and the second-level control channel may be, for example, a second-level PSCCH channel.
  • the first terminal device may only send the first control information to the second terminal device; in the unicast and multicast scenarios, the first terminal device needs to send the first control information and the first control information to the second terminal device.
  • the second control information may be used to send the first control information and the first control information to the second terminal device.
  • the data may be specific service data sent by the first terminal device to the second terminal device in scenarios such as broadcast, unicast, and multicast.
  • the data is carried on the data channel in the scheduling unit, and the data channel may be, for example, a PSSCH channel.
  • the first terminal device and the second terminal device are both vehicles, the first terminal device may send some of its own information such as position, speed, intention (including turning, merging, and reversing) to the second terminal device.
  • the second information may include data and/or second control information, and the second control information is located at the front of the second information. That is to say, the second information may include data and second control information, or may only include data. If the second information includes data and second control information, the second control information being located at the front of the second information means that the second control information is located before the data.
  • Fig. 4 exemplarily shows a schematic structural diagram of the second information provided by an embodiment of the present application. The second information in Fig. 4 includes both data and second control information, and the second control information is located before the data.
  • the second information may also be understood as an information bit stream obtained by cascading the second control information and data by the first terminal device, where the second control information is cascaded before the data.
  • generating the first control information and the second information by the first terminal device in the embodiment of the present application may include: the first terminal device generates the first control information, the second control information, and the data respectively, and then the first terminal device controls the second The information and data are cascaded to obtain the second information.
  • Fig. 5 is a schematic diagram of a flow of processing second control information and data by a first terminal device according to an embodiment of the application.
  • the entire processing flow includes channel coding, channel multiplexing, scrambling, layer mapping, and multiple-input multiple-output (multiple- Input multiple-output (MIMO) coding, resource mapping, inverse fast fourier transform (inverse fast fourier transform, IFFT) and cycle prefix (cycle prefix, CP) and other steps. among them.
  • MIMO multiple- Input multiple-output
  • IFFT inverse fast fourier transform
  • cycle prefix cycle prefix
  • the first terminal device may perform channel coding on the second control information and data respectively, the output of the channel coding is the output after rate matching, and the process of channel coding may include transmission block
  • the cyclic redundancy check (CRC) addition, coding block segmentation, coding block CRC addition, channel coding, rate matching and other processing procedures are not detailed here.
  • the first terminal device can perform channel multiplexing on the output after channel coding of the second control information and the output after channel coding on the data.
  • the multiplexing of the second-level control channel and the data channel is also It can be understood that the output after channel encoding of the second control information and the output after channel encoding of the data are cascaded, and the output cascade after the channel encoding of the second control information is before the output of the data after channel encoding.
  • the output after the channel coding of the second control information and the output of the data after the channel coding are concatenated can be expressed as g 0 , g 1 , g 2 ,..., g G-1 .
  • Step S302 The first terminal device maps the first control information to the first transmission resource, and the first transmission resource is the transmission resource occupied by the first-level control channel in the scheduling unit.
  • Step S303 The first terminal device maps the second information to the second transmission resource and the third transmission resource, and the second information is preferentially mapped to the second transmission resource.
  • the first transmission resource, the second transmission resource, and the third transmission resource in the embodiment of the present application are located in the same scheduling unit.
  • the second transmission resource and the first transmission resource do not overlap in the time domain
  • the third transmission resource and the first transmission resource overlap in the time domain but do not overlap in the frequency domain.
  • Figures 6a to 6c are schematic diagrams of several possible locations of the first transmission resource, the second transmission resource, and the third transmission resource provided by an embodiment of the application.
  • a scheduling unit includes a time slot in the time domain, and the time slot includes 14 symbols, which are numbered from 0 to 13 from left to right, and include 10 RBs in the frequency domain. , The 10 RBs are numbered from 0 to 9 from top to bottom.
  • the time domain position of the last symbol included in the first transmission resource (that is, the end position of the first transmission resource in the time domain) is used as the boundary, and the scheduling unit can be divided into A in the time domain. Part and Part B.
  • the first transmission resource may occupy part or all of the time domain resources of the A part.
  • the first transmission resource occupies part of the frequency domain resources in the scheduling unit.
  • the resource size of the first transmission resource is fixed, which can be embodied as a rectangle formed by multiple resource blocks in a scheduling unit in the figure.
  • the frequency domain start resource block of the first transmission resource may be the same or different from the frequency domain start resource block of the scheduling unit, which is not limited in this application. That is, the first transmission resource may include the resource block numbered 0 at the top of the scheduling unit, or may not include the resource block numbered 0 at the top of the scheduling unit. Or, it can also be understood that the first transmission resource may be aligned or not aligned with the frequency domain start position of the scheduling unit.
  • the first transmission resource may include the resource on the first symbol in the scheduling unit, or may not include the resource on the first symbol in the scheduling unit.
  • the first transmission resource may include the resource on the first symbol in the scheduling unit, that is, the first control information may It is mapped to the resource of the first symbol in the scheduling unit, or it can also be understood that the first-level control channel can be mapped from the first symbol in the scheduling unit.
  • AGC automatic gain control
  • the first transmission resource may not include the resource on the first symbol in the scheduling unit, and the first control information can avoid the first symbol of the scheduling unit.
  • the mapping starts from the second symbol in the scheduling unit, or it can also be understood that the first-level control channel avoids the first symbol on the scheduling unit and starts mapping from the second symbol in the scheduling unit.
  • the AGC sequence is mapped on all resource blocks on the first symbol in the scheduling unit.
  • the first transmission resource may not include the resource on the first symbol in the scheduling unit, and the first control information may avoid the first symbol of the scheduling unit, and start from the second symbol in the scheduling unit.
  • the first-level control channel avoids the first symbol on the scheduling unit and starts mapping from the second symbol in the scheduling unit.
  • the second transmission resource and the first transmission resource do not overlap in the time domain, and at least partially overlap in the frequency domain.
  • the second transmission resource may occupy part of the time domain resources of part B in the scheduling unit, and in the frequency domain, the second transmission resource may occupy all frequency domain resources in the scheduling unit. Since the last symbol in a scheduling unit is usually a GAP symbol, the second transmission resource usually does not include the resource of the last symbol in the scheduling unit.
  • the second transmission resource may be adjacent to the first transmission resource in the time domain.
  • the first symbol (immediate domain start symbol) included in the second transmission resource is the first symbol in the scheduling unit
  • the n+k+1th symbol n is 0 or 1
  • k is a positive integer.
  • the indication information of the start position of the second transmission resource can be saved, and resource overhead can be reduced.
  • n 0, it means that the first transmission resource includes the resource on the first symbol in the scheduling unit.
  • the first control information is mapped from the first symbol in the scheduling unit.
  • n 1, it means the first transmission.
  • the resource does not include the resource on the first symbol in the scheduling unit, and the first control information is mapped from the second symbol in the scheduling unit.
  • the second transmission resource may occupy all resources except GAP symbols in part B of the scheduling unit. That is, the last symbol (immediate domain end symbol) included in the second transmission resource may be the penultimate symbol in the scheduling unit, and the last symbol in the scheduling unit is the GAP symbol.
  • the third transmission resource overlaps the first transmission resource in the time domain but does not overlap in the frequency domain.
  • the third transmission resource can be understood as being within the time domain where the first transmission resource is located, except for the first transmission resource.
