WO2022062973A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2022062973A1
WO2022062973A1 PCT/CN2021/118339 CN2021118339W WO2022062973A1 WO 2022062973 A1 WO2022062973 A1 WO 2022062973A1 CN 2021118339 W CN2021118339 W CN 2021118339W WO 2022062973 A1 WO2022062973 A1 WO 2022062973A1
Authority
WO
WIPO (PCT)
Prior art keywords
sidelink
terminal
time
resource
resources
Prior art date
Application number
PCT/CN2021/118339
Other languages
English (en)
French (fr)
Inventor
才宇
徐海博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011116071.XA external-priority patent/CN114286310A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21871344.4A priority Critical patent/EP4207830A4/en
Priority to JP2023519384A priority patent/JP2023544557A/ja
Priority to BR112023005651A priority patent/BR112023005651A2/pt
Priority to US18/246,774 priority patent/US20230371005A1/en
Publication of WO2022062973A1 publication Critical patent/WO2022062973A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method, apparatus, and system.
  • a terminal senses the usage of the spectrum as a basis for the terminal to select sidelink resources for subsequent data transmission on the sidelink resources.
  • the sender terminal can obtain one or more sidelink resources by sensing the sidelink resources, and then the sender terminal can determine from the one or more sidelink resources to carry the data when sending data to the receiver terminal.
  • Sidelink resources for data when the sender terminal selects sidelink resources, it is mostly based on the consideration of the transmission requirements of the sender terminal itself. Although the sender terminal can successfully send data, it may be due to various factors for the receiver terminal. The situation that the data reception fails occurs, which will inevitably waste the power consumption of the sender terminal.
  • Embodiments of the present application provide a communication method, device, and system, and the method is used to solve the problem of how to avoid data packet transmission failure and avoid wasting power consumption by the sender terminal.
  • an embodiment of the present application provides a communication method, where the method is applied to a first terminal, and the method includes: the first terminal determines one or more sidelink resources.
  • the one or more sidelink resources include at least sidelink resources within the sidelink discontinuous reception-activation time of the second terminal.
  • the first terminal sends data to the second terminal on a first sidelink resource of the one or more sidelink resources.
  • the first sidelink resource is within the sidelink discontinuous reception-activation time.
  • An embodiment of the present application provides a communication method, in which a first terminal first determines one or more sidelink resources. The first terminal then sends data to the second terminal on the first sidelink resource of the one or more sidelink resources. Because the first sidelink resource is located within the sidelink DRX-activation time of the second terminal, and the second terminal is in an active state during the sidelink DRX-activation time of the second terminal. In this way, it can be ensured that when the first terminal sends data on the first side link resource, the second terminal is in a state capable of receiving data, which can not only avoid data transmission failure, but also avoid wasting the time when the first terminal sends data. power consumption.
  • the number of sidelink resources located within the first time period among the one or more sidelink resources is greater than or equal to the first threshold.
  • the start time of the first time period is the start time corresponding to the candidate resource set, or the start time of the first time period is the start time of the sidelink discontinuous reception-activation time.
  • the cutoff time is the end time of the sidelink DRX-activation time. In this way, it can be ensured that there is a certain amount of sidelink resources available for the first terminal to select resources for transmitting the data during the sidelink discontinuous reception-activation time.
  • the one or more sidelink resources are sidelink resources determined from the candidate resource set, and the start time corresponding to the candidate resource set is later than or equal to the sidelink resources The start time of the channel discontinuous reception-active time. Since the start time corresponding to the candidate resource set is later than or equal to the start time of the sidelink discontinuous reception-activation time, it can be ensured that the sidelink resources in the candidate resource set are located in the sidelink discontinuous reception - After the start time of the activation time, in addition, the one or more sidelink resources are the sidelink resources determined from the candidate resource set, so the one or more sidelink resources determined by the first terminal can be guaranteed
  • the channel resources include resources at the sidelink DRX-activation time.
  • the deadline corresponding to the candidate resource set is later than or equal to the end time of the sidelink discontinuous reception-activation time, which can ensure that one or more The sidelink resources include resources at the sidelink discontinuous reception-activation time.
  • the one or more sidelink resources are sidelink resources determined from a candidate resource set, and the deadline corresponding to the candidate resource set is earlier than or equal to the weight of the data. Transmission end time. Since the deadline corresponding to the candidate resource set is earlier than or equal to the retransmission end time of the data, it can be ensured that the first terminal selects the resource for retransmitting the data from the candidate resource set.
  • the first terminal determining one or more sidelink resources includes: the physical layer of the first terminal determines one or more sidelink resources from candidate sidelink resources road resources.
  • the physical layer reports one or more sidelink resources to the medium access control entity of the first terminal.
  • the method provided in this embodiment of the present application may further include: the medium access control entity selects, from one or more sidelink resources, the first sidelink that is within the sidelink discontinuous reception-activation time of the second terminal road resources.
  • the method provided by the embodiment of the present application further includes: the medium access control entity sends the first information to the physical layer.
  • the first information includes: information used to indicate the end time of the sidelink discontinuous reception-activation time, or information used to indicate the remaining time of the sidelink discontinuous reception-activation time.
  • the physical layer of the first terminal determines one or more sidelink resources from the candidate sidelink resources, including: the physical layer determines one or more sidelink resources from the candidate sidelink resources according to the first information resource.
  • the medium access control entity sends the first information to the physical layer, including: when the remaining time of the sidelink discontinuous reception-activation time is less than or equal to the remaining packet delay budget , the medium access control entity sends the first information to the physical layer.
  • the medium access control entity does not send the first information to the physical layer.
  • the physical layer can determine candidate sidelink resources according to the candidate resource set, and then determine one or more sidelink resources from the candidate sidelink resources.
  • the medium access control entity determines whether there is a resource at the sidelink discontinuous reception-activation time according to the sidelink discontinuous reception-activation time of the second terminal.
  • the medium access control entity when the remaining time of the sidelink discontinuous reception-activation time is greater than or equal to the remaining packet delay budget, the medium access control entity does not send the first information to the physical layer.
  • the first information further includes: information used to indicate the start time of the sidelink discontinuous reception-activation time.
  • the physical layer determines the start time of the sidelink discontinuous reception-activation time, so as to ensure that the sidelink resources reported to the medium access control entity are located within the sidelink discontinuous reception-activation time as much as possible.
  • the one or more sidelink resources include resources whose starting time distance from the sidelink discontinuous reception-activation time is smaller than the first time threshold.
  • the medium access control entity of the first terminal when the time unit 1 is located before the start time of the sidelink discontinuous reception-activation time, the medium access control entity of the first terminal sends a message to the physical layer of the first terminal.
  • the information used to indicate the start time of the sidelink discontinuous reception-activation time is sent, and the time unit 1 determines the time at which the physical layer of the first terminal perceives the sidelink resources.
  • the method provided by the embodiment of the present application further includes: the medium access control entity of the first terminal does not send a message to the physical layer of the first terminal for indicating sidelink discontinuous reception - Information on the start time of the activation time.
  • the medium access control entity of the first terminal when the time unit 1 is within the start time of the sidelink discontinuous reception-activation time, the medium access control entity of the first terminal does not report to the physical
  • the layer sends information used to indicate the start time of the sidelink discontinuous reception-activation time, and time unit 1 determines the time at which the physical layer of the first terminal perceives the sidelink resource.
  • the method provided by the present application may further include: the first terminal determining the retransmission end time of the data or the remaining retransmission time of the data.
  • the first terminal determines the deadline corresponding to the candidate resource set according to the retransmission end time or the remaining retransmission time, and the deadline corresponding to the candidate resource set is earlier than or equal to the remaining retransmission time.
  • the method provided by the present application may further include: the medium access control entity of the first terminal sends the second information to the physical layer.
  • the second information is used to indicate the retransmission end time of the data or the remaining retransmission time of the data.
  • the first terminal determining the retransmission end time of the data or the remaining retransmission time of the data includes: the physical layer of the first terminal determining the retransmission end time or the remaining retransmission time according to the second information.
  • the second information is retransmission end time or remaining retransmission time.
  • the process of calculating the retransmission end time or the remaining retransmission time by the physical layer is omitted.
  • the second information is at least one of the number of data retransmissions, the RTT timer duration, and the retransmission timer duration.
  • the retransmission end time or the remaining retransmission time is calculated by the physical layer.
  • the retransmission end time is equal to the end time of the sidelink discontinuous reception-activation time+(RTT timer duration+retransmission timer duration)*retransmission times.
  • the retransmission end time is equal to the end time of the sidelink discontinuous reception-activation time + the retransmission timer duration * the number of retransmissions.
  • the medium access control entity if the remaining packet delay budget is less than the first value, or the remaining packet delay budget is less than the remaining retransmission time, the medium access control entity provides the remaining packet delay budget and the remaining retransmission time to the physical layer. The minimum value among the retransmission end times.
  • the method provided by the embodiment of the present application further includes: the number of sidelink resources located in the first time period is less than or equal to the first threshold, then updating the candidate sidelink resources Threshold for exclusion.
  • the first terminal determines one or more sidelink resources from the candidate sidelink resources according to the updated threshold. In this way, it can be ensured that the number of sidelink resources within the first time period is greater than or equal to the first threshold.
  • the number of sidelink resources located in the second time period among the one or more sidelink resources is greater than or equal to a second threshold; the second time period consists of sidelink resources.
  • the cut-off time of the discontinuous reception-activation time and the cut-off time corresponding to the candidate resource set are determined.
  • the first sidelink resource is used for initial transmission of data
  • the method provided in this embodiment of the present application further includes: the first terminal determines a second sidelink for retransmission of data resource.
  • the second sidelink resource is located within the sidelink discontinuous reception-activation time or within the third time period.
  • the third time period is determined according to the first side link resource.
  • the time interval between the first sidelink resource and the second sidelink resource is greater than or equal to the minimum time interval.
  • the resource pool where the first sidelink resource and the second sidelink resource are located is configured with physical sidelink feedback control channel resources
  • the first sidelink resource is greater than or equal to the minimum time interval.
  • the first terminal when there is no sidelink resource for transmitting the data within the sidelink discontinuous reception-activation time, the first terminal triggers selection/reselection of the sidelink resource the process of.
  • the first terminal when there is no sidelink resource for transmitting the data within the sidelink discontinuous reception-activation time, and there is no sidelink resource for retransmitting the data yet , the first terminal triggers the process of selecting/reselecting sidelink resources.
  • the first terminal when there is no sidelink resource for retransmitting data within the sidelink discontinuous reception-activation time, the first terminal triggers the process of selecting/reselecting the sidelink resource .
  • the first sidelink resource is used for retransmission Sidelink resources for data.
  • the method provided in the embodiment of the present application further includes: if the sidelink resource used for the initial transmission of data is not within the sidelink discontinuous reception-activation time, then the first The terminal abandons sending data on the sidelink resources used for initial transmission of data and the second sidelink resources used for retransmission of data.
  • the method provided by the embodiment of the present application further includes: the first terminal determines the second terminal.
  • determining the second terminal by the first terminal includes: the first terminal determining the second terminal from a plurality of terminals that need to receive data sent by the first terminal.
  • the second terminal is the terminal with the highest priority among the above-mentioned multiple terminals.
  • the priority of the data sent by the first terminal to the second terminal is higher than the priority of the data sent by the first terminal to the multiple terminals except the second terminal.
  • the determining of the second terminal by the first terminal includes: the first terminal determining the first sidelink resource from one or more sidelink resources.
  • the first terminal determines the second terminal according to the first sidelink resource.
  • the first terminal determining the second terminal according to the first sidelink resource includes: the first terminal includes the sidelink discontinuous reception-activation time to include the first sidelink The terminal at the time domain location of the resource is determined as the second terminal.
  • an embodiment of the present application provides a method.
  • the method includes: a first terminal determining a first sidelink resource for initial transmission of data. If the first terminal determines that the first sidelink resource is not within the sidelink DRX-activation time of the second terminal, the first terminal gives up on the second sidelink resource for retransmitting the data. The second terminal sends data.
  • the giving up of sending data to the second terminal on the second sidelink resource used for retransmitting the data involved in the embodiments of this application can also be understood as not using the sidelink grant, which means that the sidelink is not used on the sidelink.
  • Data eg, PSCCH and/or PSSCH
  • PSCCH and/or PSSCH is sent on the second sidelink resource indicated by the link grant.
  • the first authorization is an initial transmission authorization, for example, the sidelink resource determined by the first authorization is used for initial transmission of data.
  • the second authorization is a retransmission authorization.
  • the sidelink resources indicated by the second grant are used for data retransmission.
  • the second grant corresponding to the first grant is a grant used to transmit the same MAC PDU/transport block as the initial transmission grant.
  • the determining, by the first terminal, the first sidelink resource used for initial transmission of data may include: determining, by the first terminal, a first authorization used for initial transmission of data, and the first terminal will The sidelink resource indicated by the first grant is determined as the first sidelink resource used for initial transmission of data.
  • the method provided by the embodiment of the present application may further include: the first terminal determines the second sidelink resource.
  • the determining of the second sidelink resource by the first terminal includes: the first terminal determining the second authorization corresponding to the first authorization.
  • the first terminal determines the sidelink resource indicated by the second grant as the second sidelink resource.
  • the first terminal abandons sending data to the second terminal on the second sidelink resource used for retransmitting the data, including: if the second sidelink resource is not located in Within the DRX-activation time of the second terminal, the first terminal gives up sending data to the second terminal on the sidelink resource indicated by the second grant corresponding to the first grant.
  • the method provided in this embodiment of the present application may further include: the first terminal determines that the second sidelink resource is within the DRX-activation time of the second terminal, and the first terminal is within the DRX-activation time of the second terminal.
  • the data is sent to the second terminal on the second sidelink resource used for retransmitting the data.
  • the second terminal is any terminal in the multiple data to be transmitted, or the second terminal is the terminal with the highest priority among the multiple data to be transmitted.
  • an embodiment of the present application provides a method, and the method includes: a first terminal determining a first sidelink resource used for initial transmission of data. If the first terminal determines that the first sidelink resource is not within the sidelink DRX-active time of the second terminal, the first terminal sends the The second terminal sends data.
  • the determining, by the first terminal, the first sidelink resource used for initial transmission of data may include: determining, by the first terminal, a first authorization used for initial transmission of data, and the first terminal will The sidelink resource indicated by the first grant is determined as the first sidelink resource used for initial transmission of data.
  • the method provided by the embodiment of the present application may further include: the first terminal determines the second sidelink resource.
  • the determining of the second sidelink resource by the first terminal includes: the first terminal determining the second authorization corresponding to the first authorization.
  • the first terminal determines the sidelink resource indicated by the second grant as the second sidelink resource.
  • the first authorization is an initial transmission authorization, for example, the sidelink resource determined by the first authorization is used for initial transmission of data.
  • the second authorization is a retransmission authorization.
  • the sidelink resources indicated by the second grant are used for data retransmission.
  • the second grant corresponding to the first grant is a grant used to transmit the same MAC PDU/transport block as the initial transmission grant.
  • the first terminal sends data to the second terminal on the second sidelink resource used to retransmit the data, including: if the second sidelink resource is located in the second During the DRX-activation time of the terminal, the first terminal sends data to the second terminal on the second sidelink resource.
  • the second terminal is any one of a plurality of terminals that need to receive data sent by the first terminal, or the second terminal is a terminal that needs to receive data sent by the first terminal.
  • an embodiment of the present application provides a method, the method comprising: if there is no sidelink resource for retransmitting data within the sidelink discontinuous reception-activation time of the second terminal, and/ Or, the first terminal triggers the process of selecting/reselecting sidelink resources for the sidelink resources used for initial transmission of data.
  • embodiments of the present application provide a computer-readable storage medium, where a computer program or instruction is stored, and when the computer program or instruction is run on a computer, the computer executes the steps from the first aspect to the first aspect.
  • the computer may be the first terminal.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program or instruction is stored, and when the computer program or instruction is run on a computer, the computer executes the steps from the second aspect to the sixth aspect.
  • the computer may be the first terminal.
  • an embodiment of the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is run on a computer, the computer is made to perform steps as described in the third aspect to the third aspect.
  • the computer may be the first terminal.
  • embodiments of the present application provide a computer-readable storage medium, in which a computer program or instruction is stored.
  • the computer may be the first terminal.
  • an embodiment of the present application provides a computer program product including instructions, when the instructions are run on a computer, the computer executes the first aspect or a communication method described in various possible implementations of the first aspect .
  • an embodiment of the present application provides a computer program product including instructions, which, when the instructions are run on a computer, cause the computer to execute a communication method described in the second aspect or various possible implementations of the second aspect .
  • an embodiment of the present application provides a computer program product including instructions, which, when the instructions are run on a computer, cause the computer to execute a communication described in the third aspect or various possible implementations of the third aspect method.
  • the embodiments of the present application provide a computer program product including instructions, when the instructions are run on a computer, the computer is made to execute a communication described in the fourth aspect or various possible implementation manners of the fourth aspect method.
  • the embodiments of the present application provide a communication apparatus for implementing various methods in various possible designs of any one of the first to first aspects.
  • the communication device may be the above-mentioned first terminal, or a device including the above-mentioned first terminal, or a component (eg, a chip) applied in the first terminal.
  • the communication device includes corresponding modules and units for implementing the above method, and the modules and units may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • an embodiment of the present application provides a communication device for implementing various methods in various possible designs of any one of the foregoing second aspect to the second aspect.
  • the communication device may be the above-mentioned first terminal, or a device including the above-mentioned first terminal, or a component (eg, a chip) applied in the first terminal.
  • the communication device includes corresponding modules and units for implementing the above method, and the modules and units may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • inventions of the present application provide a communication apparatus for implementing various methods in various possible designs of any one of the third aspect to the third aspect.
  • the communication device may be the above-mentioned first terminal, or a device including the above-mentioned first terminal, or a component (eg, a chip) applied in the first terminal.
  • the communication device includes corresponding modules and units for implementing the above method, and the modules and units may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • embodiments of the present application provide a communication device for implementing various methods in various possible designs of any one of the third aspect to the third aspect.
  • the communication device may be the above-mentioned first terminal, or a device including the above-mentioned first terminal, or a component (eg, a chip) applied in the first terminal.
  • the communication device includes corresponding modules and units for implementing the above method, and the modules and units may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • an embodiment of the present application provides a communication device, where the communication device includes: a transceiver and at least one processor. Wherein, at least one processor communicates with the transceiver, and when the communication device is running, the at least one processor executes the computer-executed instructions or programs stored in the memory, so that the communication device performs the first aspect or the first aspect above.
  • the communication device may be the first terminal, or a chip applied in the first terminal.
