WO2022213828A1 - 用于资源确定的方法及装置 - Google Patents

用于资源确定的方法及装置 Download PDF

Info

Publication number
WO2022213828A1
WO2022213828A1 PCT/CN2022/083123 CN2022083123W WO2022213828A1 WO 2022213828 A1 WO2022213828 A1 WO 2022213828A1 CN 2022083123 W CN2022083123 W CN 2022083123W WO 2022213828 A1 WO2022213828 A1 WO 2022213828A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
time point
data
terminal
time
Prior art date
Application number
PCT/CN2022/083123
Other languages
English (en)
French (fr)
Inventor
董蕾
苏宏家
郭文婷
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022213828A1 publication Critical patent/WO2022213828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for resource determination.
  • D2D Device-to-Device
  • the application of D2D technology can reduce the burden of cellular networks, reduce battery power consumption of user equipment, increase data rates, and can well meet the needs of proximity services.
  • D2D technology allows multiple D2D-capable terminals to perform direct discovery and direct communication with or without network infrastructure.
  • V2X communication and D2D communication belong to direct communication (direct communication), or called for sidelink communication.
  • the present application provides a method and apparatus for resource determination, which can more reasonably determine transmission resources and improve communication efficiency.
  • a method for resource determination is provided.
  • the execution body of the method may be a terminal, a combined device or component with terminal functions, or a communication chip (such as a processor) applied to the terminal. , baseband chip, or chip system, etc.).
  • the following description takes the execution subject being a terminal as an example.
  • the method includes: a first terminal receives resource indication information from a second terminal or a network device, where the resource indication information is used to indicate a first resource and/or a second resource, wherein the first resource is used to send trigger information , the trigger information is used to trigger sending the cooperation information to the first terminal, the second resource is used to receive the cooperation information from the second terminal, and the cooperation information is used to indicate that the cooperation information can be used for the first terminal.
  • a third resource for sending data by a terminal In the case that the first resource is later than the first time point in the time domain and/or the second resource is later than the second time point in the time domain, the first terminal randomly determines or determines based on listening resources for sending the first data. The first time point and the second time point are determined according to the packet delay budget of the first data or the resource selection window corresponding to the first data, and the first data is the waiting time of the first terminal. send data.
  • the resource indication information may only indicate the second resource, and at this time, the first terminal only randomly determines the second resource in the case that the second resource is later than the second time point in the time domain or determines based on listening to send the first resource.
  • the resource indication information may also only indicate the first resource, and at this time, the first terminal only randomly determines the first resource when the first resource is later than the first time point in the time domain or determines the resource for sending the first data based on listening. resource.
  • the resource indication information may also indicate the first resource and the second resource, and at this time, the first terminal may randomly determine the first resource only when the first resource is later than the first time point in the time domain or determine based on the listening
  • the resource for sending the first data may also be randomly determined only when the second resource is later than the second time point in the time domain or the resource for sending the first data is determined based on listening, or the first The terminal determines the resource for sending the first data at random or based on listening when both of the above two situations are satisfied.
  • the first terminal when the first terminal determines that the first resource indicated by the second terminal is later than the first time point related to the packet delay budget of the first data and/or the second resource is later than In the case of a second time point that is related to the packet delay budget of the first data and related to the packet delay budget of the first data, the transmission resource (for sending the resources of the first data), the first terminal randomly determines or determines the transmission resources by itself based on listening. In other words, in this case, the first terminal will not consider the coordination information to be sent by the second terminal when determining the transmission resource, or determine the transmission resource independently of the third resource indicated or to be indicated by the coordination information.
  • the first terminal determines or judges the sequence relationship between the first resource and the first time point and/or the second resource and the first time point.
  • the sequence relationship between two time points can be equivalent to prejudging cooperation Whether the third resource indicated or to be indicated by the information will satisfy the packet delay budget of the first data.
  • the first terminal can timely determine whether to use the resources to be provided or indicated by the cooperative terminal for transmission, and determine the transmission resources by itself under appropriate circumstances, so as to avoid the delay caused by waiting to receive the cooperative information in some cases, and to avoid
  • packet loss or communication interruption is caused, which improves the rationality of resource selection and improves communication efficiency.
  • the first time point is determined according to a resource selection window corresponding to the first data. Since the resource selection window is generally located within the packet delay budget of the first data, determining the first time point according to the resource selection window corresponding to the first data can also achieve the above beneficial effects without introducing a new time reference point, reducing Protocol complexity, higher compatibility.
  • the method further includes: when the first resource is not later than the first time point in the time domain and the second resource is not later than the second time point in the time domain, the The first terminal determines a resource for sending the first data based on the third resource indicated by the cooperation information received on the second resource.
  • the first time point is before the end time point of the packet delay budget of the first data and is separated from the end time point of the packet delay budget of the first data by a first time period.
  • the first time point is before the end time point of the resource selection window and is separated from the end time point of the resource selection window by a first time period.
  • the first duration is preconfigured or configured by a network device.
  • the second time point is before the end time point of the packet delay budget of the first data and is separated from the end time point of the packet delay budget of the first data by a second time period.
  • the second time point is before the end time point of the resource selection window and is separated from the end time point of the resource selection window by a second time period.
  • the second duration is preconfigured or configured by a network device.
  • the first duration is determined according to at least one of the following: the number of time units of the second resource, the number of time units used to send the first data The number of time units of resources, the processing time of the trigger information, the processing time of the cooperation information, and the processing time of the first data.
  • the second duration is determined according to at least one of the following: the number of time units of resources used for sending the first data, the cooperation information the processing time of the first data.
  • a method for resource determination is provided.
  • the execution body of the method may be a terminal, a combined device or component with terminal functions, or a communication chip (such as a processor) applied to the terminal. , baseband chip, or chip system, etc.).
  • the following description takes the execution subject being a terminal as an example.
  • the method includes: a first terminal receiving cooperation information from a second terminal, the cooperation information indicating a third resource available for the first terminal to send data.
  • the first terminal randomly determines or determines a resource for transmitting the first data based on listening, wherein the third time The point is determined according to the packet delay budget of the first data or the resource selection window corresponding to the first data, and the first data is the data to be sent by the first terminal.
  • the first terminal can directly determine whether the third resource indicated by the cooperation information sent by the second terminal satisfies the packet delay budget of the first data or the resource selection window corresponding to the first data. It is accurately determined whether the third resource meets the delay requirement, and then the UE cooperation mechanism is more fully utilized.
  • the third time point is before the end time point of the packet delay budget of the first data and is separated from the end time point of the packet delay budget of the first data by a third time period.
  • the third time point is before the end time point of the resource selection window corresponding to the first data and is separated from the end time point of the resource selection window by a third time period.
  • the third duration is preconfigured or configured by a network device.
  • the third duration is determined according to at least one of the following: the size of the resource selection window, the processing time of the first data, or the resource detection Listen to the size of the window.
  • the method further includes: receiving, by the first terminal, resource indication information from the second terminal, where the resource indication information is used to indicate the first resource and/or the second resource, Wherein, the first resource is used for sending trigger information, the trigger information is used for triggering sending of cooperation information to the first terminal, and the second resource is used for receiving the cooperation information. It is determined that the first resource is not later than the first time point in the time domain and/or the second resource is not later than the second time point in the time domain, wherein the first time point and the second time point are The time point is determined according to the packet delay budget of the first data or the resource selection window corresponding to the first data.
  • the first time point is before the end time point of the packet delay budget of the first data and is separated from the end time point of the packet delay budget of the first data by a first time period.
  • the first time point is before the end time point of the resource selection window corresponding to the first data and is separated from the end time point of the resource selection window by a first time period.
  • the first duration is preconfigured, or the first duration is configured by a network device.
  • the second time point is before the end time point of the packet delay budget of the first data and is separated from the end time point of the packet delay budget of the first data by a second time period.
  • the second time point is before the end time point of the resource selection window corresponding to the first data and is separated from the end time point of the resource selection window by a second time period.
  • the second duration is preconfigured, or the second duration is configured by a network device.
  • the first duration is determined according to at least one of the following: the number of time units of the second resource, the number of time units used to send the first data The number of time units of resources, the processing time of the trigger information, the processing time of the cooperation information, and the processing time of the first data.
  • the second duration is determined according to at least one of the following: the number of time units of resources used to send the first data, the cooperation information the processing time of the first data.
  • a communication apparatus in a third aspect, is provided, and the beneficial effects can be referred to the description of the first aspect and will not be repeated here.
  • the communication device has a function to implement the behavior in the method example of the first aspect above.
  • the communication device includes corresponding modules or components for performing the above-described methods.
  • the modules included in the apparatus may be implemented by software and/or hardware.
  • the communication apparatus includes: a transceiver module, configured to receive resource indication information from the second terminal or network device, where the resource indication information is used to indicate the first resource and/or the second resource, wherein , the first resource is used to send trigger information, the trigger information is used to trigger the sending of cooperation information to the communication device, the second resource is used to receive the cooperation information from the second terminal, the The cooperation information is used to indicate a third resource available for the first terminal to send data.
  • a processing module configured to randomly determine or determine based on listening when the first resource is later than the first time point in the time domain and/or the second resource is later than the second time point in the time domain
  • a resource for sending the first data wherein the first time point and the second time point are determined according to a packet delay budget of the first data or a resource selection window corresponding to the first data, and the The first data is data to be sent by the first terminal.
  • the communication device in the above aspect may be a terminal, and may also be a chip applied in the terminal or other combined devices, components, etc. that can realize the functions of the above terminal.
  • the transceiver module may be a transmitter and a receiver, or an integrated transceiver, which may include an antenna and a radio frequency circuit, and the processing module may be a processor, such as a baseband chip.
  • the transceiver module may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver module may be an input and output interface of the chip system, and the processing module may be a processor in the chip system, such as a central processing unit (central processing unit, CPU).
  • a communication device comprising one or more processors coupled to a memory and operable to execute programs or instructions in the memory to cause the device to perform any of the above aspects or A method in any possible implementation of this aspect.
  • the apparatus further includes one or more memories.
  • the apparatus further includes a communication interface to which the processor is coupled.
  • a fifth aspect provides a processing device, the processing device includes a processing module and an interface module, for example, applied to the above-mentioned communication device, for implementing the functions or methods involved in any one of the above-mentioned aspects or the second aspect,
  • the processing means may be, for example, a system-on-a-chip.
  • the chip system further includes a memory, and the memory is used for storing necessary program instructions and data to implement the functions of the method described in the first aspect or the second aspect.
  • the chip system in the above aspects may be a system on chip (system on chip, SOC), or a baseband chip, etc.
  • the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, an interface module, and the like.
  • the processor is one or more, and the memory is one or more.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting manner of the memory and the processor.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the processor can be implemented by hardware or software. When implemented by hardware, the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be a general-purpose processor. It is implemented by reading software codes stored in a memory, which can be integrated in the processor, or located outside the processor, and exists independently.
  • the input signal received by the input interface may be received and input by, for example, but not limited to, a receiver, and the signal output by the output interface may be, for example, but not limited to, output to and transmitted by the transmitter , and the input interface and the output interface can be the same integrated interface, which is used as the input interface and the output interface respectively at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various interfaces.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be respectively set on different chips.
  • ROM read only memory
  • the embodiments of the application do not limit the type of the memory and the setting manner of the memory and the processor.
  • a communication system including the communication device provided in the third aspect or the fourth aspect and the second terminal (or the communication device in the second terminal) involved in the above aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the terminal device in the above aspects is implemented.
  • a computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes the computer to execute any one of the above-mentioned aspects or any of the aspects in this aspect. method in any of the possible implementations.
  • a computer program also referred to as code, or instructions
  • Fig. 1 shows an example diagram of a communication system structure
  • Figure 2 shows a schematic diagram of a V2X communication scenario
  • FIG. 3 shows an example diagram of candidate resources on a time slot
  • Fig. 4 shows an example diagram of a listening window and a selection window
  • FIG. 5 shows a schematic diagram of a UE cooperation mechanism
  • FIG. 6 shows a schematic diagram of yet another UE cooperation mechanism
  • FIG. 7 shows a schematic diagram of an interaction flow of a method for resource determination provided by the present application.
  • Figure 8 shows example graphs of various time points and lengths of time described in this application.
  • FIG. 9 shows an example diagram of the first duration and the second duration described in this application.
  • Figure 10 shows yet another example diagram of a first duration and a second duration
  • Figure 11 shows an example diagram of the third duration described in this application.
  • FIG. 12 shows a schematic diagram of an interaction flow of another method for resource determination provided by the present application.
  • Figure 13 shows an example diagram of an embodiment provided by the present application
  • FIG. 14 shows a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 15 shows a schematic structural diagram of a processing apparatus provided by an embodiment of the present application.
  • FIG. 16 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the methods and apparatuses provided in the embodiments of the present application can be applied to various communication systems, for example, a long term evolution (LTE) system, a fifth generation (5G) system, a new radio (NR) or Other communication systems that may appear in the future, etc.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • the methods and apparatuses provided in the embodiments of the present application may be specifically applied to communication scenarios of terminal-to-terminal direct communication (direct communication) in various existing or future communication systems, such as device-to-device (device-to-device) communication scenarios.
  • device, D2D) communication scenarios, vehicle-to-everything (V2X) communication scenarios, and smart networked vehicles and other communication scenarios can also be applied to a communication scenario of backhaul link transmission between network devices and the like, which is not limited in this application.
  • FIG. 1 shows a schematic structural diagram of a communication system.
  • the communication system may include one or more network devices (only the network device 110 is shown in the figure as an example), and one or more terminals that communicate with the one or more network devices.
  • the terminals 112 and 114 shown in FIG. 1 communicate with the network device 110 , and there may be more terminals in an actual communication system, including terminals not covered by the network, which are not limited in this application. It can be understood that network devices and terminals can also be referred to as communication devices.
  • a Uu interface can be used for communication between a terminal and a network device.
  • the Uu interface can be understood as a general wireless interface between a terminal and a network device.
  • the communication of the Uu interface includes uplink transmission and downlink transmission.
  • the terminal and the terminal can communicate through the PC5 interface, and the PC5 interface can be understood as a wireless interface for direct communication between the terminal and the terminal through a direct channel.
  • 3GPP 3rd Generation Partnership Project
  • RAN radio access network
  • SL sidelink
  • the concept of PC5 interface has been expanded to meet the communication scenarios of various market demands, such as communication scenarios including wearable devices or smart home appliances.
  • the PC5 interface supports the resource allocation mode based on network device scheduling (for example, called mode 1, mode 1) and the resource determination mode independently selected by the terminal (for example, called mode 2, mode 2).
  • the resource allocation mode based on network device scheduling is mainly used in direct communication scenarios with network coverage.
  • the network device allocates resources to the terminal according to the buffer status report (BSR) reported by the terminal, and the allocated resources can be dynamically Signaling indication or semi-static signaling indication.
  • BSR buffer status report
  • the resource determination mode independently selected by the terminal may not be limited by network coverage.
  • the resources allocated by the network device or independently selected by the terminal may include one or more resources used for initial transmission and/or retransmission.
  • the methods and apparatuses provided in the embodiments of the present application may be applicable to scenarios within the coverage of network equipment, and may also be applicable to scenarios outside the coverage of network equipment.
  • the terminal working in mode 1 needs to be within the coverage of the network device, but the terminal working in mode 2 may not be within the coverage of the network device, or it can be within the coverage of the network device.
  • the resource allocation mode based on network device scheduling is also referred to as mode 3 (mode 3)
  • the resource determination mode independently selected by the terminal is also referred to as mode 4 (mode 4).
  • uplink transmission refers to the terminal sending uplink information to the network device.
  • the uplink information may include, but is not limited to, one or more of uplink data information, uplink control information, and a reference signal (reference signal, RS).
  • the channel used to transmit uplink information is called an uplink channel, and the uplink channel can be a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH), etc.
  • the PUSCH is used to carry uplink data, and uplink data may also be referred to as uplink data information.
  • PUCCH is used to carry uplink control information (uplink control information, UCI) fed back by the terminal.
  • the UCI may include but is not limited to channel state information (channel state information, CSI), acknowledgement (acknowledgement, ACK)/negative acknowledgement (negative acknowledgement, NACK), and the like.
  • downlink transmission refers to the network device sending downlink information to the terminal.
  • the downlink information may include, but is not limited to, one or more of downlink data information, downlink control information, and downlink reference signals.
  • the channel used to transmit downlink information is called a downlink channel, and the downlink channel can be a physical downlink shared channel (PDSCH) or a physical downlink control channel (PDCCH), etc.
  • the PDCCH is used to carry downlink control information (downlink control information, DCI), and the PDSCH is used to carry downlink data, which may also be referred to as downlink data information.
  • the channels on the sidelink include but are not limited to physical layer sidelink shared channel (Physical Sidelink Shared Channel, PSSCH), physical layer sidelink control channel (Physical Sidelink Control Channel, PSCCH), physical layer One or more of a sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH) and a physical layer sidelink discovery channel (Physical Sidelink Discovery Channel, PSDCH).
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSCCH Physical Sidelink Control Channel
  • PSFCH Physical Sidelink Feedback Channel
  • PSDCH Physical Sidelink Discovery Channel
  • the term “communication” may also be described as “transmission”, “information transmission”, “data transmission”, or “signal transmission” and the like. Transmission can include sending and/or receiving.
  • the technical solution is described by taking the communication between terminals as an example. Those skilled in the art can also use this technical solution for communication between other scheduling entities and subordinate entities, such as communication between a macro base station and a micro base station.
  • the number of nouns means “singular nouns or plural nouns", i.e. "one or more". "At least one” means one or more, and “plurality” means two or more. "And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/" generally indicates that the associated objects are an "or” relationship. For example, A/B, means: A or B.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • the network device may be any device with a wireless transceiver function. Including but not limited to: evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE, base station (gNodeB or gNB) or transceiver point (transmission receiving point/transmission receiving point, TRP) in NR, 3GPP Subsequent evolution of base stations, access nodes in WiFi systems, wireless relay nodes, wireless backhaul nodes, core network equipment, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small base station, a relay station, or a balloon station, etc.
  • the network device may also be a server (for example, a cloud server), a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit) , DU).
  • a server for example, a cloud server
  • a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit) , DU).
  • One or more DUs can be centrally controlled by one CU.
  • CU and DU can be divided according to the functions of the protocol layer of the wireless network. For example, the functions of the PDCP layer and above are set in the CU, and the functions of the protocol layers below PDCP, such as the RLC layer and the MAC layer, are set in the DU.
  • the control plane (CP) and the user plane (UP) of the CU can also be separated and implemented into different entities, which are respectively a control plane CU entity (CU-CP entity) and a user plane CU entity (CU-UP entity).
  • the signaling generated by the CU may be sent to the terminal through the DU, or the signaling generated by the terminal may be sent to the CU through the DU.
  • the DU may directly encapsulate the signaling at the protocol layer and transparently transmit it to the terminal or CU without parsing the signaling.
  • the network device can also be a server, a wearable device, a machine communication device, a vehicle-mounted device, or a smart screen.
  • the multiple network devices may be base stations of the same type, or may be base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • the terminal device can communicate with multiple base stations of different technologies.
  • the terminal device can communicate with the base station supporting the LTE network, the base station supporting the 5G network, and the base station supporting the LTE network and the base station of the 5G network. Dual connection.
  • the communication device used to realize the function of the network device may be a complete machine, such as the entire base station or the entire server, etc., or may be a device capable of supporting the network device to realize the function, such as a chip system, a communication module, etc.,
  • the device can be installed in a complete machine as a network device.
  • a terminal is a device or module with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as planes, balloons, satellites, etc.).
  • the terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a VR terminal device, an AR terminal device, an MR terminal device, a terminal in industrial control, a vehicle-mounted terminal device, Terminals in self-driving, terminals in assisted driving, terminals in remote medical, terminals in smart grid, terminals in transportation safety, terminals in smart cities ( Terminals in smart city), terminals in smart home (smart home), etc.
  • the embodiments of the present application do not limit application scenarios.
  • a terminal may also sometimes be referred to as terminal equipment, terminal device, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, machine terminal, UE proxy or UE device, etc.
  • Terminals can be fixed or mobile.
  • the terminal may also be a terminal in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • the terminal in this application may be a terminal in machine type communication (MTC).