  • the process in which the first terminal device maps the first control information to the first transmission resource and the second information to the second transmission resource and the third transmission resource will be described in detail below.
  • resource mapping is a step after layer mapping and MIMO coding.
  • the first terminal device may also perform independent channel coding, scrambling, layer mapping, and MIMO coding processing procedures on the first control information. It should be noted that the difference from FIG. 5 is that before the first control information is resourced, the step of channel multiplexing is not included.
  • the first terminal device may also perform channel coding on the second control information and data respectively, and then perform coding on the output of the second control information with the data.
  • the output after channel coding is cascaded together to obtain the second information, and then layer mapping, MIMO coding and resource mapping are uniformly performed on the second information.
  • the frequency domain first and then the time domain may be adopted in a manner of increasing order mapping.
  • the first control information is sequentially mapped to each resource block on the symbol in the descending order of the number of the resource block, until After mapping all resource blocks on the symbol, map the next symbol.
  • the first control information is mapped to each resource block on the symbol in sequence according to the number of the resource block from small to large, until all resource blocks on the symbol are mapped.
  • the first control information is mapped to all symbols included in the first transmission resource.
  • the first terminal device when it performs resource mapping on the second information, it preferentially maps the second information to the second transmission resource. That is, the first terminal device may first map the second information to the second transmission resource, and then map it to the third transmission resource after the second transmission resource is mapped. It also adopts the increasing order mapping method of frequency domain first and then time domain. If a 0 , a 1 , a 2 ..., a N-1 is used to represent the complex data group output after modulation and coding of the second information, N represents the number of RB resources occupied by the second information, and each data group follows the frequency domain first The time domain method is mapped to the second transmission resource and the third transmission resource successively.
  • the resource mapping sequence of the second information is shown in Fig. 8.
  • the complex data group output after modulation and coding of the second information is mapped on RE resources other than DMRS. Therefore, according to whether the DMRS is mapped or not, the amount of modulated complex data contained in each data group is different. If the output after modulation and coding of the second information is represented by b j , then the resource mapping on each RB is shown in Figure 9.
  • the first terminal device may also map the second information to the fourth transmission resource.
  • the fourth transmission resource refers to the resource on the first symbol in the scheduling unit, and the fourth transmission resource is located in the first transmission. Before resources. Since the third transmission resource overlaps the first transmission resource in the time domain and is a resource multiplexed with the first transmission resource in a frequency division manner, the fourth transmission resource is also located before the third transmission resource.
  • the first terminal device when it performs resource mapping on the second information, it can map the second information to the second transmission resource, the fourth transmission resource and the third transmission resource in sequence, that is, the second transmission is mapped first. Resources, then map the fourth transmission resource, and finally map the third transmission resource.
  • the second control information Since the second control information is located at the front of the second information, inside the second information, the second control information is cascaded before the data.
  • the resources actually occupied by the second control information in the second transmission resource can be as shown in Figs. 7a to 7c, where Fig. 6a corresponds to Fig. 7a, Fig. 6b corresponds to Fig. 7b, and Fig. 6c and Figure 7c corresponds.
  • the actual resource mapping mode of the second control information in the second transmission resource can be as shown in Fig. 10a to Fig. 10c, in which Fig. 6a and Fig. 10a Correspondingly, Fig. 6b corresponds to Fig. 10b, and Fig. 6c corresponds to Fig. 10c.
  • Step S304 The first terminal device sends the first control information and the second information to the second terminal device.
  • Step S305 The second terminal device receives the first control information and the second information sent by the first terminal device.
  • the length of the first control information may be fixed, and the length of the second control information may be variable.
  • the first control information may further include information used to indicate the size of the transmission resource occupied by the second control information.
  • the information used to indicate the size of the transmission resource occupied by the second control information may be the aggregation level of the second-level control channel.
  • the technical solution provided in this application is a resource mapping method, and other resource mapping methods may also exist in this field, which is not limited by this application.
  • the first terminal device may select a suitable resource mapping method according to the service type or scheduled resources, and then perform data transmission. For example, depending on the resource pool in which the scheduling unit is located, the resource mapping method used can be different, that is, the resource mapping method used by the first terminal device may be related to the resource pool where the scheduling unit is located, and different resource pools can be pre-connected with different The resource mapping method is associated.
  • the adopted resource mapping method may also be configured by the network device and sent to the first terminal device through radio resource control (radio resource control, RRC) signaling. If the first terminal device selects the resource mapping method provided in this application, the first control information, the second control information, and the data can be sent to the second terminal device by performing the above steps S301 to S305.
  • radio resource control radio resource control
  • the first control information may also include information for indicating a resource mapping manner, and the information for indicating a resource mapping manner may be the resource mapping manner adopted by the first terminal device among multiple optional resource mapping manners. index of.
  • the first control information may include information used to indicate the size of the transmission resource occupied by the second control information and information used to indicate the resource mapping mode.
  • Fig. 1 is a frame structure adopted in the embodiment of the application, and Fig. 11 only shows the first-level control channel and the data channel. Since the second control information and data in the embodiment of this application are cascaded to perform resource mapping uniformly, it can also be understood that the second control information and data multiplex the data channel, and the second level control channel is regarded as the data channel. Part.
  • the first-level control channel and data channel are mapped on all symbols in part A in a frequency division multiplexing manner.
  • part B shown in FIG. 11 only the data channel exists, and there is no Level 1 control channel. Considering that when using the side link for data transmission, the total transmission power on all symbols in a transmission slot is required to be the same.
  • part A shown in Fig. 11 because there are both the first-level control channel and the data Channel, if the power of the first-level control channel is enhanced, the average transmission power of the data channel on each resource block on each symbol in part A will be lower than the data on each resource block on each symbol in part B The transmit power of the channel.
  • the second control information can obtain higher transmission power, thereby enhancing reliability.
  • the second control information in the embodiment of the present application can be sent using different code rates, and can be decoded using a demodulation reference signal (DMRS) of the data channel, which can effectively reduce the control channel overhead.
  • DMRS demodulation reference signal
  • FIG. 12 is a schematic structural diagram of a communication device provided in an embodiment of the application.
  • the communication device 1200 includes a transceiver module 1210 and a processing module 1220.
  • the communication device can be used to implement the function related to the first terminal device in any of the foregoing method embodiments.
  • the communication device may be a handheld terminal device, a vehicle-mounted terminal device, a vehicle user equipment, or a chip included in the terminal device, or the communication device may be a vehicle-mounted device, such as a vehicle-mounted module or a vehicle-mounted unit built in the vehicle. Wait.
  • the processing module 1220 is used to generate first control information and second information, and the second information includes data and/or second control information ,
  • the second control information is located at the front of the second information;
  • the processing module 1220 is also used to map the first control information to the first transmission resource; and to map the second information to the second transmission resource and the first transmission resource Three transmission resources.
  • the second information is preferentially mapped to the second transmission resource.
  • the first transmission resource, the second transmission resource, and the third transmission resource are located in the same scheduling unit.
  • the second transmission resource and the first transmission resource are different in the time domain. Overlap, the third transmission resource overlaps the first transmission resource in the time domain and does not overlap in the frequency domain;
  • the transceiver module 1210 is configured to send the first control information and the second information to the second terminal device.
  • the processing module 1220 is specifically configured to: generate first control information, second control information, and data; and cascade the second control information and data to form second information.