  • an embodiment of the present application provides a communication device, where the communication device includes: a transceiver and at least one processor. Wherein, at least one processor is coupled to the transceiver, and when the communication device is running, the at least one processor executes computer-executed instructions or programs stored in the memory, so that the communication device performs the second aspect or the second aspect above.
  • the communication device may be the first terminal, or a chip applied in the first terminal.
  • an embodiment of the present application provides a communication device, where the communication device includes: a transceiver and at least one processor. Wherein, at least one processor is coupled to the transceiver, and when the communication device is running, the at least one processor executes computer-executed instructions or programs stored in the memory, so that the communication device performs the third aspect or the third aspect above.
  • the communication device may be the first terminal, or a chip applied in the first terminal.
  • an embodiment of the present application provides a communication device, where the communication device includes: a transceiver and at least one processor. Wherein, at least one processor is coupled to the transceiver, and when the communication device is running, the at least one processor executes computer-executed instructions or programs stored in the memory, so that the communication device performs the fourth aspect or the fourth aspect above.
  • the communication device may be the first terminal, or a chip applied in the first terminal.
  • the communication apparatus described in the seventeenth aspect and the eighteenth aspect may further include: a memory.
  • the memory is used for storing computer-executed instructions or programs.
  • the memory described in any one of the seventeenth aspect to the twentieth aspect may also be replaced by a storage medium, which is not limited in this embodiment of the present application.
  • the memory described in any one of the seventeenth aspect and the eighteenth aspect may be a memory inside the communication device, of course, the memory may also be located outside the communication device, but at least one processor The computer-implemented instructions or programs stored in the memory can still be executed.
  • an embodiment of the present application provides a communication device, where the communication device includes one or more modules for implementing any one of the first aspect, the second aspect, the third aspect, and the fourth aspect.
  • the one or more modules may correspond to the respective steps in the method of any one of the first aspect, the second aspect, the third aspect, and the fourth aspect.
  • an embodiment of the present application provides a chip, where the chip includes a processor, and the processor is configured to read and execute a computer program stored in a memory to execute the first aspect and any possible implementations thereof. method.
  • an embodiment of the present application provides a chip, where the chip includes a processor, and the processor is configured to read and execute a computer program stored in a memory, so as to execute the second aspect and any possible implementations thereof. method.
  • an embodiment of the present application provides a chip, where the chip includes a processor, and the processor is configured to read and execute a computer program stored in a memory, so as to execute the third aspect and any possible implementations thereof. method.
  • an embodiment of the present application provides a chip, where the chip includes a processor, and the processor is configured to read and execute a computer program stored in a memory, so as to execute the fourth aspect and any possible implementations thereof. method.
  • the chip may be a single chip, or a chip module composed of multiple chips.
  • the chip system further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
  • the chip system further includes a communication interface.
  • the communication interface is used to communicate with other modules outside the chip.
  • an embodiment of the present application provides a communication system, where the communication system includes: a first terminal and a second terminal.
  • the first terminal is used to execute the method in the first aspect and any possible implementation manner thereof, and the second terminal is used for the first sidelink within the sidelink discontinuous reception-activation time of the second terminal The data from the first terminal is received on the link resource.
  • FIG. 1 is an architectural diagram of a communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a DRX cycle of a terminal on a Uu port according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a DRX cycle of another terminal on a Uu port provided by an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a relationship between a time domain position of a sidelink resource and a DRX cycle of a second terminal according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram of internal interaction of a first terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the time n when the MAC entity triggers the physical layer to perceive the sidelink resource is located before the activation time according to an embodiment of the present application;
  • FIG. 9 is a schematic diagram of the time n when the MAC entity triggers the physical layer to sense the sidelink resource is within the activation time according to an embodiment of the present application;
  • FIG. 10 is a schematic diagram of another kind of MAC entity triggering a physical layer sensing sidelink resource within an activation time at time n according to an embodiment of the present application;
  • FIGS. 11 to 12 are schematic diagrams illustrating the relationship between time n and activation time when a MAC entity triggers a physical layer sensing sidelink resource according to an embodiment of the present application;
  • FIG. 13 is a schematic diagram of the relationship between a resource selection window and an activation time provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another activation time provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of selecting sidelink resources according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another selection of sidelink resources provided by an embodiment of the present application.
  • 17 is a schematic diagram of an initial transmission resource within an activation time provided by an embodiment of the present application.
  • 18 is a schematic diagram of an initial transmission resource located outside the activation time and retransmission resources located within the activation time according to an embodiment of the present application;
  • 19 is a schematic diagram of an initial transmission resource located within the activation time and retransmission resources located outside the activation time provided by an embodiment of the present application;
  • 20 is a schematic diagram of another initial transmission resource located outside the activation time and retransmission resources located within the activation time according to an embodiment of the present application;
  • FIG. 21 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the two terminals can directly perform data transmission on the sidelink without going through the base station.
  • terminal A before terminal A sends data to terminal B on the sidelink, terminal A can sense the sidelink resources, and then use the sensed sidelink resources. to select a sidelink resource. Afterwards, terminal A sends data to terminal B through the sidelink on the selected sidelink resource.
  • a DRX mechanism can be configured for terminal B, that is, terminal B can receive data in an active state for a period of time, and is in a dormant state for another period of time.
  • Terminal B When terminal B is in a dormant state, Terminal B may not be able to receive data sent to terminal B by other terminals. Therefore, if the time range indicated by the sidelink resource selected by terminal A is within the time period when terminal B is in the dormant state, if terminal A sends data to terminal B on the selected sidelink resource, Terminal B may not be able to receive the data correctly, thereby causing the data transmission from terminal A to terminal B to fail to transmit, and also wastes the power consumption caused by terminal A sending data.
  • an embodiment of the present application provides a communication method, in which the first terminal first determines one or more sidelink resources. The first terminal then sends data to the second terminal on the first sidelink resource of the one or more sidelink resources. Because the first sidelink resource is within the discontinuous reception-activation time of the second terminal, and the second terminal is in an active state during the discontinuous reception-activation time of the second terminal. In this way, it can be ensured that when the first terminal sends data on the first side link resource, the second terminal is in a state capable of receiving data, which can not only avoid data transmission failure, but also avoid wasting the time when the first terminal sends data. power consumption.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first terminal and the second terminal are only for distinguishing different terminals, and the sequence of the first terminal is not limited.
  • the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • At least one means one or more, and “plurality” means two or more.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, and c may be single or multiple .
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine to machine
  • 5G fifth generation mobile communication technology
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • a side link refers to: it is defined for direct communication between a terminal and a terminal. That is, the link between the terminal and the terminal is directly communicated without being forwarded by the base station.
  • the sidelink resources refer to: the resources used by the terminal 1 to transmit the sidelink information with the terminal 2 on the sidelink.
  • the sidelink information refers to: sidelink data or control information transmitted by any two terminals on the sidelink, which may also be referred to as data packets or V2X services.
  • Discontinuous reception means that the terminal only turns on the receiver to enter an active state (also called an active state) at a necessary time to receive data and signaling. At other times, the receiver is turned off to enter a sleep state (also called an inactive state). When the terminal is in a dormant state, the terminal stops receiving data and signaling.
  • DRX is a working mode of the terminal that saves the power consumption of the terminal.
  • DRX is divided into idle state DRX and connected state DRX. The idle state DRX is implemented by sensing the paging channel because there is no RRC connection and terminal-specific bearer.
  • the connected state DRX refers to the DRX characteristics of the terminal when the terminal is in the RRC connected state, which is implemented by monitoring the physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • Typical application scenarios of DRX include the following categories: services that are not sensitive to delays and that require data to be received and sent most of the time, such as web browsing, email, and FTP. Services that generate sparse packets, such as presence services. Periodic continuous packet services, such as VoIP (Voice over IP) services, automatic neighbor relationship (Automatic Neighbour Relation, ANR) measurement.
  • VoIP Voice over IP
  • ANR Automatic Neighbour Relation
  • the terminal monitors the PDCCH during the activation time, including the time when the drx-onDurationTimer is running at the beginning of a DRX cycle defined in the standard, and the terminal is in the active state during the activation time (also called awake state or active state).
  • the terminal may not monitor the PDCCH during the inactive time (also referred to as the dormant period), and the terminal may be in an inactive state (also referred to as the dormant state, or the dormant state) during the inactive time. or inactive).
  • the inactive time also referred to as the dormant period
  • the terminal may be in an inactive state (also referred to as the dormant state, or the dormant state) during the inactive time. or inactive).
  • Active state taking the DRX mechanism as the DRX mechanism on Uu as an example, it refers to the state in which the terminal can monitor service data/PDCCH, that is, the state when receiving data/PDCCH, which is a variable concept. In the active state, the terminal needs to detect the PDCCH.
  • D2D communication based on cellular network also known as Proximity Service (ProSe) in 3GPP
  • Proximity Service Proximity Service
  • 3GPP 3rd Generation Partnership Project
  • ProSe Direct Communication Direct communication between two or more adjacent ProSe UEs without going through any network node.
  • ProSe Direct Communication is implemented through the access layer function of sidelink communication.
  • Sidelink communication refers to direct communication between two or more adjacent terminals without going through any network nodes.
  • ProSe Direct Communication is achieved by establishing a direct link between two terminals through the PC5 interface.
  • the sidelink communication uses E-UTRA technology or NR technology.
  • NR sidelink communication refers to sidelink communication using NR technology to enable the access layer function of V2X communication.
  • NR sidelink communication can also enable ProSe Direct Communication, including 5G ProSe Direct Communication.
  • V2X communication Supports communication for V2X services using Uu and/or PC5 reference points/interfaces.
  • V2X services are implemented through various types of V2X applications, such as Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Network Vehicle- to-Network (V2N).
  • V2X communication is implemented through the sidelink communication access layer function.
  • V2X communication includes Vehicle to Vehicle (V2V) communication, Vehicle to Infrastructure (V2I) communication and Vehicle to People (V2P) communication.
  • V2X applications will improve driving safety, reduce congestion and vehicle energy consumption, and increase traffic efficiency.
  • Such as communication with facilities such as traffic lights, school districts and railway crossings.
  • the Internet of Vehicles system is a sidelink transmission technology based on Long Term Evolution (Long Term Evaluation. LTE) V2V or new air interface V2V, which is different from the traditional LTE system or NR in which communication data is received or sent through network devices.
  • LTE Long Term Evolution
  • NR Long Term Evaluation.
  • the system adopts the way of terminal-to-terminal direct communication.
  • FIG. 1 shows a communication system to which an embodiment of the present application relates to a communication method, and the system includes: a terminal 100 and a terminal 200 .
  • the terminal 100 and the terminal 200 can use sidelink resources to perform data transmission on the sidelinks they have between each other.
  • the system may further include a network device 300 .
  • the terminal 100 and the network device 300 communicate through the Uu interface.
  • the network device 300 may allocate the terminal 100 a sidelink resource for sidelink transmission.
  • Terminal 200 is a terminal that performs sidelink communication with terminal 100 .
  • the terminal 200 can be regarded as a receiver terminal (Rx UE), and the terminal 100 can be regarded as a sender terminal (Tx UE).
  • the terminal 100 and the terminal 200 have a first interface for direct communication, and the first interface may be referred to as a PC5 interface.
  • the transmission link used for the communication between the terminal 100 and the terminal 200 on the PC5 interface may be referred to as a side link.
  • the PC5 interface can use a dedicated frequency band (eg 5.9GHz).
  • a dedicated frequency band eg 5.9GHz.
  • the terminal 100 and the terminal 200 can communicate directly through the PC5 interface. Sidelink communication and/or sidelink discovery is performed between the terminal 200 and the terminal 100 .
  • the terminal 200 may or may not be connected/communicated with a network device.
  • the terminal 100 can also perform SL communication with other terminals except the terminal 200, and consider a scenario where the other terminals are Rx UEs and the terminal 100 is a Tx UE.
  • the terminal 100 can communicate directly with other terminals through the PC5 interface.
  • Sidelink communication and/or sidelink discovery is performed between the terminal 100 and other terminals. Other terminals are terminals outside the coverage of the network device 300 .
  • Regarding the manner of how to establish a sidelink between the terminal 100 and the terminal 200 reference may be made to the description in the prior art, which will not be repeated here.
  • the source can be identified by the source layer-2 ID.
  • the destination can be identified by the destination layer-2 ID.
  • the source layer-2 ID identifies the sender of the data in sidelink communication.
  • the destination layer-2 ID identifies the destination or receiver of the data in sidelink communication.
  • the terminal 100 refers to the source of the sidelink communication (or a MAC PDU), and the receiver terminal refers to the sidelink communication (or a MAC PDU). PDU) destination.
  • a PC5-Radio Resource Control (RRC) connection is a logical connection between two terminals corresponding to a source and destination pair. After the PC5 unicast link (PC5 unicast link) is established, the corresponding PC5 RRC connection is established. There is a one-to-one correspondence between PC5-RRC connections and PC5 unicast links.
  • the PC5-RRC connection may be used for the sender terminal to transmit the sender terminal's capabilities and/or sidelink configuration, eg, SL-data radio bearer (DRB) configuration, to the receiver terminal during the PC5-RRC procedure.
  • DRB SL-data radio bearer
  • the terminal 10 or the terminal 20 is a device with a wireless communication function, which can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted. It can also be deployed on water (such as ships, etc.). It can also be deployed in the air (eg on airplanes, balloons, satellites, etc.).
  • the terminal is also called user equipment (UE), mobile station (MS), mobile terminal (MT) and terminal equipment, etc. It is a device that provides voice and/or data connectivity to users. equipment.
  • the terminal includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal can be: a mobile phone (mobile phone), a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device (such as a smart watch, a smart bracelet, a pedometer, etc.), In-vehicle equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rails, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control (industrial control) Wireless terminals, smart home equipment (for example, refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in the power grid (smart grid), wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, flying equipment (for example, smart Robots, hot air balloons, drones, airplanes), etc.
  • MID mobile internet device
  • a wearable device such as a smart watch, a
  • the terminal is a terminal that often works on the ground, such as a vehicle-mounted device.
  • a chip deployed in the above-mentioned device such as a System-On-a-Chip (SOC), a baseband chip, etc., or other chips with communication functions, may also be referred to as a terminal.
  • SOC System-On-a-Chip
  • baseband chip etc.
  • other chips with communication functions may also be referred to as a terminal.
  • the terminal may be a vehicle with a corresponding communication function, or a vehicle-mounted communication device, or other embedded communication device, or may be a user's handheld communication device, including a mobile phone, a tablet computer, and the like.
  • the terminal may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the above-mentioned terminal 100 and terminal 200 may communicate on the side link between the terminal 100 and the terminal 200 through resources.
  • the scenario in which the terminal 100 and the terminal 200 communicate on the sidelink may be referred to as a sidelink communication scenario.
  • the resources used for communication on the road are called: side link resources, and the specific names of the resources are not limited in this embodiment of the present application, and can be set as required.
  • Sidelink resources are required for communication between terminals on the sidelink. Taking the terminal 100 sending data to the terminal 200 using the sidelink resources as an example, the terminal 100 can currently obtain the sidelink resources in the following manner.
  • Mode 1 the resource allocation mode scheduled by the base station, that is to say, the sidelink resources of the terminal 100 are received by the terminal 100 from the base station.
  • the base station sends a sidelink grant (SL grant) to the terminal 100.
  • the SL grant includes information such as sidelink resource allocation, and the terminal 100 can use the sidelink resources indicated/allocated by the SL grant to transmit on the SL.
  • the SL grant includes/indicates/schedules the time-frequency resources for transmitting the Physical sidelink control channel (PSCCH) and/or the Physical sidelink shared channel (PSSCH).
  • PSCCH Physical sidelink control channel
  • PSSCH Physical sidelink shared channel
  • an SL grant may include information on at least one sidelink resource.
  • the terminal 100 performs data transmission with the network device in the radio resource control (RRC) connection state, then, the network device communicating with the terminal 100 can schedule the transmission side link for the terminal 100 Sidelink resources for service data.
  • the terminal 100 sends a scheduling request (SR) and a sidelink buffer status report (BSR) to the network device.
  • the sidelink BSR is used to determine the sidelink communication data size of the terminal 100.
  • the network device can determine the amount of sidelink communication data of the terminal 100, and schedule the sidelink resources required for transmitting the sidelink service data for the terminal 100.
  • the network device uses the configured sidelink wireless network temporary identity (SL-radio network temporary identity, SL-RNTI) to schedule sidelink resources for sidelink communication.
  • SL-radio network temporary identity SL-RNTI
  • the physical downlink control channel can be used to schedule the transmission of the terminal on the SL.
  • Downlink control information (DCI) on the PDCCH includes the SL grant.
  • dynamic grant, configured grant type 1, and configured grant type 2 are supported.
  • the dynamic grant means that the SL grant is dynamically received by the terminal on the PDCCH.
  • Configured grant type 1 and configured grant type 2 refer to that the base station configures the configured grant for the terminal semi-statically through RRC signaling.
  • the base station can configure multiple SL configured grant configurations (SL-ConfiguredGrantConfig) for the terminal. For example, the base station configures the SL configured grant configuration list for the terminal.
  • the SL configured grant configuration list includes SL configured grant configurations that can be released or added or modified.
  • Each SL configured grant configuration corresponds to an index, and the index can be included in the SL configured grant configuration.
  • the SL configured grant configuration contains SL configured grant cycle indication information.
  • the time domain resource location information and frequency domain resource location information of the SL grant are included in the configured grant configuration. In this way, it is convenient for the terminal to determine the time domain position and frequency domain position of the SL grant.
  • the SL configured grant period indication information is used to indicate the period of the SL grant.
  • the configured SL grant is activated/deactivated through the DCI transmitted on the PDCCH.
  • the DCI includes the configured grant configuration index information, the time domain resource location information of the SL grant, and the frequency domain resource location information, etc.
  • configured grant type 2 when the base station determines that the terminal needs to use the configured SL grant, it is activated through DCI. After activation, the terminal can use the activated configured SL grant,
  • Mode 2 is a resource selection mode independently selected by the terminal.
  • the SL grant contains information such as resource allocation, and the terminal can use the sidelink resources indicated/allocated by the SL grant to transmit on the SL.
  • the SL grant includes/indicates/schedules the time-frequency resources for transmitting the physical sidelink control channel (PSCCH) and/or the physical sidelink shared channel (PSSCH).
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the terminal 100 selects a sidelink resource from the resource pool that usually includes one or more sidelink resources. That is, the terminal 100 selects an SL grant from one or more SL grants, and determines a sidelink resource according to the selected SL grant.
  • the resource pool is the resource broadcast by the network device in the system information.
  • the resource pool is a resource preconfigured by the terminal 100 .
  • the resource pool may be a specific resource pool for the terminal 100, that is, only the terminal 100 may select sidelink resources in the resource pool.