  • MTC machine type communication
  • the terminal of the present application may be an on-board module, on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units, and the vehicle passes through the built-in on-board module, on-board module, on-board component , on-board chip or on-board unit can implement the method of the present application.
  • the embodiments of the present application can be applied to the Internet of Vehicles, such as vehicle to everything (V2X), long term evolution vehicle (LTE-V), vehicle to vehicle (V2V) Wait.
  • the terminal may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the communication device used to implement the terminal function may be a complete machine, such as a complete vehicle or a smart phone, or a device capable of supporting the terminal to implement this function, such as a chip system, a communication module, and the like. It can be installed in the whole machine as a terminal.
  • V2X communication includes vehicle Vehicle to Vehicle (V2V), Vehicle to Pedestrian (V2P), Vehicle to Infrastructure (V2I), Vehicle to Network (V2N) )Wait.
  • V2V refers to SL communication between vehicles or in-vehicle devices.
  • the vehicle-mounted terminal can obtain information such as the speed, location, and driving conditions of the surrounding vehicles in real time, and the vehicles can also form an interactive platform to exchange text, pictures, videos and other information in real time.
  • V2V communication can be applied to avoid or reduce traffic accidents, vehicle supervision and management, etc.
  • V2P refers to the SL communication between vehicles or vehicle-mounted devices and communication devices (such as mobile phones, laptops, etc.) held or carried by pedestrians or cyclists.
  • V2P communication can be applied to avoid or reduce traffic accidents, information services, etc.
  • V2N refers to the connection of in-vehicle equipment to the cloud platform through the access network/core network, the data interaction between the cloud platform and the vehicle, and the storage and processing of the acquired data to provide various application services required by the vehicle.
  • V2N communication can be applied to vehicle navigation, vehicle remote monitoring, emergency rescue, infotainment services, etc.
  • V2I refers to SL communication between vehicles or on-board equipment and roadside infrastructure such as roadside units (RSUs), smart street lights, and traffic cameras.
  • the roadside infrastructure can also obtain information about vehicles in nearby areas and publish various real-time information.
  • V2I communication can be mainly used in real-time information services, vehicle monitoring and management, non-stop charging, etc.
  • the PC5 interface between terminals supports two resource allocation methods.
  • One is a scheduling resource allocation method (for example, mode 1).
  • the network device indicates to the sending terminal the resources used for sideline communication through signaling.
  • Control information such as scheduling assignment (SA), and data are sent on the scheduled resources.
  • Another method is the terminal's autonomous resource allocation method (for example, mode 2), in which the sending terminal selects resources for sending control information and/or data from the sidelink resource pool.
  • the sidelink resource pool can It is obtained by the terminal through the resource pool configuration information of the network device, or obtained through the pre-configuration information saved by the terminal itself, or predefined by the protocol, wherein the sideline resource pool is the time-frequency resource that can be used for sideline communication. gather.
  • predefined means that a certain value or a certain parameter is defined in a communication protocol, and the content defined in a general communication protocol is stored in the baseband chip.
  • Pre-configured described in this application means that a certain value or a certain parameter is allowed to be configured with different values in the communication protocol, and the specific value can be determined according to each country or industry standard, so the value or this parameter in each country There can be different preconfigured values for /region/industry.
  • the preconfigured values are preconfigured in the device or device when the device leaves the factory, such as a terminal device, a communication module, or a baseband chip.
  • the terminal may select transmission resources based on sensing, which will be briefly introduced below with an example. It should be understood that the following listening process is only used as an example, and is not intended to be a limitation in order to facilitate the reader to understand the mechanism for the terminal to autonomously select resources based on listening.
  • the listening process that the terminal needs to perform to select resources may have other changes, which should be understood as the listening process in a broad sense, that is, any terminal selects resources in the listening window or listening resources (listening process).
  • the listening resources can be continuous or discrete) to perform monitoring (monitor) to exclude conflicting or possibly conflicting candidate resources, and finally determine the process of reporting the available resource set to the upper layer of the terminal.
  • the listening may be based on PSCCH decoding and/or RSRP measurements on various time slots. The following is a detailed description of a sensing process, which can also be called full sensing relative to partial sensing:
  • selection window as the time slot range [n+T 1 , n+T 2 ], n+T 1 is the starting time slot number, n+T 2 is the ending time slot number, where the terminal is at time Slot n triggers resource selection.
  • a candidate resource is embodied as a group of consecutive subchannels with a length equal to L subCH in the frequency domain, and is located in a time slot in the time domain.
  • L subCH may be the number of sub-channels included in the PSSCH and/or PSCCH for carrying data to be sent by the terminal.
  • the number of candidate resources in each time slot in the selection window is L subCH - L subCH +1.
  • any group in the SL resource pool in the selection window that meets the above conditions that is, a continuous subchannel with a length equal to L subCH in a time slot, is considered as a candidate resource R x,y , and all candidate resources in the selection window are selected. The total is recorded as M total .
  • the expression [A, B] in this application represents a value range including boundary points A and B
  • the expression (A, B) represents a value range that does not include boundary points A and B at the same time.
  • the expression [A, B) represents the value range that includes the boundary point A and does not include the boundary point B
  • the expression (A, B] represents the value range that does not include the boundary point A and includes the boundary point B. This will not be repeated elsewhere in the text.
  • the maximum number of sub-channels N subCH included in the frequency domain resource pool is 8, which can be understood as the range of a time slot in the SL resource pool.
  • Fig. 3 shows all seven candidate resources formed by sub-channels 0 to 7 on the time slot. It can be understood that all candidate resources in the selection window can be obtained based on the same principle.
  • the listening window can be defined as the time slot range where T 0 is configured by the high-level parameter sl_SensingWindow, Determined by the terminal according to Table 1 below.
  • the ⁇ SL in the table is related to the sub-carrier spacing (SCS) corresponding to the SL bandwidth part (BWP) of the terminal, and the ⁇ SL can be understood as the SCS configuration parameter of the SL BWP. Specifically, the corresponding relationship between the subcarrier spacing SCS and ⁇ SL is shown in Table 2 below.
  • the terminal can determine the parameters according to Table 1 and Table 2 Among them, Table 1 and Table 2 are predefined by the protocol.
  • the terminal needs to monitor (monitor) the timeslots in the listening window except the timeslots that it transmits and belong to the SL resource pool.
  • the monitoring of the timeslots is based on the PSCCH decoding and RSRP measurement on these timeslots, and the PSCCH is carried by other terminals to send sidelink control information (SCI).
  • SCI sidelink control information
  • the threshold Th (prio RX , prio TX ) as a function of the received priority value indicated by the SCI and the priority value corresponding to the data to be sent by the terminal, wherein the priority value indicated by the SCI may be PSSCH and/or PSCCH the corresponding priority value.
  • the parameter prio RX represents the received priority value indicated in the SCI of other terminals
  • the parameter prio TX represents the priority value corresponding to the data to be sent by the terminal itself. It should be understood that generally in the protocol definition, the higher the priority value, the lower the priority.
  • the terminal should exclude the candidate resource Rx ,y that meets the conditions from the set SA :
  • the terminal does not listen to the time slot For example, the terminal itself is in the time slot the circumstances of the transmission;
  • P' rsvp_TX is a logical value obtained by converting the resource reservation interval P rsvp_TX of the terminal from milliseconds (ms) to logical time slots, which may also be called a logical period, and the resource reservation interval P rsvp_TX may be a parameter indicated by a higher layer.
  • the candidate resource Rx ,y should be excluded from the set SA :
  • the terminal is in the slot An SCI is received, the field "Resource reservation period" in the SCI (if the field “Resource reservation period” is present) indicates the value P rsvp_RX , and the field “Priority” in the SCI indicates the value prio RX , where the value P rsvp_RX is The resource reservation interval of the PSSCH corresponding to the SCI, in milliseconds (ms), and the value prio RX is the priority value of the PSSCH corresponding to the SCI.
  • the terminal is in the slot Time-frequency resources and candidate resources determined by the received SCI Coincidence, or when the field "Resource reservation period" in the SCI is present, the terminal expects Time-frequency resources and candidate resources determined by the SCI received in the time slot coincide.
  • q 1 , 2, .
  • the logical value obtained by the slot is the unit, and the resource reservation interval is a parameter provided by the upper layer.
  • T scal is the value obtained by converting the selection window length T 2 into milliseconds (ms). It should be understood that converting a value in milliseconds (ms) into a logical time slot represents calculating the number of SL time slots included in the duration corresponding to the value.
  • the time-frequency resource determined by the terminal according to the received SCI is the reserved resource indicated by the SCI, which is located after the sending time slot of the SCI in the time domain. In the example shown in FIG.
  • the SCIs sent by terminals 1 to 4 respectively indicate their reserved resources (the reserved resources are marked with the name of the corresponding sending terminal, such as terminal 1), and the reserved resources of terminals 1 to 4 If the resources are located within the selection window, the listening terminal needs to exclude candidate resources that overlap with these reserved resources from the candidate resource set SA .
  • X can be selected from a number of configured values, for example from 20, 35, 50.
  • the listening terminal reports the finally obtained candidate resource set X A to the upper layer of the terminal, and the higher layer then completes the final resource selection from the set SA .
  • the terminal can also be configured to perform partial interception.
  • the difference between the partial listening mode is that the terminal does not continuously monitor the time slots in the listening window, but only monitors discrete partial time slots, and excludes candidate resources in the selection window based on the monitoring conditions on these partial time slots.
  • the interception described in the embodiments of the present application may include full interception and/or partial interception.
  • UE cooperation can be divided into two types of cooperation mechanisms: trigger-based and non-trigger-based.
  • trigger-based cooperation mechanism if the sending terminal needs the cooperation information of the cooperation terminal, the sending terminal must first explicitly send the trigger information to the cooperation terminal, so as to trigger the cooperation terminal to feed back the cooperation information to the sending terminal, as shown in FIG. 5 . Show. At this time, the mechanism of UE cooperation can be actively triggered by the coordinated terminal, that is, the sending terminal.
  • the sending terminal does not need to actively send trigger information to the cooperation terminal, and the cooperation terminal spontaneously feeds back cooperation information to the sending terminal, as shown in FIG. 6 .
  • the collaboration information sent by the collaboration terminal may be triggered by an event (event trigger), or based on some predefined conditions and other manners, which are not limited in this application.
  • UE cooperation may also be triggered by the network device through signaling or periodically triggered, etc., which is not limited in this application.
  • terminals Under the UE cooperation mechanism, terminals can cooperate with each other for various stages of SL communication.
  • the cooperative terminal can assist the sending terminal in resource selection.
  • the sending terminal can also transmit on the sidelink resources under the cooperation of other terminals. For example, in the interaction process shown in FIG. 5 and FIG. The other terminal outside sends sideline data.
  • a terminal may have the functions of cooperation and cooperation at the same time, in other words, a terminal may act as a cooperative terminal in one transmission and as a coordinated terminal in another transmission.
  • terminal A for example, the cooperative terminal in FIG. 5 and FIG. 6
  • terminal B for example, in FIG. 5 and FIG. 6
  • sending terminal in 6 the terminal that needs to send cooperation information in a cooperation interaction
  • terminal B may also receive resource indication information from terminal A, where the resource indication information may indicate resources used to carry trigger information and/or resources used to carry assistance information, for example, in Before terminal B sends trigger information or receives cooperation information, terminal B receives resource indication information from terminal A, and the resource indication information can be carried in the SCI or in PC5 radio resource control (radio resource control, RRC) signaling, and the resource indication information can be Only the resources used to carry the trigger information, or only the resources used to carry the assistance information, or the resources used to carry the trigger information and the resources used to carry the assistance information are simultaneously designated.
  • RRC radio resource control
  • Terminal B sends trigger information and/or receives cooperation information on the corresponding resource according to the resource indication information.
  • terminal B may receive resource indication information from terminal A, and receive cooperation information on the resource indicated by the resource indication information for carrying assistance information.
  • the cooperation information from terminal A may be used to assist the sidelink transmission of terminal B, for example, the cooperation information may include indication information of available sidelink resources and/or indication of unavailable sidelink resources information.
  • Terminal B may directly use the resources indicated by the cooperation information to send the sideline information, or determine the resources for sending the sideline information according to the resources indicated by the cooperation information.
  • the resource indicated by the terminal B in the cooperation information and the available resource set acquired by the terminal B itself through listening are the union or the intersection.
  • terminal B may directly exclude the unavailable resource indicated by the coordination information, or terminal B may reselect the unavailable resource.
  • the unavailable sidelink resources indicated by terminal A through the cooperation information may be resources that terminal A detects that have been reserved (reserved) by other terminals, or resources that terminal A itself wants to use for sending or receiving data, etc. .
  • the available sidelink resources indicated in the cooperation information may be determined by the cooperative terminal according to sensing and/or resources used by itself to send or receive data. The remaining resources after the reserved resources.
  • the transmission resources determined by terminal B completely or largely depend on the scheduling or instructions of terminal A, and the same resources for terminal B to send or receive information related to the cooperation process can also be scheduled by terminal A or instructions.
  • terminal B may not listen, and only determine transmission resources according to the cooperation information sent by terminal A, which can reduce the power consumption of terminal B, and also take into account the problems of hidden nodes and/or exposed nodes. , it can also solve the problem of resource selection for some terminals that are out of coverage or far away from other terminals or in edge areas.
  • the hidden node problem means that there are some interfering nodes that the sending terminal cannot perceive.
  • the sending terminal selects a resource that can be used to send sidelink information according to its own listening, but the receiving terminal will receive sidelink information on this resource. Will be strong interference, resulting in unsuccessful reception.
  • the problem of exposed nodes means that there are some nodes that the sending terminal can perceive but actually interfere less with the receiving terminal.
  • the interference is weak, and it is a resource that can be used to correctly receive sideline information.
  • the auxiliary terminal B based on terminal A can obtain more and more comprehensive information about the available resources, and thus more effectively determine the transmission resources, but at the same time, some unreasonable situations may occur, which may lead to increased delay and reduced resource selection efficiency. For example, when the data arrival time of terminal B is far away from the resources currently configured by terminal A, the current data to be sent by terminal B may not meet the packet delay budget (PDB) due to the configured resources. ). In this case, terminal B cannot use the resources indicated by terminal A. At the same time, if the transmission of terminal B depends on the resources indicated by terminal A, for example, terminal B may not have listened before this, and eventually the transmission resources cannot be determined and the data cannot be used. transmission, resulting in increased delay and even communication failure.
  • PDB packet delay budget
  • the present application proposes a method for resource determination, which can allow the terminal to more reasonably use the auxiliary information (such as the content indicated in the cooperation information) provided by other cooperative terminals in the UE cooperative mode, and select resources based on its own state.
  • the determination method can fully and efficiently determine the transmission resources in various situations, reduce the time delay and improve the communication efficiency.
  • FIG. 7 is a schematic diagram of an interaction flow of a communication method 700 provided by an embodiment of the present application.
  • the execution body of the method 700 may be a terminal, or a communication device for realizing the terminal function, such as a terminal device, or a combined device or component with a terminal function, or a communication chip (such as a processor that can be applied to the terminal). , baseband chip, or chip system, etc.).
  • the execution body of the method can also be a network device, or a communication device for realizing the function of the network device, for example, it can be a combined device or component with the function of the network device, or it can be a communication chip ( For example, a processor, a baseband chip, or a system-on-a-chip, etc.).
  • method 700 may include parts 710 and 720 .
  • Part 710 The first terminal receives resource indication information from the second terminal or the network device, where the resource indication information is used to indicate the first resource and/or the second resource, wherein the first resource is used to send trigger information, the trigger information
  • the second resource is used for triggering sending of cooperation information to the first terminal, and the second resource is used for receiving cooperation information from the second terminal, where the cooperation information is used to indicate a third resource that can be used by the first terminal to send data.
  • Part 720 In the case that the first resource is later than the first time point in the time domain and/or the second resource is later than the second time point in the time domain, the first terminal randomly determines or determines based on listening to send The resources of the first data, wherein the first time point and the second time point are determined according to the packet delay budget of the first data, and the first data is the data to be sent by the first terminal.
  • the resource indication information may be carried in downlink control information (downlink control information, DCI), system information block (system information block, SIB), master information block (master information block) , MIB), or in RRC signaling.
  • DCI downlink control information
  • SIB system information block
  • MIB master information block
  • RRC signaling e.g., RRC signaling
  • the resource indication information may also be pre-configured, and in this case, part 710 may be omitted, and the first terminal may learn the first resource and/or the second resource based on the pre-configured information.
  • packet delay budget packet delay basic, PDB
  • PDB packet delay budget
  • PDB packet delay basic, PDB parameters can be converted to different values between different protocol layers and different communication entities.
  • the packet delay budget (PDB) described in this application may be a delay budget parameter that the physical layer of the terminal needs to comply with when sending, that is to say, the packet delay budget PDB described in this application may represent the terminal to be sent. The upper limit of the delay that the data needs to meet at the physical layer.
  • the PDB described in this application may be the value of the packet delay budget PDB defined in the quality of service (QoS) flow (QoS flow) mapped by the packet data unit (PDU) after conversion. .
  • the PDB value is unified at each protocol layer, which is not limited in this application.
  • the PDB length defined in the QoS flow corresponding to a PDU is 100us
  • the packet delay budget PDB that the terminal needs to meet when performing sideline transmission may be based on the 100us converted from the sending terminal to the receiving terminal on the PC5 interface
  • the upper limit of the maximum delay between the two, the converted maximum time length can be less than or equal to 100us.
  • the packet delay budget can also be the maximum delay from the generation of a data packet to the successful transmission of a data packet.
  • the packet delay budget PDB for the terminal that communicates with the PC5 interface.
  • the above examples are only used.
  • the packet delay budget can also be measured in the time domain unit of the physical layer, such as the number of subframes (subframe), the number of slots (slot), or the number of symbols (symbol) to describe the packet delay budget PDB , in addition to the above examples, may also be other time domain units, which are not limited in this application.
  • the packet delay budget of the first data described in this application refers to the packet delay budget corresponding to the first data.
  • the value of a packet delay budget, or a priority data corresponds to a packet delay budget value, or different reliability corresponds to different packet delay budget, or different communication range corresponds to different packet delay Budget. Therefore, the description of "the packet delay budget of the first data" in this application does not mean that the packet delay budget is necessarily a separately set attribute or a separately configured parameter for each data packet (or each data to be sent). It only means that the terminal can know a corresponding packet delay budget for the data to be sent or for each transmission.
  • the start time point of the packet delay budget of the first data is n 1
  • the end time point of the packet delay budget of the first data is m 1
  • [n 1 , The duration between m 1 ] is the packet delay budget of the first data, which can be expressed as T pdb
  • the time point n 1 may be the time point at which the first data reaches the physical layer, or may be the time point at which the first data is generated at the application layer.
  • time point may be granular in a certain time domain unit, and the time domain unit may be a time slot (slot), a subframe (subframe), a symbol (symbol) Or a mini-slot (mini-slot), etc., and may also be other time-domain scheduling units, which are not limited in this embodiment of the present application.
  • time slot n or symbol n if a certain time point is described as time slot n or symbol n, at this time, a certain resource is not later than a certain time point, indicating that the resource can be located in this time slot n or symbol n, or earlier than this time slot n or symbol n.
  • a certain resource is later or not later than a certain time point, indicating that the resource is located after the time slot n or symbol n.
  • the time point can also be a moment, such as a certain moment in us, or describe a certain time point as time slot n, subframe n, mini-slot n, or the start or end time of symbol n, etc. .
  • a resource earlier or not later than time point n means that the resource can be located before the end time or the start time of time slot n.
  • the fact that a certain resource is later or not earlier than a certain time point means that the resource can be located after the end time or the start time of time slot n.
  • the UE cooperation process can include two solutions based on triggering and non-triggering.
  • the sending terminal may not send trigger information.
  • the resource indication information may only indicate the second resource.
  • the first terminal only randomly determines the second resource when the second resource is later than the second time point in the time domain or determines the use of the resource based on listening. A resource for sending the first data.