  • the processing module 1220 is further specifically configured to: uniformly perform layer mapping, multiple-input multiple-output MIMO coding, and resource mapping on the second information, and map the second information to the second transmission resource and the third transmission resource.
  • the processing module 1220 is further specifically configured to map the second information to the second transmission resource and the second information according to the frequency domain and then the time domain, and the sequence numbers of the resource blocks and symbols are from small to large. On the third transmission resource.
  • the processing module 1220 is further configured to: map the second information to a fourth transmission resource, where the fourth transmission resource is the transmission resource on the first symbol in the scheduling unit and is located in the first transmission Before resources.
  • the first transmission resource occupies the n to n+k symbols in the scheduling unit, and the time domain start symbol of the second transmission resource is the n+k+1 symbol in the scheduling unit,
  • the n is 0 or 1
  • the k is a positive integer.
  • the first control information includes information used to indicate the size of the transmission resource occupied by the second control information.
  • the processing module 1220 involved in the communication device may be implemented by a processor or processor-related circuit components, and may be a processor or a processing unit; the transceiver module 1210 may be implemented by a transceiver or transceiver-related circuit components, and may be a transceiver or a transceiver. unit.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 3, and for the sake of brevity, it will not be repeated here.
  • FIG. 13 is a schematic diagram of another structure of a communication device provided in an embodiment of this application.
  • the communication device may specifically be a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, and may also include a memory, of course, it may also include a radio frequency circuit, an antenna, an input and output device, and so on.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 13. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1310 and a processing unit 1320.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1310 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1310 as the sending unit, that is, the transceiver unit 1310 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1310 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1320 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • An embodiment of the present application also provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • each step in the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the foregoing method embodiments Method in.
  • the embodiments of the present application also provide a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system, which includes a first terminal device and a second terminal device.
  • the communication system may also include network equipment.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSP), or application specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,适用于V2X、车联网、智能网联车、辅助驾驶以及智能驾驶等领域,该方法包括:第一终端设备可将第一控制信息映射到第一传输资源上,将包括第二控制信息和数据的第二信息映射到第二传输资源和第三传输资源上,并且可将第二信息优先映射到与第一传输资源时域不重叠的第二传输资源上,如此,可使第二控制信息在发送能获得较高的发送功率,从而增强可靠性。此外,由于第二控制信息位于第二信息的前部,可有效减小译码时延。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年08月16日提交中国国家知识产权局、申请号为201910760401.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术的网络下,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出。V2X通信是指车辆与外界的任何事物的通信,包括车与车的通信(vehicle to vehicle,V2V)、车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、车与网络的通信(vehicle to network,V2N)等多种应用场景。
现有的LTE V2X通信采用如图1所示的资源映射方式。一次传输的资源在频域上包括一个或连续的多个子信道,时域上包括一个子帧。物理侧行链路控制信道(physical sidelink control channel,PSCCH)信道占据频域上序号最低的连续两个RB,用于传输控制信息,如侧行链路分配信息(sidelink assignment,SA);侧行链路物理共享信道(physical sidelink share channel,PSSCH)信道以频分的方式占据子信道中的剩余RB,用于传输数据信息(data)。在这种资源映射方式中,PSCCH信道占用的物理资源的大小是固定的,一次数据传输伴随一次控制信息传输。接收端在整个频域范围内以子信道为粒度,对所有可能的控制信道进行盲检测,并根据正确译码的控制信息,对数据信道进行解码,以获得数据信息。
在NR V2X通信中,由于帧结构发生变化,且为了支持更多种业务类型,控制信息的长度是可变的,因此,上述资源映射方式已不再适用。
发明内容
本申请实施例提供一种通信方法及装置,用于提供一种支持控制信息的长度可变的资源映射方式,以减小控制信道的开销。