  • the resource pool may be a resource pool shared by multiple terminals including the terminal 100, that is, other terminals except the terminal 100 may also select resources from the resource pool. For the latter, when the terminal 100 autonomously selects a resource in the resource pool, the terminal 10 can perform listening on the resource pool to select the sidelink resource.
  • a resource pool includes multiple physical resources, any one of which is used to transmit data.
  • a terminal transmits data, it can use a resource from the resource pool for transmission.
  • the terminal 100 can predict the occupancy of the sidelink resources in a certain time period 1 in the future by listening, and use the occupancy situation of the sidelink resources in a certain time period 1 as the listening result.
  • the so-called occupation of sidelink resources may include: whether other terminals occupy the sidelink resources in the future time period 1, and/or occupy the sidelink resources in the future time period 1.
  • the terminal 100 can select or reserve the sidelink resources within the time period 1 to ensure its own communication quality.
  • the sidelink resources reserved by the terminal 100 through listening are time-limited. For example, in 5G NR, the time-limitation of the listening result of the periodic service and the listening result of the aperiodic service are different. in a certain millisecond time.
  • the terminal 100 can obtain the listening result by using or based on the listening process defined in the LTE Release (Release) 14 standard protocol.
  • the listening result of the sidelink resource may be used to indicate any one or more of the following: the identifier or location of a specific sidelink resource in the resource pool, the signal on the sidelink resource strength, the signal power on the sidelink resource, and the channel busy ratio (CBR) of the sidelink resource.
  • the resource selection/reselection check is triggered after the logical channel has data. If the result of the check is to trigger resource selection/reselection, the MAC entity of the terminal notifies the PHY layer of the terminal to provide a set of sidelink resources. Then the MAC entity randomly selects a sidelink resource from a set of sidelink resources provided by the PHY layer. If the MAC entity selects at least one reselection, the MAC entity continues to randomly select sidelink resources from other resources other than the selected sidelink resources in a set of sidelink resources provided by the PHY layer.
  • the sidelink resource with the earliest time domain is the initial transmission resource, and the sidelink resource located after the initial transmission resource can be regarded as the retransmission resource.
  • the transmission opportunities corresponding to multiple sidelink resources selected by the MAC entity are selected SL grants. If the MAC entity chooses to create a selected SL grant for transmission of multiple MAC PDUs. Then the MAC entity selects a sidelink resource A from a set of sidelink resources provided by the PHY layer. The MAC entity determines a set of periodic sidelink resources according to the sidelink resource A. The transmission opportunity corresponding to the sidelink resource A and a set of periodic resources selected according to the resource A is taken as the selected SL grant.
  • Each transmission opportunity corresponds to an SL grant.
  • the MAC entity submits each SL grant, modulation and coding scheme (MCS), and the respective associated hybrid automatic repeat request (HARQ) information of each SL grant to the sidelink HARQ entity .
  • MCS modulation and coding scheme
  • HARQ hybrid automatic repeat request
  • the sidelink HARQ entity For each SL grant, if the SL grant is used for initial transmission, the sidelink HARQ entity obtains the MAC PDU to be sent from the Multiplexing and Assembly entity. If a MAC protocol data unit (PDU) is obtained, the sidelink HARQ entity transmits the MAC PDU, SL grant, and sidelink information to the associated sidelink process. The sidelink HARQ entity notifies the sidelink process to trigger a new transmission (the so-called new transmission refers to triggering the transmission of a data packet, and the data packet is the first/first transmission data packet). If the sidelink HARQ entity does not obtain the MAC PDU, the HARQ buffer of the sidelink process is flushed.
  • PDU MAC protocol data unit
  • the sidelink HARQ entity submits the SL grant to the sidelind process associated with the SL grant, notifying the sidelink process to trigger a retransmission (the so-called retransmission refers to triggering the transmission of a data packet, and the data packet is the cth time
  • the transmitted data packet, c is an integer greater than or equal to 2, and c is less than or equal to the maximum number of retransmissions of the terminal. Or c is less than or equal to the maximum number of retransmissions of the sidelink HARQ process of the data packet.).
  • the sidelink process is associated with a HARQ buffer. If the sidelink HARQ entity requests a new transmission, the sidelink process stores the MAC PDU in the associated HARQ buffer, stores the SL grant, and generates a transmission. If the sidelink HARQ entity requests a retransmission, the sidelink process stores the SL grant and generates a transmission.
  • the generation of a transmission by the sidelink process includes: informing the physical layer to transmit sidelink control information (SCI) according to the stored SL grant, and generate a transmission.
  • SCI sidelink control information
  • the sidelink HARQ entity obtains the MAC PDU to be sent from the Multiplexing and assembly entity. Specifically, the multiplexing and assembly entity selects a destination according to the rules for the SL grant associated with the SCI for each corresponding to a newly transmitted SCI. Then, the Multiplexing and assembly entity selects the logical channel belonging to the destination. The Multiplexing and assembly entity allocates resources for selected logical channels.
  • the rule for selecting a destination is that the destination has at least one of logical channel (logical channel, LCH) and medium access control (MAC) control elements (control elements, CE) in all logical channels and MAC CEs that meet the conditions. highest priority. There may be one or more LCHs for each destination, and each LCH has a corresponding priority.
  • the MAC CE also has a corresponding priority.
  • FIG. 2 shows a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device includes a processor 21 , a communication line 24 and at least one transceiver (in FIG. 2 , the transceiver 23 is taken as an example for illustration only).
  • the processor 21 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 24 may include a path to communicate information between the above-described components.
  • Transceiver 23 using any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the communication device may further include a memory 22 .
  • the memory 22 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM) or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory may exist independently and be connected to the processor through communication line 24 .
  • the memory 22 may also be integrated with the processor 21 .
  • the memory 22 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 21 .
  • the processor 21 is configured to execute the computer-executed instructions stored in the memory 22, thereby implementing the communication methods provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • the processor 21 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2 .
  • the communication device may include multiple processors, such as the processor 21 and the processor 25 in FIG. 2 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the PHY layer of the terminal receives a notification from the MAC entity requesting to determine a set of sidelink resources in n time units (eg, time slots).
  • the physical layer uses the sidelink resources within [n+T1, n+T2] among the perceived sidelink resources as candidate sidelink resources.
  • the candidate side downlink resources located in [n+T1, n+T2] constitute a candidate resource set.
  • [n+T1, n+T2] is the resource selection window of the terminal.
  • T1 satisfies The value of T1 depends on the implementation of the terminal. in, The unit of is time slot, as defined in Table 1 below, where ⁇ SL is the SCS configuration. If the minimum value of T2 is smaller than the remaining packet delay budget (PDB) (unit is time slot), the value of T2 depends on the implementation of the terminal, and satisfies T2min ⁇ T2 ⁇ P, where P represents the remaining PDB. Otherwise, T2 is equal to the remaining PDB. The remaining PDBs are provided to the PHY layer by the MAC entity.
  • PDB packet delay budget
  • the physical layer determines one or more sidelink resources from the candidate resource set according to certain rules and reports them to the MAC entity.
  • the terminal uses the PSCCH/PSSCH demodulation reference signal (demodulation reference signal) received on the sidelink resource m as an example.
  • PSCCH/PSSCH demodulation reference signal demodulation reference signal
  • DMRS reference signal receiving power
  • RSRP reference signal receiving power
  • threshold 2 is greater than threshold 1.
  • threshold 2 is threshold 1 plus a preset value.
  • the default value is 3dB.
  • the terminal when a terminal communicates with a network device, in order to save unnecessary power consumption of the terminal and reduce the monitoring time of the terminal, the terminal can apply a discontinuous reception mechanism on the Uu interface (the interface between the terminal and the network device) to help A terminal in a radio resource control (RRC) connected state saves energy.
  • RRC radio resource control
  • the basic principle of DRX is: when a terminal communicates with a network device, the network device may have data transmission for a period of time, and the network device may have no data to transmit to the terminal for a long period of time next. In the case that the network device does not send data to the terminal, if the terminal still keeps the monitoring state, it is very power-consuming for the terminal. Therefore, when the terminal does not receive data, the power consumption of the terminal can be reduced by making the terminal stop monitoring the physical downlink control channel (PDCCH), thereby improving the battery life of the terminal.
  • PDCCH physical downlink control channel
  • the discontinuous reception Discontinuous Reception (DRX) function is defined.
  • a terminal using the DRX mechanism monitors the PDCCH in some time periods and does not monitor the PDCCH in other time periods. Therefore, DRX reduces the power consumption of the terminal by controlling the terminal not to monitor the PDCCH for some period of time.
  • the DRX mechanism configured by the network device for the terminal also includes the corresponding DRX parameters.
  • the parameters and functions of the parameters mainly included in the DRX mechanism are as follows:
  • -DRX-onDurationTimer The duration at the beginning of a DRX Cycle (the duration at the beginning of a DRX Cycle). At the beginning of the DRX cycle, the duration of the on duration can be considered that the terminal is in an active state during the operation of the DRX-on duration timer.
  • drx-SlotOffset the delay before drx-onDurationTimer is turned on.
  • drx-InactivityTimer After the terminal successfully decodes a PDCCH that schedules the initial transmission of new data on the Uu port, it continues to be in the active state, that is, when the terminal is scheduled, the drx-InactivityTimer should be turned on. In order to prolong the time that the terminal is in the active state, the corresponding scenario can be understood that when the terminal is currently scheduled, it is likely to continue to be scheduled in the next time period, so the terminal needs to remain active to wait for data to be received.
  • drx-LongCycleStartOffset Indicates the long DRX cycle (Long DRX Cycle) and the drx start offset (drx-StartOffset).
  • Long DRX Cycle specifies the number of subframes occupied by the long cycle/ms
  • drx-StartOffset specifies the start subframes of the long DRX cycle and the short DRX cycle.
  • drx-RetransmissionTimerDL the maximum duration before the terminal receives the downlink retransmission data of the Uu interface.
  • drx-RetransmissionTimerUL the maximum duration before the terminal receives the uplink retransmission resources of the Uu port (the maximum duration until a grant for UL retransmission is received), During the drx-RetransmissionTimerUL operation, the terminal performs uplink data retransmission.
  • -DRX short cycle (drx-ShortCycle) (optional): that is, the length of the short DRX cycle (Short DRX cycle), in subframes/milliseconds.
  • drx-HARQ-RoundTripTime-TimerDL, drx-HARQ-RTT-TimerDL (for each downlink HARQ process except the broadcast process): the terminal expects to receive downlink HARQ retransmission on the Uu interface
  • the duration before the data can be understood as a time window. During this time window, the base station will not perform downlink retransmission for the data packet that currently fails to transmit. It needs to wait for the drx-HARQ-RTT-TimerDL to expire before the terminal can continue to receive.
  • Downlink retransmission data of the packet (drx-HARQ-RoundTripTime-TimerDL, drx-HARQ-RTT-TimerDL) (for each downlink HARQ process except the broadcast process): the terminal expects to receive downlink HARQ retransmission on the Uu interface
  • the duration before the data can be understood as a time window. During this time window, the base station will not perform downlink
  • the terminal can start to receive downlink retransmission data, and the drx-RetransmissionTimerDL is enabled. That is, the minimum duration before a downlink assignment for HARQ retransmissions may occur.
  • drx-HARQ-RTT-TimerUL the duration before the terminal expects to receive uplink HARQ retransmission resources on the Uu interface, which can be understood as a time window. Within this time window, the terminal cannot perform uplink retransmission of the current data packet that fails to transmit, and needs to wait for the drx-HARQ-RTT-TimerUL to expire before the terminal can continue to upload the data of the data packet.
  • the terminal can start to perform uplink retransmission, then enable drx-RetransmissionTimerUL, that is, the minimum duration before an uplink HARQ retransmission grant may occur.
  • the terminal is in the DRX-active time (active time) mainly includes the following situations:
  • ra-ContentionResolutionTimer refers to a timer used by the terminal in the random access process, and is used by the terminal to wait for the access resource of the base station to be obtained.
  • Scenario 2 The terminal has sent a scheduling request (SR) on the physical uplink control channel (PUCCH), and the SR is currently in the pending state.
  • the network device sends the SR.
  • Case 3 Similar to ra-ContentionResolutionTimer, the terminal successfully receives the random access response (RAR) used to respond to the preamble sequence (preamble) of the contention-based random access selected by the non-terminal, but does not receive an indication
  • RAR random access response
  • the PDCCH of the initial transmission using the cell radio network temporary identifier (cell radio network temporary identifier,) C-RNTI).
  • the terminal needs to detect the PDCCH, wherein the detection of the PDCCH includes detecting the PDCCH corresponding to the following radio network temporary identifier (RNTI): cell RNTI ( cell-RNTI, C-RNTI), configuration scheduling RNTI (configured scheduling-RNTI, CS-RNTI), interrupt RNTI (interruption-RNTI, INT-RNTI), slot format indicator RNTI (slot format indicator-RNTI, SFI-RNTI) , semi-persistent channel state information RNTI (semi-persistent channel state information, SP-CSI-RNTI), PUCCH transmit power control RNTI (transmit power control-PUCCH-RNTI, TPC-PUCCH-RNTI), PUSCH transmit power control RNTI (transmit power control-PUCCH-RNTI, TPC-PUCCH-RNTI) power control-PUSCH-RNTI, TPC-PUSCH-RNTI), transmission power control-sounding reference signal-RNTI
  • RNTI radio network temporary identifier
  • the PDCCH corresponding to the RNTI may refer to using the RNTI to scramble the cyclic redundancy check (cyclic redundancy check, CRC) bits of the DCI carried by the PDCCH.
  • CRC cyclic redundancy check
  • the above-mentioned activation time may also include other situations specified in the future communication protocol, which are not specifically limited in this embodiment of the present application.
  • the timers are in a running state until the timers stop or time out; otherwise, the timers are not in a running state. If the timer is not running, the timer can be started. After the timer stops or times out, the timer is not running until the timer starts. If the timer is running, the timer can be restarted.
  • the length of the timer can be understood as the length of time that the timer continues to run from the start or restart until it times out.
  • the value of the timer is its initial value when it is started or restarted.
  • the initial value of the timer may be the time length of the timer.
  • the value of the timer is the length of time of the timer when it is started or restarted.
  • the names of the timers in the various embodiments are only examples.
  • the DRX parameters/timers in the following are all DRX parameters/timers on the SL.
  • the activation time includes: drx-onDurationTimer or drx-InactivityTimer or drx-RetransmissionTimerDL or drx-RetransmissionTimerUL is running time.
  • the terminal needs to monitor the PDCCH. Outside the active time, the terminal does not need to monitor the PDCCH, so the terminal may not monitor the PDCCH.
  • the DRX cycle is shown in Figure 3, the On Duration is repeated periodically, and the DRX cycle is the cycle in which the On Duration is repeated.
  • the drx-onDurationTimer is started at the start of the on-duration, and the duration of the drx-onDurationTimer is the duration of the on-duration, that is to say, the on-duration is the running period of the drx-onDurationTimer.
  • DRX opportunity (Opportunity for DRX) is an inactive period. If there is no other timer that causes the DRX activation time to run, this period is a dormant period.
  • the start time of Drx-onDurationTimer is determined according to drx-StartOffset and drx-SlotOffset. Specifically, the subframe activated by drx-onDurationTimer is determined according to drx-StartOffset, and the subframe is activated after drx-SlotOffset from the beginning of the subframe.
  • the terminal if the terminal receives a PDCCH indicating a new transmission during the ON duration, the terminal starts or restarts the drx-InactivityTimer in the first symbol after the PDCCH reception ends. Then, as shown in FIG. 4 , the activation time of the terminal is determined by the start time of the on-duration and the end time of the drx-InactivityTimer. That is, the start time of the activation time of the terminal is the start time of the on-duration, and the end time of the activation time of the terminal is the end time of the drx-InactivityTimer.
  • the terminal If the terminal receives a MAC PDU in the configured downlink allocation, it starts the drx-HARQ-RTT-TimerDL of the corresponding HARQ process in the first symbol after the end of the transmission carrying the downlink HARQ feedback, and stops the drx of the corresponding HARQ processr -RetransmissionTimerDL. If a PDCCH indicating downlink transmission is received, start the drx-HARQ-RTT-TimerDL of the corresponding HARQ process in the first symbol after the end of the transmission carrying the downlink HARQ feedback, and stop the drx-RetransmissionTimerDL of the corresponding HARQ process.
  • the drx-HARQ-RTT-TimerDL times out, if the data of the corresponding HARQ process is not successfully decoded, the drx-RetransmissionTimerDL of the corresponding HARQ process is started at the first symbol after the drx-HARQ-RTT-TimerDL times out.
  • SL DRX timer can refer to DRX timer on Uu.
  • drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerSL, drx-RetransmissionTimerSL are also used on the SL.
  • the various timers used on the SL may be distinguished by adding SL to their names.
  • the drx-onDurationTimer used on the SL can be named: drx-onDurationTimer-SL.
  • the drx-InactivityTimer used on the SL can be named: drx-InactivityTimer-SL.
  • SL DRX-active time includes drx-onDurationTimer-SL (DRX On Duration Timer-SL), drx-InactivityTimer-SL (DRX Inactivity Timer-SL) or drx-RetransmissionTimer-SL (DRX Retransmission Timer-SL ) time during operation.
  • the receiver terminal monitors/receives PSCCH, PSSCH, SCI or MAC PDU within the SL DRX-active time.
  • each source and destination pair corresponds to an SL DRX-active time.
  • Each source and destination pair corresponds to a set of SL DRX timers.
  • drx-onDudrationTimer-SL used to indicate the duration at the start of the sidelink DRX cycle, that is, the "On Duration” of the DRX cycle, that is, “On Duration” represents a time period, which is determined by drx-onDurationTimerPC5, the length It is equal to the size of drx-onDudrationTimer-SL.
  • the terminal will start drx-onDudrationTimer-SL, that is, enter "On Duration", and drx-onDudrationTimer-SL will start running and enter the sidelink.
  • drx-InactivityTimer-SL (also known as: drx-InactivityTimerPC5) is used to indicate the duration after a PSCCH, PSSCH, SCI or MAC PDU transmission, where the SCI includes the first-level SCI, the second-level SCI, or the first-level SCI.
  • First-level SCI and second-level SCI first-level SCI can be carried on PSCCH
  • second-level SCI can be carried on PSSCH
  • PSSCH transmission can be new transmission, correspondingly, PSCCH or SCI is used to schedule new transmission
  • PSSCH transmissions can be new or retransmissions
  • PSCCH or SCI is used to schedule new or retransmissions.