  • the scenario shown in FIG. 6 the scenario shown in FIG. 6
  • the resource indication information may indicate the first resource and the second resource, and at this time, the first terminal may randomly determine or based on the first resource only when the first resource is later than the first time point in the time domain
  • the resource used for sending the first data is determined by listening, and the resource used for sending the first data may be determined randomly only when the second resource is later than the second time point in the time domain or determined based on the listening. resource, or the first terminal determines the resource for sending the first data randomly or based on listening if both of the above two conditions are satisfied.
  • the resource indication information may only indicate one of the first resource and the second resource, and the first terminal correspondingly determines whether the resource satisfies the above-mentioned time relationship, which is not repeated here.
  • the first terminal may be the coordinated terminal in the UE cooperation scenario described above, that is, the terminal B, and the second terminal may be the cooperating terminal, that is, the terminal A.
  • the methods provided in the embodiments of the present application may not be limited to UE cooperation scenarios, that is to say, the first terminal and the second terminal may not have the above-described relationship of cooperation and cooperation, and any two terminals may perform side-tracking. communication terminal.
  • the first terminal when the first terminal determines that the first resource indicated by the second terminal is later than the first time point related to the packet delay budget of the first data and/or the second resource is later than the first resource related to the first data packet delay budget
  • the transmission resource for sending the first data
  • the first terminal randomly determines or determines the transmission resources by itself based on listening. In other words, in this case, the first terminal will not consider the coordination information to be sent by the second terminal when determining the transmission resource, or determine the transmission resource independently of the third resource indicated or to be indicated by the coordination information.
  • the first terminal determines or judges the sequence relationship between the first resource and the first time point and/or the second resource and the first time point.
  • the sequence relationship between two time points can be equivalent to prejudging cooperation Whether the third resource indicated or to be indicated by the information will satisfy the packet delay budget of the first data.
  • the third resource satisfies the package delay budget of the first data, it can be understood that the third resource is within the package delay budget of the first data, and when the third resource includes multiple resources, it can be understood as at least one resource among the third resources Within the packet delay budget of the first data, or it is understood that multiple resources in the third resource are all within the packet delay budget of the first data.
  • the first terminal can timely determine whether to use the resources to be provided or indicated by the cooperative terminal for transmission, and determine the transmission resources by itself under appropriate circumstances, so as to avoid the delay caused by waiting to receive the cooperative information in some cases, and to avoid
  • packet loss or communication interruption is caused, which improves the rationality of resource selection and improves communication efficiency.
  • the first terminal may determine the transmission resource independently of the third resource indicated or to be indicated by the cooperation information.
  • the first terminal may not send trigger information, so that the collaboration scenario is not triggered.
  • the UE cooperation mode has been triggered, and the first terminal may not receive the cooperation information, or not decode the cooperation information. It should be understood that the fact that the UE cooperation mode has been triggered may be that the first terminal has sent trigger information, or in the UE cooperation mode that does not need to send trigger information (for example, as shown in FIG. 6 ), the first terminal knows that the UE cooperation mode has been triggered .
  • the first terminal may still be in the listening mode, and the first terminal may determine the resource for sending the first data based on the listening before the current time point. Or in a UE coordination mode that does not need to send trigger information (eg, as shown in FIG. 6 ), the first terminal knows that the UE coordination mode has been triggered, and the first terminal may not receive or decode the coordination information.
  • the first terminal if the first terminal is in a non-listening state, that is to say, the first terminal has not monitored for a period of time before this, for example, it has not detected and decoded control information sent by surrounding terminals, and has not measured RSRP.
  • the first terminal may perform listening within a time window after the current time point, so as to determine the transmission resource based on the listening. It is equivalent to saying that the first terminal switches from the non-listening mode to the listening mode when the first terminal determines that the first resource is later than the first time point in the time domain and/or the second resource is later than the second time point in the time domain.
  • the first terminal in addition to determining the transmission resource based on listening, may also randomly determine the transmission resource. Random determination or random selection means that the first terminal reports all the candidate resources included in the resource selection window to the upper layer of the first terminal at the physical layer, and the higher layer randomly selects the resources to be used for the first data transmission therefrom.
  • the first terminal is triggered to select resources at time point n.
  • the first terminal does not receive the cooperation information from the second terminal, and the first resource is late in the time domain.
  • the first terminal may perform listening in the time window [n+S1, n+S2] after the time point n, And based on the interception, the transmission resource is determined in the corresponding resource selection window.
  • the fact that the first terminal does not determine the transmission resource based on the cooperation information means that the first terminal does not determine the transmission resource according to the cooperation information. Specifically, the first terminal may determine the transmission resource in the state of not receiving the cooperation information, or ignore the content indicated by the cooperation information in the state of receiving the cooperation information. However, the transmission resource determined by the first terminal without considering the cooperation information may overlap with the third resource indicated by the cooperation information (if there is cooperation information), at this time, it should still be considered that the first terminal does not consider the cooperation information to determine the transmission resource.
  • the first terminal determines that the first resource is later than the first time point in the time domain and/or the second resource is later than the second time point in the time domain, and the first terminal determines randomly or based on listening.
  • the two actions for sending the resource of the first data may be completed simultaneously in actual operation, or may be performed by the first terminal in two steps.
  • the above two "determining" steps may be embodied as one action, or embodied as two separate actions.
  • part 720 may be replaced by part 721 and part 722, wherein part 721: the first terminal determines that the first resource is later than the first time point in the time domain and/or the second resource is in the time domain. later than the second time point, wherein the first time point and the second time point are determined according to the packet delay budget of the first data, and the first data is the data to be sent by the first terminal.
  • Part 722 The first terminal randomly determines or determines a resource for sending the first data based on listening.
  • the behavior of the first terminal is limited in the case that the first resource is later than the first time point in the time domain and/or the second resource is later than the second time point in the time domain, and may not be limited to The specific behavior of the first terminal in other cases. Except for the situation defined in part 720, the first terminal may have many different processing methods.
  • the method 700 further includes part 730: in the case that the first resource is not later than the first time point in the time domain and the second resource is not later than the second time point in the time domain, the A terminal determines a resource for sending the first data based on receiving cooperation information from the second terminal on the second resource.
  • both the first resource and the second resource satisfy the above-mentioned time relationship, and in this case, the first terminal determines the transmission resource by using the third resource indicated by the cooperation information.
  • parts 730 and 720 (or part 722 ) belong to two branches in method 700 that may coexist at different time periods, in other words, parts 730 and 720 (or part 722 ) may co-exist in method 700, but parts 730 and 720 (or 722) may not occur at the same time.
  • the first terminal determines the resource for sending the first data based on the cooperation information received from the second terminal on the second resource.
  • part 730 includes the first terminal, and in the case that neither the first resource nor the second resource is later than the above-mentioned corresponding time point, determine the resource for sending the first data based on the cooperation information.
  • part 720 defines the first terminal, and in the case that both the first resource and the second resource are later than the above-mentioned corresponding time points, the transmission resource is determined randomly or based on listening, then part 730 may include the first terminal, in the first resource In the case that any one of the second resource and the second resource is not later than the above-mentioned corresponding time point, the resource for sending the first data is determined based on the cooperation information.
  • part 730 can also be replaced with part 731 and part 732, where part 731: the first resource is not later than the first time point in the time domain and the second resource is not later than the second time point in the time domain
  • the first terminal receives the cooperation information from the second terminal on the second resource.
  • Part 732 In the case that the third resource is not later than the third time point in the time domain, the first terminal determines the resource for sending the first data based on the cooperation information.
  • the first terminal when both the first resource and the second resource satisfy the above-mentioned time relationship, the first terminal also determines whether the third resource meets the time point related to the packet delay budget.
  • the transmission resource is determined by using the third resource indicated by the cooperation information only when the corresponding time relationship is also satisfied.
  • the first terminal may also receive the cooperation information and execute part 732 under the condition that any one of the first resource and the second resource is not later than the above-mentioned corresponding time point, which is similar to the situation described in the previous paragraph. , which will not be repeated here.
  • the resource for sending the first data may be determined based on the cooperation information in the following ways:
  • the first terminal when the cooperation information indicates the resources that can be used by the first terminal to send the first data, the first terminal may directly use the resources indicated by the cooperation information to send the first data, or the first terminal may combine the resources indicated by the cooperation information and the first data.
  • a terminal itself determines the resource used for sending the first data by listening to the acquired resource. Specifically, the first terminal may finally take a union or intersection of the resources indicated by the assistance information and the resources acquired by the first terminal itself through listening.
  • the first terminal may exclude the resource indicated by the assistance information when determining the resource for sending the first data, or the first terminal may The resource indicated by the assistance information that cannot be used for sending the first data may be reselected.
  • the first terminal sends the first data on the determined resource for sending the first data.
  • the first terminal may be unicast or multicast, and unicast can be understood as a communication method in which only the first data is sent to one receiving terminal in one transmission, and multicast can be understood as A communication method in which data is sent to multiple receiving terminals at the same time.
  • the receiving terminal of the first data may include the second terminal, or may not include the second terminal, and the receiving terminal of the first data may be one or more terminals.
  • the first time point is determined according to the packet delay budget of the first data. Further, the first time point is before the end time point of the packet delay budget of the first data and is the same as the first time point.
  • the interval between the end time points of the packet delay budget of a data is the first duration.
  • the first duration may be preconfigured or configured by a network device. Exemplarily, as shown in FIG. 8( a ), the first duration is represented as T R1 , the first time point is earlier than the end time point m 1 of the packet delay budget of the first data and is separated from the time point m 1 by the first duration T R1 , which can be expressed as m 1 -T R1 .
  • the first time point can be used to estimate or determine whether it is possible to obtain a third resource R 3 that satisfies the packet delay budget of the first data if the first terminal sends trigger information on the first resource R 1 to trigger the UE coordination process.
  • the third resource meeting the packet delay budget of the first data can be understood as the third resource is within the packet delay budget of the first data, or it can be understood as at least one of the third resources when the third resource includes multiple resources The resource or all of the third resources are within the packet delay budget of the first data.
  • the first time point is taken as the latest time point, that is to say, if the first resource R 1 is located after the first time point m 1 -T R1 after the time point n 1 , the UE cooperation process is triggered at this time with a high probability.
  • the finally indicated third resource R 3 will exceed the end time point m 1 of the packet delay budget of the first data. Therefore, by setting the first duration, it is convenient for the terminal to determine whether to use the third resource indicated by the cooperative terminal in the UE cooperation process to transmit data according to the time domain position of the first resource itself before actually sending the trigger information or receiving the cooperation information. Instead of having to wait until the collaboration information is received.
  • the first time point is determined according to the resource selection window corresponding to the first data, and the specific first time point is before the end time point of the resource selection window and is the same as the end time of the resource selection window.
  • the first time interval between points It should be understood that for the convenience of description, the first duration is also denoted as T R1 , but the first duration here may be different in value from that described in part (a) of FIG. 8 .
  • the resource selection window is defined as [n+T 1 , n+T 2 ], generally, 0 ⁇ T 1 ⁇ T proc,1 , T proc, 1 is the time required for the sending terminal to process the data to be sent, and the value of 1 can be different according to the different capabilities of the sending terminal T proc .
  • the end time point of the packet delay budget may not be reflected, but the first time point may be represented by describing the positional relationship with the end time point n+T 2 of the resource selection window.
  • the first time point at this time can be represented as 'n+T 2 -T R1 '. Since the resource selection window is generally located within the packet delay budget of the first data, determining the first time point according to the resource selection window corresponding to the first data can also achieve the above beneficial effects without introducing a new time reference point, reducing Protocol complexity, higher compatibility.
  • the first duration may be preconfigured or configured by the network device.
  • the first duration may be determined according to at least one of the following: the number of time units of the second resource, the number of time units of the resource used for sending the first data, the processing time of the trigger information, the cooperation information The preparation time of the first data, the processing time of the collaboration information, and the preparation time of the first data.
  • the number of time units of the first resource is denoted as NR1
  • NR1 refers to the number of time units occupied by the first resource in the time domain.
  • the number of time units of the second resource is represented as NR2 , which is similar to NR1 and will not be repeated here.
  • the number of time units of the resource for transmitting the first data, or the number of time units of the third resource, is represented by NR3 .
  • NR3 should include the number of time units occupied by each resource and the interval between resources, and the interval between resources may be the same as the feedback information processing time P f is related.
  • the processing time of the trigger information is denoted as D R1 , and D R1 can be understood as the processing time required for decoding the trigger information.
  • the preparation time of the collaboration information is represented as PR2 , and PR2 can be understood as the time for preparing the collaboration information after being triggered.
  • the processing time of the cooperation information is denoted as DR2
  • DR2 is understood as the processing time required for decoding the cooperation information.
  • the preparation time of the first data is represented as PR3
  • PR3 can understand the time for preparing the data stream to be sent before sending the first data in the third resource.
  • the time range of the first resource that satisfies the condition is relatively large, which is equivalent to a relatively low threshold for the first terminal to judge that the first resource meets the time requirement, which can reduce the delay through pre-judgment and at the same time try to fully Use the transmission resources indicated by the cooperative terminal.
  • the time range of the first resource that satisfies the condition is relatively large, which is equivalent to a relatively low threshold for the first terminal to judge that the first resource meets the time requirement, which can reduce the delay through pre-judgment and at the same time try to fully Use the transmission resources indicated by the cooperative terminal.
  • the number of time units, the number of time units of resources used to send the first data, the processing time of the trigger information, the preparation time of the collaboration information, the processing time of the collaboration information, and the preparation time of the first data are determined.
  • the setting of the first duration can reflect the decoding and preparation time of cooperative signaling and data, so that the first terminal can more fully ensure that the first data is before the end time point of the packet delay budget or resource selection.
  • the transmission is completed before the end time point of the window.
  • processing time and preparation time described in this application may be the time defined in the protocol or the time estimated by the terminal, and may not represent the time length specifically generated in the product implementation.
  • time unit described in the embodiments of the present application represents a scheduling unit in the time domain, and may be different time domain units in different communication systems or different application scenarios.
  • the time unit may be a time slot (slot), a subframe (subframe), symbol (symbol), or mini-slot (mini-slot), etc., and may also be other time-domain scheduling units, which are not limited in this embodiment of the present application.
  • the first duration may be invisible to the first terminal according to which elements are determined.
  • the first duration may be pre-configured or configured by a network device, that is, the terminal It is not necessary to know how the first duration is determined per se. If the first duration is pre-configured or predefined by the protocol, the pre-configured first duration can reflect the above-mentioned time relationship, that is, it can be used to determine whether it is possible to obtain a packet satisfying the first data through the UE cooperation process according to the first resource.
  • the third resource R3 of the delay budget is the third resource.
  • the terminal can better judge whether the third resource is available according to the first resource, thereby reducing the time delay and improving the communication efficiency.
  • the value of the processing time D R1 of the trigger information and the value of the processing time D R2 of the cooperation information may refer to the values described in Table 1 above.
  • the values of D R1 and D R2 can be the same as are equal, and different subcarrier sizes may correspond to different values of processing time.
  • multiple durations may be pre-configured or configured by the network device, and the above-mentioned first duration is one of the multiple durations.
  • multiple durations correspond to different channel busy ratios (channel busy ratios, CBRs) respectively, a larger CBR corresponds to a longer duration, and the first terminal learns the corresponding first duration according to the CBR.
  • multiple durations correspond to different data channel priority levels respectively, higher priority levels correspond to longer durations, and the first terminal learns the corresponding first duration according to the priority level of the data channel carrying the first data.
  • the following second duration and third duration may have similar configurations, which will not be described in detail later.
  • the second time point is before the end time point of the packet delay budget of the first data and is separated from the end time point of the packet delay budget of the first data by a second time period.
  • the second duration is preconfigured or configured by a network device.
  • the second duration is represented by TR2
  • the second time point is earlier than the end time point m 1 of the packet delay budget of the first data and is separated from the time point m 1 by the second duration TR2
  • the second time point is TR2 .
  • the two time points can be represented as m 1 -T R2 .
  • the second time point can be used to estimate or determine whether the cooperation information may indicate that the packet delay budget of the first data is satisfied if the first terminal receives the cooperation information on the second resource R 2 .
  • the third resource R 3 is the latest possible time point, that is to say, if the second resource R 2 after the time point n 1 is located after the second time point m 1 -T R2 , there is a high probability that the The finally indicated third resource R 3 will exceed the end time point m 1 of the packet delay budget of the first data.
  • the second time point is determined according to the resource selection window corresponding to the first data, and the specific second time point is before the end time point of the resource selection window and is separated from the end time point of the resource selection window by a second time period .
  • the second time point at this time can be represented as 'n+T 2 -T R2 '. Similar description can refer to the first time point section, which will not be repeated here.
  • the second duration may be preconfigured or configured by the network device.
  • the second duration may be determined according to at least one of the following: the number of time units of resources used for sending the first data, the processing time of the cooperation information, and the preparation time of the first data.
  • the time range of the first resource that satisfies the condition is relatively large, which is equivalent to a relatively low threshold for the first terminal to judge that the first resource meets the time requirement, which can reduce the delay through pre-judgment and at the same time try to fully Use the transmission resources indicated by the cooperative terminal.
  • the number of units, the processing time of the cooperation information, and the preparation time of the first data are determined.
  • the setting of the first duration can reflect the decoding and preparation time of cooperative signaling and data, so that the first terminal can more fully ensure that the first data is before the end time point of the packet delay budget or resource selection.
  • the transmission is completed before the end time point of the window.
  • the terminal itself does not need to know how the second duration is determined, and the second duration can be used to determine whether the third resource R3 indicated by the cooperation information may meet the packet delay budget of the first data according to the second resource.
  • the value of the processing time D R2 of the cooperation information reference may be made to the values described in Table 1 above. That is, different subcarrier sizes correspond to different processing time values.
  • the parameter T proc,1 in Table 3 For the upper bound of the preparation time P R3 of the first data, reference may be made to the parameter T proc,1 in Table 3 .
  • the second duration falls within the above-mentioned interval, so that the terminal can better judge whether the third resource is available according to the second resource, thereby reducing the time delay and improving the communication efficiency.
  • the third time point may be before the end time point of the packet delay budget of the first data and separated from the end time point of the packet delay budget of the first data by a third time period.
  • the third duration is preconfigured or configured by a network device.
  • the third duration may be greater than or equal to 0.
  • the third duration may be 0, at this time the third time point is equal to the end time point of the packet delay budget of the first data, and the third resource is located in the first data within the end time of the packet delay budget. In this case, it can be ensured that the first terminal completes the transmission of the first data before the end time point of the packet delay budget of the first data, so as to avoid communication failure.
  • the third resource when the third resource includes a plurality of resources, it should be considered whether the entire third resource is later than the third time point.
  • the third duration is greater than 0, that is, T R3 > 0.
  • the first terminal needs to complete the first data before the third earlier time point. transmission to ensure that the first terminal has enough time to guarantee data transmission. For example, when the resource indicated by the cooperation message meets the packet delay budget in the time domain, but the number of sub-channels occupied in the frequency domain does not match the transmission requirements of the terminal At this time, the terminal also needs to reserve enough time to determine the resource for sending the first data by itself.
  • the terminal can reserve a time period not less than the size of the resource selection window to ensure that there is enough time to complete the resource selection and transmission before the end time point of the packet delay budget when it is determined that the third resource does not meet the needs of the terminal.
  • the third duration may be determined according to the size of the resource selection window, or the third duration may be determined according to the size of the resource selection window and the time domain size occupied by the third resource.
  • the third duration can also be determined according to the size of the resource listening window.
  • the terminal needs to reserve enough time for resource monitoring and resource selection before the end of the packet delay budget of the first data, so as to ensure the first Data can be transferred before the end of the packet delay budget.
  • setting the third duration can ensure that the first terminal still has enough time to perform listening and resource selection after learning that the third resource is unavailable, and further improves communication reliability on the basis of reducing the delay.
  • the third time point is determined according to the resource selection window corresponding to the first data, and the specific third time point is before the end time point of the resource selection window and is the same as the end time point of the resource selection window.
  • the third time interval For example, the third time point at this time can be represented as 'n+T 2 -T R3 '. Similar description can refer to the first time point section, which will not be repeated here.
  • the third duration may be preconfigured or configured by the network device.
  • the UE cooperation process can include two solutions based on triggering and non-triggering.