第一方面,本申请实施例提供一种通信方法,该方法可应用于第一终端设备,该方法包括:第一终端设备生成第一控制信息和第二信息,该第二信息包括数据和/或第二控制信息,其中第二控制信息位于第二信息的前部;第一终端设备将第一控制信息映射到第一传输资源;第一终端设备将第二信息映射到第二传输资源和第三传输资源,第二信息优先映射到第二传输资源上,第一终端设备向第二终端设备发送第一控制信息和第二信息。第一 传输资源、第二传输资源和第三传输资源位于同一调度单元,第二传输资源与第一传输资源在时域上不重叠,第三传输资源与第一传输资源在时域重叠且在频域上不重叠。
采用本申请提供的技术方案,第一终端设备可将包括第二控制信息和数据的第二信息映射到第二传输资源和第三传输资源上,并且可将第二信息优先映射到与第一传输资源时域不重叠的第二传输资源上,如此,可使第二控制信息在发送能获得较高的发送功率,从而增强可靠性。此外,由于第二控制信息位于第二信息的前部,可有效减小译码时延。
结合第一方面,在第一方面的第一种可能的设计中,第一终端设备生成第一控制信息和第二信息,可包括:第一终端设备生成第一控制信息、第二控制信息和数据;第一终端设备将第二控制信息与数据进行级联,形成第二信息。如此,本申请实施例中的第二信息可通过对第二控制信息与数据进行级联得到。进一步地,由于第二控制信息位于第二信息的前部,因此,第一终端设备可将第二控制信息级联在数据之前。
结合第一方面,在第一方面的第一种可能的设计中,第一终端设备将第二信息映射到第二传输资源和第三传输资源上,可包括:第一终端设备将第二信息统一进行层映射、多输入多输出MIMO编码和资源映射,并映射到第二传输资源和第三传输资源上。如此可知,将第二控制信息与数据进行级联后统一进行层映射、MIMO编码和资源映射,可使得第二控制信息能够复用数据所在的数据信道,并采用数据信道的DMRS进行接收解调,从而增强可靠性。
结合第一方面,在第一方面的第一种可能的设计中,第一终端设备将第二信息映射到第二传输资源和第三传输资源上,还可包括:第一终端设备按照先频域后时域,且资源块和符号的序号均由小到大的顺序,将第二信息映射到第二传输资源和第三传输资源上。
结合第一方面,在第一方面的第一种可能的设计中,第一终端设备还可将第二信息映射到第四传输资源上,第四传输资源为调度单元中的第一个符号上的传输资源且位于第一传输资源之前。例如,第一终端设备可在第一传输资源不包括调度单元中的第一个符号的情况下,将第二信息映射到第四传输资源上。此时,第一终端设备对第二信息的映射顺序依次为先映射第二传输资源,再映射第四传输资源,最后再映射第三传输资源。
结合第一方面,在第一方面的第一种可能的设计中,第一传输资源占用调度单元中的第n至n+k个符号,第二传输资源的时域起始符号为调度单元中的第n+k+1个符号,所述n为0或1,所述k为正整数。如此,第一传输资源可与第二传输资源在时域上相邻。考虑到第二控制信息位于第二信息的前部,第二终端设备可确定第一传输资源之后的第一个符号上映射有第二控制信息,从而可以节省第二控制信息所占用的传输资源在第二传输资源中的位置的指示信息。
结合第一方面,在第一方面的第一种可能的设计中,第一控制信息中可包括用于指示第二控制信息占用的传输资源的大小的信息,例如可以是第二控制信息所在的第二级控制信道的聚合等级。本申请实施例中的第二控制信息的长度可以是可变的,并且可以采用不同的码率发送,通过第一控制信息指示第二控制信息占用的传输资源的大小,可减小控制信道的开销。
第二方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面或第一方面的任一种可能的设计中第一终端设备的功能。该通信装置可以为手持终端设备、车载终端设备、车辆用户设备,也可以为终端设备中包含的装置,例如芯片,或者为包含终端设备的装置等。上述终端设备的功能可以通过硬件实现,也可以通过硬件执行相应的软 件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该通信装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该通信装置执行上述第一方面或第一方面的任一种设计中第一终端设备相应的功能。收发模块用于支持该通信装置与其他通信设备之间的通信,例如该通信装置为第一终端设备时,可向第二终端设备发送第一控制信息和第二信息。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有通信装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该通信装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使通信装置执行上述第一方面或第一方面的任一种可能的设计中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。当通信装置为终端设备时,该通信接口可以是收发器或输入/输出接口;当该通信装置为终端设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第三方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,该芯片系统还可包括接口电路,所述接口电路用于接收代码指令并传输至处理器;当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的设计中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法、或执行上述第二方面、第四方面或第六方面的任一种可能的设计中的方法。
第五方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法。
第六方面,本申请实施例提供一种通信系统,该通信系统包括上述第一终端设备和第二终端设备。可选地,该通信系统中还可以包括网络设备。
附图说明
图1为现有的LTE V2X技术中的资源映射方式的示意图;
图2为本申请实施例适用的一种网络架构示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的第二信息的一种结构示意图;
图5为本申请实施例提供的第二控制信息和数据的处理流程示意图;
图6a至图6c为本申请实施例中的第一传输资源、第二传输资源、第三传输资源和第四传输资源的位置示意图;
图7a至图7c为本申请实施例中第二控制信息占用的传输资源的示意图;
图8为本申请实施例提供的第二信息的映射顺序示意图;
图9为本申请实施例提供的第二信息的映射方式示意图;
图10a至图10c为本申请实施例提供的第二控制信息占用的传输资源的示意图;
图11为本申请实施例提供的一种帧结构的示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的一种通信装置的另一结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),或者应用于未来的通信系统或其它类似的通信系统等。
本申请实施例的技术方案可以应用于无人驾驶(unmanned driving)、辅助驾驶(driver assistance,ADAS)、智能驾驶(intelligent driving)、网联驾驶(connected driving)、智能网联驾驶(Intelligent network driving)、汽车共享(car sharing)、智能汽车(smart/intelligent car)、数字汽车(digital car)、无人汽车(unmanned car/driverless car/pilotless car/automobile)、车联网(Internet of vehicles,IoV)、自动汽车(self-driving car、autonomous car)、车路协同(cooperative vehicle infrastructure,CVIS)、智能交通(intelligent transport system,ITS)、车载通信(vehicular communication)等技术领域。
另外,本申请实施例提供的技术方案可以应用于蜂窝链路,也可以应用于设备间的链路,例如设备到设备(device to device,D2D)链路。D2D链路或V2X链路,也可以称为边链路、辅链路或侧行链路等。在本申请实施例中,上述的术语都是指相同类型的设备之间建立的链路,其含义相同。所谓相同类型的设备,可以是终端设备到终端设备之间的链路,也可以是基站到基站之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。对于终端设备和终端设备之间的链路,有3GPP的版本(Rel)-12/13定义的D2D链路,也有3GPP为车联网定义的车到车、车到手机、或车到任何实体的V2X链路,包括Rel-14/15。还包括目前3GPP正在研究的Rel-16及后续版本的基于NR系统的V2X链路等。
请参考图2,为本申请实施例适用的一种通信系统的网络架构示意图。该通信系统包括终端设备210和终端设备220。终端设备与终端设备之间可通过PC5接口进行直接通信, 终端设备与终端设备之间的直连通信链路即为侧行链路。基于侧行链路的通信可以使用如下信道中的至少一个:物理侧行链路共享信道(physical sidelink shared channel,PSSCH),用于承载数据(data);物理侧行链路控制信道(physical sidelink control channel,PSCCH),用于承载侧行链路控制信息(sidelink control information,SCI)。