  • the terminal device receives PSCCH or SCI to indicate new data transmission at the side chain DRX activation time, the terminal device will start or restart drx-InactivityTimerPC5, so that the terminal is always in the side chain DRX activation time, which can be understood as the terminal
  • the length of time that the device is in the active state of the sidechain DRX is the length of "On Duration".
  • Running drx-InactivityTimerPC5 can prolong the time that the terminal device is in the active state of the sidechain DRX until the drx-InactivityTimerPC5 times out, or the terminal device receives the relevant
  • the MAC CE signaling stops the drx-onDurationTimerPC5 and the drx-InactivityTimerPC5, for example, DRX Command PC5MAC CE, the terminal ends the side chain DRX activation time and enters the side chain DRX inactivation time, that is, the terminal enters the side chain from the side chain DRX active state DRX inactive state;
  • drx-RetransmissionTimer-SL (also known as: drx-RetransmissionTimerPC5) is used to indicate the maximum duration before receiving the SCI of the sidechain HARQ retransmission or scheduling the sidechain HARQ retransmission, where different sidechain processes can correspond to different drx-RetransmissionTimerPC5;
  • drx-HARQ-RTT-Timer-SL may also be referred to as drx-HARQ-RTT-TimerPC5 and is used to indicate the minimum duration before the SCI where sidechain HARQ retransmissions are expected or scheduled sidechain HARQ retransmissions, where different The side chain process can correspond to different drx-HARQ-RTT-TimerPC5.
  • This embodiment of the present application does not limit the names of timers used on the SL.
  • the above names are just an example.
  • the sender terminal is the destination selected by SL grant according to the above rules.
  • the time domain position of the sidelink resource corresponding/indicating/allocating the SL grant may not be within the SL DRX-active time of the destination. If the terminal sends PSCCH, PSSCH, SCI or MAC PDU to the destination on the sidelink resources corresponding/indicated/allocated by the SL grant, and the destination does not monitor/receive PSCCH, PSSCH, SCI or MAC PDU, then the PSCCH, PSSCH, The transmission of SCI or MAC PDU fails, and the Tx UE also wastes power consumption. Based on this, the embodiment of the present application solves how to avoid data packet transmission failure and waste power consumption by the Tx UE through the solution described in the following FIG. 5 .
  • the specific structure of the execution body of a communication method is not particularly limited in the embodiment of the present application, as long as the program that records the code of the communication method of the embodiment of the present application can be executed according to the present application.
  • a communication method according to the embodiment of the application can be used for communication.
  • the execution body of the communication method provided by the embodiment of the present application may be a functional module in the first terminal capable of calling a program and executing the program, or a communication device applied in the first terminal, such as a chip, a chip system, integrated circuits, etc. These chips, chip systems, and integrated circuits may be disposed inside the first terminal, or may be independent from the first terminal, which are not limited in the embodiments of the present application.
  • FIG. 5 shows a communication method provided by an embodiment of the present application, and the method includes:
  • Step 501 The first terminal determines one or more sidelink resources.
  • the one or more sidelink resources can be used to transmit data sent by the first terminal to the second terminal, that is, the first terminal can send data to the second terminal on the resources in the one or more sidelink resources .
  • the one or more sidelink resources there are sidelink resources located at the sidelink discontinuous reception-activation time of the second terminal.
  • the second terminal is in an active state during the sidelink DRX-active time of the second terminal.
  • the sidelink DRX-activation time of the second terminal includes: any one or more timers of drx-onDurationTimer-SL, drx-InactivityTimer-SL or drx-RetransmissionTimer-SL of the second terminal time during operation.
  • the sidelink DRX-activation time of the second terminal at least includes drx-onDurationTimer- During SL operation.
  • the activation state of the second terminal is maintained.
  • the activation time is determined by the running duration of either drx-onDurationTimer-SL, and any one or more of the drx-InactivityTimer-SL or drx-RetransmissionTimer-SL.
  • the first terminal and the second terminal in this embodiment of the present application may perform data transmission using sidelink resources on the sidelinks that each other has.
  • the one or more sidelink resources may be resources dedicated to sending specific data, or the one or more sidelink resources may be resources for sending any data.
  • the application embodiments do not limit this.
  • the above-mentioned one or more sidelink resources may be obtained by the first terminal from the resource pool through sensing (also referred to as: listening, English: sensing). For example, if the first terminal needs to send data, the first terminal may perform a sensing technique in the resource pool to determine one or more sidelink resources.
  • the above-mentioned one or more sidelink resources may be idle resources, that is, resources that are not used or reserved by other terminals except the second terminal.
  • the above-mentioned one or more sidelink resources may also be non-idle resources, that is, resources used or reserved by other terminals except the second terminal.
  • the second terminal expects that the received signal power or signal strength on the one or more sidelink resources is small, even if other terminals except the second terminal are on the one or more sidelink resources
  • the data is sent on the second terminal, and the received signal power or signal strength measured by the second terminal is relatively small.
  • the above-mentioned one or more sidelink resources may be sidelink resources that are suggested or scheduled to the first terminal by other terminals except the second terminal and can be used for sending data. Since other terminals other than the second terminal may not know the time when the second terminal is in the active state and the dormant state, the proposed or scheduled sidelink resources may include sidelink discontinuities whose time range is located at the second terminal. Sidelink resources within the receive-active time.
  • the one or more sidelink resources may be sidelink resources allocated for the first terminal by the base station accessed by the first terminal and available for sending data. That is, the one or more sidelink resources may be the sidelink resources acquired by the first terminal in the foregoing manner 1.
  • the second terminal in the embodiment of the present application adopts the DRX mechanism.
  • the second terminal is in an active state within the sidelink DRX-active time.
  • the second terminal monitors/receives PSCCH, PSSCH, SCI or MAC PDU, that is, it can receive data from other terminals .
  • the time other than the sidelink discontinuous reception-activation time of the second terminal is the discontinuous reception-inactivation time, which may also be referred to as: sidelink discontinuous reception-sleep period.
  • the second terminal is in an inactive state during the sidelink discontinuous reception-inactive time, which may also be referred to as a dormant state.
  • the second terminal may not monitor/receive PSCCH, PSSCH, SCI or MAC PDU.
  • the second terminal may also monitor/receive PSCCH, PSSCH, SCI or MAC PDU, which is not limited in this embodiment of the present application.
  • the data sent by the first terminal to the second terminal may be one or more of PSCCH, PSSCH, SCI or MAC PDUs sent by the first terminal to the second terminal on the sidelink.
  • SCI includes first-level SCI, or SCI includes first-level SCI and second-level SCI.
  • the PSCCH is used to indicate the time-frequency domain resource location, modulation and coding mode, and the priority of the data carried in the sidelink data channel (Physical Sidelink Shared CHannel, PSSCH) for PSSCH transmission, and the PSSCH is used to carry the data.
  • PSSCH Physical Sidelink Shared CHannel
  • the discontinuous reception mechanism adopted may be referred to as a sidelink disconnected reception mechanism (SL DRX).
  • the SL DRX of the terminal can be understood as the SL DRX when the terminal acts as the receiver terminal, and can also be understood as the SL DRX between the terminal and the receiver terminal when the terminal acts as the sender terminal, or, a pair of source and SL DRX between destinations.
  • source is the sender terminal identified by source layer-2 ID
  • destination is the receiver terminal identified by destination layer-2 ID
  • source is the sender terminal identified by source layer-1 ID
  • destination is the receiver terminal identified by source layer-1 ID
  • destination is the receiver terminal identified by source layer-1 ID
  • the receiver terminal identified by the layer-1 ID The receiver terminal identified by the layer-1 ID.
  • the receiver's terminal device When the receiver's terminal device is in the SL DRX activation state, that is, it monitors or receives PSCCH, PSSCH, SCI or MAC PDUs during the SL DRX activation period.
  • the second terminal can also be understood as a destination, a terminal identified by destination layer-2 ID or destination layer-1ID.
  • the first terminal can also be understood as a source, a terminal identified by source layer-2 ID or source layer-1 ID.
  • Step 502 The first terminal sends data to the second terminal on the first sidelink resource among the one or more sidelink resources.
  • the second terminal receives data from the first terminal on the first sidelink resource.
  • the first sidelink resource is within the sidelink discontinuous reception-activation time of the second terminal.
  • the first sidelink resource is located in the sidelink discontinuous reception-activation time of the second terminal, which may mean that the time domain position of the first sidelink resource is located in the sidelink discontinuous reception.
  • the first sidelink resources from the start position to the end position are all within the sidelink discontinuous reception-activation time.
  • part of the time domain position of the first sidelink resource is within the sidelink discontinuous reception-activation time.
  • the first sidelink resource is within the sidelink discontinuous reception-activation time from the initial position to a certain intermediate position, and the remaining time domain positions are not within the sidelink discontinuous reception-activation time.
  • the one or more sidelink resources include sidelink resource 1 , Sidelink Resource 2 and Sidelink Resource 3.
  • sidelink resource 1 is located in time slot 1 .
  • Sidelink resource 2 and sidelink resource 3 are located in time slot 4 and time slot 5, respectively. Since the sidelink resource 1 is within the sidelink discontinuous reception-activation time, the first terminal may determine that the sidelink resource 1 is the first sidelink resource.
  • the first terminal may determine the priority of the multiple sidelink resources according to the priority of the multiple sidelink resources. , and determine the first side link resource. For example, the sidelink resource with the highest priority among the multiple sidelink resources within the sidelink discontinuous reception-activation time is determined as the first sidelink resource.
  • the first terminal may also randomly select one sidelink resource from multiple sidelink resources within the sidelink discontinuous reception-activation time and determine it as the first sidelink resource. This embodiment of the present application does not limit this.
  • An embodiment of the present application provides a communication method, in which a first terminal first determines one or more sidelink resources. The first terminal then sends data to the second terminal on the first sidelink resource of the one or more sidelink resources. Since the first sidelink resource is located within the sidelink DRX-activation time of the second terminal, and the second terminal is in an active state during the sidelink DRX-activation time of the second terminal, In this way, it can be ensured that when the first terminal sends data on the first side link resource, the second terminal is in a state that can receive the data, which can not only avoid data transmission failure, but also avoid wasting the time when the first terminal sends data. power consumption.
  • the method provided by the embodiment of the present application may further include: the first terminal determines the sidelink discontinuous reception-activation time of the second terminal.
  • Determining the sidelink DRX-activation time of the second terminal with respect to the first terminal may be implemented in the following manner:
  • Manner 1 The first terminal acquires the sidelink discontinuous reception-activation time of the second terminal from the second terminal.
  • the acquisition by the first terminal from the second terminal of the sidelink DRX-activation time of the second terminal is divided into active acquisition and passive acquisition.
  • the so-called active acquisition refers to: the first terminal first sends a first request message to the second terminal, where the first request message is used to request the sidelink discontinuous reception-activation time of the second terminal.
  • the second terminal sends the DRX configuration information of the second terminal to the first terminal, where the DRX configuration information includes information used to determine the sidelink discontinuous reception-activation time of the second terminal.
  • the information used to determine the sidelink DRX-activation time of the second terminal is the DRX-related parameters of the second terminal, for example, the DRX cycle, the drx-onDurationTimer-SL duration, and the drx-InactivityTimer-SL duration , drx-RetransmissionTimer-SL duration, and DRX start offset, so that the first terminal can determine the sidelink discontinuous reception-activation time of the second terminal according to the discontinuous reception-related parameters.
  • the DRX-related parameters of the second terminal for example, the DRX cycle, the drx-onDurationTimer-SL duration, and the drx-InactivityTimer-SL duration , drx-RetransmissionTimer-SL duration, and DRX start offset
  • Manner 2 The first terminal acquires the sidelink discontinuous reception-activation time of the second terminal from the communication device that configures the DRX mechanism for the second terminal.
  • the communication device may be a base station or a terminal configured with a DRX mechanism, which is not limited in this embodiment of the present application.
  • the first terminal acquires the sidelink discontinuous reception-activation time of the second terminal from the communication device, it can also be divided into active acquisition and passive acquisition.
  • the first terminal obtains the sidelink discontinuous reception-activation time of the second terminal from the second terminal, which will not be repeated here.
  • the first terminal In order to ensure that the first terminal can select a sidelink resource located at the sidelink discontinuous reception-activation time of the second terminal from one or more sidelink resources, ensure that the first terminal sends the second terminal to the second terminal.
  • Data reliability in the embodiment of the present application, the number of sidelink resources located in the first time period among the one or more sidelink resources is greater than or equal to the first threshold.
  • the start time of the first time period is the start time corresponding to the candidate resource set, or the start time of the first time period is the start time of the sidelink discontinuous reception-activation time or later than the sidelink link.
  • the end time of the first time period is the end time of the sidelink DRX-activation time.
  • the first threshold may be a value predefined by a protocol, for example, the first threshold is a fixed value such as 2, 3, 4, and 5.
  • the first threshold is determined according to the total number of candidate side-first link resources in the first time period, for example, the first threshold is the total number of candidate side-link resources in the first time period multiplied by the total number of Take M.
  • M is greater than 0 and less than or equal to 1.
  • the M may be determined by the first terminal itself, or predefined by a protocol, or configured by a network device, or preconfigured, which is not limited in this embodiment of the present application.
  • the first time period is [T1+n, T3]
  • the first threshold is determined by multiplying the total number of candidate sidelink resources located in [T1+n, T3] in the candidate resource set by M.
  • the M may be determined by the first terminal itself, or predefined by a protocol, or configured by a network device, or preconfigured, which is not limited in this embodiment of the present application.
  • n represents the time when the MAC entity of the first terminal notifies the physical layer of sensing the sidelink resources, that is, the PHY layer of the first terminal receives a request from the MAC entity to determine one or more sidelink resources in time slot n.
  • T3 represents the end time of the discontinuous reception-active time.
  • T1+n represents the start time corresponding to the candidate resource set.
  • the candidate resource set in this embodiment of the present application includes s candidate sidelink resources, where s is an integer greater than or equal to 1. The following will describe how the first terminal determines the candidate resource set.
  • the first terminal determines s candidate sidelink resources from the sidelink resources as the candidate resource set according to the resource selection window of the first terminal. Then, the start time corresponding to the candidate resource set is the start time of the resource selection window of the first terminal. Correspondingly, the start time of the sidelink resource with the earliest time domain position in the candidate resource set is later than or equal to the start time of the resource selection window.
  • the deadline corresponding to the candidate resource set is the end time of the resource selection window of the first terminal (for example, T2+n), that is, the deadline of the sidelink resource with the latest time domain position in the candidate resource set should be earlier than or equal to this T2+n.
  • the first terminal can determine s sidelink resources located in [T1+n, T2+n] as the candidate side Link resources.
  • T2+n represents the end time of the resource selection window, that is, the deadline of the sidelink resource with the latest time domain position in the candidate resource set should be earlier than or equal to this T2+n.
  • the s sidelink resources include all sidelink resources in [T1+n, T2+n], and one sidelink resource is a resource of one frequency unit in one time slot.
  • the s sidelink resources include part of the sidelink resources in [T1+n, T2+n], for example, resources of some frequency units in some time slots.
  • the frequency unit may be L consecutive subchannels, where L is an integer greater than or equal to 1.
  • T1 and T2 may refer to the description in Table 1 above, or may be the conditions described below, which will not be repeated here.
  • step 501 in this embodiment of the present application may be implemented in the following manner: the first terminal uses all sidelink resources located in the resource selection window (for example, [T1+n, T2+n]) as A collection of candidate resources. The first terminal then determines one or more sidelink resources from the set of candidate resources. Specifically, the candidate resource set is determined by the physical layer of the first terminal, and one or more sidelink resources are determined from the candidate resource set.
  • the resource selection window for example, [T1+n, T2+n]
  • T2+n is greater than or equal to T3
  • T3 that is, when the deadline corresponding to the candidate resource set is later than or equal to the end time of the sidelink discontinuous reception-activation time
  • one or more side The number of sidelink resources within the first time period among the uplink resources is greater than or equal to the first threshold.
  • the one or more sidelink resources are sidelink resources determined from a candidate resource set, and the start time corresponding to the candidate resource set is later than or equal to the sidelink resources
  • the start time of the channel DRX-activation time or expressed as: the start time of the sidelink DRX-activation time is earlier than or equal to the start time corresponding to the candidate resource set.
  • the first terminal in order to ensure that there are sidelink resources at the sidelink discontinuous reception-activation time in the candidate resource set, the first terminal ensures one or more sidelink resources determined from the candidate resource set subsequently. If there is a sidelink resource at the sidelink discontinuous reception-activation time, the first terminal may update the start time corresponding to the candidate resource set.
  • the deadline corresponding to the candidate resource set is earlier than or equal to the end time of the sidelink discontinuous reception-activation time. In this way, it can be ensured that the sidelink resources in the candidate resource set are earlier than or equal to the end time of the sidelink discontinuous reception-activation time.
  • the candidate resource set satisfies one or more of the following conditions: that is, the start time is later than or equal to the start time of the sidelink DRX-activation time, or the end time is earlier than or equal to the sidelink DRX-activation time.
  • the end time of the uplink DRX-active time is not limited to the following conditions: that is, the start time is later than or equal to the start time of the sidelink DRX-activation time, or the end time is earlier than or equal to the sidelink DRX-activation time.
  • the start time corresponding to the candidate resource set is later than or equal to the start time of the sidelink discontinuous reception-activation time, and the end time corresponding to the candidate resource set is earlier than or equal to the sidelink discontinuous reception-activation time
  • the end time is , it can be guaranteed that the sidelink resources in the candidate resource set are all within the sidelink discontinuous reception-activation time.
  • the first terminal determines the start time of the resource selection window according to the start time of the discontinuous reception-activation time of the first terminal. Then, the first terminal determines s candidate sidelink resources in the resource selection window from the sidelink resources as the candidate resource set according to the start time and the end time of the resource selection window. The end time of the resource selection window is determined by T2+n.
  • the one or more sidelink resources are sidelink resources determined from the candidate resource set.
  • the deadline corresponding to the candidate resource set is earlier than or equal to the end time of data retransmission. In this way, it can be ensured that there are sidelink resources for retransmitting the data in the candidate resource set.
  • the possible retransmission end time may be determined according to at least one of the number of retransmissions, the duration of the RTT timer (timer), the duration of the retransmission timer, and the end time of the discontinuous reception-active time.
  • the RTT timer can be drx-HARQ-RTT-Timer-SL.
  • the retransmission timer may be drx-RetransmissionTimer-SL.
  • the above describes the conditions met by one or more sidelink resources and the conditions met by the start and end times corresponding to the candidate resource set.
  • the following will describe the physical (PHY) layer and media in the first terminal.
  • PHY Physical
  • MAC Medium Access Control
  • the first terminal has a physical layer and a MAC entity.
  • step 501 in this embodiment of the present application may be implemented in the following manner:
  • Step 701 The physical layer of the first terminal determines one or more sidelink resources from the candidate resource set.