  • the sending terminal may not send trigger information. Therefore, in some embodiments, for example, in the non-trigger-based scenario as shown in FIG. 6 , part 710 of the method 700 may be replaced with: the first terminal receives resource indication information from the second terminal, and the resource indication information uses and indicating a second resource, wherein the second resource is used to receive cooperation information from the second terminal, and the cooperation information is used to indicate a third resource that can be used by the first terminal to send data.
  • the part 720 in the method 700 can be replaced by: in the case that the second resource is later than the second time point in the time domain, the first terminal randomly determines or determines the resource for sending the first data based on listening, wherein , and the second time point is determined according to the packet delay budget of the first data, where the first data is data to be sent by the first terminal.
  • the terms "second resource”, “third resource” and "second time point” are used in the replaced parts above, which are only to be consistent with the definitions described in other parts of this application. To avoid redundancy in the repetitive description, it does not represent any order limitation. In other words, the first resource and the first point in time may not exist in these embodiments. It should be noted that, in this kind of embodiment, various implementation manners and detailed limitations described above may be reused, and repeated content will not be repeated.
  • the first terminal may also directly determine whether the third resource indicated by the cooperation information sent by the second terminal meets the packet delay budget of the first data, and in this case, the third resource may be more accurately determined Whether the delay requirement is met, and then the UE coordination mechanism is more fully utilized.
  • the method 800 provided by the present application may include parts 810 and 820 at this time.
  • Part 810 The first terminal receives cooperation information of the second terminal, where the cooperation information indicates a third resource available for the first terminal to send data.
  • Part 820 In the case where it is determined that the third resource is later than the third time point in the time domain, the first terminal randomly determines or determines the resource for sending the first data based on listening, wherein the first terminal determines that the resource is not Considering the cooperation information, the third time point is determined according to the packet delay budget of the first data or the resource selection window corresponding to the first data, and the first data is data to be sent related to the third resource.
  • the first terminal sends the first data on the determined resource for sending the first data.
  • the first terminal may perform unicast (unicast) or multicast (multicast).
  • the receiving terminal of the first data may include the second terminal, or may not include the second terminal.
  • the method 800 can be combined with the method 700, and the different implementations described in the method 700 above can be reused, as well as other details described in the reuse method 700, and the repeated parts will not be repeated below.
  • the method of combining the method 800 and the method 700 may be that in the same communication system, when the first terminal determines the transmission resources at different time points, the first terminal performs the steps of the method 700 or the first terminal performs the steps of the method 800 .
  • the first terminal may execute the method 700, that is, the first terminal determines whether to use the third resource indicated or to be indicated by the second terminal according to the time domain position of the first resource and/or the second resource.
  • the first terminal randomly determining or determining the transmission resource based on listening, reference may be made to the above description, which will not be repeated here.
  • the first terminal can execute method 800, that is, the first terminal can directly determine Whether the third resource satisfies the packet delay budget of the first data or the resource selection window.
  • the first terminal may still determine whether the first resource is later than the first time point and/or whether the second resource is later than the second time point, which is equivalent to the method
  • the 800 also includes:
  • the first terminal receives resource indication information from the second terminal, where the resource indication information is used to indicate the first resource and/or the second resource, wherein the first resource is used to send a message for triggering sending of the cooperation information to the first terminal. trigger information, and the second resource is used to receive the cooperation information.
  • the first terminal determines that the first resource is located before the first time point in the time domain and/or determines that the second resource is located before the second time point in the time domain.
  • the first time point and the second time point refer to the above description, which will not be repeated here.
  • the first time point is before the end time point of the packet delay budget of the first data and is spaced apart from the end time point of the packet delay budget of the first data
  • the first duration T R1 or the first time point is before the end time point of the resource selection window corresponding to the first data and is separated from the end time point of the resource selection window by the first duration T R1 .
  • the first time point may also be described by taking the start time point of the packet delay budget of the first data as an anchor point. Taking FIG.
  • the packet delay budget of the first data is represented as T pdb , that is, the duration between the time point n1 and the time point m1 is T pdb
  • the first time point can be described as the time between the first data
  • the second time point and the third time point in this application can also be described by taking the start time point of the packet delay budget of the first data as an anchor point.
  • the first time point is before the end time point of the resource selection window corresponding to the first data and is separated from the end time point of the resource selection window by a first duration TR1
  • the first time point may also be described by taking the starting time point of the resource selection window corresponding to the first data as the anchor point or the time point n that triggers the resource determination as the anchor point.
  • the first time point can be described as after the start time point of the resource selection window corresponding to the first data and the interval from the start time point of the resource selection window is 'T 2 -T 1 -T R1 '.
  • the first time point may be described as being before the start time point of the resource selection window corresponding to the first data and separated from the start time point of the resource selection window by a duration of 'T R1 -T 2 -T 1 '.
  • the first time point may be described as after time point n and separated from time point n by the time period 'T 2 -T R1 '.
  • the same second time point and third time point can also be described with the starting time point of the resource selection window corresponding to the first data as the anchor point or the time point n determined by the triggering resource as the anchor point. Similar descriptions are not repeated here.
  • the methods described in the embodiments of the present application may not reflect the first time point, the second time point, or the third time point.
  • the first resource is later than the first time point in the time domain
  • the fourth duration and the fifth duration may be preconfigured or configured by the network device, and the method for configuring and determining the fourth duration or the fifth duration may be similar to the description of the first duration above, and the numerical value of the fourth duration may be It is represented as T pdb -T R1
  • the fifth duration may be represented as T 2 -T R1 , but it is not limited that the fourth duration or the fifth duration must be obtained according to the first duration.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and inherent logic.
  • the various numerical numbers or serial numbers involved in the above processes are only for the convenience of description, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • FIG. 14 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device may be a terminal, a component or component with terminal functions, or a chip (such as a baseband chip) applied in the terminal, and the functions or modules may be implemented by software, or by hardware, or Corresponding software implementation is performed by hardware, and may also be implemented by a combination of software and hardware.
  • the communication device may also be other communication modules, which are used to implement the methods in the method embodiments of the present application.
  • the communication apparatus 1000 may include a transceiver module 1100 and a processing module 1200 .
  • a storage module 1300 may also be included.
  • the processing module and the transceiver module as shown in FIG. 14 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors and a transceiver; or implemented by one or more processors, a memory, and a transceiver, which is not limited in this embodiment of the present application.
  • the processor, memory, and transceiver can be set independently or integrated.
  • each module in the communication apparatus 1000 in the embodiment of the present application may be used to execute the method described in FIG. 7 and FIG. 8 in the present application and the various embodiments and implementations described in the present application.
  • the communication apparatus may be applied to the first terminal described in the above method embodiments, or applied to the second terminal or the third terminal described in the above method embodiments.
  • the processing module 1200 is used to perform part 720 and/or part 730 in the method 700, or to perform part 721 and 722, or to perform part 731 and 732, and the processing module 1200 can also be used to Part 820 of method 800 is performed, as well as other steps requiring internal device processing.
  • Transceiver module 1100 is configured to perform part 710 in method 700, part 810 in method 800, and other actions related to transmission or reception.
  • the storage module 1300 in the communication device 1000 includes program instructions, and when the processing module 1200 reads and executes the program instructions, the communication device 1000 implements the methods provided in the above method embodiments.
  • the transceiver module 1100 may correspond to the transceiver 2100 in the terminal 2000 shown in FIG. 16
  • the processing module 1200 may correspond to the baseband in the terminal 2000 shown in FIG. 16
  • the processor 2400 and the storage module 1300 may correspond to the memory 2300 in the terminal 2000 shown in FIG. 16
  • the communication device 1000 is a communication chip applied in a terminal
  • the communication device 1000 may correspond to the baseband processor 2400 (or referred to as a baseband chip) shown in FIG. 16
  • the transceiver module 1100 may be an input/output interface at this time.
  • the module 1200 may include one or more CPU processors, digital signal processors, etc. in the baseband chip
  • the storage module 1300 may be a memory inside the baseband chip or a memory outside the baseband chip.
  • FIG. 15 is a schematic structural diagram of a processing apparatus 1200 provided by an embodiment of the present application.
  • the processing apparatus 1200 includes a processing module 1202 and an interface module 1201 .
  • the processing module may further include a storage module 1203 .