可选的,该通信系统还包括网络设备230,用于为终端设备提供定时同步和资源调度。网络设备可通过Uu接口与至少一个终端设备(如终端设备210)进行通信。网络设备与终端设备之间的通信链路包括上行链路(uplink,UL)和下行链路(downlink,DL)。终端设备与终端设备之间还可以通过网络设备的转发实现间接通信,例如,终端设备210可将数据通过Uu接口发送至网络设备230,通过网络设备230发送至应用服务器240进行处理后,再由应用服务器240将处理后的数据下发至网络设备230,并通过网络设备230发送给终端设备220。在基于Uu接口的通信方式下,转发终端设备210至应用服务器240的上行数据的网络设备230和转发应用服务器240下发至终端设备220的下行数据的网络设备230可以是同一个网络设备,也可以是不同的网络设备,可以由应用服务器决定。
图2中的网络设备可以为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在5G系统中对应5G中的接入网设备,例如gNB。尽管只在图2中示出了终端设备210和终端设备220,应理解,网络设备可以为多个终端设备提供服务,本申请实施例对通信系统中终端设备的数量不作限定。同理,图2中的终端设备是以车载终端设备或车辆为例进行说明的,也应理解,本申请实施例中的终端设备不限于此,终端设备也可以为车载模块、路侧单元或行人手持设备。应当理解,本申请实施例并不限定于4G或5G系统,还适用于后续演进的通信系统。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,又可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。所述终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。例如,终端设备可以是具有无线连接功能的手持式设备、车载设备、车辆用户设备等。目前,一些终端设备的示例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例中的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
2)网络设备,是网络中用于将终端设备接入到无线网络的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB 或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB,或者也可以包括第五代移动通信技术(5th generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或WiFi接入点(access point,AP)等,再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。再例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU),RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其它实体交换消息。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
图3为本申请实施例提供的一种通信方法的流程示意图,包括步骤S301至步骤S304:
步骤S301、第一终端设备生成第一控制信息和第二信息,该第二信息包括数据和/或第二控制信息,第二控制信息位于第二信息的前部。
本申请实施例中,存在第一控制信息和第二控制信息两种类型的控制信息。相应的,一个调度单元中存在两级控制信道,分别用于承载第一控制信息和第二控制信息。所述调度单元是指一次数据传输调度的资源的集合。一个调度单元在频域上可包括一个或多个连续的子信道sub-channel,一个子信道可包括频域上连续的若干个资源块(resource block,RB)。一个调度单元在时域上可包括一个时间单元,该时间单元可以由时隙、微时隙、子帧、帧等多种可能的时间粒度构成的时间单元。应理解,本申请实施例对调度单元的带宽不作具体限定,调度单元中包括的子信道的数量、以及每个子信道的大小均可由网络设备进行配置或预配置。
第一控制信息适用于广播、单播、组播等场景,可以为V2X通信所需的基础控制信息,例如,第一控制信息可包括L1层目的用户ID(destination identity)、数据信道频域带宽、资源预留信息、初传和重传时间间隔等。第一控制信息承载在第一级控制信道上,该第一级控制信道例如可以为第一级PSCCH信道。
第二控制信息适用于单播、组播等场景,可以为单播、组播等场景中所需的额外的链路维护信息,用以提高链路的可靠性。例如,第二控制信息可包括数据信道的调制和编码策略(modulation and coding scheme,MCS)、数据信道的混合自动重传请求(hybrid  automatic repeat request,HARQ)版本号和新传或重传指示等。第二控制信息承载在第二级控制信道上,该第二级控制信道例如可以为第二级PSCCH信道。应理解,在广播场景下,第一终端设备可以仅向第二终端设备发送第一控制信息;在单播和多播场景下,第一终端设备需要向第二终端设备发送第一控制信息和第二控制信息。
所述数据可以为广播、单播、组播等场景中,第一终端设备向第二终端设备发送的具体的业务数据。数据承载在调度单元中的数据信道上,该数据信道例如可以是PSSCH信道。例如,若第一终端设备和第二终端设备均为车辆,第一终端设备可将自身的一些例如位置、速度、意图(包括转弯、并线、倒车)等信息发送给第二终端设备。
所述第二信息可包括数据和/或第二控制信息,且第二控制信息位于第二信息的前部。也就是说,第二信息中可以包括数据和第二控制信息,也可以仅包括数据。若第二信息中包括数据和第二控制信息,则第二控制信息位于第二信息的前部意味着第二控制信息位于数据之前。图4示例性示出了本申请实施例提供的第二信息的一种结构示意图,图4中第二信息同时包括数据和第二控制信息,第二控制信息位于数据之前。
该第二信息也可以理解为,第一终端设备对第二控制信息和数据进行级联得到的信息比特流,其中第二控制信息级联在数据之前。如此,本申请实施例中第一终端设备生成第一控制信息和第二信息可包括:第一终端设备分别生成第一控制信息、第二控制信息和数据,进而第一终端设备将第二控制信息与数据进行级联,得到第二信息。
图5为本申请实施例提供的第一终端设备对第二控制信息和数据进行处理的流程示意图,整个处理流程包括信道编码、信道复用、加扰、层映射和多输入多输出(multiple-input multiple-output,MIMO)编码、资源映射、快速傅里叶逆变(inverse fast fourier transform,IFFT)和循环前缀(cycle prefix,CP)等步骤。其中。第一终端设备对第二控制信息和数据进行级联发生在图5所示的信道复用的步骤中,所述信道复用是指第二级控制信道与数据信道的复用。
具体的,在图5所示的信道编码步骤中,第一终端设备可对第二控制信息和数据分别进行信道编码,信道编码的输出为速率匹配后的输出,信道编码的过程可包括传输块的循环冗余校验(cyclic redundancy check,CRC)添加、编码块分割、编码块CRC添加、信道编码、速率匹配等处理过程,在此不再详述。
在信道复用的步骤中,第一终端设备可对第二控制信息进行信道编码后的输出、以及数据进行信道编码后的输出进行信道复用,第二级控制信道与数据信道的复用也可以理解对第二控制信息进行信道编码后的输出和数据进行信道编码后的输出进行级联,且第二控制信息进行信道编码后的输出级联在数据进行信道编码后的输出之前。
若第二控制信息进行信道编码后的输出表示为
Figure PCTCN2020107095-appb-000001
数据进行信道编码后的输出表示为
Figure PCTCN2020107095-appb-000002
则将第二控制信息进行信道编码后的输出和数据进行信道编码后的输出进行级联后的输出可以表示为g 0,g 1,g 2,…,g G-1。其中,G=L 2nd-SCI+M data,0≤i<L 2nd-SCI时,g i=q i,L 2nd-SCI≤i≤G-1时,
Figure PCTCN2020107095-appb-000003
L 2nd-SCI为第二控制信息进行信道编码后输出的编码块的数量,M data为数据进行信道编码后输出的编码块的数量。
步骤S302、第一终端设备将第一控制信息映射到第一传输资源,该第一传输资源即为第一级控制信道在调度单元中占用的传输资源。
步骤S303、第一终端设备将第二信息映射到第二传输资源和第三传输资源,且该第二信息优先映射到第二传输资源上。
本申请实施例中的第一传输资源、第二传输资源和第三传输资源位于同一调度单元。第二传输资源与第一传输资源在时域上不重叠,第三传输资源与第一传输资源在时域重叠但在频域上不重叠。
图6a至图6c为本申请实施例提供的第一传输资源、第二传输资源和第三传输资源的几种可能的位置示意图。在图6a至图6c中,一个调度单元在时域包括一个时隙,该时隙包括14个符号,这14个符号从左到右依次编号为0至13,在频域上包括10个RB,这10个RB从上到下依次编号为0至9。
如图6a至图6c所示,以第一传输资源包括的最后一个符号所在时域位置(即第一传输资源的时域结束位置)作为分界,可将该调度单元从时域上分为A部分和B部分。
在时域上,第一传输资源可占用该A部分的部分或全部时域资源。在频域上,第一传输资源占用该调度单元中的部分频域资源。通常第一传输资源的资源大小是固定的,在图示中可以体现为一个调度单元中由多个资源块构成的长方形。
应理解,第一传输资源的频域起始资源块可以与该调度单元的频域起始资源块相同或不同,本申请并不限定。也就是说,第一传输资源可以包括该调度单元中最上方编号为0的资源块,也可以不包括调度单元中最上方的编号为0的资源块。或者,也可以理解为第一传输资源可以与调度单元的频域起始位置对齐或不对齐。
还应理解,第一传输资源中可以包括调度单元中第一个符号上的资源,也可以不包括调度单元中第一个符号上的资源。例如,如图6a所示,若不考虑自动增益控制(automatic gain control,AGC)对控制信道的影响,第一传输资源可包括调度单元中第一个符号上的资源,即第一控制信息可以映射到该调度单元中的第一个符号的资源上,或者也可以理解为第一级控制信道可以从该调度单元中的第一个符号上开始映射。