  • the method provided by the embodiment of the present application may further include: the medium access control entity of the first terminal sends a sensing notification to the physical layer, where the sensing notification is used to notify the physical layer Awareness of sidelink resources.
  • the medium access control entity of the first terminal sends a perception notification to the physical layer can also be understood as requiring the physical layer to determine one or more sidelink resources by the MAC entity.
  • the physical layer senses the sidelink resources according to the sensing notification.
  • the physical layer may determine candidate sidelink resources from the sidelink resources.
  • the physical layer may sense the sidelink resources immediately after receiving the sensing notification, may also sense the sidelink resources after a preset time, or may sense the sidelink resources before receiving the sensing notification road resources.
  • the preset time may be determined by the first terminal or predefined by a protocol, which is not limited in this embodiment of the present application.
  • the medium access control entity of the first terminal sends a perception notification to the physical layer of the first terminal at time unit 1.
  • the time unit 1 is the above n.
  • the physical layer may actively perceive sidelink resources. For example, when the physical layer determines that data needs to be transmitted, the sensing side link resource can be determined.
  • Example 1 The medium access control entity provides the first information to the physical layer.
  • the method provided by the embodiment of the present application may further include: the medium access control entity of the first terminal sends the first terminal to the physical layer of the first terminal. information.
  • the physical layer of the first terminal receives the first information from the medium access control entity of the first terminal.
  • the first information is used to determine the end time of the sidelink discontinuous reception-activation time of the second terminal.
  • the first information is information used to indicate the end time of the sidelink discontinuous reception-activation time, or information used to indicate the remaining time of the sidelink discontinuous reception-activation time. one or more.
  • the first information and the sensing notification may be carried in the same message and sent to the PHY layer.
  • both the first information and the perception notification are carried in message 1, so that the first information and the perception notification are sent to the PHY layer at the same time.
  • the first information and the perception notification may also be carried in different messages and sent to the PHY layer, which is not limited in this embodiment of the present application.
  • the MAC entity first notifies the PHY layer to perceive the sidelink resources, and then provides the first information to the PHY layer.
  • the MAC entity may also provide the first information to the PHY layer first, and then notify the PHY of the perception of the sidelink resources.
  • the information used to indicate the end time of the sidelink DRX-activation time may be the end time of the sidelink DRX-activation time, or the time length L.
  • Providing the time length L facilitates the physical layer to determine the end time of the sidelink DRX-activation time according to the current moment (eg, time unit 1) and the time length L.
  • the current time can be understood as the time when the physical layer receives the time length L, and it can be considered that the time when the medium access control entity sends the time length L to the physical layer is the time when the physical layer receives the time length L. The error of receiving and sending can be ignored.
  • the information used to indicate the remaining time of the sidelink discontinuous reception-activation time may be: the remaining time, or the expiration time of the sidelink discontinuous reception-activation time.
  • the MAC entity requests the physical layer to determine a set of sidelink resources in n time slots. For example, the MAC entity provides time Q to the physical layer, where Q is the remaining time of the sidelink DRX-activation time, and n+Q is the end time of the sidelink DRX-activation time. It is worth noting that the remaining time of the sidelink discontinuous reception-activation time may be understood as the remaining time of the sidelink discontinuous reception-activation time determined at the current moment. Further, it is a continuous period of discontinuous reception-activation time.
  • the first terminal may obtain the running time of the periodic drx-onDurationTimer-SL according to the DRX cycle, DRX start offset, and drx-onDurationTimer-SL duration of the second terminal.
  • the second terminal in the time slot n, the second terminal is in a dormant period, that is, the second terminal is not in the sidelink DRX-activation time, but in the time period T4-T3 and the time period T5-T6,
  • the drx-onDurationTimer-SL of the second terminal will run, so the second terminal is in the sidelink discontinuous reception-activation period during the T4-T3 time period and the T5-T6 time period, specifically the discontinuous reception-activation period inside, the second terminal is in an active state.
  • the MAC entity At n timeslots, the MAC entity provides T3 or T3-n to the physical layer.
  • T3 and T6 represent the end time of the sidelink discontinuous reception-activation time
  • T3-n represent the remaining time of the sidelink discontinuous reception-activation time.
  • the sidelink DRX-activation time is the DRX-activation period.
  • the drx-onDurationTimer-SL of the second terminal is running, that is, the moment when the MAC entity provides T3 or T3-n to the physical layer is located in the sidelink discontinuity of the second terminal During the receive-active time, the MAC entity of the first terminal in time slot n provides time T3 or T3-n to the physical layer.
  • time period 1 is the runtime determined by drx-InactivityTimer-SL at time slot n. If the drx-InactivityTimer-SL is not restarted after time slot n, the drx-InactivityTimer-SL times out after T3.
  • the discontinuous reception-activation time of the second terminal ends at T3.
  • the MAC entity provides time T3 or T3-n to the physical layer.
  • time slot n drx-onDurationTimer-SL is running, and drx-InactivityTimer-SL is also running, and time period 2 is the running time determined by drx-InactivityTimer-SL at time slot n.
  • time slot n it can be determined that the drx-RetransmissionTimer-SL will run within the dashed box. Then the first terminal can determine that the second terminal is not within the discontinuous reception-activation time after T3 at time slot n.
  • the MAC entity provides time T3 or T3-n to the physical layer.
  • the MAC entity when the MAC entity determines that the physical layer-aware sidelink resource is required, the MAC entity provides the first terminal with information used to indicate the end time of the sidelink discontinuous reception-activation time , or, one or more of the information used to indicate the remaining time of the sidelink discontinuous reception-activation time.
  • the MAC entity may determine whether to provide the physical layer with the indication of sidelink discontinuity according to the relationship between the remaining time of the sidelink discontinuous reception-activation time and the remaining PDB One or more of the information of the end time of the reception-activation time, or the information indicating the remaining time of the sidelink discontinuous reception-activation time.
  • the MAC entity when the remaining time (T3-n) of the sidelink DRX-activation time is greater than or equal to the remaining (remaininng) PDB, the MAC entity does not provide the physical layer for indicating the sidelink DRX-activation One or more of the information of the end time of the time, or the information used to indicate the remaining time of the sidelink discontinuous reception-activation time.
  • the information is not provided because T2 is less than or equal to the remaining PDB, therefore, the end of the resource selection window is earlier than the end of the sidelink DRX-activation time, so this information is not provided.
  • the remaining PDB in this embodiment of the present application may refer to the data sent by the first terminal to the second terminal on the sidelink.
  • the MAC entity when the remaining time (T3-n) of the sidelink DRX-activation time is less than or equal to the remaining (remaininng) PDB, the MAC entity provides the physical layer for indicating the sidelink DRX-activation time , or, one or more of the information for indicating the remaining time of the sidelink discontinuous reception-activation time.
  • the medium access control entity provides the physical layer with the relevant information of the sidelink DRX-activation time
  • Sidelink resources It avoids the media access control caused by the fact that the one or more sidelink resources reported by the physical layer to the media access control entity do not include the sidelink resources within the sidelink discontinuous reception-activation time. The fact that the entity cannot determine the first sidelink resource for transmitting data occurs, thereby resulting in the inability to perform data transmission.
  • step 701 provided in this embodiment of the present application may be implemented in the following manner: the physical layer determines one or more sidelink resources from the candidate resource set according to the first information.
  • the physical layer determines one or more sidelink resources from the candidate resource set according to the first information, including: the physical layer selects from the candidate resource set at the end of the sidelink discontinuous reception-activation time Sidelink resources prior to time are determined as one or more sidelink resources.
  • the physical layer refers to the first information when selecting one or more sidelink resources from the candidate resource set.
  • the one or more sidelink resources include sidelink resources located before T3 and sidelink resources located after T3. Or all of the one or more sidelink resources are located before T3.
  • the sidelink resources included in the one or more sidelink resources also need to be located after the time unit 1 . This is because the physical layer determines in time unit 1 that it needs to sense the sidelink resources, so providing the sidelink resources located before time unit 1 to the MAC entity may have no reference value, so the physical layer may not provide the first terminal to the The MAC entity provides sidelink resources prior to time unit 1.
  • time unit 1 may be time slot n.
  • the above-mentioned one or more sidelink resources may be all or part of the sidelink resources in the candidate resource set, which is not limited in this embodiment of the present application .
  • the one or more sidelink resources may be reported by the PHY layer to the MAC entity one by one, or the one or more sidelink resources may be reported by the PHY layer to the MAC entity in a unified manner. This is not done in this embodiment of the present application limited.
  • the PHY layer of the first terminal prefferably specifies the start time of the discontinuous reception-activation time of the sidelink of the second terminal, so as to ensure that one or more sidelink resources provided by the PHY layer to the MAC entity exist in the sidelink.
  • Sidelink resources for link discontinuous reception-active time are convenient for the PHY layer of the first terminal to specify the start time of the discontinuous reception-activation time of the sidelink of the second terminal, so as to ensure that one or more sidelink resources provided by the PHY layer to the MAC entity exist in the sidelink.
  • Sidelink resources for link discontinuous reception-active time further includes: information used to indicate the start time of the sidelink discontinuous reception-activation time.
  • the information used to indicate the start time of the sidelink DRX-activation time may be the start time of the sidelink DRX-activation time, or the information used to indicate the sidelink DRX-activation time
  • the information of the starting time of the discontinuous reception-activation time may be the current time+L1.
  • L1 represents the time length from the current moment to the start time of the sidelink discontinuous reception-activation time.
  • step 701 may be implemented by steps: the physical layer according to the first A message determines the sidelink DRX-active time. The physical layer then determines one or more sidelink resources from the set of candidate resources according to the sidelink discontinuous reception-activation time.
  • the MAC entity may provide the PHY layer with information for indicating the start time of the sidelink DRX-activation time and for determining the sidelink DRX-activation time One or more of the information on the expiration time of the time.
  • the MAC entity when the MAC entity determines that the physical layer needs to sense the sidelink resources, it provides the PHY layer with information used to indicate the start time of the sidelink discontinuous reception-activation time .
  • the MAC entity determines whether to send an indication to the physical layer of the first terminal according to the relationship between the time unit 1 and the start time of the sidelink DRX-activation time Information about the start time of the sidelink DRX-activation time.
  • the time unit 1 determines the time at which the physical layer of the first terminal perceives the sidelink resources.
  • the media connection of the first terminal The ingress control entity sends information for indicating the start time of the sidelink DRX-activation time to the physical layer of the first terminal.
  • the time unit 1 since the time unit 1 is located before the start time of the sidelink discontinuous reception-activation time, it means that when the MAC entity notifies the PHY to perceive the sidelink, the second terminal is still in the dormant state, and has not yet returned from the dormant state.
  • the PHY layer of the first terminal may cause one or more sidelink resources provided by the subsequent PHY layer to the MAC entity. Include sidelink resources located before the start time of the sidelink DRX-activation time, but the sidelink resources located before the start time of the sidelink DRX-activation time cannot be carried data sent to the second terminal.
  • the first terminal can obtain the running time of the periodic drx-onDurationTimer-SL according to the DRX cycle, the DRX start offset, and the drx-onDurationTimer-SL duration.
  • the second terminal is not in the SL active time (that is, the above-mentioned sidelink discontinuous reception-activation time), but it is known that in the T4-T3 time period and the T5-T6 time period, the drx of the second terminal is -onDurationTimer-SL will run, so the second terminal is in the sidelink discontinuous reception-activation time during the T4-T3 time period and the T5-T6 time period.
  • the MAC entity provides T4 or T4-n to the physical layer.
  • T4-n represents the time length from the time slot n from the start time of the sidelink DRX-active time.
  • the media connection of the first terminal The ingress control entity does not send the information for indicating the start time of the sidelink DRX-activation time to the physical layer of the first terminal.
  • the time unit 1 since the time unit 1 is located after the start time of the sidelink discontinuous reception-activation time, it means that when the MAC entity notifies the PHY layer to perceive the sidelink, the second terminal is already in the active state. Therefore, the subsequent PHY layer It is less likely that the one or more sidelink resources provided to the MAC entity include sidelink resources located before time unit 1.
  • drx-onDurationTimer-SL is running, that is, the second terminal is in the sidelink discontinuous reception-activation time at time slot n, then at time slot n , the MAC entity provides the physical layer with the time T4 or T4-n or 0, or the MAC entity does not provide the physical layer with the starting time of the sidelink discontinuous reception-activation time.
  • Example 2 The medium access control entity does not provide the first information to the physical layer.
  • the physical layer selects one or more sidelink resources from the candidate resource set without considering the first information. Therefore, among one or more sidelink resources reported by the physical layer to the MAC entity, there may be sidelink resources within the sidelink discontinuous reception-activation time. There may also be one or more sidelink resources reported by the physical layer to the MAC entity that do not have sidelink resources within the sidelink discontinuous reception-activation time.
  • the MAC entity cannot select the sidelink resources located in the sidelink. If the channel discontinuous reception is the resource within the activation time, the MAC entity does not select the initial transmission resource and the retransmission resource. Alternatively, the MAC entity may notify the physical layer to re-report the perceived sidelink resources, which is not limited in this embodiment of the present application.
  • the MAC entity if the MAC entity requires the physical layer to determine the time unit 1 of a set of sidelink resources such that n+T1 is not earlier than the start time of the sidelink DRX-activation time. In this way, the MAC entity does not need to provide the physical layer with information on the start time of the sidelink DRX-active time. details as follows:
  • the time slot n is within the discontinuous reception-activation time.
  • the start time (n+T1) of the candidate resource set is located after the start time of the DRX-activation time.
  • time slot n is later than or equal to the time slot T1 before the start of the DRX-ACTIVE time.
  • time slot n in Figure 13 is equal to the time slot of T1 before the start of active time.
  • the PHY layer of the first terminal may determine one or more sidelink resources to be reported to the MAC entity from the s candidate sidelink resources. Then, the PHY layer may refer to the following rules when determining one or more sidelink resources to be reported to the MAC entity from the s candidate sidelink resources, so that the final one or more sidelink resources are located in the first The number of sidelink resources in the time period is greater than or equal to the first threshold.
  • the physical layer reports to the MAC entity in one or more sidelink resources.
  • the number of sidelink resources located in [n+T1, T3] must reach a certain value (the first threshold).
  • the first threshold may be obtained by multiplying the total number of candidate sidelink resources located in [n+T1, T3] in the candidate resource set by M. If the physical layer determines that among one or more sidelink resources, the number of sidelink resources located in [n+T1, T3] is less than the first threshold, the PHY layer determines whether the candidate sidelink resources are Excluded RSRP threshold.
  • the PHY layer determines one or more sidelink resources to be reported to the MAC entity according to the increased RSRP threshold.
  • the PHY layer can continuously increase the RSRP threshold until the resources in [n+T1, T3] of one or more sidelink resources determined by the physical layer reach this value.
  • the number of resources in [T3+1, n+T2] must be greater than or equal to [T3+1, n+T2] ]
  • the total number of candidate resources in M is multiplied by M. If it is not satisfied, it can also be satisfied by continuously increasing the RSRP threshold. In this way, it can be ensured that there is a certain amount of resources available for the MAC entity to select the sidelink resources of the initially transmitted data during the discontinuous reception-activation time. There are a certain number of resources in the resource selection window for the MAC entity to select the sidelink resources for retransmitting data.
  • Step 702 The physical layer reports information of one or more sidelink resources to the medium access control entity of the first terminal.
  • step 501 in this embodiment of the present application may be implemented by the following step 703:
  • Step 703 The medium access control entity selects the first sidelink resource within the sidelink discontinuous reception-activation time of the second terminal from the one or more sidelink resources.
  • the method provided by the embodiment of the present application further includes: the first terminal determines the retransmission end time of the data or the data remaining retransmission time.
  • the first terminal determines the deadline corresponding to the candidate resource set according to the retransmission end time or the remaining retransmission time, and the deadline corresponding to the candidate resource set is earlier than or equal to the retransmission end time.
  • that the deadline corresponding to the candidate resource set is earlier than or equal to the retransmission end time can be understood as: the deadline corresponding to the candidate resource set is located before the retransmission end time, or is the retransmission end time.
  • the deadline corresponding to the candidate resource set may also be located after the retransmission end time, which can fully ensure that there are sidelink resources in the candidate resource set that can be used for retransmission of data before the retransmission end time. This process can be considered as the moment when the first terminal re-determines the deadline corresponding to the candidate resource set.
  • the retransmission end time and the remaining retransmission time in this embodiment of the present application are both times pre-estimated by the first terminal, and at this time, the first terminal may not transmit the above-mentioned data to the second terminal for the first time.
  • the retransmission end time may also be referred to as: the possible retransmission end time or the latest retransmission end time.
  • the retransmission end time may also be referred to as the latest retransmission time, or may be referred to as the latest possible retransmission time.
  • the remaining retransmission time may also be referred to as possible remaining retransmission time or maximum remaining retransmission time.
  • the possible remaining retransmission time is the possible retransmission end time-n.
  • the MAC entity requests the physical layer to determine a set of sidelink resources in time slot n, and the physical layer takes the resources in [T1+n, T2+n] as s candidate sidelink resources.
  • the s candidate sidelink resources constitute a candidate resource set.
  • the following takes the interaction between the MAC entity of the first terminal and the physical layer as an example to describe the process of the first terminal determining the end time of data retransmission or the remaining retransmission time of data.
  • the medium access control entity sends second information to the physical layer, where the second information is used to indicate the retransmission end time of the data or the remaining retransmission time of the data.
  • the first terminal determining the retransmission end time of the data or the remaining retransmission time of the data includes: the physical layer of the first terminal determining the retransmission end time or the remaining retransmission time according to the second information .
  • the second information may be sent by the MAC entity of the first terminal to the PHY layer in time unit 1, or sent by the MAC entity of the first terminal to the PHY layer after time unit 1.
  • the second information may be sent to the PHY layer together with the above-mentioned first information, or be sent to the PHY layer separately, which is not limited in this embodiment of the present application.
  • the second information includes retransmission end time or remaining retransmission time of the data. This prevents the PHY from calculating the retransmission end time or the remaining retransmission time of the data by itself.
  • the MAC entity may determine the possible retransmission end time according to at least one of the number of retransmissions, the RTT timer duration, the retransmission timer duration, and the end time of the discontinuous reception-activation time.
  • the second information is at least one of the number of retransmissions of the data, the RTT timer duration, and the retransmission timer duration.
  • the PHY layer determining the retransmission end time or the remaining retransmission time according to the second information may include: the PHY layer of the first terminal according to the number of data retransmissions, the RTT timer duration, and the retransmission timer duration. At least one determines the retransmission end time or the remaining retransmission time of the data. In this scheme, the retransmission end time or the remaining retransmission time is calculated by the physical layer.