  • the processing module 1202, the interface module 1201 and the storage module 1203 are coupled or connected to each other, and can transmit control and/or data signals to each other.
  • the storage module 1203 is used to store computer programs, and the processing module 1202 is used to retrieve the The computer program is called and executed in the storage module 1203 to implement the above-mentioned method 700 or 800 .
  • the processing device 1200 shown in the figures is merely an example.
  • the storage module 1203 may also be integrated in the processing module 1202, or be independent of the processing module 1202. This application does not limit this.
  • FIG. 16 is a schematic structural diagram of a terminal 2000 provided by an embodiment of the present application.
  • the terminal can execute the method provided by the embodiment of the present invention.
  • the terminal 2000 includes a transceiver 2100 , an application processor 2200 , a memory 2300 and a baseband processor 2400 .
  • the transceiver 2100 may condition (eg, analog convert, filter, amplify, and upconvert, etc.) the output samples and generate an uplink signal that is transmitted via the antenna to the base station described in the above embodiments.
  • the antenna receives downlink signals transmitted by the access network equipment.
  • the transceiver 2100 may condition (eg, filter, amplify, downconvert, and digitize, etc.) the signal received from the antenna and provide input samples.
  • the specific transceiver 2100 may be implemented by a radio frequency chip.
  • the baseband processor 2400 processes the digitized received signal to extract the information or data bits conveyed in the signal.
  • the baseband processor 2400 may include an encoder, a modulator, a decoder, and a demodulator.
  • the encoder is used to encode the signal to be transmitted.
  • an encoder may be used to receive and process (eg, format, encode, or interleave, etc.) traffic data and/or signaling messages to be sent on the uplink.
  • the modulator is used to modulate the output signal of the encoder.
  • the modulator may perform processing such as symbol mapping and/or modulation on the output signal (data and/or signaling) of the encoder, and provide output samples.
  • the demodulator is used to demodulate the input signal.
  • the demodulator processes the input samples and provides symbol estimates.
  • the decoder is used to decode the demodulated input signal.
  • the decoder de-interleaves and/or decodes the demodulated input signal, and outputs the decoded signal (data and/or signaling).
  • the encoder, modulator, demodulator and decoder may be implemented by a composite modem processor. These units are processed according to the radio access technology adopted by the radio access network.
  • the baseband processor 2400 may include a memory.
  • Baseband processor 2400 may receive digitized data, which may represent voice, data, or control information, from application processor 2200 and process the digitized data for transmission.
  • the modem processor to which it belongs can support one or more of multiple wireless communication protocols of multiple communication systems, such as LTE, NR, Universal Mobile Telecommunications System (UMTS), high-speed packet access (High Speed Packet Access, HSPA) and more.
  • the baseband processor 2400 may also include one or more memories.
  • the baseband processor 2400 and the application processor 2200 may be integrated in one processor chip.
  • the memory 2300 is used to store program codes (sometimes also referred to as programs, instructions, software, etc.) and/or data for supporting the communication of the terminal device.
  • program codes sometimes also referred to as programs, instructions, software, etc.
  • the memory 2300 or the memory in the baseband processor 2400 may include one or more storage units, for example, may be a storage unit inside the baseband processor 2400 or the application processor 2200, or may be related to the application processor 2200 or the baseband processor 2400 is an independent external storage unit, or may also be a component including a storage unit inside the application processor 2200 or the baseband processor 2400 and an external storage unit independent of the application processor 2200 or the baseband processor 2400.
  • the baseband processor 2400 may include a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), field programmable gates Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, other integrated circuits, or any combination thereof.
  • the baseband processor 2400 may implement or execute various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the present invention.
  • the baseband processor 2400 may also be a combination of devices implementing computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, or a system-on-a-chip (SOC) and the like.
  • a combination of one or more microprocessors such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, or a system-on-a-chip (SOC) and the like.
  • SOC system-on-a-chip
  • the terminal 2000 shown in FIG. 16 can implement each process in the foregoing method embodiments.
  • the operations or functions of each module in the terminal 2000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the method provided by the foregoing method embodiment can be implemented.
  • the embodiment of the present application further provides a computer program product including an instruction, when the instruction is executed, the method on the terminal side in the foregoing method embodiment is executed.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits ( application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种用于资源确定的方法及装置,可以应用于直连通信,例如D2D、V2X、智能驾驶和智能网联车等领域。该方法中第一终端接收来自第二终端或网络设备的资源指示信息,该资源指示信息用于指示第一资源和/或第二资源,其中,第一资源用于发送触发信息,第二资源用于接收来自所述第二终端的协作信息,协作信息用于指示可用于第一终端发送数据的第三资源。在第一资源在时域上晚于第一时间点和/或第二资源在时域上晚于第二时间点的情况下,第一终端随机确定或基于侦听确定用于发送待发送数据的资源,其中,所述第一时间点和所述第二时间点根据第一数据的包时延预算或所述第一数据对应的资源选择窗确定。

Description

用于资源确定的方法及装置
本申请要求在2021年04月06日提交国家专利局、申请号为202110369419.4、发明名称为“用于资源确定的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种用于资源确定的方法及装置。
背景技术
随着无线通信技术的持续发展,实现终端获取周边其他设备的信息并与之通信的邻近服务的需求日益增长,因此设备到设备(Device-to-Device,D2D)技术被提出和研究。D2D技术的应用,可以减轻蜂窝网络的负担、减少用户设备的电池功耗、提高数据速率,并能很好地满足邻近服务的需求。D2D技术允许多个支持D2D功能的终端在有网络基础设施或无网络基础设施的情况下进行直接发现和直接通信。随着可高速移动的车辆之间直接通信的需求的产生,车联网(例如,vehicle to everything,V2X)应用场景也被提出,V2X通信和D2D通信一样都属于直接通信(direct communication),或者称为侧行(sidelink)通信。
在侧行通信中,其中一个重要的问题是终端如何确定合适的传输资源。如果不能合理地确定传输资源,会增加终端间资源碰撞的概率,增大系统的干扰,进而降低通信效率。
发明内容
本申请提供一种用于资源确定的方法及装置,能够更合理地确定传输资源,提高通信效率。
第一方面,提供了一种用于资源确定的方法,该方法的执行主体可以是终端,也可以是具备终端功能的组合器件或部件,也可以是应用于终端中的通信芯片(例如处理器、基带芯片、或芯片系统等)。下面以执行主体是终端为例进行描述。该方法包括:第一终端接收来自第二终端或网络设备的资源指示信息,所述资源指示信息用于指示第一资源和/或第二资源,其中,所述第一资源用于发送触发信息,所述触发信息用于触发向所述第一终端发送协作信息,所述第二资源用于接收来自所述第二终端的所述协作信息,所述协作信息用于指示可用于所述第一终端发送数据的第三资源。在所述第一资源在时域上晚于第一时间点和/或所述第二资源在时域上晚于第二时间点的情况下,所述第一终端随机确定或基于侦听确定用于发送所述第一数据的资源。其中,所述第一时间点和所述第二时间点根据第一数据的包时延预算或所述第一数据对应的资源选择窗确定,所述第一数据为所述第一终端的待发送数据。
示例性的,资源指示信息可以仅指示第二资源,此时第一终端仅在第二资源在时域上晚于第二时间点的情况下随机确定或基于侦听确定用于发送所述第一数据的资源。资源指示信息也可以仅指示第一资源,此时第一终端仅在第一资源在时域上晚于第一时间点的情况下随机确定或基于侦听确定用于发送所述第一数据的资源。又例如,资源指示信息还可以指示第一资源和第二资源,此时第一终端可以仅在第一资源在时域上晚于第一时间点的情况下随机确定或基于侦听确定用于发送所述第一数据的资源,也可以仅在第二资源在时域上晚于第二 时间点的情况下随机确定或基于侦听确定用于发送所述第一数据的资源,或者第一终端在以上两种情形都满足的情况下随机确定或基于侦听确定用于发送所述第一数据的资源。
根据本申请提供的用于资源确定的方法,第一终端在确定第二终端指示的第一资源晚于与第一数据的包时延预算相关的第一时间点和/或第二资源晚于与第一数据的包时延预算相关的与第一数据的包时延预算相关的第二时间点的情况下,不再基于第二终端发送的协作信息来确定传输资源(用于发送所述第一数据的资源),第一终端随机确定或基于侦听自行确定传输资源。换句话说,第一终端在这种情况下确定传输资源时不会再考虑第二终端将要发送的协作信息,或者说独立于协作信息指示的或将要指示的第三资源去确定传输资源。由于第一时间点和第二时间点是根据第一数据的包时延预算确定的,第一终端确定或判断第一资源与第一时间点之间的先后关系和/或第二资源与第二时间点之间的先后关系(即确定第一资源在时域上是否晚于第一时间点和/或第二资源在时域上是否晚于第二时间点),可以相当于预判协作信息指示的或将要指示的第三资源是否会满足第一数据的包时延预算。通过这种方式第一终端可以及时地确定是否采用协作终端将提供或指示的资源来进行传输,在适当的情形下自行确定传输资源,避免在一些情况下等待接收协作信息造成时延,也避免在协作信息指示的第三资源不满足待发送数据的包时延预算的情况下导致丢包或通信中断等,提高资源选择的合理性,提高通信效率。
在另一些实施方式中,第一时间点根据第一数据对应的资源选择窗确定。由于资源选择窗一般位于第一数据的包时延预算内,因此根据第一数据对应的资源选择窗确定第一时间点可以同样起到上述的有益效果,而不引入新的时间参考点,减少协议复杂度,可兼容性更高。
可选地,所述方法还包括:在所述第一资源在时域上不晚于第一时间点和所述第二资源在时域上不晚于第二时间点的情况下,所述第一终端基于在所述第二资源上接收的所述协作信息指示的第三资源确定用于发送所述第一数据的资源。
在一些可选的实现方式中,所述第一时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第一时长。或,所述第一时间点在所述资源选择窗的结束时间点之前并与所述资源选择窗的结束时间点间隔第一时长。
示例性的,所述第一时长为预配置的,或由网络设备配置的。
在一些可选的实现方式中,所述第二时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第二时长。或,所述第二时间点在所述资源选择窗的结束时间点之前并与所述资源选择窗的结束时间点间隔第二时长。
示例性的,所述第二时长为预配置的,或由网络设备配置的。
结合第一方面,在第一方面的某些实现方式中,所述第一时长根据以下中的至少一项确定:所述第二资源的时间单元个数,用于发送所述第一数据的资源的时间单元个数,所述触发信息的处理时间,所述协作信息的处理时间,所述第一数据的处理时间。
结合第一方面,在第一方面的某些实现方式中,所述第二时长根据以下中的至少一项确定:用于发送所述第一数据的资源的时间单元个数,所述协作信息的处理时间,所述第一数据的处理时间。
第二方面,提供了一种用于资源确定的方法,该方法的执行主体可以是终端,也可以是具备终端功能的组合器件或部件,也可以是应用于终端中的通信芯片(例如处理器、基带芯片、或芯片系统等)。下面以执行主体是终端为例进行描述。该方法包括:第一终端接收来自第二终端的协作信息,所述协作信息指示可用于所述第一终端发送数据的第三资源。在所述 第三资源在时域上晚于第三时间点的情况下,所述第一终端随机确定或基于侦听确定用于发送所述第一数据的资源,其中,所述第三时间点为根据第一数据的包时延预算或所述第一数据对应的资源选择窗确定的,所述第一数据为所述第一终端的待发送数据。
根据第二方面提供的方法,第一终端可以直接判断第二终端发送的协作信息指示的第三资源是否满足第一数据的包时延预算或第一数据对应的资源选择窗,此时可以更准确的确定第三资源是否满足时延要求,进而更充分地利用UE协作机制。
在一些可选的实现方式中,所述第三时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第三时长。或,所述第三时间点在所述第一数据对应的资源选择窗结束时间点之前并与所述资源选择窗结束时间点间隔第三时长。
示例性的,所述第三时长为预配置的,或由网络设备配置的。
结合第一方面,在第一方面的某些实现方式中,所述第三时长根据以下中的至少一项确定:所述资源选择窗的大小,所述第一数据的处理时间,或资源侦听窗的大小。
在一些可选的实现方式中,所述方法还包括:所述第一终端接收来自所述第二终端的资源指示信息,所述资源指示信息用于指示第一资源和/或第二资源,其中,所述第一资源用于发送触发信息,所述触发信息用于触发向所述第一终端发送协作信息,所述第二资源用于接收所述协作信息。确定所述第一资源在时域上不晚于第一时间点和/或所述第二资源在时域上不晚于第二时间点,其中,所述第一时间点与所述第二时间点根据所述第一数据的包时延预算或所述第一数据对应的资源选择窗确定。
可选地,所述第一时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第一时长。或,所述第一时间点在所述第一数据对应的资源选择窗结束时间点之前并与所述资源选择窗结束时间点间隔第一时长。
示例性的,所述第一时长为预配置的,或所述第一时长由网络设备配置的。
可选地,所述第二时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第二时长。或,所述第二时间点在所述第一数据对应的资源选择窗结束时间点之前并与所述资源选择窗结束时间点间隔第二时长。
示例性的,所述第二时长为预配置的,或所述第二时长由网络设备配置的。
结合第二方面,在第二方面的某些实现方式中,所述第一时长根据以下中的至少一项确定:所述第二资源的时间单元个数,用于发送所述第一数据的资源的时间单元个数,所述触发信息的处理时间,所述协作信息的处理时间,所述第一数据的处理时间。
结合第二方面,在第二方面的某些实现方式中,所述第二时长根据以下中的至少一项确定:用于发送所述第一数据的资源的时间单元个数,所述协作信息的处理时间,所述第一数据的处理时间。
关于第二方面的部分可选的实现方式所带来的技术效果,可参考对于第一方面或第一方面的相应的实现方式的技术效果的介绍。
第三方面,提供了一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。该通信装置包括用于执行上述方法的相应的模块或部件。该装置包括的模块可以通过软件和/或硬件方式实现。在一个可能的设计中,所述通信装置包括:收发模块,用于接收来自第二终端或网络设备的资源指示信息,所述资源指示信息用于指示第一资源和/或第二资源,其中,所述第一资源用于发送触发信息,所述触发信息用于触发向所述通信装置发送协作信息,所述第二资源用于接收来自所 述第二终端的所述协作信息,所述协作信息用于指示可用于所述第一终端发送数据的第三资源。处理模块,用于在所述第一资源在时域上晚于第一时间点和/或所述第二资源在时域上晚于第二时间点的情况下,随机确定或基于侦听确定用于发送所述第一数据的资源,其中,所述第一时间点和所述第二时间点根据第一数据的包时延预算或所述第一数据对应的资源选择窗确定,所述第一数据为所述第一终端的待发送数据。这些模块可以实现上述第一方面、第二方面、或第一方面和第二方面任一种可能的实施方式中的方法,具体参见方法示例中的详细描述,此处不做赘述。
上述方面中的通信装置可以是终端,也可以是应用于终端中的芯片或者其他可实现上述终端功能的组合器件、部件等。当通信装置是终端设备时收发模块可以是发送器和接收器,或整合的收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等。当通信装置是具有上述终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,收发模块可以是芯片系统的输入输出接口,处理模块可以是芯片系统中的处理器,例如:中央处理单元(central processing unit,CPU)。
第四方面,提供了一种通信装置,包括一个或多个处理器,该一个或多个处理器与存储器耦合,可用于执行存储器中的程序或指令,以使得该装置执行上述任一方面或该方面中任一种可能实现方式中的方法。可选地,该装置还包括一个或多个存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
第五方面,提供了一种处理装置,该处理装置包括处理模块和接口模块,例如,应用于上述的通信装置中,用于实现上述任一方面或第二方面中所涉及的功能或方法,该处理装置例如可以是芯片系统。在一种可行的实现方式中,所述芯片系统还包括存储器,所述存储器,用于保存实现上述第一方面或第二方面所述方法的功能必要的程序指令和数据。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
可选地,该处理器为一个或多个,该存储器为一个或多个。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
在具体实现过程中,输入接口所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出接口所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入接口和输出接口可以是整合的同一接口,该接口在不同的时刻分别用作输入接口和输出接口。本申请实施例对处理器及各种接口的具体实现方式不做限定。
上述的存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第六方面,提供了一种通信系统,包括上述第三方面或第四方面提供的通信装置和上述方面中涉及的第二终端(或第二终端中的通信装置)。
第七方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算 机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述任一方面或该方面中任一种可能实现方式中的方法。
附图说明
图1示出了一种通信系统结构示例图;
图2示出了一种V2X通信场景的示意图;
图3示出了一个时隙上的候选资源的示例图;
图4示出了一种侦听窗口以及选择窗口的示例图;
图5示出了一种UE协作机制的示意图;
图6示出了又一种UE协作机制的示意图;
图7示出了一种本申请提供的用于资源确定的方法的交互流程示意图;
图8示出了本申请中描述的各个时间点和时间长度的示例图;
图9示出了本申请中描述的第一时长和第二时长的示例图;
图10示出了又一种第一时长和第二时长的示例图;
图11示出了本申请中描述的第三时长的示例图;
图12示出了又一种本申请提供的用于资源确定的方法的交互流程示意图;
图13示出了一种本申请提供的实施方式的示例图;
图14示出了本申请实施例提供的通信装置的结构示意图;
图15示出了本申请实施例提供的处理装置的结构示意图;