再例如,如图6b所示,若考虑AGC对控制信道的影响,第一传输资源可不包括调度单元中第一个符号上的资源,第一控制信息可以避开该调度单元的第一个符号,从调度单元中的第二个符号上开始映射,或者也可以理解为第一级控制信道避开该调度单元上的第一个符号,从调度单元中的第二个符号上开始映射。
再例如,如图6c所示,该调度单元中存在着AGC序列,该AGC序列映射在该调度单元中的第一个符号上的所有资源块上。在这一情况下,第一传输资源也可不包括调度单元中的第一个符号上的资源,第一控制信息可以避开该调度单元的第一个符号,从调度单元中的第二个符号上开始映射,或者也可以理解为第一级控制信道避开该调度单元上的第一个符号,从调度单元中的第二个符号上开始映射。
本申请实施例中,第二传输资源与第一传输资源在时域上不重叠,在频域上至少部分重叠。例如,在时域上,第二传输资源可占用该调度单元中的B部分的部分时域资源,在频域上,第二传输资源可占用该调度单元中的所有频域资源。由于一个调度单元中的最后一个符号通常为GAP符号,因此,第二传输资源通常不包括该调度单元中的最后一个符号的资源。
在一种可能的设计中,如图6a至图6c所示,第二传输资源可与第一传输资源在时域 上紧挨着。也就是说,若第一传输资源占用该调度单元中的第n至第n+k个符号,则第二传输资源中包括的第一个符号(即时域起始符号)为该调度单元中的第n+k+1个符号。此处n为0或1,k为正整数,如此,可节省第二传输资源的起始位置的指示信息,减小资源开销。可以理解,n为0时表示第一传输资源包括调度单元中的第一个符号上的资源,第一控制信息从调度单元中的第一个符号上开始映射,n为1时表示第一传输资源不包括调度单元中的第一个符号上的资源,第一控制信息从调度单元中的第二个符号上开始映射。
更进一步地,第二传输资源可占用该调度单元中的B部分中除GAP符号以外的所有资源。即第二传输资源中包括的最后一个符号(即时域结束符号)可以为该调度单元中的倒数第二个符号,该调度单元中的最后一个符号为GAP符号。
本申请实施例中,第三传输资源与第一传输资源在时域重叠但在频域上不重叠,该第三传输资源可以理解为,在第一传输资源所在的时域范围内,除第一传输资源以外的其他资源。
下面对第一终端设备将第一控制信息映射到第一传输资源上,将第二信息映射到第二传输资源和第三传输资源的过程进行详细介绍。
如图5所示,资源映射是在层映射和MIMO编码之后的一个步骤。第一终端设备在将第一控制信息映射到第一传输资源之前,还可对第一控制信息进行独立的信道编码、加扰、层映射和MIMO编码等处理过程。应注意,与图5中不同的是,在对第一控制信息进行资源之前,并不包括信道复用的步骤。
第一终端设备在将第二信息映射到第二传输资源和第三传输资源之前,还可对第二控制信息和数据分别进行信道编码,然后将第二控制信息进行编码后的输出与数据进行信道编码后的输出级联在一起,得到第二信息,进而对第二信息统一进行层映射、MIMO编码和资源映射。
本申请实施例中,第一终端设备在进行资源映射时,可采用先频域后时域,并且增序映射的方式。以第一控制信息为例,从第一传输资源包括的第一个符号开始,按照资源块的编号从小到大的顺序,将第一控制信息依次映射到该符号上的各个资源块上,直至映射完该符号上的所有资源块,之后再映射下一个符号。在下一个符号上,也是按照资源块的编号从小到大的顺序,将第一控制信息依次映射到该符号上的各个资源块上,直至映射完该符号上的所有资源块。依次类推,将第一控制信息映射到第一传输资源包括的所有符号上。
需要注意的是,第一终端设备在对第二信息进行资源映射时,优先将第二信息映射到第二传输资源上。即第一终端设备可将第二信息先映射到第二传输资源上,待第二传输资源映射完毕后,再映射到第三传输资源上。同样是采用先频域后时域的增序映射方式。若用a 0,a 1,a 2…,a N-1表示第二信息调制编码后输出的复数数据组,N表示第二信息共占用的RB资源数,每个数据组按照先频域后时域的方式先后映射在第二传输资源和第三传输资源上,若帧结构、第二传输资源、第三传输资源如图6a所示,第二信息的资源映射顺序如图8所示。在每个RB内,第二信息调制编码后输出的复数数据组映射在除DMRS以外的RE资源上。因此根据是否映射DMRS,每个数据组内包含调制后的复数数据的多少不同。若第二信息调制编码后的输出用b j表示,那么每个RB上的资源映射如图9所示,若当前RB内无DMRS映射,a i包含的第二信息的复数数据数量及映射方式如图9(a)所示, 若当前RB内有DMRS映射,a i包含的第二信息的复数数据数量及映射方式如图9(b)所示,其中n表示当前RB内复数数据的起始索引。
若第一传输资源中不包括调度单元中的第一个符号,且该调度单元中的第一个符号上不存在AGC序列,如图6b所示。此时,第一终端设备还可将第二信息映射到第四传输资源上,该第四传输资源是指该调度单元中的第一个符号上的资源,该第四传输资源位于第一传输资源之前。由于第三传输资源与第一传输资源在时域上重叠,为与第一传输资源以频分的方式复用的资源,因此,第四传输资源也位于第三传输资源之前。
在这一情形下,第一终端设备在对第二信息进行资源映射时,可将第二信息依次映射到第二传输资源、第四传输资源和第三传输资源上,即先映射第二传输资源,然后映射第四传输资源,最后映射第三传输资源。
由于第二控制信息位于第二信息的前部,在第二信息的内部,第二控制信息级联在数据之前,若采用图6a至图6b中示出的第二传输资源,且若数据采用单个天线端口传输,那么第二控制信息在第二传输资源中实际占用的资源可分别如图7a至图7c中所示,其中图6a与图7a对应,图6b与图7b对应,图6c与图7c对应。若数据采用多个天线端口传输(大于1个天线端口),那么第二控制信息在第二传输资源中实际的资源映射方式可分别如图10a至图10c中所示,其中图6a与图10a对应,图6b与图10b对应,图6c与图10c对应。
步骤S304、第一终端设备向第二终端设备发送第一控制信息和第二信息。
步骤S305、第二终端设备接收第一终端设备发送的第一控制信息和第二信息。
本申请实施例中,第一控制信息的长度可以是固定的,第二控制信息的长度是可变的。为了便于第二终端设备对第二控制信息进行接收,第一控制信息中还可包括用于指示第二控制信息占用的传输资源的大小的信息。例如,该用于指示第二控制信息占用的传输资源的大小的信息可以为第二级控制信道的聚合等级。
本申请提供的技术方案为一种资源映射方式,本领域中还可以存在其他的资源映射方式,本申请并不限定。第一终端设备在进行数据传输前,可根据业务类型或者根据调度的资源选择合适的资源映射方式,然后进行数据传输。例如根据调度单元所处的资源池的不同,采用的资源映射方式可以不同,即第一终端设备采用的资源映射方式可与调度单元所处的资源池有关,不同的资源池可预先与不同的资源映射方式相关联。再例如,采用的资源映射方式也可以是网络设备配置的,并通过无线资源控制(radio resource control,RRC)信令发送给第一终端设备的。如第一终端设备选择了本申请所提供的资源映射方式,则可通过执行上述步骤S301至步骤S305将第一控制信息、第二控制信息和数据发送给第二终端设备。
为此,第一控制信息中还可包括用于指示资源映射方式的信息,该用于指示资源映射方式的信息可以为第一终端设备采用的资源映射方式在多种可选的资源映射方式中的索引。在一种可能的设计中,第一控制信息中可同时包括用于指示第二控制信息占用的传输资源的大小的信息,以及用于指示资源映射方式的信息。
图1为本申请实施例采用的一种帧结构,在图11中仅示出了第一级控制信道和数据信道。由于本申请实施例中的第二控制信息与数据级联后统一进行资源映射,因此,也可以理解为第二控制信息与数据复用数据信道,将第二级控制信道看做是数据信道的一部分。
在图11中所示的A部分,第一级控制信道和数据信道以频分复用的方式映射在A部分的所有符号上,在图11中所示的B部分只存在数据信道,没有第一级控制信道。考虑到目前在利用侧行链路进行数据传输时,要求一个发送时隙内的所有符号上总发送功率相同,在图11中所示的A部分中,由于同时存在第一级控制信道和数据信道,如果对第一级控制信道进行功率增强,则会导致A部分中每个符号上的平均每个资源块上数据信道的发送功率低于B部分中每个符号上每个资源块上数据信道的发送功率。因此,采用本申请实施例提供的资源映射方式,将第二控制信息与数据进行级联,然后统一映射到B部分的数据信道上,能够使得第二控制信息获得更高的发送功率,从而增强可靠性。此外,本申请实施例中的第二控制信息可采用不同的码率发送,并可采用数据信道的解调参考信号(demodulation reference signal,DMRS)进行译码,能够有效减小控制信道的开销。
本申请实施例提供一种通信装置,请参考图12,为本申请实施例提供的一种通信装置的结构示意图,该通信装置1200包括:收发模块1210和处理模块1220。该通信装置可用于实现上述任一方法实施例中涉及第一终端设备的功能。例如,该通信装置可以是手持终端设备、车载终端设备、车辆用户设备,也可以是终端设备中包括的芯片,或者该通信装置为车载装置,例如为内置于车内的车载模块或车载单元等等。
当该通信装置作为第一终端设备,执行图3中所示的方法实施例时,处理模块1220用于生成第一控制信息和第二信息,该第二信息包括数据和/或第二控制信息,该第二控制信息位于所述第二信息的前部;所述处理模块1220,还用于将第一控制信息映射到第一传输资源;以及将第二信息映射到第二传输资源和第三传输资源,该第二信息优先映射到第二传输资源上,第一传输资源、第二传输资源和第三传输资源位于同一调度单元,第二传输资源与第一传输资源在时域上不重叠,第三传输资源与第一传输资源在时域重叠且在频域上不重叠;收发模块1210,用于向第二终端设备发送第一控制信息和第二信息。
在一种可能的设计中,处理模块1220具体用于:生成第一控制信息、第二控制信息和数据;并将第二控制信息与数据进行级联,形成第二信息。
在一种可能的设计中,处理模块1220还具体用于:将第二信息统一进行层映射、多输入多输出MIMO编码和资源映射,并映射到第二传输资源和第三传输资源上。