  • the retransmission end time is equal to the end time of the sidelink discontinuous reception-activation time+(RTT timer duration+retransmission timer duration)*retransmission times.
  • the retransmission end time is equal to the end time of the sidelink discontinuous reception-activation time+retransmission timer duration*retransmission times.
  • the retransmission end time is equal to the first data transmission end time+(RTT timer duration+retransmission timer duration)*retransmission times.
  • the retransmission end time is equal to the end time of the first data transmission+retransmission timer duration*retransmission times.
  • the number of retransmissions is 2
  • T3 is the end time of the sidelink DRX-activation time
  • T5 is the end time of retransmission (or the latest end time of retransmission). Then the deadline for the candidate resource set cannot exceed T5 at the latest.
  • the medium access control entity regardless of whether the remaining packet delay budget is smaller than the first value, that is, the MAC entity does not need to consider the relationship between the remaining packet delay budget and the first value, the medium access control entity sends the The physical layer provides the minimum value among the remaining packet delay budget and the retransmission end time.
  • the MAC entity considers the relationship between the remaining packet delay budget and the first value, and determines whether to provide the remaining packet delay budget and the retransmission end time to the physical layer the smallest among them.
  • the MAC entity does not provide physical retransmission end time or remaining retransmission time .
  • the first value is the retransmission end time-n.
  • the MAC entity For example, if the remaining packet delay budget is less than the first value, or the remaining packet delay budget is less than the remaining retransmission time, the MAC entity provides the physical layer with the minimum value among the remaining PDB and the retransmission end time.
  • step 703 can be implemented in the following ways:
  • the MAC entity selects the first sidelink resource from one or more sidelink resources provided by the physical layer, so that the selected first sidelink resource is within the sidelink discontinuous reception-activation time.
  • the sidelink discontinuous reception-activation time in this embodiment of the present application may be understood to include the currently determined sidelink discontinuous reception-activation time and the possible sidelink discontinuous reception-activation time.
  • the uplink DRX-activation time is determined according to the selected first side downlink resource. There are several ways:
  • the selected initial transmission resource for example, the first sidelink resource
  • the retransmission resource for example, the second sidelink resource
  • the selected retransmission resource is within the currently determined DRX-activation time of the sidelink or within the possible running period of the retransmission timer.
  • the possible retransmission timer is determined according to the resource preceding this resource. For example, if one initial transmission resource and two retransmission resources are selected, the first retransmission timer is determined according to the initial transmission resource during the running period, and the first retransmission timer is determined according to the first retransmission resource during the running period. For example, if one initial transmission resource and two retransmission resources are selected, the first retransmission resource can be indicated by the SCI of the initial transmission, and the second retransmission resource can be indicated by the SCI of the first retransmission resource.
  • the terminal can determine the time domain and frequency domain resources for PSSCH transmission according to the time domain resource allocation domain and frequency domain resource allocation domain included in the SCI and the resources for PSCCH transmission, wherein the time domain resource allocation domain indicates N resources, And the time slot offset of resources other than the first resource among the N resources, N can be 1 or 2 or 3, the time slot where the first resource is located is the time slot where the SCI is located, and the time slot other than the first resource is The time slot offset of the resource is the time slot offset relative to the first resource, and the frequency domain resource allocation field indicates the number of consecutive subchannels of each of the N resources, and the resources other than the first resource.
  • the starting subchannel index of Among them, N resources are used for N data transmissions.
  • the MAC entity selects sidelink resources from one or more sidelink resources provided by the physical layer, so that the selected initial transmission resource is within the sidelink discontinuous reception-activation time. If a retransmission resource needs to be selected, the retransmission resource can be indicated by the preceding SCI, either at the currently determined sidelink DRX-active time or during a possible retransmission timer operation.
  • the MAC entity randomly selects one resource among the sidelink resources within the sidelink discontinuous reception-activation time among one or more sidelink resources provided by the physical layer. as the first side link resource.
  • the retransmission resource can be indicated by the preceding SCI, or during the currently determined sidelink DRX-active time or the possible retransmission timer running period.
  • the earliest resource in time is the primary resource.
  • the selection of resources here can be understood as a resource for selecting a transmission opportunity.
  • the initial transmission resource can be understood as the resource of the initial transmission opportunity, and the retransmission resource can be understood as the resource of the retransmission opportunity.
  • the fact that the resource is within the possible retransmission timer running period can be understood as the transmission opportunity corresponding to the resource is within the possible retransmission timer running period.
  • the initial transmission resource in the embodiment of the present application is the resource used for transmitting the data for the first time, that is, the resource used when the data is transmitted for the first time.
  • the retransmission resource in the embodiment of the present application is the resource used to transmit the data for the second time, that is, the resource used when the data is transmitted for the Xth time. X is greater than or equal to 2.
  • the first terminal may determine a plurality of second sidelink resources, and the number of the second sidelink resources may be determined according to the number of retransmissions of the data, which is not limited in the embodiment of the present application.
  • the possible running time of the retransmission timer may be determined according to the sidelink resource selected by the first terminal. For example, the starting time of the running time of the retransmission timer may be the first time unit after the end of resource A. If the retransmission timer is the timer of the first retransmission, then resource A is the first retransmission timer. The resources used for the initial transfer before the transfer. If the retransmission timer is the timer for the gth retransmission, then resource A is the resource used for retransmission before the gth retransmission. g is an integer greater than or equal to 2.
  • the end time of the retransmission timer running time is the start of the retransmission timer running time + the retransmission timer duration -1.
  • the possible retransmission timer running time may also be determined according to the selected first sidelink resource and the RTT timer.
  • the first terminal determines the running time of the RTT timer according to the selected sidelink resources, the first time unit after the RTT timer times out is the start time of the retransmission timer running time, and the end time of the retransmission timer running time is the retransmission timer running time.
  • the first terminal determining the running time of the RTT timer according to the selected sidelink resources may specifically be: the first terminal determines, according to the selected sidelink resources, the resources for carrying the transmission of the HARQ feedback.
  • the first time unit after the end of the transmission carrying the HARQ feedback is the start time of the RTT timer running time.
  • the end time of the RTT timer running time is the start of the RTT timer running time + RTT timer duration -1.
  • a time unit may be a symbol, slot, subframe, millisecond, frame, minislot, or the like.
  • sidelink resource A, sidelink resource B, sidelink resource C, and sidelink resource D represent sidelink resources selected by the MAC entity.
  • the sidelink resource A is the sidelink resource with the earliest time domain position among the four sidelink resources
  • the sidelink resource D is the sidelink resource with the latest time domain position among the four sidelink resources.
  • the side link resource A is an initial transmission resource.
  • Sidelink resource B to sidelink resource D are retransmission resources.
  • the sidelink resource A and the sidelink resource B are within the currently determined sidelink discontinuous reception-activation time.
  • the sidelink resource C is within the running period of the retransmission timer determined according to the sidelink resource B
  • the sidelink resource D is within the running period of the retransmission timer determined according to the sidelink resource C.
  • the retransmission resource can be indicated by the preceding SCI specifically, the retransmission resource can be indicated by the time domain resource allocation field in the preceding SCI.
  • a resource can be indicated by the preceding SCI to satisfy that the interval between the time domain location of the resource and the time domain location of the preceding SCI is less than or equal to a threshold.
  • a threshold A possible way is that the time slot where the resource is located - the time slot where the previous SCI is located is less than or equal to 31.
  • the selected initial transmission resource is within the currently determined SL DRX-active time. If a retransmission resource needs to be selected, the selected retransmission resource should be within the currently determined sidelink discontinuous reception-active time or within the possible time. During the sidelink discontinuous reception-activation time, the possible sidelink discontinuous reception-activation time is determined according to the resource preceding the resource.
  • the MAC entity selects sidelink resources from one or more sidelink resources provided by the physical layer, so that the selected initial transmission resource is within the sidelink discontinuous reception-activation time, and if necessary, selects the If the transmission resource is used, the retransmission resource can be indicated by the preceding SCI, or within the currently determined sidelink DRX-activation time or possible sidelink DRX-activation time.
  • the MAC entity randomly selects a side link resource within the side link discontinuous reception-activation time among one or more side link resources provided by the physical layer.
  • the uplink resource is used as the initial transmission resource.
  • the retransmission resource can be indicated by the preceding SCI during the downlink DRX-activation time, or within the currently determined sidelink DRX-activation time or possible sidelink DRX-activation time .
  • the earliest sidelink resource in time is the initial transmission resource.
  • the selection of sidelink resources here can be understood as selecting a sidelink resource for a transmission opportunity.
  • the initial transmission resource can be understood as the sidelink resource of the initial transmission opportunity
  • the retransmission resource can be understood as the sidelink resource of the retransmission opportunity.
  • a sidelink resource within the active time can be understood as the transmission opportunity corresponding to the sidelink resource within the sidelink discontinuous reception-activation time.
  • Possible active times include possible retransmission timer runtimes in 1), and possible other timer runtimes, for example, possible drx-InactivityTimerSL runtimes.
  • the possible running period of drx-InactivityTimerSL is determined according to the selected initial transmission resource. For example, drx-InactivityTimerSL starts/restarts in the first time unit after the initial transmission resource ends, and times out after the drx-InactivityTimerSL duration.
  • sidelink resource 1 to sidelink resource 4 are sidelink resources selected by the MAC entity.
  • the side link resource 1 is the initial transmission resource.
  • Sidelink resource to sidelink resource 4 are retransmission resources.
  • sidelink resource 1 and sidelink resource 2 are within the currently determined sidelink discontinuous reception-activation time.
  • the sidelink resource 3 is located within the running period of the drx-InactivityTimerSL determined by the first terminal according to the sidelink resource 1 .
  • the sidelink resource 4 is located within the running period of the retransmission timer determined by the first terminal according to the sidelink resource 3 .
  • the sidelink resource selected by the MAC entity in one or more sidelink resources provided by the physical layer also needs to satisfy that the time interval between any two selected sidelink resources is greater than or equal to the minimum value. time interval.
  • the resource pool where the resource is located is configured with a PSFCH resource, the above-mentioned minimum time interval condition needs to be met. For example, the time interval between the first sidelink resource and the second sidelink resource is greater than or equal to the minimum time interval.
  • a possible situation is that the MAC entity cannot select X retransmission resources that satisfy the above conditions from one or more sidelink resources provided by the physical layer.
  • X is the number of retransmissions determined by the MAC entity, and if X is greater than or equal to 1, the MAC entity selects at most N retransmission resources that can satisfy the above conditions, where N is greater than or equal to 0.
  • the destination may be the destination selected by the first terminal for an SL grant according to the LCP process.
  • at least one of the logical channel logical channel (LCH) and the MAC CE has the highest priority destination among all logical channels and MAC CEs that meet the conditions.
  • the conditions include: the SL data in the destination can be transmitted.
  • the destination can be the destination of the data to be transmitted.
  • the SL DRX-active time of the destination is determined according to the active time of at least one destination for which data is to be transmitted. For example, it is the union or intersection of the active time of the destination of the data to be transferred.
  • the first terminal may first determine the destination. For example, if there are multiple destinations of data to be transmitted, the first terminal may select from multiple destinations of data to be transmitted (the multiple destinations of data to be transmitted may belong to the same terminal or may belong to different terminals. This is not limited) select a destination destination. For example, if the target destination is identified by the layer-2 ID of the second terminal, the first terminal may determine that it needs to select a sidelink resource to send data to the second terminal. Then, according to the SL DRX-active time of the second terminal, the first terminal selects the side link resource located in the SL DRX-active time from one or more side link resources as the first side link resource.
  • the first terminal sends data to the second terminal on the first sidelink resource.
  • the first terminal may select a target destination from multiple destinations of data to be transmitted.
  • the first terminal may also select a target destination with reference to the above rules.
  • the DRX parameter considered when the above-mentioned MAC entity selects the first sidelink resource from one or more sidelink resources provided by the physical layer may be the DRX parameter of the destination selected for one SL grant according to the LCP process.
  • at least one of the logical channel logical channel (LCH) and the MAC CE has the highest priority destination among all logical channels and MAC CEs that meet the conditions.
  • the destination can be the destination of data to be transmitted, and at least one of the resources provided by the physical layer is within the SL DRX-active time of the destination, and at least one of the logical channel logical channel (LCH) and the MAC CE is selected to satisfy the above conditions.
  • the DRX status/activation time/timer running status of a destination in this application can be understood as the DRX status/activation time/timer running status maintained by the first terminal for the destination. Further, the DRX parameter/status/activation time/timer running status, etc. of the destination may be the DRX parameter/status/activation time/timer running status of the pair of source and destination.
  • the destination for an SL grant in the LCP process it is also necessary to satisfy the SL grant in the SL DRX-active time of the destination. That is, in the destination of the SL grant in the DRX-active time, at least one of the LCH and the MAC CE is selected as the destination with the highest priority among all logical channels and MAC CEs that satisfy the conditions.
  • the destination selected by the first terminal is DES2, then the first terminal can subsequently select the sidelink resources located in the DRX-active time of the DES2 for the initial Pass the data sent to this DES2.
  • the first terminal may determine the second terminal in the following manner. For example, the first terminal may first select an SL grant, and then determine the first sidelink resource indicated by the SL grant from one or more sidelink resources. The first terminal determines the time range of the first sidelink resource. Then the first terminal determines the first destination from the multiple destinations of the data to be transmitted. The active time of the first destination includes the time range of the first sidelink resource, that is, the time range of the first sidelink resource is located within the SL DRX-active time of the first destination.
  • the first terminal may determine the first destination from the multiple destinations according to the priorities of the multiple destinations. It is worth noting that the priority of the destination can also be regarded as the priority of the data transmitted on the destination.
  • the time range of the sidelink resource (for example, the initial transmission sidelink resource 1) selected by the first terminal does not overlap with the SL DRX-active time of DES1 and DES2. That is, the DES1 and DES2 are not in the SL DRX-active time within the time range of the side link resources selected by the first terminal, then the first terminal does not generate a MAC PDU, so the first transmission side selected by the first terminal
  • the SL grant corresponding to uplink resource 1 is not used.
  • the HARQ entity instructs the sidelink process to trigger retransmission, and the sidelink process notifies the physical layer to transmit the SCI and generate a transmission. If no MAC PDU is generated during the above initial transmission, the sidelink process cannot transmit SCI and data for the retransmission grant. Then as shown in Figure 18, even if the retransmission side link resource 2 is within the SL DRX-active time of DES2, the first terminal does not transmit on the retransmission side link resource 2, that is, the second terminal does not use the retransmission side link resource 2. The retransmission grant corresponding to the side downlink resource 2 is transmitted.
  • the retransmitted grant is not within the active time of the destination of the MAC PDU, the transmitted SCI and data will not be received by the destination. Therefore, if the initial transmission grant does not generate a MAC PDU, it is not transmitted on the corresponding retransmission grant.
  • the retransmission grant corresponding to the initial transmission grant is a grant used to transmit the same MAC PDU/TB as the initial transmission grant.
  • the retransmission grant is handled as follows:
  • the MAC entity If the MAC entity does not obtain the MAC PDU of the initial transmission grant, it clears the PSCCH duration and PSSCH duration corresponding to the retransmission grant associated with the initial transmission grant. Or, if the MAC entity does not obtain the MAC PDU of the initial transmission grant, it clears the retransmission grant associated with the initial transmission grant. Or, if the MAC entity does not transmit data on the initial transmission grant, the MAC entity clears the PSCCH duration and PSSCH duration corresponding to the retransmission grant associated with the initial transmission grant. Alternatively, if the MAC entity does not transmit data on the initial transmission grant, the MAC entity clears the retransmission grant associated with the initial transmission grant.
  • the MAC entity clears the PSCCH corresponding to the grant duration and PSSCH duration, or, clear with this grant.
  • the HARQ entity submits the grant to the sidelink process , instructs the sidelink process to trigger a retransmission. If the HARQ buffer associated with the sidelink process associated with a retransmission grant is empty, or the transmission resource indicated by the SL grant is not within the SL DRX-active time of the destination corresponding to the MAC PDU, the HARQ entity does not submit the grant to the sidelink process, nor does it Instructs the sidelink process to trigger a retransmission.
  • the sidelink process instructs the physical layer to transmit the SCI according to the stored SL grant. If the HARQ buffer associated with the sidelink process is empty, or the transmission resource indicated by the stored SL grant is not within the SL DRX-active time of the destination corresponding to the MAC PDU, the sidelink process does not instruct the physical layer to transmit the SCI according to the stored SL grant.
  • the HARQ entity In order for the sidelink process to determine whether the SL grant is at the SL DRX-active time of the destination, the HARQ entity provides/submits the Destination information of the MAC PDU to the Sidelink process, for example, destination layer-2 ID, Source and Destination pair, Source layer-2 ID and Destination layer-2 ID pair, or Source layer-1 ID and Destination layer-1 ID pair.
  • the retransmission grant is not used to avoid waste of power consumption when PSCCH, PSSCH, SCI or MAC PDU is sent when the destination does not monitor PSCCH, PSSCH, SCI or MAC PDU.
  • the first terminal can use the sidelink resource indicated by the retransmission SL grant to send data to the second terminal.
  • At least one of the initial transmission SL grant and the corresponding retransmission SL grant is in the SL DRX-active time of the destination. That is, in the destination where at least one of the initial transmission SL grant and the retransmission SL grant is within the SL DRX-active time, at least one of the logical channel logical channel (LCH) and the MAC CE is selected in all the logical channels and MAC CE that satisfy the conditions.
  • LCH logical channel logical channel
  • the initial transmission grant does not generate a MAC PDU
  • the HARQ entity instructs the sidelink process to trigger a new transmission. If the transmission resource indicated by the initial transmission SL grant is not within the SL DRX-active time of the destination corresponding to the MAC PDU, the HARQ entity does not instruct the sidelink process to trigger a new transmission. If the transmission resource indicated by the initial transmission SL grant is not within the SL DRX-active time of the destination corresponding to the MAC PDU, the HARQ entity submits the MAC PDU and the initial transmission SL grant to the sidelink process.
  • the HARQ entity submits the grant to the sidelink process , instructs the sidelink process to trigger a retransmission. If the HARQ buffer associated with the sidelink process associated with a retransmission grant is empty, or the transmission resource indicated by the SL grant is not within the SL DRX-active time of the destination corresponding to the MAC PDU, the HARQ entity does not submit the grant to the sidelink process, nor does it Instructs the sidelink process to trigger a retransmission.
  • the sidelink process instructs the physical layer to transmit the SCI according to the stored SL grant. If the HARQ buffer associated with the sidelink process is empty, or the transmission resource indicated by the stored SL grant is not within the SL DRX-active time of the destination corresponding to the MAC PDU, the sidelink process does not instruct the physical layer to transmit the SCI according to the stored SL grant.