图16示出了本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提供的方法及装置可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统、新无线(new radio,NR)或未来可能出现的其他通信系统等。示例性的,本申请实施例提供的方法及装置可以具体应用于各种现存或未来的通信系统中的终端到终端直接通信(direct communication)的通信场景下,例如设备到设备(device-to-device,D2D)通信场景,车与任何事物(vehicle-to-everything,V2X)通信场景以及智慧网联车等通信场景。另外也可以应用于网络设备与网络设备之间回程链路传输的通信场景等,本申请不做限定。
如图1示出了一种通信系统结构示意图。该通信系统中可以包括一个或多个网络设备(图中仅示出网络设备110作为示例),以及与该一个或多个网络设备通信的一个或多个终端。图1中所示终端112和终端114与网络设备110通信,实际通信系统中还可以有更多终端,包括非网络覆盖内的终端等,本申请对此不做限定。可以理解的是,网络设备和终端也可以被称为通信设备。终端和网络设备之间可以通过Uu接口进行通信,Uu接口可以理解为通用的终端和网络设备之间的无线接口,Uu接口的通信包括上行传输和下行传输。终端和终端之间可以通过PC5接口进行通信,PC5接口可以理解为终端和终端之间通过直连信道(direct channel)进行直连通信(direct communication)的无线接口。在(3rd Generation Partnership Project,3GPP)无线接入网(radio access network,RAN)协议中通常用术语侧行链路(sidelink,SL) 来表示通过PC5接口的直连通信。目前PC5接口的概念已经被扩大到满足各种市场需求的通信场景,例如包括可穿戴设备或智能家电的通信场景等。PC5接口支持基于网络设备调度的资源分配模式(例如称为模式1,mode 1)和终端自主选择的资源确定模式(例如称为模式2,mode 2)。基于网络设备调度的资源分配模式主要应用于有网络覆盖的直连通信场景,例如,网络设备根据终端上报的缓冲区状态报告(buffer status report,BSR)为终端分配资源,分配的资源可以通过动态信令指示或半静态信令指示。终端自主选择的资源确定模式可以不受限于网络覆盖。网络设备分配的或终端自主选择的资源可以包括用于初传和/或重传的一个或多个资源。
本申请实施例提供的方法及装置可以适用于网络设备覆盖范围内的场景,也可以适用于网络设备覆盖外的场景。例如图1示出的通信系统中可能有如下描述的3种覆盖场景:1)终端112和终端114均位于网络设备110的覆盖范围内;2)终端112位于网络设备110的覆盖范围内且终端114位于网络设备110的覆盖范围之外,此时终端114与网络设备110之间不存在Uu链路;3)终端112和终端114均位于网络设备110的覆盖范围之外,此时终端112和终端114与网络设备110之间均不存在Uu链路。工作在mode 1的终端需要在网络设备的覆盖范围内,但工作在mode 2的终端可以不在网络设备的覆盖范围内,也可以在网络设备的覆盖范围内。在LTE相关协议中基于网络设备调度的资源分配模式也被称为模式3(mode 3),终端自主选择的资源确定模式也被称为模式4(mode 4)。
以下,对本申请实施例中的部分用语进行解释说明,以便于理解。
在本申请中,上行传输指终端向网络设备发送上行信息。其中示例的,上行信息可包括且不限于上行数据信息、上行控制信息、参考信号(reference signal,RS)中的一个或多个。用于传输上行信息的信道称为上行信道,上行信道可以为物理上行共享信道(physical uplink shared channel,PUSCH)或物理上行控制信道(physical uplink control channel,PUCCH)等。PUSCH用于承载上行数据,上行数据也可以称为上行数据信息。PUCCH用于承载终端反馈的上行控制信息(uplink control information,UCI)。UCI中可以包括且不限于信道状态信息(channel state information,CSI)、肯定应答(acknowledgement,ACK)/否定应答(negative acknowledgement,NACK)等。
在本申请中,下行传输指网络设备向终端发送下行信息。示例的,下行信息可以包括且不限于下行数据信息、下行控制信息和下行参考信号中的一个或多个。用于传输下行信息的信道称为下行信道,下行信道可以为物理下行共享信道(physical downlink shared channel,PDSCH)或物理下行控制信道(physical downlink control channel,PDCCH)等。所述PDCCH用于承载下行控制信息(downlink control information,DCI),PDSCH用于承载下行数据,下行数据也可称为下行数据信息。
示例的,侧行链路上的信道包括且不限于物理层侧行链路共享信道(Physical Sidelink Shared Channel,PSSCH)、物理层侧行链路控制信道(Physical Sidelink Control Channel,PSCCH)、物理层侧行链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)和物理层侧行链路发现信道(Physical Sidelink Discovery Channel,PSDCH)中的一个或多个。
在本申请实施例中,术语“通信”还可以描述为“传输”、“信息传输”、“数据传输”、或“信号传输”等。传输可以包括发送和/或接收。本申请实施例中,以终端和终端间的通信为例描述技术方案。本领域技术人员也可以将该技术方案用于进行其它调度实体和从属实体间的通信,例如宏基站和微基站之间的通信。
本申请中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多 个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点,核心网设备等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。网络设备还可以是服务器(例如云服务器)、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或,分布单元(distributed unit,DU)。一个或多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。CU产生的信令可以通过DU发送给终端,或者终端产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端或CU。网络设备还可以是服务器,可穿戴设备,机器通信设备、车载设备、或智慧屏幕等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
本申请实施例中,用于实现网络设备功能的通信装置可以是整机,例如基站整体或服务器整体等,也可以是能够支持网络设备实现该功能的装置,例如芯片系统、通信模组等,该装置可以被安装在作为网络设备的整机中。
终端是一种具有无线收发功能的设备或模组,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、VR终端设备、AR终端设备、MR终端设备、工业控制(industrial control)中的终端、车载终端设备、无人驾驶(self driving)中的终端、辅助驾驶中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端、智慧家庭(smart home)中的终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、终端装置、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、机器终端、UE代理或UE装置等。终端可以是固定的,也可以是移动的。
在本申请中,终端还可以是物联网(internet of things,IoT)系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请中的终端可以是机器类型通信(machine type communication,MTC)中的终端。本申请的终端可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。因此,本申请实施例可以应用于车联网,例如车辆外联(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)等。在本申请中,终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中,用于实现终端功能的通信装置可以是整机,例如整车或智能手机等,也可以是能够支持终端实现该功能的装置,例如芯片系统、通信模组等,该装置可以被安装在作为终端的整机中。
下面以基于蜂窝网的V2X通信场景举例,此时终端可以是内置于车辆的用于通信的车载模块、车载模组、车载部件、车载芯片或者车载单元,如图2所示,V2X通信包括车与车的通信(Vehicle to Vehicle,V2V)、车与行人的通信(Vehicle to Pedestrian,V2P)、车与基础设施的通信(Vehicle to Infrastructure,V2I)、车与网络的通信(Vehicle to Network,V2N)等。其中,V2V是指车辆或车载设备之间进行SL通信。车载终端可以实时获取周围车辆的车速、位置、行车情况等信息,车辆间也可以构成一个互动的平台,实时交换文字、图片和视频等信息。例如,V2V通信可以应用于避免或减少交通事故、车辆监督管理等。V2P是指车辆或车载设备与行人或骑行者手持或通过其他方式携带的通信设备(如手机、笔记本电脑等)进行SL通信。V2P通信可以应用于避免或减少交通事故、信息服务等。V2N是指车载设备通过接入网/核心网与云平台连接,云平台与车辆之间进行数据交互,并对获取的数据进行存储和处理,提供车辆所需要的各类应用服务。V2N通信可以应用于车辆导航、车辆远程监控、紧急救援、信息娱乐服务等。V2I是指车辆或车载设备与路侧单元(road side unit,RSU)、智能路灯、交通摄像头等路侧基础设施进行SL通信,路侧基础设施也可以获取附近区域车辆的信息并发布各种实时信息。V2I通信主要可以应用于实时信息服务、车辆监控管理、不停车收费等。
为支持终端之间的侧行通信,其中一个需要考虑的重要问题是终端确定传输资源的问题。一般的,终端之间的PC5接口支持两种资源分配方式,一种是调度式的资源分配方式(例如mode 1),网络设备通过信令向发送终端指示用于侧行通信的资源,终端在调度的资源上发送控制信息,例如调度分配(scheduling assignment,SA),和数据。另外一种方式是终端自主式的资源分配方式(例如mode 2),发送终端从侧行资源池(sidelink resource pool)中自行选择用于发送控制信息和/或数据的资源,侧行资源池可以是终端通过网络设备的资源池配置信息获得的,也可以是通过终端自身保存的预配置信息获得的,或者是协议预定义的,其中侧行资源池为可用于侧行通信的时频资源的集合。
应理解,本申请中描述的“预定义”是指某个值或某个参数定义于通信协议中,一般的通信协议中定义的内容保存于基带芯片中。本申请中描述“预配置”是指某个值或某个参数 在通信协议中允许被配置为不同的取值,具体可以根据各国家或行业标准确定,所以该值或该参数在每个国家/地区/行业可以有不同的预配置的取值,预配置的取值在设备出厂时已经预配置于设备或装置中,例如终端设备、通信模块或基带芯片等。
在自主选择资源的方式下,终端可以基于侦听(sensing)来选择传输资源,下面举例进行简单的介绍。需要理解的是,下述的侦听流程仅用于示例,为了方便阅读者理解终端基于侦听自主选择资源的机制,而不作为限定。本申请实施例中终端为选择资源需进行的侦听流程可以有其他的变化,应理解为广义上的侦听过程,也即任一种终端为选择资源在侦听窗口或侦听资源(侦听资源可以为连续或离散)上进行监听(monitor)来排除有冲突或可能有冲突的候选资源,最终确定可用资源集合上报给终端高层的过程。示例的,监听可以是基于各个时隙上的PSCCH解码和/或RSRP测量。下面具体描述一种侦听(sensing)流程,该种侦听也可以相对部分侦听(partial sensing)称为全侦听(full sensing):
1)定义选择窗口(selection window)为时隙范围[n+T 1,n+T 2],n+T 1为起始时隙编号,n+T 2为结尾时隙编号,其中终端在时隙n触发资源选择。假设SL资源池中每个时隙上的频域资源包括的子信道个数为N subCH,SL资源池中每个时隙上包含的子信道构成的子信道集合可以表示为
Figure PCTCN2022083123-appb-000001
一个候选资源R x,y被定义为在时域上位于选择窗口[n++T 1,n+T 2]内属于SL资源池的时隙
Figure PCTCN2022083123-appb-000002
在频域上位于子信道索引为{x+j}的子信道集合,其中j=0,...,L subCH-1。也就是说,一个候选资源在频域上体现为长度等于L subCH的一组连续的子信道,在时域上位于一个时隙。其中L subCH可以为用于承载终端的待发送数据的PSSCH和/或PSCCH包括的子信道的个数。根据上述候选资源的定义,选择窗中的每个时隙上的候选资源的个数为L subCH-L subCH+1。进一步地,选择窗中的SL资源池内任何一组符合上述条件的,即一个时隙上长度等于L subCH的连续子信道,都被认为是一个候选资源R x,y,选择窗内全部候选资源的总数记为M total
应理解,本申请中的表达式[A,B]表示包含边界点A和B的取值范围,表达式(A,B)表示同时不包含边界点A和B的取值范围。同理地,表达式[A,B)表示包含边界点A且不包含边界点B的取值范围,表达式(A,B]表示不包含边界点A且包含边界点B的取值范围。全文其他地方对此不再赘述。
下面以一个具体的示例简单说明一个时隙上的候选资源,如图3所示,频域资源池包括的最大子信道个数N subCH为8,可以理解为SL资源池中一个时隙范围包含的用于SL的最大子信道个数为8,那么频域资源池对应的子信道集合可以表示为S={S 0,S 1,...,S 7},如图中示出的某个时隙上编号0~7的8个连续的子信道。假设候选资源的频域长度L subCH为2,例如用于承载待发送数据的PSSCH需占用的子信道的个数为2,则每个时隙上的候选资源总数为L subCH-L subCH+1=7。图3中标出了该时隙上由子信道0~7构成的所有7个候选资源,可以理解的,基于相同的原则可以得到选择窗内全部候选资源。
2)侦听窗口可定义为时隙范围
Figure PCTCN2022083123-appb-000003
其中T 0由高层参数sl_SensingWindow配置,
Figure PCTCN2022083123-appb-000004
由终端根据下方的表1确定。表中的μ SL与终端的SL带宽部分(bandwidth part,BWP)对应的子载波间隔(sub-carrier spacing,SCS)有关,μ SL可以理解为SL BWP的SCS配置参数。具体的,子载波间隔SCS与μ SL的对应关系由下方的表2示出。终端可以根据表1和表2确定参数
Figure PCTCN2022083123-appb-000005
其中表1和表2为协议预定义的。终端需要监听(monitor)侦听窗口内除其自身进行发送的且属于SL资源池的时隙,其中对时隙的监听基于在这些时隙上的PSCCH解码和RSRP测量,PSCCH上承载其他终端发送的侧行控制信息(sidelink control information,SCI)。触发时隙n和侦听窗口以及选择窗口之间时域上的关系可以如图4所示。
表1
Figure PCTCN2022083123-appb-000006
Figure PCTCN2022083123-appb-000007
表2 μ SL与子载波间隔SCS的关系
μ SL Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
3)定义门限Th(prio RX,prio TX)为接收到的SCI指示的优先级值和终端的待发送数据对应的优先级值的函数,其中SCI指示的优先级值可以是PSSCH和/或PSCCH对应的优先级值。参数prio RX表示接收到的其他终端的SCI中指示的优先级值,参数prio TX表示终端自身的待发送数据对应的优先级值。应理解,一般在协议定义当中优先级值越高表示优先级越低。
4)定义包括全部M total个候选资源的集合为S A
5)如果一个候选资源R x,y同时满足以下条件,则终端应当将该满足条件的候选资源R x,y从集合S A中排除:
-终端没有侦听时隙
Figure PCTCN2022083123-appb-000008
例如终端自身在时隙
Figure PCTCN2022083123-appb-000009
进行传输的情况;
-存在整数j满足y+j×P′ rsvp_TX=m+q×P′ rsvp_RX,这里q=1,2,...,Q;j=0,1,...,C resel-1。P′ rsvp_TX为终端的资源预留间隔P rsvp_TX由毫秒(ms)单位转换为逻辑时隙为单位得到的逻辑值,也可以称为逻辑周期,资源预留间隔P rsvp_TX可以是高层指示的参数。P′ rsvp_RX为接收到的其他终端的SCI中指示的资源预留间隔P rsvp_RX转换为逻辑时隙为单位得到的逻辑值。如果P rsvp_RX≤T scal并且n′-m≤P′ rsvp_RX
Figure PCTCN2022083123-appb-000010
否则,Q=1。其中如果时隙n属于sidelink资源池,
Figure PCTCN2022083123-appb-000011
否则
Figure PCTCN2022083123-appb-000012
为时隙n之后第一个属于sidelink资源池的时隙。T scal为选择窗长度T 2转换为以毫秒(ms)为单位后得到的值。
6)如果候选资源R x,y同时满足以下条件,则该候选资源R x,y应当从集合S A中被排除:
a)终端在时隙
Figure PCTCN2022083123-appb-000013
收到SCI,该SCI中的字段"Resource reservation period"(若字段"Resource reservation period"存在)指示了值P rsvp_RX,并且该SCI中的字段"Priority"指示了值prio RX,其中值P rsvp_RX为该SCI对应的PSSCH的资源预留间隔,单位为毫秒(ms),值prio RX为该SCI对应的PSSCH的优先级值。
b)终端根据该SCI确定的RSRP测量结果高于门限Th(prio RX,prio TX)。
c)终端在时隙
Figure PCTCN2022083123-appb-000014
收到的SCI确定的时频资源与候选资源
Figure PCTCN2022083123-appb-000015
重合,或 当SCI中的字段"Resource reservation period"存在时,终端预期在
Figure PCTCN2022083123-appb-000016
时隙收到的SCI所确定的时频资源与候选资源
Figure PCTCN2022083123-appb-000017
重合。其中q=1,2,...,Q,j=0,1,...,C resel-1,P′ rsvp_TX为终端的资源预留间隔P rsvp_TX由毫秒(ms)单位转换为逻辑时隙为单位得到的逻辑值,资源预留间隔(resource reservation interval)为高层提供的参数。P′ rsvp_RX为接收到SCI指示的资源预留间隔P rsvp_RX转换为逻辑时隙为单位得到的逻辑值。如果P rsvp_RX≤T scal并且n′-m≤P′ rsvp_RX
Figure PCTCN2022083123-appb-000018
否则,Q=1。其中如果时隙n属于SL资源池,那么
Figure PCTCN2022083123-appb-000019
否则
Figure PCTCN2022083123-appb-000020
为时隙n之后第一个属于SL资源池的时隙。T scal为选择窗长度T 2转换为以毫秒(ms)为单位后得到的值。应理解,将一个以毫秒(ms)为单位的值转换为逻辑时隙为单位表示计算该值对应的时长内包含的SL时隙的个数。终端根据接收到的SCI确定的时频资源为SCI指示的预留资源,时域上位于SCI的发送时隙之后。在如图4所示的示例中,终端1~4发送的SCI分别指示了各自预留的资源(预留资源上标注了对应发送终端的名称,例如终端1),终端1~4的预留资源位于选择窗口内,则侦听终端需要将与这些预留资源重叠的候选资源从候选资源集合S A排除掉。
7)如果候选资源集合S A中剩余的候选资源少于M total的X%,则将RSRP门限Th prioTX,prioRX升高3dB,然后重复步骤4)至6)。X的值可以从配置的多个值中选取,例如从20,35,50中选择。
经过上述的步骤,进行侦听的终端将最终得到的候选资源集合X A汇报给终端的高层,高层再从集合S A中完成最终的资源选择。
除了上述的一类侦听方式,终端还可以被配置为执行部分侦听。部分侦听方式的区别在于终端不是连续地监听侦听窗中的时隙,而是仅监听离散的部分时隙,以这些部分时隙上的监听情况排除选择窗中的候选资源。应理解,本申请实施例中描述的侦听可以包括全侦听和/或部分侦听。
3GPP标准组织在release 17立项了用户设备间协作(Inter-UE coordination)机制,标准讨论了UE协作机制的基本需求,但具体的应用还没有被规定。UE协作可以分为基于触发和基于非触发两种协作机制。示例性的,对于基于触发的协作机制,若发送终端需要协作终端的协作信息,发送终端要先向协作终端显式地发送触发信息,以触发协作终端向发送终端反馈协作信息,如图5所示。此时UE协作的机制可以由被协作终端,也就是发送终端,来主动的触发。对于基于非触发的协作机制,发送终端不需要主动发送触发信息给协作终端,协作终端自发的向发送终端反馈协作信息,如图6所示。此时协作终端发送协作信息可以是由事件触发(event trigger)的,或基于一些预定义的条件等其他方式,本申请对此不做限定。除了上述的触发和非触发方式,UE协作还可以是网络设备通过信令触发的或周期性触发的等等,本申请对此也不做限定。在UE协作机制下终端之间可以针对SL通信的各个阶段进行互相协作,例如协作终端可以协助发送终端进行资源选择。发送终端还可在其他终端的协作下在侧行链路资源上进行传输,例如在图5和图6所示的交互流程中发送终端基于来自协作终端的协作信息向协作终端或除协作终端之外的其他终端发送侧行数据。
需要理解的是,协作终端和被协作终端(或发送终端)这些名称仅用于描述终端在某次或某些UE协作场景的传输中产生的作用或实现的功能,不对终端本身的属性产生限定,也不代表它们是不同种类的终端。终端可以同时具备协作和被协作的功能,换句话说,一个终端可以在一次传输中作为协作终端,在另一次传输中作为被协作终端。为了描述方便,下文 中将一次协作交互中需要发送协作信息的终端称为终端A(例如图5和图6中的协作终端),将协作信息的接收方称为终端B(例如图5和图6中的发送终端)。
进一步的,用于被终端B发送触发信息和/或接收协作信息的资源可以是终端A指示的。以图5所示的交互流程举例来说,终端B还可以从终端A接收资源指示信息,该资源指示信息可以指示用于承载触发信息的资源和/或用于承载协助信息的资源,例如在终端B发送触发信息或接收协作信息之前,终端B从终端A接收资源指示信息,资源指示信息可以承载于SCI中或者PC5无线资源控制(radio resource control,RRC)信令中,该资源指示信息可以仅指示用于承载触发信息的资源,或仅指示用于承载协助信息的资源,或者同时指示用于承载触发信息的资源和用于承载协助信息的资源。终端B根据资源指示信息在对应的资源上发送触发信息和/或接收协作信息。相应的,在图6所示的交互流程中,终端B可以接收来自终端A的资源指示信息,在该资源指示信息指示的用于承载协助信息的资源上接收协作信息。
具体地,来自终端A的协作信息可以用于辅助终端B的侧行传输,比如协作信息可以包括可以使用的侧行链路资源的指示信息和/或不可以使用的侧行链路资源的指示信息。终端B可以直接使用协作信息指示的资源发送侧行信息,或者根据协作信息指示的资源确定用于发送侧行信息的资源。例如终端B在协作信息指示的资源和终端B自身通过侦听获取的可用于资源集合取并集或交集。又例如若协作信息指示不可以使用的侧行链路资源,终端B可以直接排除协作信息指示的该不可用的资源,或者终端B可以重选该不可用的资源。其中终端A通过协作信息指示的不可以使用的侧行链路资源,可以是终端A检测到已经被其他终端预留(reserve)的资源,或者终端A自身要用于发送或接收数据的资源等。相应的,协作信息中指示的可以使用的侧行链路资源可以是协作终端根据侦听(sensing)和/或自身用于发送或接收数据的资源确定的,例如侧行资源池中排除上述被预留的资源之后剩余的资源。终端B通过终端A提供的上述信息,可以更加有效的进行资源选择,避免干扰,提高系统的吞吐量。
在通过协作确定资源的模式中,终端B确定的传输资源完全或很大程度上依赖于终端A的调度或指示,同样的终端B发送或接收协作流程相关的信息的资源也可以由终端A调度或指示。例如,在UE协作的模式下终端B可以不进行侦听,仅根据终端A发送的协作信息来确定传输资源,这样可以降低终端B的功耗,同时也兼顾隐藏节点和/或暴露节点的问题,也可以解决一些处于覆盖外或距离其他终端较远或处于边缘区域的终端的资源选择问题。其中,隐藏节点问题是指存在一些发送终端无法感知的干扰节点,发送终端根据自身的侦听选择某个可用于发送侧行信息的资源,但接收终端在该资源上接收侧行信息时会受到将强的干扰,导致无法成功接收。暴露节点问题是指存在一些发送终端能够感知但实际对接收终端干扰较小的节点,发送终端根据自身的侦听排除某个已被暴露节点预约的资源,但实际上该资源对接收终端来说干扰较弱,是可用于正确接收侧行信息的资源。当终端B和周边其他终端距离比较远的时候,终端B通过侦听获知的信息会不准确,通过终端A的辅助可以一定程度上解决这些问题。虽然理论上基于终端A的辅助终端B可以更多更全面的获知可用资源的信息,进而更有效的确定传输资源,但同时可能出现一些不合理的情况导致时延增加,资源选择效率下降。例如,在终端B的数据到达时间和当前终端A配置的资源之间距离较远的情况下,由于配置的资源可能会导致终端B当前的待发送数据不满足包延迟预算(packet delay budget,PDB)。这种情况下,终端B无法利用终端A指示的资源,同时若终端B的传输依赖于终端A指示的资源,例如终端B在此之前可能没有进行侦听,最终导致无法确定传输资源使得数据无法传输,导致时延增加,甚至导致通信失败。
鉴于此,本申请提出一种用于资源确定的方法,可以让终端更合理地利用UE协作模式 下由其他协作终端提供的辅助信息(例如协作信息中指示的内容),结合自身状态来选择资源确定的方式,可以在各种情形下都能充分高效地确定传输资源,降低时延进而提高通信效率。下面结合附图对本申请实施例进行详细的说明,应理解,下述的实施例和实施方式可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。应理解,本申请中所解释的功能可以通过独立硬件电路、使用结合处理器/微处理器或通用计算机而运行的软件、使用专用集成电路,和/或使用一个或多个调制解调处理器来实现。当本申请描述为方法时,其还可以被计算机处理器和被耦合到处理器的存储器实现。
图7为本申请实施例提供的一种通信方法700的交互流程示意图。方法700的执行主体可以是终端,也可以是用于实现终端功能的通信装置,例如是终端设备,或具备终端功能的组合器件或组件,或是可应用于终端中的通信芯片(例如处理器、基带芯片、或芯片系统等)。该方法的执行主体还可以是网络设备,也可以是用于实现网络设备功能的通信装置,例如可以是具备网络设备功能的组合器件或组件,也可以是可应用于网络设备中的通信芯片(例如处理器、基带芯片、或芯片系统等)。下文为了方便,仅以终端为执行主体为例进行描述。如图7所示,方法700可以包括710部分和720部分。