在一种可能的设计中,处理模块1220还具体用于:按照先频域后时域,且资源块和符号的序号均由小到大的顺序,将第二信息映射到第二传输资源和第三传输资源上。
在一种可能的设计中,处理模块1220还用于:将第二信息映射到第四传输资源上,该第四传输资源为调度单元中的第一个符号上的传输资源且位于第一传输资源之前。
在一种可能的设计中,第一传输资源占用调度单元中的第n至n+k个符号,第二传输资源的时域起始符号为调度单元中的第n+k+1个符号,所述n为0或1,所述k为正整数。
在一种可能的设计中,第一控制信息中包括用于指示第二控制信息占用的传输资源的大小的信息。
该通信装置中涉及的处理模块1220可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块1210可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。该通信装置中的各个模块的操作和/或功能分别为了实现图3中所示方法的相应流程,为了简洁,在此不再赘述。
请参考图13,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置 具体可为一种终端设备。便于理解和图示方便,在图13中,终端设备以手机作为例子。如图13所示,终端设备包括处理器,还可以包括存储器,当然,也还可以包括射频电路、天线以及输入输出装置等。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图13中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图13所示,终端设备包括收发单元1310和处理单元1320。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1310中用于实现接收功能的器件视为接收单元,将收发单元1310中用于实现发送功能的器件视为发送单元,即收发单元1310包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。应理解,收发单元1310用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1320用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor, DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括第一终端设备和第二终端设备。可选地,该通信系统中还可包括网络设备。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (19)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一终端设备生成第一控制信息和第二信息,所述第二信息包括数据和第二控制信息,所述第二控制信息位于所述第二信息的前部;
    所述第一终端设备将所述第一控制信息映射到第一传输资源;
    所述第一终端设备将所述第二信息映射到第二传输资源和第三传输资源,所述第二信息优先映射到所述第二传输资源上,所述第一传输资源、所述第二传输资源和所述第三传输资源位于同一调度单元,所述第二传输资源与所述第一传输资源在时域上不重叠,所述第三传输资源与所述第一传输资源在时域重叠且在频域上不重叠;
    所述第一终端设备向第二终端设备发送所述第一控制信息和所述第二信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备生成第一控制信息和第二信息,包括:
    所述第一终端设备生成所述第一控制信息、所述第二控制信息和所述数据;
    所述第一终端设备将所述第二控制信息与所述数据进行级联,形成所述第二信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一终端设备将所述第二信息映射到第二传输资源和第三传输资源上,包括:
    所述第一终端设备将所述第二信息统一进行层映射、多输入多输出MIMO编码和资源映射,并映射到所述第二传输资源和所述第三传输资源上。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一终端设备将所述第二信息映射到所述第二传输资源和所述第三传输资源上,包括:
    所述第一终端设备按照先频域后时域,且资源块和符号的序号均由小到大的顺序,将所述第二信息映射到所述第二传输资源和所述第三传输资源上。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一传输资源占用所述调度单元中的第n至n+k个符号,所述第二传输资源的时域起始符号为所述调度单元中的第n+k+1个符号,所述n为0或1,所述k为正整数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一控制信息中包括用于指示所述第二控制信息占用的传输资源的大小的信息以及用于指示资源映射方式的信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在信道复用中对所述第二控制信息和数据进行级联,输出表示为g 0,g 1,g 2,…,g G-1,G=L 2nd-SCI+M data
    其中,0≤i<L 2nd-SCI时,g i=q i;L 2nd-SCI≤i≤G-1时,
    Figure PCTCN2020107095-appb-100001
    所述第二控制信息进行信道编码后的输出表示为
    Figure PCTCN2020107095-appb-100002
    数据进行信道编码后的输出表示为
    Figure PCTCN2020107095-appb-100003
    为第二控制信息进行信道编码后输出的编码块的数量,M data为数据进行信道编码后输出的编码块的数量。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一级控制信道从所述调度单元中的第二个符号上开始映射。
  9. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于生成第一控制信息和第二信息,所述第二信息包括数据和/或第二控制信息,所述第二控制信息位于所述第二信息的前部;
    所述处理模块,还用于将所述第一控制信息映射到第一传输资源;以及将所述第二信息映射到第二传输资源和第三传输资源,所述第二信息优先映射到所述第二传输资源上,所述第一传输资源、所述第二传输资源和所述第三传输资源位于同一调度单元,所述第二传输资源与所述第一传输资源在时域上不重叠,所述第三传输资源与所述第一传输资源在时域重叠且在频域上不重叠;
    收发模块,用于向第二终端设备发送所述第一控制信息和所述第二信息。
  10. 根据权利要求9所述的装置,其特征在于,所述处理模块具体用于:
    生成所述第一控制信息、所述第二控制信息和所述数据;
    将所述第二控制信息与所述数据进行级联,形成所述第二信息。
  11. 根据权利要求9或10所述的装置,其特征在于,所述处理模块还具体用于:
    将所述第二信息统一进行层映射、多输入多输出MIMO编码和资源映射,并映射到所述第二传输资源和所述第三传输资源上。
  12. 根据权利要求9至11中任一项所述的装置,其特征在于,所述处理模块还具体用于:
    按照先频域后时域,且资源块和符号的序号均由小到大的顺序,将所述第二信息映射到所述第二传输资源和所述第三传输资源上。
  13. 根据权利要求9至12中任一项所述的装置,其特征在于,所述第一传输资源占用所述调度单元中的第n至n+k个符号,所述第二传输资源的时域起始符号为所述调度单元中的第n+k+1个符号,所述n为0或1,所述k为正整数。
  14. 根据权利要求9至13中任一项所述的装置,其特征在于,所述第一控制信息中包括用于指示所述第二控制信息占用的传输资源的大小的信息以及用于指示资源映射方式的信息。
  15. 根据权利要求9至14中任一项所述的装置,其特征在于,所述处理模块,具体用于在信道复用中对所述第二控制信息和数据进行级联,输出表示为g 0,g 1,g 2,…,g G-1,G=L 2nd-SCI+M data
    其中,0≤i<L 2nd-SCI时,g i=q i;L 2nd-SCI≤i≤G-1时,
    Figure PCTCN2020107095-appb-100004
    所述第二控制信息进行信道编码后的输出表示为
    Figure PCTCN2020107095-appb-100005
    数据进行信道编码后的输出表示为
    Figure PCTCN2020107095-appb-100006
    为第二控制信息进行信道编码后输出的编码块的数量,M data为数据进行信道编码后输出的编码块的数量。
  16. 根据权利要求9至15中任一项所述的装置,其特征在于,所述第一级控制信道从所述调度单元中的第二个符号上开始映射。
  17. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至8中任一项所述的方法。
  18. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1至8中任一项所述的方法被实现。
  19. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1至8中任一项所述的方法。
PCT/CN2020/107095 2019-08-16 2020-08-05 一种通信方法及装置 WO2021031855A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2022002021A MX2022002021A (es) 2019-08-16 2020-08-05 Método de y aparato de comunicaciones.