  • the HARQ entity In order for the sidelink process to determine whether the SL grant is at the SL DRX-active time of the destination, the HARQ entity provides/submits the destination information of the MAC PDU to the Sidelink process, for example, destination layer-2 ID, Source and Destination pair, source layer-2 ID and destination layer-2 ID pair, or source layer-1 ID and Destination layer-1 ID pair.
  • the initial transmission side link resources indicated by the initial transmission grant selected by the terminal are not located in the SL DRX-active time of DES1, but the retransmission side link resources indicated by the retransmission grant selected by the terminal are not located in the SL DRX-active time of DES1.
  • the channel resource is located in the SL DRX-active time of DES1.
  • the embodiment of the present application provides a method for triggering resource selection/reselection, the method comprising:
  • Step A1 The first terminal determines one or more sidelink resources Y for initial transmission of data.
  • the sidelink resource Y used for the initial transmission of data is indicated by the initial transmission grant.
  • Step B1 if the first terminal determines that there is no sidelink resource whose time domain position is located in the DRX-active time of the second terminal in one or more sidelink resources Y, then the first terminal determines to trigger resource selection /reselect.
  • the above steps A1 and B1 may be regarded as a triggering condition of the Resource(re-)selection of the first terminal.
  • the above-mentioned Resource(re-)selection trigger condition detection is performed in the MAC entity.
  • Another possible way is to check in the LCP process: if there is no sidelink resource Y used for initial transmission of data within the DRX-active time of the destination with data (such as the second terminal), then trigger resource selection/ reselection.
  • the above-mentioned second terminal may be a specific terminal. For example, if there is no sidelink resource located in the DRX-active time of the second terminal, but there are resources located in the DRX-active time of other terminals. sidelink resources, the first terminal may choose to trigger resource reselection, or may not trigger resource selection/reselection. However, if the second terminal represents one or more terminals, if there is no sidelink resource located in the DRX-active time of any one of the one or more terminals in the one or more sidelink resources Y, Then the first terminal may choose to trigger resource reselection.
  • the embodiment of the present application provides a method for triggering resource selection/reselection, the method comprising:
  • Step A2 The first terminal determines one or more sidelink resources Y for initial transmission of data and sidelink resources Z for retransmission.
  • Step B2 if the first terminal determines that there is no sidelink resource for initial transmission whose time domain position is located in the DRX-active time of the second terminal in one or more sidelink resources Y, and is used for If there is no sidelink resource used for retransmission within the DRX-active time in the retransmitted sidelink resource Z, the first terminal determines to trigger resource selection/reselection.
  • the resource selection/reselection (Resource(re-)selection) trigger condition check described in the above steps A2 and B2 is performed in the MAC entity. Another possible way is to check during the LCP process: if the sidelink resources used for initial transmission (initial transmission SL grant) and the sidelink resources used for retransmission (eg, the retransmission SLgrant indicates the If none of the sidelink resources) are within the SL DRX-active time of the second terminal, resource selection/reselection is triggered.
  • steps A1 to B2 can be used alone as an embodiment.
  • the solutions described in the foregoing steps A1 to B1 may also be used in combination with the solutions described in the foregoing FIG. 5 .
  • the solutions described in the foregoing steps A2 to B2 can also be used in combination with the solutions described in the foregoing FIG. 5 .
  • steps A1 to B2, or the solutions described in steps A2 to B2 may be regarded as conditions for triggering resource selection/reselection by the first terminal.
  • each network element such as the first terminal, etc.
  • each network element includes corresponding structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the first terminal may be divided into functional units according to the foregoing method example.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and other division methods may be used in actual implementation.
  • FIG. 21 shows the communication device involved in the above-mentioned embodiment, and the communication device may include: a communication module 2113 and a processing module 2112 .
  • the communication device may further include a storage module 2111 for storing program codes and data of the communication device.
  • the communication device is a first terminal, or a chip applied in the first terminal.
  • the communication module 2113 is used to support the communication device to communicate with an external network element (eg, a second terminal).
  • the communication module 2113 is configured to perform the sending and receiving operations of the first terminal in the foregoing method embodiments.
  • the processing module 2112 is configured to perform the processing operations of the first terminal in the foregoing method embodiments.
  • the communication module 2113 is configured to perform the sending action performed by the first terminal in step 501 of FIG. 5 in the foregoing embodiment.
  • the processing module 2112 is configured to support the communication apparatus to perform the processing actions performed by the first terminal in the foregoing embodiment, such as step 502 .
  • the communication module 2113 shown in FIG. 21 can also be replaced by a communication unit, and the processing module 2112 can also be replaced with reference to a processing unit.
  • the storage module 2111 can also be replaced with a storage unit.
  • the processing unit is used to control and manage the actions of the communication device, for example, the processing unit is used to execute the steps of information/data processing in the communication device.
  • the communication unit is used to support the steps of information/data transmission or reception performed by the communication device.
  • the communication unit may include a receiving unit and a sending unit, the receiving unit is used for receiving a signal, and the sending unit is used for sending a signal.
  • the processing module 2112 may be a processor or a controller, such as a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • a processor may also be a combination that performs computing functions, such as a combination comprising one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication module may be a transceiver, a transceiver circuit, or a communication interface.
  • the storage module may be a memory.
  • the processing module 2112 is the processor 21 or the processor 25
  • the communication module 2113 is the transceiver 23
  • the storage module 2111 is the memory 22
  • the communication device involved in the present application may be the communication device shown in FIG. 2 .
  • the above communication module may be a communication interface of the device for receiving signals from other devices.
  • the communication module is a communication interface used by the chip to receive or transmit signals from other chips or devices.
  • FIG. 22 is a schematic structural diagram of a chip 220 provided by an embodiment of the present application.
  • the chip 220 includes one or more (including two) processors 2210 and a communication interface 2230 .
  • the chip 220 further includes a memory 2240, and the memory 2240 may include a read-only memory and a random access memory, and provides operation instructions and data to the processor 2210.
  • a portion of memory 2240 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 2240 stores the following elements, execution modules or data structures, or a subset thereof, or an extended set thereof.
  • the corresponding operation is performed by calling the operation instruction stored in the memory 2240 (the operation instruction may be stored in the operating system).
  • the processor 2210 controls the processing operation of the first terminal, and the processor 2210 may also be referred to as a central processing unit (central processing unit, CPU).
  • CPU central processing unit
  • Memory 2240 may include read-only memory and random access memory, and provides instructions and data to processor 2210 .
  • a portion of memory 2240 may also include NVRAM.
  • the memory 2240, the communication interface 2230 and the memory 2240 are coupled together through the bus system 2220, where the bus system 2220 may include a power bus, a control bus, a status signal bus, and the like in addition to a data bus.
  • the various buses are labeled as bus system 2220 in FIG. 22 .
  • the methods disclosed in the above embodiments of the present application may be applied to the processor 2210 or implemented by the processor 2210 .
  • the processor 2210 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method can be completed by an integrated logic circuit of hardware in the processor 2210 or an instruction in the form of software.
  • the above-mentioned processor 2210 can be a general-purpose processor, a digital signal processing (DSP), an ASIC, an off-the-shelf programmable gate array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistors Logic devices, discrete hardware components.
  • DSP digital signal processing
  • FPGA field-programmable gate array
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 2240, and the processor 2210 reads the information in the memory 2240, and completes the steps of the above method in combination with its hardware.
  • the communication interface 2230 is configured to perform the steps of receiving and sending by the first terminal in the embodiment shown in FIG. 5 or FIG. 7 .
  • the processor 2210 is configured to execute the processing steps of the first terminal in the embodiment shown in FIG. 5 or FIG. 7 .
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium. When the instructions are executed, the functions performed by the first terminal as shown in FIG. 5 or FIG. 7 are implemented.
  • a computer program product including instructions.
  • the computer program product includes instructions. When the instructions are executed, the functions performed by the first terminal as shown in FIG. 5 or FIG. 7 are implemented.
  • a chip is provided, the chip is applied in the first terminal, the chip includes at least one processor and a communication interface, the communication interface is coupled with the at least one processor, and the processor is used for running instructions to realize as shown in FIG. 5 or FIG. 7 The function performed by the first terminal in .
  • An embodiment of the present application provides a communication system, where the communication system includes: a first terminal and a second terminal.
  • the first terminal is used to perform the function performed by the first terminal as shown in FIG. 5 or FIG. 7
  • the second terminal is used to receive data from the first terminal on the first sidelink resource, and the first sidelink
  • the link resource is within the sidelink DRX-activation time of the second terminal.
  • Embodiment 1 a communication method, the method is applied in a first terminal, the method includes:
  • the first terminal determines one or more sidelink resources, wherein the one or more sidelink resources at least include sidelinks within the sidelink discontinuous reception-activation time of the second terminal road resources;
  • the first terminal sends data to the second terminal on a first sidelink resource of the one or more sidelink resources, the first sidelink resource is located on the sidelink Link discontinuous reception-active time.
  • Embodiment 2 The method according to Embodiment 1, wherein the number of sidelink resources located in the first time period in the one or more sidelink resources is greater than or equal to a first threshold;
  • the start time of the first time period is the start time corresponding to the candidate resource set, and the end time of the first time period is the end time of the sidelink discontinuous reception-activation time.
  • the one or more sidelink resources are sidelink resources determined from a candidate resource set, and the corresponding starting point of the candidate resource set is: the start time is later than or equal to the start time of the sidelink DRX-activation time; or,
  • the one or more sidelink resources are sidelink resources determined from the candidate resource set, and the deadline corresponding to the candidate resource set is earlier than or equal to the retransmission end time of the data.
  • the first terminal determining the one or more sidelink resources includes: the physical layer of the first terminal is selected from the candidate resource set. determining the one or more sidelink resources; the physical layer reports the one or more sidelink resources to the medium access control entity of the first terminal;
  • the method provided in this embodiment of the present application further includes: medium access control The entity selects the first sidelink resource within the sidelink discontinuous reception-activation time from the one or more sidelink resources.
  • the method provided by this embodiment of the present application further includes: the medium access control entity sends the first information to the physical layer, where the first information includes: in information indicating the end time of the sidelink DRX-activation time, or information indicating the remaining time of the sidelink DRX-activation time;
  • the physical layer of the first terminal determines the one or more sidelink resources from the candidate resource set, including:
  • the physical layer determines the one or more sidelink resources from a set of candidate resources according to the first information.
  • the medium access control entity sends the first information to the physical layer, including: when the sidelink discontinuous reception is the remaining time of the activation time When less than or equal to the remaining packet delay budget, the medium access control entity sends the first information to the physical layer.
  • Embodiment 7 The method according to Embodiment 5 or Embodiment 6, wherein the first information further includes: information used to indicate a start time of the sidelink DRX-activation time.
  • Embodiment 8 According to the method according to Embodiment 7, when time unit 1 is located before the start time of the sidelink DRX-activation time, the medium access control entity of the first terminal sends the The physical layer of the first terminal sends the information used to indicate the start time of the sidelink discontinuous reception-activation time, and the time unit 1 determines the sensing sidelink for the physical layer of the first terminal resource moment.
  • Embodiment 9 According to the method according to any one of Embodiments 4 to 8, the method provided by this embodiment of the present application further includes: the first terminal determining the end time of retransmission of the data or the remaining retransmission of the data time. The first terminal determines a deadline corresponding to the candidate resource set according to the retransmission end time or the remaining retransmission time, where the deadline corresponding to the candidate resource set is earlier than or equal to the retransmission end time.
  • Embodiment 10 According to the method according to Embodiment 9, the method provided in this embodiment of the present application further includes: the medium access control entity sends second information to the physical layer, where the second information is used to indicate the The retransmission end time of the data or the remaining retransmission time used to indicate the data;
  • the first terminal determines the retransmission end time of the data or the remaining retransmission time of the data, including:
  • the physical layer determines the retransmission end time or the remaining retransmission time according to the second information.
  • Embodiment 11 The method according to Embodiment 10, characterized in that:
  • the medium access control entity If the remaining packet delay budget is greater than or equal to the remaining retransmission time, the medium access control entity provides the physical layer with one or more of the retransmission end time or the remaining retransmission time , or the medium access control entity provides the physical layer with the minimum value among the remaining packet delay budget and the retransmission end time.
  • Embodiment 12 According to the method described in any one of Embodiment 2 to Embodiment 11, the method provided in this embodiment of the present application further includes:
  • the first terminal updates the threshold for whether the candidate resource set is excluded
  • the first terminal determines the one or more sidelink resources from the candidate resource set according to the updated threshold.
  • Embodiment 13 The method according to any one of Embodiments 1 to 12, wherein the number of sidelink resources in the one or more sidelink resources located in the second time period is greater than or equal to the second threshold;
  • the second time period is determined by the cut-off time of the sidelink DRX-activation time and the cut-off time corresponding to the candidate resource set.
  • Embodiment 14 The method according to any one of Embodiments 1 to 13, wherein the first sidelink resource is a sidelink resource for transmitting the data for the first time, and the method further includes:
  • the first terminal determines a second sidelink resource, the second sidelink resource is a resource for retransmitting the data, and the second sidelink resource is located in the sidelink discontinuous Within the reception-activation time or within a third time period, the third time period is determined according to the first sidelink resource. For example, the first terminal may determine the second sidelink resource from the one or more sidelink resources. At this time, the one or more sidelink resources may further include sidelink resources within the third time period.
  • Embodiment 15 The method according to Embodiment 14, wherein a time interval between the first sidelink resource and the second sidelink resource is greater than or equal to a minimum time interval.
  • Embodiment 16 According to the method according to any one of Embodiments 1 to 14, when the resource pool where the first sidelink resource and the second sidelink resource are located is configured with physical sidelink feedback control channel resources, the time interval between the first sidelink resource and the second sidelink resource is greater than or equal to the minimum time interval.
  • Embodiment 17 According to the method according to any one of Embodiment 1 to Embodiment 16, if there is no sidelink resource for transmitting the data for the first time within the sidelink discontinuous reception-activation time, then The first terminal triggers the process of selecting/reselecting sidelink resources.
  • Embodiment 18 According to the method according to Embodiment 17, there is no sidelink resource for retransmitting the data within the sidelink discontinuous reception-activation time, and the first terminal triggers selection/retransmission. The process of selecting side downlink resources.
  • Embodiment 19 According to the method according to any one of Embodiments 1 to 13 and Embodiment 17, if the sidelink resource used for initial transmission of the data is not located at the sidelink discontinuous reception-activation time , the first sidelink resource is a sidelink resource used for retransmitting the data.
  • Embodiment 20 The method according to any one of Embodiments 1 to 13 and Embodiment 17, further comprising:
  • the first terminal abandons the second sidelink for retransmission of the data
  • the data is sent on the link resource.
  • a communication device the device is applied in a first terminal, the device includes:
  • a processor configured to determine one or more sidelink resources, wherein the one or more sidelink resources at least include sidelinks within the sidelink discontinuous reception-activation time of the second terminal road resources;
  • a transceiver for sending data to the second terminal on a first sidelink resource of the one or more sidelink resources, the first sidelink resource being located on the sidelink Link discontinuous reception-active time.
  • Embodiment 22 The apparatus according to Embodiment 21, wherein the number of sidelink resources located in the first time period in the one or more sidelink resources is greater than or equal to a first threshold;
  • the start time of the first time period is the start time corresponding to the candidate resource set, and the end time of the first time period is the end time of the sidelink discontinuous reception-activation time.
  • Embodiment 23 The apparatus according to Embodiment 21 or Embodiment 22, wherein the one or more sidelink resources are sidelink resources determined from a candidate resource set, and the corresponding starting point of the candidate resource set is: the start time is later than or equal to the start time of the sidelink DRX-activation time; or,
  • the one or more sidelink resources are sidelink resources determined from the candidate resource set, and the deadline corresponding to the candidate resource set is earlier than or equal to the retransmission end time of the data.
  • Embodiment 24 The apparatus according to any one of Embodiment 21 to Embodiment 23, wherein the processor is configured to determine the one or more sidelink resources, including: a processor configured to The physical layer determines the one or more sidelink resources from the candidate resource set; the processor is configured to report the one or more sidelink resources to the medium access control entity of the first terminal through the physical layer road resources;
  • the method provided by the embodiment of the present application further includes: a processor, configured to select, through the medium access control entity of the first terminal, from the one or more sidelink resources, the DRX on the sidelink - the first sidelink resource within the activation time.
  • the processor in this embodiment of the present application is configured to send the first information to the physical layer of the first terminal through the medium access control entity of the first terminal, so
  • the first information includes: information used to indicate the end time of the sidelink DRX-activation time, or information used to indicate the remaining time of the sidelink DRX-activation time;
  • a processor configured to determine the one or more sidelink resources from the candidate resource set through the physical layer of the first terminal, including: a processor configured to determine the one or more sidelink resources through the physical layer of the first terminal according to the first terminal A message determines the one or more sidelink resources from a set of candidate resources.
  • Embodiment 26 The apparatus according to Embodiment 25, wherein the processor is configured to send the first information to the physical layer through a medium access control entity, comprising: when the sidelink discontinuous reception - When the remaining time of the activation time is less than or equal to the remaining packet delay budget, the processor is configured to send the first information to the physical layer through the medium access control entity.
  • Embodiment 27 The apparatus according to Embodiment 25 or Embodiment 26, wherein the first information further includes: information used to indicate a start time of the sidelink DRX-activation time.
  • Embodiment 28 The apparatus according to Embodiment 26, when time unit 1 is located before the start time of the sidelink DRX-activation time, the medium access control entity of the first terminal sends a message to the The physical layer of the first terminal sends the information used to indicate the start time of the sidelink discontinuous reception-activation time, and the time unit 1 determines the sensing sidelink for the physical layer of the first terminal resource moment.
  • Embodiment 29 The apparatus according to any one of Embodiment 24 to Embodiment 28, and the processor is further configured to determine a retransmission end time of the data or a remaining retransmission time of the data. The processor is further configured to determine a deadline corresponding to the candidate resource set according to the retransmission end time or the remaining retransmission time, where the deadline corresponding to the candidate resource set is earlier than or equal to the retransmission end time.
  • Embodiment 30 In the apparatus according to Embodiment 29, the processor is further configured to send second information to the physical layer through a medium access control entity, where the second information is used to indicate the repetition of the data.
  • a processor configured to determine the retransmission end time of the data or the remaining retransmission time of the data, including:
  • the processor is configured to determine, through the physical layer, the retransmission end time or the remaining retransmission time according to the second information.
  • Embodiment 31 The device according to Embodiment 30, characterized in that:
  • the processor is configured to provide the retransmission end time or the remaining retransmission time to the physical layer through the medium access control entity.