710部分:第一终端接收来自第二终端或网络设备的资源指示信息,该资源指示信息用于指示第一资源和/或第二资源,其中,第一资源用于发送触发信息,该触发信息用于触发向第一终端发送协作信息,第二资源用于接收来自第二终端的协作信息,该协作信息用于指示可用于第一终端发送数据的第三资源。
720部分:在第一资源在时域上晚于第一时间点和/或第二资源在时域上晚于第二时间点的情况下,第一终端随机确定或基于侦听确定用于发送所述第一数据的资源,其中,第一时间点和第二时间点根据第一数据的包时延预算确定,第一数据为第一终端的待发送数据。
可选的,若接收来自网络设备的资源指示信息,该资源指示信息可以承载于下行控制信息(downlink control information,DCI),系统消息块(system information block,SIB),主信息块(master information block,MIB),或RRC信令中。或者可选的,资源指示信息也可以是预配置的,此时710部分可省略,第一终端基于预配置信息就可以获知第一资源和/或第二资源。
需要说明的是,从5G服务质量(quality of service,QoS)流(QoS flow)的需求设计角度来说,包时延预算(packet delay buget,PDB)为5G QoS的特征之一。在不同的协议层以及不同的通信实体之间PDB参数可以折算为不同的数值。本申请中描述的包时延预算(PDB)可以为终端的物理层在进行发送时需要遵从的时延预算参数,也就是说本申请中描述的包时延预算PDB,可以表示终端的待发送数据在物理层需要满足的时延上限。具体的,本申请中描述的PDB可以是分组数据单元(packet data unit,PDU)映射的服务质量(quality of service,QoS)流(QoS flow)中定义的包时延预算PDB通过折算之后的数值。或者PDB数值在各协议层统一,本申请对此不做限定。例如,某个PDU对应的QoS flow中定义的PDB长度为100us,终端在进行侧行传输时需满足的包时延预算PDB可能是基于该100us折算后的在PC5接口上从发送终端到接收终端之间的最大时延上限,该折算的最大时间长度可以小于或等于100us。或者包时延预算也可以为一个数据包从业务层产生到成功发送的最大的时延,本领域技术人员可以理解包时延预算PDB对于进行PC5接口通信的终端的实际含义,上述举例仅用于说明而不作为限定。另外包时延预算也可以是以物理层的时域单位来衡量,例如以子帧(subframe)个数,时隙(slot)个数,或符号(symbol)个数来描述包时延预算PDB,除上述举例之外也可以是其他时域单位,本申请对此不做限定。应理解,本申请中描述的第一数 据的包时延预算指的是第一数据对应的包时延预算,数据和包时延预算之间的对应关系例如可以是一类业务产生的数据对应一个包时延预算的值,或者一种优先级的数据对应一个包时延预算的值,又或者不同的可靠性对应不同的包时延预算,又或者不同的通信范围对应不同的包时延预算。因此本申请中“第一数据的包时延预算”这样的描述并不表示包时延预算必然为针对每个数据包(或每个待发送的数据)分别设置的属性或分别配置的参数,仅表示对于待发送的数据或每次传输来说终端能够已知一个对应的包时延预算。
示例性的,可以通过图8的示意来进一步说明,第一数据的包时延预算起始时间点为n 1,第一数据的包时延预算结束时间点为m 1,其中[n 1,m 1]之间的时长为第一数据的包时延预算,可以表示为T pdb。时间点n 1可以是第一数据达到物理层的时间点,或者可以是第一数据在业务层(application layer)产生的时间点。已知包时延预算T pdb和起始时间点n 1即可知结束时间点m 1,即m 1=n 1+T pdb。应理解,本申请中描述的时间点(time point)在表现形式上可以是以某个时域单位为粒度,时域单位可以是时隙(slot)、子帧(subframe)、符号(symbol)或迷你时隙(mini-slot)等,还可以是其他时域调度单位,本申请实施例对此不做限定。例如描述某时间点为时隙n或符号n,此时某个资源不晚于某个时间点表示该资源可以位于该时隙n或符号n,或早于该时隙n或符号n。相应的,某个资源晚于或不在于某个时间点,表示该资源位于该时隙n或符号n之后。另外,时间点也可以是一个时刻,例如以us为单位的某个时刻,或描述某时间点为时隙n,子帧n,迷你时隙n,或符号n的起始时刻或结束时刻等。例如,某个资源早于或者不晚于时间点n表示该资源可以位于时隙n的结束时刻或起始时刻之前。某个资源晚于或者不早于某个时间点表示该资源可以位于时隙n的结束时刻或起始时刻之后。
在上文图5和图6部分的描述中提到,UE协作流程可以包括基于触发和基于非触发的两种方案,在基于非触发的UE协作流程中(如图6)发送终端可以不发送触发信息。在图6所示的场景中,资源指示信息可以仅指示第二资源,此时第一终端仅在第二资源在时域上晚于第二时间点的情况下随机确定或基于侦听确定用于发送所述第一数据的资源。在图5所示的场景中,资源指示信息可以指示第一资源和第二资源,此时第一终端可以仅在第一资源在时域上晚于第一时间点的情况下随机确定或基于侦听确定用于发送所述第一数据的资源,也可以仅在第二资源在时域上晚于第二时间点的情况下随机确定或基于侦听确定用于发送所述第一数据的资源,或者第一终端在以上两种情形都满足的情况下随机确定或基于侦听确定用于发送所述第一数据的资源。另外在图5所示的场景中,资源指示信息也可以仅指示第一资源和第二资源中的一个,第一终端对应地判断该资源是否满足上述的时间关系,此处不再重复。
示例的,第一终端可以是上文描述的UE协作场景中的被协作终端,也就是终端B,第二终端可以是协作终端,也就是终端A。另外本申请实施例提供的方法也可以不限定于UE协作场景,也就是说第一终端和第二终端可以不存在上文中描述的协作与被协作的关系,可以是任意两个可进行侧行通信的终端。
通过本申请实施例提供的方法,第一终端在确定第二终端指示的第一资源晚于与第一数据的包时延预算相关的第一时间点和/或第二资源晚于与第一数据的包时延预算相关的与第一数据的包时延预算相关的第二时间点的情况下,不再基于第二终端发送的协作信息来确定传输资源(用于发送所述第一数据的资源),第一终端随机确定或基于侦听自行确定传输资源。 换句话说,第一终端在这种情况下确定传输资源时不会再考虑第二终端将要发送的协作信息,或者说独立于协作信息指示的或将要指示的第三资源去确定传输资源。由于第一时间点和第二时间点是根据第一数据的包时延预算确定的,第一终端确定或判断第一资源与第一时间点之间的先后关系和/或第二资源与第二时间点之间的先后关系(即确定第一资源在时域上是否晚于第一时间点和/或第二资源在时域上是否晚于第二时间点),可以相当于预判协作信息指示的或将要指示的第三资源是否会满足第一数据的包时延预算。第三资源满足第一数据的包时延预算可以理解为第三资源在第一数据的包时延预算内,在第三资源包括多个资源的情况下理解为第三资源中的至少一个资源在第一数据的包时延预算内,或者理解为第三资源中的多个资源均在第一数据的包时延预算内。通过这种方式第一终端可以及时地确定是否采用协作终端将提供或指示的资源来进行传输,在适当的情形下自行确定传输资源,避免在一些情况下等待接收协作信息造成时延,也避免在协作信息指示的第三资源不满足待发送数据的包时延预算的情况下导致丢包或通信中断等,提高资源选择的合理性,提高通信效率。
示例的,第一终端独立于协作信息指示的或将要指示的第三资源确定传输资源可以有多种不同的实现方式。一种可能的实现方式中,第一终端可以不发送触发信息,使得协作场景不被触发。另一种可能的实现方式中,UE协作模式已被触发,第一终端可以不接收协作信息,或不译码协作信息。应理解,UE协作模式已被触发可以是第一终端已发送触发信息,或者在不需要发送触发信息的UE协作模式中(例如图6所示),第一终端已知UE协作模式已被触发。可选的,在上述可能的实现方式中第一终端可能仍处于侦听模式,第一终端可以基于当前时间点之前的侦听确定用于发送第一数据的资源。或者在不需要发送触发信息的UE协作模式中(例如图6所示),第一终端已知UE协作模式已被触发,第一终端可以不接收协作信息,或不译码协作信息。可选的,若第一终端处于非侦听状态,也就是说第一终端在此之前的一段时间内没有进行监听,例如没有检测和译码周围终端发送的控制信息,以及RSRP测量等。第一终端可以在当前时间点之后的一个时间窗内进行侦听,来实现基于侦听确定传输资源。相当于说第一终端确定第一资源在时域上晚于第一时间点和/或第二资源在时域上晚于第二时间点的情况下从非侦听模式切换为侦听模式。在上述的任一种实现方式中,第一终端除了基于侦听确定传输资源外,还可以随机确定传输资源。随机确定或随机选择是指第一终端在物理层将资源选择窗中包含的全部候选资源上报给第一终端的高层,高层从中随机选择将用于第一数据传输的资源。
示例性的,如图13(a)所示,第一终端在时间点n被触发资源选择,此时第一终端未接收到来自第二终端的协作信息,在第一资源在时域上晚于第一时间点和/或第二资源在时域上晚于第二时间点的情况下,第一终端可以在时间点n之后的时间窗[n+S1,n+S2]进行侦听,并基于侦听在对应的资源选择窗中确定传输资源。
应理解,第一终端不基于协作信息确定传输资源的意思是第一终端不根据协作信息确定传输资源。具体的,第一终端可以在未接收到协作信息的状态下确定传输资源,或者在收到协作信息的状态下不考虑该协作信息指示的内容。但是第一终端不考虑协作信息自行确定的传输资源可能与协作信息指示的第三资源(若存在协作信息)有重叠,此时仍然应该认为第一终端未考虑协作信息确定传输资源。
需要说明的是,第一终端确定第一资源在时域上晚于第一时间点和/或第二资源在时域上晚于第二时间点,和第一终端随机确定或基于侦听确定用于发送所述第一数据的资源的两个动作在实际操作中可以是同时完成的,或者可以是第一终端分两步进行的。或者说上述的两个“确定”步骤从第一终端的角度来说可以是体现为一个动作,或者体现为分别的两个动作。
因此在一些实施例中,720部分可以替换为721部分和722部分,其中,721部分:第一终端确定第一资源在时域上晚于第一时间点和/或第二资源在时域上晚于第二时间点,其中,第一时间点和第二时间点根据第一数据的包时延预算确定,第一数据为第一终端的待发送数据。722部分:第一终端随机确定或基于侦听确定用于发送所述第一数据的资源。
在720部分,仅限定了在第一资源在时域上晚于第一时间点和/或第二资源在时域上晚于第二时间点的情况下第一终端的行为,可以不限定在其他情况下第一终端的具体行为。在除720部分限定的情况之外,第一终端可以有多种不同的处理方法。
在一些可能的实施方式中,方法700还包括730部分:在第一资源在时域上不晚于第一时间点和第二资源在时域上不晚于第二时间点的情况下,第一终端基于在第二资源上接收到来自第二终端的协作信息确定用于发送第一数据的资源。在该种实施方式中,第一资源和第二资源均满足上述时间关系,此时第一终端利用协作信息指示的第三资源确定传输资源。应理解,在这些可能的实施方式中730部分和720部分(或722部分)属于方法700中可能在不同时间段共同存在的两个分支,换句话说,730部分和720部分(或722部分)可以共同存在于方法700中,但是730部分和720部分(或722部分)可能不会在同一时间发生。或者,在除720部分限定的其他情况下,第一终端基于在第二资源上接收到来自第二终端的协作信息确定用于发送第一数据的资源。例如当资源指示信息用于指示第一资源和第二资源,若720部分限定第一终端,在第一资源和第二资源中的任一个晚于上述对应时间点的情况下,随机确定或基于侦听确定传输资源,那么730部分包括第一终端,在第一资源和第二资源均不晚于上述对应时间点的情况下,基于协作信息确定用于发送第一数据的资源。若720部分限定第一终端,在第一资源和第二资源均晚于上述对应时间点的情况下,随机确定或基于侦听确定传输资源,那么730部分可以包括第一终端,在第一资源和第二资源中的任一个不晚于上述对应时间点的情况下,基于协作信息确定用于发送第一数据的资源。
可选的,730部分还可以替换为731部分和732部分,其中731部分:在第一资源在时域上不晚于第一时间点和第二资源在时域上不晚于第二时间点的情况下,第一终端在第二资源上接收来自第二终端的协作信息。732部分:在第三资源在时域上不晚于第三时间点的情况下,第一终端基于该协作信息确定用于发送第一数据的资源。在该种实施方式中,在第一资源和第二资源均满足上述时间关系的情况下,此时第一终端还要确定第三资源是否满足包时延预算相关的时间点,在第三资源也满足相应的时间关系的情况下才利用协作信息指示的第三资源确定传输资源。可选的,在731部分第一终端也可以在第一资源和第二资源中的任一个不晚于上述对应时间点的情况下,接收协作信息并执行732部分,类似上一段中描述的情形,此处不再重复。
具体的,基于该协作信息确定用于发送第一数据的资源可以有以下一些方式:
方式一,当协作信息指示可以用于第一终端发送第一数据的资源时,第一终端可以直接使用协作信息指示的资源发送第一数据,或者第一终端可以结合协作信息指示的资源以及第一终端自身通过侦听获取的资源,共同确定用于发送第一数据的资源。具体的,第一终端终可以对协助信息指示的资源和第一终端自身通过侦听获取的资源取并集或交集。
方式二,当协作信息指示不可以用于第一终端用于发送第一数据的资源时,第一终端在确定发送第一数据的资源时,可以将协助信息指示的资源排除,或者第一终端可以重选协助信息指示的不可以用于发送第一数据的资源。
可选的,第一终端在确定的用于发送第一数据的资源上发送第一数据。其中,第一终端可以是进行单播(unicast)或组播(multicast),单播可以理解为一次传输中仅将第一数据发 送给一个接收终端的通信方式,组播可以理解为将第一数据同时发送给多个接收终端的通信方式。另外,如图7所示,第一数据的接收终端可以包括第二终端,也可以不包括第二终端,并且第一数据的接收终端可以是一个或多个终端。
在方法700的一种实施方式中,第一时间点根据第一数据的包时延预算确定,进一步的,第一时间点在第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第一时长。可选的,第一时长可以是预配置的,或由网络设备配置的。示例性的,如图8(a)所示,第一时长表示为T R1,第一时间点早于第一数据的包时延预算结束时间点m 1并与时间点m 1间隔第一时长T R1,可以表示为m 1-T R1。图8中的R 1表示第一资源(将用于承载触发信息的资源),R 2表示第二资源(将用于承载协作信息的资源),R 3表示第三资源(可用于第一终端发送数据的资源)。第一时间点可以用来预估或判断若第一终端在第一资源R 1上发送触发信息触发UE协作流程是否有可能获得满足第一数据的包时延预算的第三资源R 3。第三资源满足第一数据的包时延预算可以理解为第三资源在第一数据的包时延预算内,或者在第三资源包括多个资源的情况下理解为第三资源中的至少一个资源或第三资源中的全部资源在第一数据的包时延预算内。第一时间点作为最晚时间点,也就是说在时间点n 1之后第一资源R 1如果位于第一时间点m 1-T R1之后的话,则此时触发UE协作流程有较大概率下最终被指示的第三资源R 3会超出第一数据的包时延预算结束时间点m 1。因此通过设置第一时长,便于终端在实际发送触发信息或接收协作信息之前就能够根据第一资源本身的时域位置来判断是否利用UE协作流程中由协作终端指示的第三资源来传输数据,而不用必须等到接收到协作信息之后。在上述的UE协作流程可以参照图5和/或图6部分的描述,此处不再重复。在方法700中的另一种实施方式中,第一时间点根据第一数据对应的资源选择窗确定,具体的第一时间点在资源选择窗的结束时间点之前并与资源选择窗的结束时间点间隔第一时长。应理解此处为描述方便,同样将第一时长表示为T R1,但是这里的第一时长在数值上可以与图8(a)部分描述的不同。在上文描述了第一终端在时间点n触发资源选择时,资源选择窗定义为[n+T 1,n+T 2],一般的,0≤T 1≤T proc,1,T proc,1是发送终端处理待发送数据所需的时间,根据发送终端能力的不同T proc,1的取值可以不同。另外T 2_min<T 2≤剩余包延迟预算PDB,剩余PDB表示从时间点n开始第一数据的包时延预算PDB的剩余时长。该种可能的情况下可以不体现包时延预算结束时间点,而是通过描述与资源选择窗结束时间点n+T 2之间的位置关系来表示第一时间点。例如图8(b)所示,此时第一时间点可以表示为‘n+T 2-T R1’。由于资源选择窗一般位于第一数据的包时延预算内,因此根据第一数据对应的资源选择窗确定第一时间点可以同样起到上述的有益效果,而不引入新的时间参考点,减少协议复杂度,可兼容性更高。同样的,第一时长可以是预配置的,或由网络设备配置的。
可选的,第一时长可以根据以下中的至少一项确定:第二资源的时间单元个数,用于发送所述第一数据的资源的时间单元个数,触发信息的处理时间,协作信息的准备时间,协作信息的处理时间,第一数据的准备时间。为了方便描述,本申请中将第一资源的时间单元个数表示为N R1,N R1指的是第一资源在时域上占用的时间单元个数。第二资源的时间单元个数表示为N R2,与N R1类似此处不再赘述。用N R3表示用于发送所述第一数据的资源的时间单元 个数,或第三资源的时间单元个数。如图11(b)所示,在第三资源可能包括多个资源的情况下,N R3应当包括各个资源占用的时间单元个数和资源间的间隔,资源间的间隔可以与反馈信息处理时间P f有关。本申请中将触发信息的处理时间表示为D R1,D R1可以理解为译码该触发信息所需要的处理时间。本申请中将协作信息的准备时间表示为P R2,P R2可以理解为被触发后准备协作信息的时间。本申请中将协作信息的处理时间表示为D R2,类似的,D R2理解为译码该协作信息所需要的处理时间。将第一数据的准备时间表示为P R3,P R3可以理解在第三资源中发送第一数据前的准备待发送的数据流的时间。一种可能的实施方式中,如图9所示,第一时长可以为T R1=N R2+N R3,此时第一时长根据第二资源的时间单元个数,和用于发送所述第一数据的资源的时间单元个数确定。在该种可能的实施方式中,满足条件的第一资源的时间范围较大,相当于第一终端判断第一资源满足时间要求的阈值较低,能够在通过预判减少时延的同时尽量充分利用协作终端指示的传输资源。另一种可能的实施方式中,如图10所示,第一时长可以为T R1=N R2+N R3+D R1+D R2+P R2+P R3,此时第一时长根据第二资源的时间单元个数,用于发送第一数据的资源的时间单元个数,触发信息的处理时间,协作信息的准备时间,协作信息的处理时间,和第一数据的准备时间确定。在该种可能的实施方式中,第一时长的设置可以体现协作信令及数据的译码和准备时间,使得第一终端更充分保证第一数据在包时延预算结束时间点之前或资源选择窗的结束时间点之前完成传输。应理解,上述图9和图10所示的实施方式仅为示例,第一时长还可以根据上述任一项或多项的组合确定。
需要说明的是,本申请中描述的各种处理时间和准备时间可以是协议中定义的时间,或终端预估的时间,可以不表示产品实现中具体产生的时长。
应理解,本申请实施例描述的时间单元表示时域上的调度单元,在不同通信系统中或不同应用场景下可以是不同的时域单位,例如时间单元可以是时隙(slot)、子帧(subframe)、符号(symbol)或迷你时隙(mini-slot)等,还可以是其他时域调度单元,本申请实施例对此不做限定。
需要说明的是,第一时长根据哪些元素确定可能对第一终端来说是不可见的,像上文提到的,第一时长可以是预配置的或由网络设备配置的,也就是说终端本身不需要知道第一时长是如何确定的。如果第一时长是预配置的或协议预定义的,该预配置的第一时长能够体现上述时间关系,即能够用来根据第一资源判断是否有可能通过UE协作流程获得满足第一数据的包时延预算的第三资源R 3。第一时长可以是处于一个区间范围中的值,比如第一时长至少不小于T R1(min)=N R2+N R3,不大于T R1(max)=N R2+N R3+D R1+D R2+P R2+P R3。第一时长在上述区间内能够使得终端较好的根据第一资源判断第三资源是否可用,减少时延提高通信效率。示例性的,触发信息的处理时间D R1的取值和协作信息的处理时间D R2的取值可以参照上文表1中描述的
Figure PCTCN2022083123-appb-000021
即D R1和D R2的取值可以与
Figure PCTCN2022083123-appb-000022
相等,并且不同的子载波大小可以对应不同的处理时间的值。协作信息的准备时间P R2的上界和第一数据的准备时间P R3的上界可以参照上文中描述的参数T proc,1,例如0<P R2<=T proc,1,0<P R3<=T proc,1,其中T proc,1的取值可以如表3所示。
表3:
Figure PCTCN2022083123-appb-000023
Figure PCTCN2022083123-appb-000024
另外可以预配置或由网络设备配置多个时长,上述的第一时长为多个时长中的一个。例如,多个时长分别对应不同的信道繁忙比率(channel busy ratio,CBR),CBR更大对应的时长更长,第一终端根据CBR获知对应的第一时长。再例如,多个时长分别对应不同的数据信道优先级等级,更高优先级对应的时长更长,第一终端根据承载第一数据的数据信道的优先级等级获知对应的第一时长。下述的第二时长和第三时长可以有类似的配置,后文不再赘述。
相应的,在方法700的一种实施方式中,第二时间点在第一数据的包时延预算结束时间点之前并与第一数据的包时延预算结束时间点间隔第二时长。可选的,第二时长为预配置的,或由网络设备配置的。示例的,如图8所示,第二时长表示为T R2,第二时间点早于第一数据的包时延预算结束时间点m 1并与时间点m 1间隔第二时长T R2,第二时间点可以表示为m 1-T R2。与第一时间点类似的,第二时间点可以用来预估或判断若第一终端在第二资源R 2上接收协作信息,该协作信息是否有可能指示满足第一数据的包时延预算的第三资源R 3。第二时间点为可能满足的最晚时间点,也就是说在时间点n 1之后的第二资源R 2如果位于第二时间点m 1-T R2之后的话,则此时有较大概率下最终被指示的第三资源R 3会超出第一数据的包时延预算结束时间点m 1。通过设置第二时长,便于终端在实际接收协作信息之前就能够根据第二资源本身的时域位置来判断是否利用UE协作流程中由协作终端指示的第三资源来传输数据,而不用必须等到接收到协作信息之后。在另一些实施方式中,第二时间点根据第一数据对应的资源选择窗确定,具体的第二时间点在资源选择窗的结束时间点之前并与资源选择窗的结束时间点间隔第二时长。例如图8(b)所示,此时第二时间点可以表示为‘n+T 2-T R2’。类似的描述可参照第一时间点部分,此处不再重复。同样的,第二时长可以是预配置的,或由网络设备配置的。
可选的,第二时长可以根据以下中的至少一项确定:用于发送所述第一数据的资源的时间单元个数,协作信息的处理时间,第一数据的准备时间。一种可能的实施方式中,如图9所示,第二时长可以为T R1=N R3,此时第二时长根据的用于发送所述第一数据的资源的时间单元个数确定。在该种可能的实施方式中,满足条件的第一资源的时间范围较大,相当于第一终端判断第一资源满足时间要求的阈值较低,能够在通过预判减少时延的同时尽量充分利用协作终端指示的传输资源。另一种可能的实施方式中,如图10所示,第二时长可以为T R1=N R3+D R2+P R3,此时第一时长根据用于发送所述第一数据的资源的时间单元个数,协作信息的处理时间,和第一数据的准备时间确定。在该种可能的实施方式中,第一时长的设置可以体现协作信令及数据的译码和准备时间,使得第一终端更充分保证第一数据在包时延预算结束时间点之前或资源选择窗的结束时间点之前完成传输。应理解,上述图9和图10所示的实施方式仅为示例,第二时长还可以根据上述任一项或多项的组合确定。
同样的,终端本身不需要知道第二时长是如何确定的,第二时长能够用来根据第二资源判断协作信息将指示的第三资源R 3是否有可能满足第一数据的包时延预算。第二时长也可以是处于一个区间范围中的值,比如第一时长至少不小于T R1(min)=N R3,不大于
Figure PCTCN2022083123-appb-000025
同样示例性的,协作信息的处理时间D R2的取值可以参照上文表1 中描述的
Figure PCTCN2022083123-appb-000026
即不同的子载波大小对应不同的处理时间的值。第一数据的准备时间P R3的上界可以参照表3中的参数T proc,1。第二时长属于上述区间内能够使得终端较好的根据第二资源判断第三资源是否可用,减少时延提高通信效率。
类似的,在方法700中,第三时间点可以在第一数据的包时延预算结束时间点之前并与第一数据的包时延预算结束时间点间隔第三时长。可选的,第三时长为预配置的,或由网络设备配置的。第三时长可以大于或等于0。在一些可能的实施方式中,如图11(a)所示,第三时长可以为0,此时第三时间点等于第一数据的包时延预算结束时间点,第三资源位于第一数据的包时延预算结束时间点以内。此时可以保证第一终端在第一数据的包时延预算结束时间点之前完成第一数据的传输,避免通信失败。如图11(b)所示,在第三资源包括多个资源的情况下,应该考虑第三资源整体是否晚于第三时间点。在另一些可能的实施方式中,如图11(c)所示,第三时长大于0,即T R3>0,此时第一终端需要在更早的第三时间点之前完成第一数据的传输,以保证第一终端有足够的时间保障数据传输,例如当协作消息指示的资源在时域上满足包时延预算,但是在频域上占用的子信道个数与终端的发送需求不相符时,此时终端还需要预留足够的时间来自行确定发送第一数据的资源。例如,终端可以预留不小于资源选择窗大小的时长,保证在确定第三资源不满足终端需求的情况下有足够的时间在包时延预算结束时间点之前完成资源选择和发送,否则会导致资源碰撞概率的增加。例如,此时第三时长可以根据资源选择窗大小来确定,或者第三时长可以根据资源选择窗大小和第三资源占用的时域大小来确定。可选的,第三时长还可以根据资源侦听窗的大小确定,比如终端需要在第一数据的包时延预算结束之前预留足够的时间用于资源侦听和资源选择,以确保第一数据能够在包时延预算结束之前完成传输。此时设置第三时长可以保障第一终端在获知第三资源不可用之后仍有足够的时间进行侦听和资源选择,在减少时延的基础上,进一步提高通信可靠性。
在方法700中的另一些实施方式中,第三时间点根据第一数据对应的资源选择窗确定,具体的第三时间点在资源选择窗的结束时间点之前并与资源选择窗的结束时间点间隔第三时长。例如,此时第三时间点可以表示为‘n+T 2-T R3’。类似的描述可参照第一时间点部分,此处不再重复。同样的,第三时长可以是预配置的,或由网络设备配置的。
在上文图5和图6部分的描述中提到,UE协作流程可以包括基于触发和基于非触发的两种方案,在基于非触发的UE协作流程中(如图6)发送终端可以不发送触发信息。因此在一些实施例中,例如在如图6所示的基于非触发的场景下,方法700中的710部分可以替换为:第一终端接收来自第二终端的资源指示信息,该资源指示信息用于指示第二资源,其中,第二资源用于接收来自第二终端的协作信息,该协作信息用于指示可用于第一终端发送数据的第三资源。方法700中的720部分可以替换为:在第二资源在时域上晚于第二时间点的情况下,第一终端随机确定或基于侦听确定用于发送所述第一数据的资源,其中,第二时间点根据第一数据的包时延预算确定,第一数据为第一终端的待发送数据。应理解,为了方便理解和描述,上述替换的部分中沿用了“第二资源”,“第三资源”,“第二时间点”这些名词,仅为了与本申请中其他部分描述的定义保持一致免于重复描述产生冗余,并不代表任何顺序上的限定。换句话说,在这些实施例中可以并不存在第一资源和第一时间点。需要说明的是,在该种实施例中可以复用上文所述的各种实施方式和细节限定,重复的内容不再赘述。
在本申请中的一些实施例中,第一终端也可以直接判断第二终端发送的协作信息指示的第三资源是否满足第一数据的包时延预算,此时可以更准确的确定第三资源是否满足时延要 求,进而更充分地利用UE协作机制。如图8所示,此时本申请提供的方法800可以包括810部分和820部分。
810部分:第一终端接收第二终端的协作信息,该协作信息指示可用于第一终端发送数据的第三资源。