JP2022509728A JP7358623B2 (ja) 2019-08-16 2020-08-05 通信方法及び装置
KR1020227008671A KR20220049555A (ko) 2019-08-16 2020-08-05 통신 방법 및 장치
EP20854272.0A EP4017043A4 (en) 2019-08-16 2020-08-05 COMMUNICATION METHOD AND DEVICE
US17/651,134 US20220173870A1 (en) 2019-08-16 2022-02-15 Communication Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760401.XA CN112399373A (zh) 2019-08-16 2019-08-16 一种通信方法及装置
CN201910760401.X 2019-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/651,134 Continuation US20220173870A1 (en) 2019-08-16 2022-02-15 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021031855A1 true WO2021031855A1 (zh) 2021-02-25

Family

ID=74602921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107095 WO2021031855A1 (zh) 2019-08-16 2020-08-05 一种通信方法及装置

Country Status (7)

Country Link
US (1) US20220173870A1 (zh)
EP (1) EP4017043A4 (zh)
JP (1) JP7358623B2 (zh)
KR (1) KR20220049555A (zh)
CN (2) CN112399373A (zh)
MX (1) MX2022002021A (zh)
WO (1) WO2021031855A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188701A1 (zh) * 2021-03-11 2022-09-15 华为技术有限公司 通信方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734548A (zh) * 2016-08-11 2018-02-23 中兴通讯股份有限公司 V2x通信的信道发送方法及装置
WO2018201384A1 (en) * 2017-05-04 2018-11-08 Zte Corporation Apparatus and method for sidelink communications
CN109075908A (zh) * 2018-08-10 2018-12-21 北京小米移动软件有限公司 车联网设备之间的反馈信息传输方法、装置及系统
CN109644111A (zh) * 2016-08-24 2019-04-16 Lg电子株式会社 用于在无线通信系统中由终端发送和接收pscch和pssch的方法和装置
CN109691003A (zh) * 2016-08-09 2019-04-26 Lg电子株式会社 终端在无线通信系统中发送d2d数据的方法和设备
US20190246385A1 (en) * 2016-09-26 2019-08-08 Nec Corporation Methods and system for device-to-device communication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516560B2 (en) * 2015-06-26 2019-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Efficient multiplexing of control information and data transmission
JP6560364B2 (ja) * 2015-12-25 2019-08-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN107846373B (zh) * 2016-09-20 2021-02-12 华为技术有限公司 发送或接收物理下行控制信道的方法和设备
CN109219015B (zh) * 2017-07-06 2021-01-22 电信科学技术研究院 一种资源选择方法及装置
WO2019138499A1 (ja) * 2018-01-11 2019-07-18 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109691003A (zh) * 2016-08-09 2019-04-26 Lg电子株式会社 终端在无线通信系统中发送d2d数据的方法和设备
CN107734548A (zh) * 2016-08-11 2018-02-23 中兴通讯股份有限公司 V2x通信的信道发送方法及装置
CN109644111A (zh) * 2016-08-24 2019-04-16 Lg电子株式会社 用于在无线通信系统中由终端发送和接收pscch和pssch的方法和装置
US20190246385A1 (en) * 2016-09-26 2019-08-08 Nec Corporation Methods and system for device-to-device communication
WO2018201384A1 (en) * 2017-05-04 2018-11-08 Zte Corporation Apparatus and method for sidelink communications
CN109075908A (zh) * 2018-08-10 2018-12-21 北京小米移动软件有限公司 车联网设备之间的反馈信息传输方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "PSFCH formats for NR V2X", 3GPP DRAFT; R1-1905899, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 15 April 2019 (2019-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707942 *
HUAWEI, HISILICON: "Sidelink physical layer structure for NR V2X", 3GPP DRAFT; R1-1906007, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 17 May 2019 (2019-05-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 18, XP051708049 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188701A1 (zh) * 2021-03-11 2022-09-15 华为技术有限公司 通信方法和装置

Also Published As

Publication number Publication date
US20220173870A1 (en) 2022-06-02
CN112737646B (zh) 2022-02-25
EP4017043A4 (en) 2022-09-21
CN112737646A (zh) 2021-04-30
KR20220049555A (ko) 2022-04-21
EP4017043A1 (en) 2022-06-22
JP2022544333A (ja) 2022-10-17
CN112399373A (zh) 2021-02-23
MX2022002021A (es) 2022-05-13
JP7358623B2 (ja) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2021027575A1 (zh) 一种通信方法及装置
WO2020216130A1 (zh) 一种通信方法及装置
WO2020238992A1 (zh) 一种通信方法及装置
WO2020200014A1 (zh) 通信方法及装置
WO2020015494A1 (zh) 一种数据传输方法、网络设备、通信设备及存储介质
WO2021244372A1 (zh) 随机接入的方法、装置和系统
WO2021027790A1 (zh) 一种侧行链路通信方法及装置
WO2021031855A1 (zh) 一种通信方法及装置
CN112187401B (zh) 多时间单元传输方法及相关装置
WO2020063596A1 (zh) 一种通信方法及装置
WO2021088091A1 (zh) 通信方法及装置
WO2021000954A1 (zh) 一种数据传输方法及通信装置
WO2020156394A1 (zh) 一种反馈方法及装置
WO2020156214A1 (zh) 功率控制方法及终端设备
WO2021097729A1 (zh) 两级控制信道发送方法、终端设备及通信装置
WO2019174054A1 (zh) 确定第一多天线发送模式的方法、终端设备和网络设备
RU2802787C1 (ru) Способ отправки двух уровней каналов управления, терминальное устройство и устройство связи
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
CN110943799B (zh) 一种通信方法及装置
WO2023198009A1 (zh) 一种通信方法及装置
WO2024061076A1 (zh) 侧行链路通信的方法及装置
WO2022109881A1 (zh) 重复传输控制信道的方法、终端设备和网络设备
CN111885715B (zh) 信道传输方法及相关设备
WO2024061072A1 (zh) 通信方法和装置
WO2023279390A1 (zh) 一种资源指示方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008671

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020854272

Country of ref document: EP

Effective date: 20220314