820部分:在确定该第三资源在时域上晚于第三时间点的情况下,第一终端随机确定或基于侦听确定用于发送第一数据的资源,其中,第一终端确定资源不考虑该协作信息,第三时间点为根据第一数据的包时延预算或第一数据对应的资源选择窗确定的,第一数据为与第三资源相关的待发送数据。
关于第三时间点的描述可以参照上文的描述,不再赘述。可选的,第一终端在确定的用于发送第一数据的资源上发送第一数据。其中,第一终端可以是进行单播(unicast)或组播(multicast)。另外,如图12所示,第一数据的接收终端可以包括第二终端,也可以不包括第二终端。
应理解,方法800可以与方法700组合,并且可以复用上文方法700中描述的不同实施方式,以及复用方法700部分描述的其他细节,重复的部分下文不再赘述。具体的,方法800与方法700组合的方式,可以是在相同通信系统中,当第一终端确定传输资源的时间点不同时,第一终端执行方法700的步骤或第一终端执行方法800的步骤。例如,假设第一终端确定传输资源的时间点为时隙n,若第一终端在时隙n或时隙n之前未接收来自第二终端的协作信息,如图13(a)所示,此时第一终端可以执行方法700,即第一终端通过第一资源和/或第二资源的时域位置确定是否利用第二终端指示或将指示的第三资源。第一终端随机确定或基于侦听确定传输资源的实现方式可以参照上文中的描述,此处不再重复。
如图13(b)示例的,若第一终端在时隙n或时隙n之前已经接收到来自第二终端的协作信息,此时第一终端可以执行方法800,即第一终端可以直接判断第三资源是否满足第一数据的包时延预算或资源选择窗。第一终端随机确定或基于侦听确定传输资源的实现方式可以参照上文中的描述,此处不再重复。可选的,在未收到协作信息的情况下,第一终端也可以仍确定第一资源是否晚于第一时间点和/或第二资源是否晚于第二时间点,此时相当于方法800还包括:
第一终端接收来自第二终端的资源指示信息,资源指示信息用于指示第一资源和/或第二资源,其中,第一资源用于发送用于触发向所述第一终端发送协作信息的触发信息,第二资源用于接收所述协作信息。第一终端确定第一资源在时域上位于第一时间点之前和/或确定第二资源在时域上位于第二时间点之前。同样的,第一时间点与第二时间点参照上文的描述,此处不再重复。
在上文描述的方法700和方法800中的一些实施方式中,定义了第一时间点在第一数据的包时延预算结束时间点之前且与第一数据的包时延预算结束时间点间隔第一时长T R1,或者第一时间点在第一数据对应的资源选择窗结束时间点之前且与资源选择窗结束时间点间隔第一时长T R1。应理解第一时间点也可以以第一数据的包时延预算起始时间点为锚点来描述。以图8(a)为例,第一数据的包时延预算表示为T pdb,即时间点n1到时间点m1之间的时长为T pdb,第一时间点可以描述为在第一数据的包时延预算起始时间点之后并与第一数据的包时延预算起始时间点间隔时长T pdb-T R1。类似的,本申请中的第二时间点、第三时间点也可以以第一数据的包时延预算起始时间点为锚点来描述。在方法700和方法800中的另一些实施方式中,定义了第一时间点在第一数据对应的资源选择窗结束时间点之前且与资源选择窗结束时间点 间隔第一时长T R1,应理解第一时间点也可以以第一数据对应的资源选择窗起始时间点为锚点来描述或以触发资源确定的时间点n为锚点来描述。以图8(b)为例,第一时间点可以描述为在第一数据对应的资源选择窗起始时间点之后且与该资源选择窗起始时间点间隔时长‘T 2-T 1-T R1’。或者第一时间点可以描述为在第一数据对应的资源选择窗起始时间点之前且与该资源选择窗起始时间点间隔时长‘T R1-T 2-T 1’。或者第一时间点可以描述为在时间点n之后且与该时间点n间隔时长‘T 2-T R1’。同样的第二时间点、第三时间点也也可以以第一数据对应的资源选择窗起始时间点为锚点或以触发资源确定的时间点n为锚点来描述,具体可参考前文的类似描述,此处不再重复。
需要说明的是,本申请实施例描述的方法也可以不体现第一时间点、第二时间点或第三时间点,例如“第一资源在时域上晚于第一时间点”可以替换为“第一资源位于从第一数据的包时延预算起始时间点起的第四时长内”,或者可以替换为“第一资源位于从确定资源的时间点n起的第五时长内”,相应的,第四时长、第五时长可以是预配置的或由网络设备配置的,配置及确定第四时长或第五时长的方法可以类似上文中第一时长的描述,数值上第四时长可以体现为T pdb-T R1,第五时长可以体现为T 2-T R1,但并不限定必须要根据第一时长得到第四时长或第五时长。应理解,此处描述的“第四”或“第五”仅用于和上文描述的其他时长区别,不限定顺序或个数。相应的,第二资源和/或第三资源的描述也可以替换为类似的方式,此处不再重复。
应理解,本申请实施例的各个方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。上述各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图7至图13详细说明了本申请实施例提供的方法。以下,结合图14至图16详细说明本申请实施例提供的装置。
图14是本申请实施例提供的通信装置的示意性框图。该通信装置可以是终端,也可以是具备终端功能的部件或组件,也可以是应用于终端中的芯片(例如基带芯片),所述功能或模块可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。该通信装置也可以是其他通信模块,用于实现本申请方法实施例中的方法。如图14所示,该通信装置1000可以包括收发模块1100和处理模块1200。可选的,还可以包括存储模块1300。
在一种可能的设计中,如图14中的处理模块和收发模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
可选的,本申请实施例中的通信装置1000中各个模块可以用于执行本申请中图7和图8描述的方法和本申请中描述的各个实施例及实施方式。该通信装置可以应用于上述方法实施例中描述的第一终端,或应用于上述方法实施例中描述的第二终端或第三终端。
一些实施例中,处理模块1200用于执行方法700中的720部分和/或730部分,或用于执行721部分和722部分,或用于执行731部分和732部分,处理模块1200还可以用于执行方法800中的820部分,以及其他需要装置内部处理的步骤。收发模块1100用于执行方法 700中的710部分、方法800中的810部分,以及其他涉及发送或接收的动作。
一些实施例中,通信装置1000中的存储模块1300包括程序指令,当处理模块1200读取并执行该程序指令,使得通信装置1000实现上述方法实施例部分提供的方法。
应理解,通信装置1000中的各模块实现本申请中实施例提供的方法的具体过程中涉及到的参数、方案细节、实施方式以及有益效果等均可参照上述方法实施例中的详细说明,为了简洁,在装置实施例部分不再赘述。
当通信装置1000为终端,或具备终端功能的组件时,收发模块1100可以对应于图16示出的终端2000中的收发器2100,处理模块1200可以对应于图16示出的终端2000中的基带处理器2400,存储模块1300可以对应于图16示出的终端2000中的存储器2300。当通信装置1000为应用于终端中的通信芯片时,通信装置1000可以对应于图16示出的基带处理器2400(或称为基带芯片),此时收发模块1100可以为输入/输出接口,处理模块1200可以包括基带芯片中的一个或多个CPU处理器、数字信号处理器等,存储模块1300可以为基带芯片内的存储器或者为基带芯片外的存储器。
图15是本申请实施例提供的处理装置1200的结构示意图。如图所示,该处理装置1200包括处理模块1202和接口模块1201。可选的,该处理模块还可以包括存储模块1203。其中,处理模块1202、接口模块1201和存储模块1203之间互相耦合或连接,互相之间可以传递控制和/或数据信号,该存储模块1203用于存储计算机程序,该处理模块1202用于从该存储模块1203中调用并运行该计算机程序,以实现上述的方法700或800。应理解,图中所示的处理装置1200仅为示例。在具体实现时,该存储模块1203也可以集成在处理模块1202中,或者独立于处理模块1202。本申请对此不做限定。
图16是本申请实施例提供的终端2000的结构示意图。该终端能够执行本发明实施例提供的方法。如图所示,该终端2000包括收发器2100、应用处理器2200、存储器2300和基带处理器2400。
收发器2100可以调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收接入网设备发射的下行链路信号。收发器2100可以调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。具体的收发器2100可以由射频芯片实现。
基带处理器2400也可以称为基带芯片,该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。在一个可能的设计中,基带处理器2400可包括编码器,调制器,解码器,解调器。编码器用于对待发送信号进行编码。例如,编码器可用于接收要在上行链路上发送的业务数据和/或信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码、或交织等)。调制器用于对编码器的输出信号进行调制。例如,调制器可对编码器的输出信号(数据和/或信令)进行符号映射和/或调制等处理,并提供输出采样。解调器用于对输入信号进行解调处理。例如,解调器处理输入采样并提供符号估计。解码器用于对解调后的输入信号进行解码。例如,解码器对解调后的输入信号解交织、和/或解码等处理,并输出解码后的信号(数据和/或信令)。编码器、调制器、解调器和解码器可以由合成的调制解调处理器来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。可选的,基带处理器2400中可以包括存储器。
基带处理器2400可以从应用处理器2200接收可表示语音、数据或控制信息的数字化数据,并对这些数字化数据处理后以供传输。所属调制解调器处理器可以支持多种通信系统的多种无线通信协议中的一种或多种,例如LTE,新空口NR,通用移动通信系统(Universal  Mobile Telecommunications System,UMTS),高速分组接入(High Speed Packet Access,HSPA)等等。可选的,基带处理器2400中也可以包括一个或多个存储器。
可选的,该基带处理器2400和应用处理器2200可以是集成在一个处理器芯片中。
存储器2300用于存储用于支持所述终端设备通信的程序代码(有时也称为程序,指令,软件等)和/或数据。
需要说明的是,该存储器2300或基带处理器2400中的存储器可以包括一个或多个存储单元,例如,可以是基带处理器2400或应用处理器2200内部的存储单元,或者可以是与应用处理器2200或基带处理器2400独立的外部存储单元,或者还可以是包括应用处理器2200或基带处理器2400内部的存储单元以及与应用处理器2200或基带处理器2400独立的外部存储单元的部件。
基带处理器2400可以包括中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、其他集成电路、或者其任意组合。基带处理器2400可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。基带处理器2400也可以是实现计算功能器件的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合或者片上系统(system-on-a-chip,SOC)等等。
应理解,图16所示的终端2000能够实现前述方法实施例中的各个过程。终端2000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端侧的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种用于资源确定的方法,其特征在于,包括:
    第一终端接收来自第二终端或网络设备的资源指示信息,所述资源指示信息用于指示第一资源和/或第二资源,其中,所述第一资源用于发送触发信息,所述触发信息用于触发向所述第一终端发送协作信息,所述第二资源用于接收来自所述第二终端的所述协作信息,所述协作信息用于指示可用于所述第一终端发送数据的第三资源;
    在所述第一资源在时域上晚于第一时间点和/或所述第二资源在时域上晚于第二时间点的情况下,所述第一终端随机确定或基于侦听确定用于发送所述第一数据的资源;
    其中,所述第一时间点和所述第二时间点根据第一数据的包时延预算或所述第一数据对应的资源选择窗确定,所述第一数据为所述第一终端的待发送数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一资源在时域上不晚于第一时间点和所述第二资源在时域上不晚于第二时间点的情况下,所述第一终端基于在所述第二资源上接收的所述协作信息指示的第三资源确定用于发送所述第一数据的资源。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第一时长;或,
    所述第一时间点在所述资源选择窗的结束时间点之前并与所述资源选择窗的结束时间点间隔第一时长;
    其中,所述第一时长为预配置的,或由网络设备配置的。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,
    所述第二时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第二时长;或,
    所述第二时间点在所述资源选择窗的结束时间点之前并与所述资源选择窗的结束时间点间隔第二时长;
    其中,所述第二时长为预配置的,或由网络设备配置的。
  5. 根据权利要求3所述的方法,其特征在于,所述第一时长根据以下中的至少一项确定:
    所述第二资源的时间单元个数,用于发送所述第一数据的资源的时间单元个数,所述触发信息的处理时间,所述协作信息的处理时间,所述第一数据的处理时间。
  6. 根据权利要求4所述的方法,其特征在于,所述第二时长根据以下中的至少一项确定:
    用于发送所述第一数据的资源的时间单元个数,所述协作信息的处理时间,所述第一数据的处理时间。
  7. 一种用于资源确定的方法,其特征在于,包括:
    第一终端接收来自第二终端的协作信息,所述协作信息指示可用于所述第一终端发送数据的第三资源;
    在所述第三资源在时域上晚于第三时间点的情况下,所述第一终端随机确定或基于侦听确定用于发送所述第一数据的资源,其中,所述第三时间点为根据第一数据的包时延预算或所述第一数据对应的资源选择窗确定的,所述第一数据为所述第一终端的待发送数据。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第三时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第三时长;或,
    所述第三时间点在所述第一数据对应的资源选择窗结束时间点之前并与所述资源选择窗结束时间点间隔第三时长;
    其中,所述第三时长为预配置的,或由网络设备配置的。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第三时长根据以下中的至少一项确定:
    所述资源选择窗的大小,所述第一数据的处理时间,或资源侦听窗的大小。
  10. 根据权利要求7至9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端接收来自所述第二终端的资源指示信息,所述资源指示信息用于指示第一资源和/或第二资源,其中,所述第一资源用于发送触发信息,所述触发信息用于触发向所述第一终端发送协作信息,所述第二资源用于接收所述协作信息;
    确定所述第一资源在时域上不晚于第一时间点和/或所述第二资源在时域上不晚于第二时间点,其中,所述第一时间点与所述第二时间点根据所述第一数据的包时延预算或所述第一数据对应的资源选择窗确定。
  11. 根据权利要求10所述的方法,其特征在于,所述第一时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第一时长;或,
    所述第一时间点在所述第一数据对应的资源选择窗结束时间点之前并与所述资源选择窗结束时间点间隔第一时长;
    其中,所述第一时长为预配置的,或所述第一时长由网络设备配置的。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第二时长;或,
    所述第二时间点在所述第一数据对应的资源选择窗结束时间点之前并与所述资源选择窗结束时间点间隔第二时长;
    其中,所述第二时长为预配置的,或所述第二时长由网络设备配置的。
  13. 一种通信装置,其特征在于,包括:
    收发模块,用于接收来自第二终端或网络设备的资源指示信息,所述资源指示信息用于指示第一资源和/或第二资源,其中,所述第一资源用于发送触发信息,所述触发信息用于触发向所述通信装置发送协作信息,所述第二资源用于接收来自所述第二终端的所述协作信息,所述协作信息用于指示可用于所述第一终端发送数据的第三资源;
    处理模块,用于在所述第一资源在时域上晚于第一时间点和/或所述第二资源在时域上晚于第二时间点的情况下,随机确定或基于侦听确定用于发送所述第一数据的资源;
    其中,所述第一时间点和所述第二时间点根据第一数据的包时延预算或所述第一数据对应的资源选择窗确定,所述第一数据为所述第一终端的待发送数据。
  14. 根据权利要求13所述的通信装置,其特征在于,所述处理模块还用于:
    在所述第一资源在时域上不晚于第一时间点和所述第二资源在时域上不晚于第二时间点的情况下,基于在所述第二资源上接收的所述协作信息指示的第三资源确定用于发送所述第一数据的资源。
  15. 根据权利要求13或14所述的通信装置,其特征在于,
    所述第一时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第一时长;或,
    所述第一时间点在所述资源选择窗的结束时间点之前并与所述资源选择窗的结束时间点间隔第一时长;
    其中,所述第一时长为预配置的,或由网络设备配置的。
  16. 根据权利要求13至15任一项所述的通信装置,其特征在于,
    所述第二时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第二时长;或,
    所述第二时间点在所述资源选择窗的结束时间点之前并与所述资源选择窗的结束时间点间隔第二时长;
    其中,所述第二时长为预配置的,或由网络设备配置的。
  17. 根据权利要求15所述的通信装置,其特征在于,所述第一时长根据以下中的至少一项确定:
    所述第二资源的时间单元个数,用于发送所述第一数据的资源的时间单元个数,所述触发信息的处理时间,所述协作信息的处理时间,所述第一数据的处理时间。
  18. 根据权利要求16所述的通信装置,其特征在于,所述第二时长根据以下中的至少一项确定:
    用于发送所述第一数据的资源的时间单元个数,所述协作信息的处理时间,所述第一数据的处理时间。
  19. 一种通信装置,其特征在于,包括:
    收发模块,用于接收来自第二终端的协作信息,所述协作信息指示可用于所述第一终端发送数据的第三资源;
    处理模块,用于在所述第三资源在时域上晚于第三时间点的情况下,随机确定或基于侦听确定用于发送所述第一数据的资源,其中,所述第三时间点为根据第一数据的包时延预算或所述第一数据对应的资源选择窗确定的,所述第一数据为所述第一终端的待发送数据。
  20. 根据权利要求19所述的通信装置,其特征在于,
    所述第三时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第三时长;或,
    所述第三时间点在所述第一数据对应的资源选择窗结束时间点之前并与所述资源选择窗结束时间点间隔第三时长;
    其中,所述第三时长为预配置的,或由网络设备配置的。
  21. 根据权利要求20所述的通信装置,其特征在于,所述第三时长根据以下中的至少一项确定:
    所述资源选择窗的大小,所述第一数据的处理时间,或资源侦听窗的大小。
  22. 根据权利要求19至21任一项所述的通信装置,其特征在于,所述收发模块还用于:
    接收来自所述第二终端的资源指示信息,所述资源指示信息用于指示第一资源和/或第二资源,其中,所述第一资源用于发送触发信息,所述触发信息用于触发向所述通信装置发送协作信息,所述第二资源用于接收所述协作信息;
    所述处理模块还用于确定所述第一资源在时域上不晚于第一时间点和/或所述第二资源在时域上不晚于第二时间点,其中,所述第一时间点与所述第二时间点根据所述第一数据的包时延预算或所述第一数据对应的资源选择窗确定。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第一时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第一时长;或,
    所述第一时间点在所述第一数据对应的资源选择窗结束时间点之前并与所述资源选择窗结束时间点间隔第一时长;
    其中,所述第一时长为预配置的,或所述第一时长由网络设备配置的。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述第二时间点在所述第一数据的包时延预算结束时间点之前并与所述第一数据的包时延预算结束时间点间隔第二时长;或,
    所述第二时间点在所述第一数据对应的资源选择窗结束时间点之前并与所述资源选择窗结束时间点间隔第二时长;
    其中,所述第二时长为预配置的,或所述第二时长由网络设备配置的。
  25. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被处理器执行时实现权利要求1至12任一项所述方法的步骤。
  26. 一种计算机程序产品,包括计算机程序或指令,其特征在于,所述计算机程序或指令被处理器执行时实现权利要求1至12任一项所述方法的步骤。
PCT/CN2022/083123 2021-04-06 2022-03-25 用于资源确定的方法及装置 WO2022213828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369419.4A CN115190617A (zh) 2021-04-06 2021-04-06 用于资源确定的方法及装置
CN202110369419.4 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213828A1 true WO2022213828A1 (zh) 2022-10-13

Family

ID=83511283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083123 WO2022213828A1 (zh) 2021-04-06 2022-03-25 用于资源确定的方法及装置

Country Status (2)

Country Link
CN (1) CN115190617A (zh)
WO (1) WO2022213828A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116095629A (zh) * 2021-11-04 2023-05-09 夏普株式会社 由用户设备执行的方法以及用户设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013169974A1 (en) * 2012-05-11 2013-11-14 Interdigital Patent Holdings, Inc. Context-aware peer-to-peer communication
CN108702612A (zh) * 2016-03-22 2018-10-23 华为技术有限公司 D2d通信方法及设备
CN112312536A (zh) * 2019-08-01 2021-02-02 华为技术有限公司 传输控制方法和装置
CN112367711A (zh) * 2020-12-02 2021-02-12 中国联合网络通信集团有限公司 网络切片的资源配置方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013169974A1 (en) * 2012-05-11 2013-11-14 Interdigital Patent Holdings, Inc. Context-aware peer-to-peer communication
CN108702612A (zh) * 2016-03-22 2018-10-23 华为技术有限公司 D2d通信方法及设备
CN112312536A (zh) * 2019-08-01 2021-02-02 华为技术有限公司 传输控制方法和装置
CN112367711A (zh) * 2020-12-02 2021-02-12 中国联合网络通信集团有限公司 网络切片的资源配置方法、装置及系统

Also Published As

Publication number Publication date
CN115190617A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
EP4057681B1 (en) Sidelink channel status information report transmission
WO2020029279A1 (zh) 车联网设备之间的反馈信息传输方法、装置及系统
EP4093132A1 (en) Method and apparatus for allocating resources through cooperation between terminals in v2x system
WO2022141465A1 (zh) 一种资源选择的方法和装置
WO2021031043A1 (zh) 一种通信方法及装置
WO2024066145A1 (zh) 侧行通信的方法及装置
CN114286310A (zh) 一种通信方法、装置及系统
WO2022213828A1 (zh) 用于资源确定的方法及装置
WO2022011699A1 (zh) 一种通信方法及侧行设备
US20230254831A1 (en) Resource determining method and apparatus
WO2021134659A1 (zh) 一种中继传输的方法和设备
WO2023051086A1 (zh) 数据传输的方法、终端装置及系统
WO2022028268A1 (zh) 通信方法及装置
WO2022141608A1 (zh) 一种通信方法和通信装置
WO2022151401A1 (zh) 一种通信方法、终端装置及系统
WO2021212510A1 (zh) 一种通信方法及装置
WO2020259293A1 (zh) 一种通信方法和装置
US20220295450A1 (en) Sidelink resource determining method, apparatus, and system
CN110178404A (zh) 一种资源使用方法、相关装置及系统
WO2022141464A1 (zh) 通信方法及装置
CN115604825A (zh) 一种侧行通信方法及装置
WO2021062855A1 (zh) 一种通信方法及装置
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2024067017A1 (zh) 一种通信方法、装置和系统
WO2022062973A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22783895

Country of ref document: EP

Kind code of ref document: A1