  • the processor is configured to provide the physical layer with the minimum value among the remaining packet delay budget and the retransmission end time through the medium access control entity.
  • Embodiment 32 The device according to any one of Embodiments 22 to 31,
  • the processor is further configured to update the threshold for whether the candidate resource set is excluded;
  • the processor is further configured to determine the one or more sidelink resources from the candidate resource set according to the updated threshold.
  • Embodiment 33 The apparatus according to any one of Embodiments 21 to 32, wherein the number of sidelink resources in the one or more sidelink resources located in the second time period is greater than or equal to the second threshold;
  • the second time period is determined by the cut-off time of the sidelink DRX-activation time and the cut-off time corresponding to the candidate resource set.
  • Embodiment 34 The apparatus according to any one of Embodiments 21 to 33, wherein the first sidelink resource is a sidelink resource used for initial transmission and transmission of the data, and the processor further uses in determining a second sidelink resource, the second sidelink resource is a resource for retransmitting the data, and the second sidelink resource is located at the sidelink discontinuous reception-activation time or within a third time period, the third time period is determined according to the first sidelink resource.
  • the first terminal may determine the second sidelink resource from the one or more sidelink resources.
  • the one or more sidelink resources may further include sidelink resources within the third time period.
  • Embodiment 35 The apparatus according to Embodiment 34, wherein a time interval between the first sidelink resource and the second sidelink resource is greater than or equal to a minimum time interval.
  • Embodiment 36 The apparatus according to any one of Embodiments 21 to 35, when the resource pool where the first sidelink resource and the second sidelink resource are located is configured with a physical sidelink feedback control channel resources, the time interval between the first sidelink resource and the second sidelink resource is greater than or equal to the minimum time interval.
  • Embodiment 37 The apparatus according to any one of Embodiments 21 to 36, if there is no sidelink resource for transmitting the data for the first time within the sidelink discontinuous reception-activation time, then The transceiver triggers the process of selecting/reselection of sidelink resources.
  • Embodiment 38 The apparatus according to Embodiment 37, the sidelink resource for retransmitting the data does not exist within the sidelink discontinuous reception-activation time, and the processor triggers selection/reselection Process for sidelink resources.
  • Embodiment 39 The apparatus according to any one of Embodiments 21 to 33 and Embodiment 38, if the sidelink resource used for initial transmission of the data is not located at the sidelink discontinuous reception-activation time , the first sidelink resource is a sidelink resource used for retransmitting the data.
  • Embodiment 40 The device according to any one of Embodiments 21 to 33 and Embodiment 38,
  • the processor abandons the use of the transceiver for retransmission of the data
  • the data is sent on the second sidelink resource.
  • Embodiment 41 a communication method, the method comprising:
  • the first terminal determines the first sidelink resource for initial transmission of data.
  • the first terminal determines that the first sidelink resource is not within the SL DRX-activation time of the second terminal, the first terminal abstains The terminal sends data.
  • the first authorization is an initial transmission authorization, and the sidelink resources indicated by the initial transmission authorization are used for initial transmission of data.
  • the second grant is a retransmission grant, and the sidelink resources indicated by the second grant are used for data retransmission.
  • the second authorization corresponding to the first authorization refers to the grant used to transmit the same data carried on the initially transmitted grant.
  • the determining, by the first terminal, the first sidelink resource used for the initial transmission of data may include: the first terminal determining the first authorization used for the initial transmission of the data, the first The terminal determines the sidelink resource indicated by the first grant as the first sidelink resource used for initial transmission of data.
  • Embodiment 43 According to the method described in Embodiment 41 or Embodiment 42, the first terminal determines the second sidelink resource.
  • determining the second sidelink resource by the first terminal includes: the first terminal determining the second grant corresponding to the first grant. The first terminal determines the sidelink resource indicated by the second grant as the second sidelink resource.
  • Embodiment 45 According to the method according to any one of Embodiment 41 to Embodiment 44, the first terminal abandons sending data to the second terminal on the second sidelink resource used for retransmitting the data, including: if If the second sidelink resource is not within the DRX-activation time of the second terminal, the first terminal gives up sending data to the second terminal on the sidelink resource indicated by the second grant corresponding to the first grant.
  • Embodiment 46 According to the method according to any one of Embodiment 41 to Embodiment 45, the method provided in this embodiment of the present application may further include: the first terminal determines that the second sidelink resource is located in the DRX-activation of the second terminal Within the time, the first terminal sends data to the second terminal on the second sidelink resource used for retransmitting the data.
  • Embodiment 47 The method according to any one of claims 41 to 46, wherein the second terminal is any one of multiple terminals that need to receive data sent by the first terminal, or the second terminal is The terminal with the highest priority among the multiple terminals that need to receive the data sent by the first terminal.
  • Embodiment 48 A communication method, the method comprising: a first terminal determining a first sidelink resource used for initial transmission of data. If the first terminal determines that the first sidelink resource is not within the sidelink DRX-active time of the second terminal, the first terminal sends the The second terminal sends data.
  • the first terminal determines that the first sidelink resource is not within the SL DRX-activation time of the second terminal, then the first terminal forwards to the first terminal on the sidelink resource indicated by the second grant corresponding to the first grant The second terminal sends data.
  • the first authorization is an initial transmission authorization, and the sidelink resources indicated by the initial transmission authorization are used for initial transmission of data.
  • the second grant is a retransmission grant, and the sidelink resources indicated by the second grant are used for data retransmission.
  • the second authorization corresponding to the first authorization refers to the grant used to transmit the same data carried on the initially transmitted grant.
  • the determining, by the first terminal, the first sidelink resource used for the initial transmission of data may include: the first terminal determining the first authorization used for the initial transmission of the data, the first The terminal determines the sidelink resource indicated by the first grant as the first sidelink resource used for initial transmission of data.
  • Embodiment 50 According to the method described in Embodiment 48 or Embodiment 49, the method provided in this embodiment of the present application may further include: the first terminal determines the second sidelink resource.
  • the determining, by the first terminal, the second sidelink resource includes: the first terminal determining the second grant corresponding to the first grant.
  • the first terminal determines the sidelink resource indicated by the second grant as the second sidelink resource.
  • Embodiment 52 According to the methods described in Embodiment 48 to Embodiment 51, the first terminal sends data to the second terminal on the second sidelink resource used to retransmit the data, including: if the second sidelink The link resource is within the DRX-activation time of the second terminal, and the first terminal sends data to the second terminal on the second sidelink resource.
  • the second terminal is any terminal among multiple terminals that need to receive data sent by the first terminal, or the second terminal is a terminal that needs to receive the data sent by the first terminal.
  • Embodiment 54 A communication device, the device comprising a first terminal or a chip applied in the first terminal, the device comprising:
  • the processor is configured to determine the first sidelink resource used for initial transmission of data.
  • the transceiver is configured to give up sending the second terminal on the second sidelink resource for retransmitting the data to the second terminal send data.
  • the first authorization is an initial transmission authorization, and the sidelink resources indicated by the initial transmission authorization are used for initial transmission of data.
  • the second grant is a retransmission grant, and the sidelink resources indicated by the second grant are used for data retransmission.
  • the second authorization corresponding to the first authorization refers to the grant used to transmit the same data carried on the initially transmitted grant.
  • the determining by the first terminal the first sidelink resource used for the initial transmission of data may include: the first terminal determining the first authorization used for the initial transmission of the data, the first The terminal determines the sidelink resource indicated by the first grant as the first sidelink resource used for initial transmission of data.
  • Embodiment 56 According to the apparatus of Embodiment 54 or Embodiment 55, the first terminal determines the second sidelink resource.
  • the determining, by the first terminal, the second sidelink resource includes: the first terminal determining the second authorization corresponding to the first authorization.
  • the first terminal determines the sidelink resource indicated by the second grant as the second sidelink resource.
  • Embodiment 58 The apparatus according to any one of Embodiment 54 to Embodiment 47, and the transceiver, configured to give up sending data to the second terminal on the second sidelink resource used for retransmitting the data, comprising: : if the second sidelink resource is not within the DRX-activation time of the second terminal, the transceiver gives up sending data to the second terminal on the sidelink resource indicated by the second grant corresponding to the first grant .
  • Embodiment 59 According to the apparatus according to any one of Embodiment 54 to Embodiment 58, if the processor determines that the second sidelink resource is within the DRX-activation time of the second terminal, the transceiver is configured to perform the operation in the The data is sent to the second terminal on the second sidelink resource on which the data is retransmitted.
  • Embodiment 60 The method according to any one of claims 54 to 59, wherein the second terminal is any one of multiple terminals that need to receive data sent by the first terminal, or the second terminal is The terminal with the highest priority among the multiple terminals that need to receive the data sent by the first terminal.
  • Embodiment 61 A communication apparatus, the apparatus comprising: a processor configured to determine a first sidelink resource used for initial transmission of data. If the processor determines that the first sidelink resource is not within the sidelink DRX-active time of the second terminal, then the transceiver, for retransmitting the data on the second sidelink resource Send data to the second terminal.
  • the first authorization is an initial transmission authorization, and the sidelink resources indicated by the initial transmission authorization are used for initial transmission of data.
  • the second grant is a retransmission grant, and the sidelink resources indicated by the second grant are used for data retransmission.
  • the second authorization corresponding to the first authorization refers to the grant used to transmit the same data carried on the initially transmitted grant.
  • the determining by the first terminal the first sidelink resource used for initial transmission of data may include: the first terminal determining a first authorization used for initial transmission of data, the first The terminal determines the sidelink resource indicated by the first grant as the first sidelink resource used for initial transmission of data.
  • Embodiment 63 The apparatus and processor according to Embodiment 61 or Embodiment 62 are further configured to determine a second sidelink resource.
  • Embodiment 64 In the apparatus according to Embodiment 63, the processor is further configured to determine a second sidelink resource, comprising: a processor, further configured to determine a second grant corresponding to the first grant. The processor is further configured to determine the sidelink resource indicated by the second grant as the second sidelink resource.
  • Embodiment 65 The apparatus according to Embodiment 61 to Embodiment 64, the transceiver, configured to send data to the second terminal on the second sidelink resource used for retransmitting the data, comprising: if the processor It is determined that the second sidelink resource is within the DRX-activation time of the second terminal, and the transceiver is configured to send data to the second terminal on the second sidelink resource.
  • the second terminal is any terminal among multiple terminals that need to receive data sent by the first terminal, or the second terminal is a terminal that needs to receive the data sent by the first terminal.
  • Embodiment 67 A computer-readable storage medium, where instructions are stored in the readable storage medium, and when the instructions are executed, the method described in any one of Embodiments 1 to 20 is implemented.
  • Embodiment 68 A computer-readable storage medium, where instructions are stored in the readable storage medium, and when the instructions are executed, the method according to any one of Embodiments 41 to 47 is implemented.
  • Embodiment 69 A computer-readable storage medium, where instructions are stored in the readable storage medium, and when the instructions are executed, the method according to any one of Embodiments 48 to 53 is implemented.
  • Embodiment 70 A chip, the chip comprising a processor, the processor is coupled to a communication interface, and the processor is configured to run a computer program or instructions to implement any one of the embodiments of Embodiment 1 to Embodiment 20
  • the communication interface is used to communicate with other modules other than the chip.
  • Embodiment 71 A chip, the chip comprising a processor, the processor is coupled to a communication interface, and the processor is configured to run a computer program or instructions to implement any one of the embodiments of Embodiment 41 to Embodiment 47
  • the communication interface is used to communicate with other modules other than the chip.
  • Embodiment 72 A chip, the chip comprising a processor, the processor is coupled to a communication interface, and the processor is configured to run a computer program or instructions to implement any of the embodiments as in Embodiment 48 to Embodiment 53
  • the communication interface is used to communicate with other modules other than the chip.
  • a terminal comprising: at least one processor, the at least one processor is coupled to a memory, and the at least one processor is configured to execute instructions stored in the memory to implement any one of Embodiments 1 to 20 The method described in this example.
  • Embodiment 74 A terminal, comprising: at least one processor, the at least one processor is coupled to a memory, and the at least one processor is configured to execute instructions stored in the memory to implement any one of Embodiment 41 to Embodiment 47 The method described in this example.
  • Embodiment 75 A terminal, comprising: at least one processor, the at least one processor is coupled to a memory, and the at least one processor is configured to execute instructions stored in the memory to implement any one of Embodiment 48 to Embodiment 53 The method described in this example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置及系统,涉及通信技术领域,该方法用于解决如何避免数据包传输失败以及避免发送方终端浪费功耗的问题。该方法包括:第一终端确定一个或多个侧行链路资源。该一个或多个侧行链路资源中至少包括位于第二终端的侧行链路非连续接收-激活时间内的侧行链路资源。第一终端在一个或多个侧行链路资源中的第一侧行链路资源上向第二终端发送数据,该第一侧行链路资源位于第二终端的侧行链路非连续接收-激活时间内。该方案可以适用于无人驾驶、自动驾驶、辅助驾驶、智能驾驶、网联驾驶、智能网联驾驶、汽车共享等领域。

Description

一种通信方法、装置及系统
本申请要求于2020年09月28日提交国家知识产权局、申请号为202011042899.5、申请名称为“一种SL DRX下的资源选择和使用方法”以及2020年10月16日提交国家知识产权局、申请号为202011116071.X、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
随着通信技术的演进,万物互联也在不断加速,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)在第14版本(Release,Rel-14)和Release15期间,在长期演进(Long Term Evolution,LTE)中引入了对车辆到车辆(vehicle-to-vehicle,V2V)和车辆对一切(vehicle-to-everything,V2X)服务的支持,以便将3GPP平台扩展到汽车行业。Rel-14V2X提出的感知机制,由一个终端感知频谱的使用情况,以作为后续该终端在侧行链路资源上传输数据选择侧行链路资源的依据。
虽然发送方终端可以通过感知侧行链路资源以得到一个或多个侧行链路资源,然后发送方终端可以从一个或多个侧行链路资源中确定向接收方终端发送数据时承载该数据的侧行链路资源。但是发送方终端选择侧行链路资源时大多基于发送方终端自身的传输需求的考虑的,对于发送方终端而言其虽然可以成功发送数据,但是对于接收方终端而言却有可能因为种种因素导致数据接收失败的情况发生,这样势必会浪费发送方终端的功耗。
发明内容
本申请实施例提供一种通信方法、装置及系统,该方法用于解决如何避免数据包传输失败以及避免发送方终端浪费功耗的问题。
为了解决上述技术问题,本申请实施例提供如下技术方案:
第一方面,本申请实施例提供一种通信方法,该方法应用于第一终端中,该方法包括:第一终端确定一个或多个侧行链路资源。其中,一个或多个侧行链路资源中至少包括位于第二终端的侧行链路非连续接收-激活时间内的侧行链路资源。第一终端在一个或多个侧行链路资源中的第一侧行链路资源上向第二终端发送数据。该第一侧行链路资源位于侧行链路非连续接收-激活时间内。
本申请实施例提供一种通信方法,该方法中第一终端首先确定一个或多个侧行链路资源。然后第一终端在该一个或多个侧行链路资源中的第一侧行链路资源上向第二终端发送数据。由于该第一侧行链路资源位于第二终端的侧行链路非连续接收-激活时间内,而该第二终端在第二终端的侧行链路非连续接收-激活时间处于激活状态。这样就能保证第一终端在该第一侧行链路资源上发送的数据时,第二终端处于能够接收到数据的状态,不仅可以避免数据传输失败,还能避免浪费第一终端发送数据时带来的功耗。
在本申请的一种可能的实现方式中,一个或多个侧行链路资源中位于第一时间段内的侧行链路资源的数量大于或等于第一阈值。其中,第一时间段的起始时刻为候选资源集合对应的起始时刻,或者第一时间段的起始时刻为侧行链路非连续接收-激活时间的起始时刻,第一时间段的截止时刻为侧行链路非连续接收-激活时间的结束时间。这样可以保证在侧行链路非连续接收-激活时间中有一定数量的侧行链路资源可供第一终端选择用于传输该数据的资源。
在本申请的一种可能的实现方式中,一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,候选资源集合对应的起始时刻晚于或等于侧行链路非连续接收-激活时间的起始时间。由于候选资源集合对应的起始时刻晚于或等于侧行链路非连续接收-激活时间的起始时间,这样可以保证候选资源集合中的侧行链路资源是位于侧行链路非连续接收-激活时间的起始时间之后的,此外,一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,因此可以保证第一终端确定的一个或多个侧行链路资源中包括位于侧行链路非连续接收-激活时间的资源。
在本申请的一种可能的实现方式中,该候选资源集合对应的截止时刻晚于或等于侧行链路非连续接收-激活时间的结束时间,这样可以保证第一终端确定的一个或多个侧行链路资源中包括位于侧行链路非连续接收-激活时间的资源。
在本申请的一种可能的实现方式中,一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,该候选资源集合对应的截止时刻早于或等于数据的重传结束时间。由于候选资源集合对应的截止时刻早于或等于数据的重传结束时间,这样可以保证第一终端从候选资源集合中选择出用于重传数据的资源。
在本申请的一种可能的实现方式中,第一终端确定一个或多个侧行链路资源,包括:第一终端的物理层从候选侧行链路资源中确定一个或多个侧行链路资源。物理层向第一终端的媒体接入控制实体上报一个或多个侧行链路资源。本申请实施例提供的方法还可以包括:媒体接入控制实体从一个或多个侧行链路资源中选择位于第二终端的侧行链路非连续接收-激活时间内的第一侧行链路资源。
在本申请的一种可能的实现方式中,本申请实施例提供的方法还包括:媒体接入控制实体向物理层发送第一信息。该第一信息包括:用于指示侧行链路非连续接收-激活时间的结束时间的信息,或,用于指示侧行链路非连续接收-激活时间的剩余时间的信息。第一终端的物理层从候选侧行链路资源中确定一个或多个侧行链路资源,包括:物理层根据第一信息从候选侧行链路资源中确定一个或多个侧行链路资源。以便于第一终端的物理层向第一终端的媒体接入控制实体上报一个或多个侧行链路资源时参考第一信息,从而使得上报的一个或多个侧行链路资源中存在位于侧行链路非连续接收-激活时间内的侧行链路资源。
在本申请的一种可能的实现方式中,媒体接入控制实体向物理层发送第一信息,包括:当侧行链路非连续接收-激活时间的剩余时间小于或等于剩余包延时预算时,媒体接入控制实体向物理层发送第一信息。
在本申请的一种可能的实现方式中,媒体接入控制实体不向物理层发送第一信息。这样物理层可以根据候选资源集合确定候选侧行链路资源,然后从候选侧行链路资源中确定一个或多个侧行链路资源。这时物理层上报的一个或多个侧行链路资源中由于 未参考第一信息,可能存在一个或多个侧行链路资源中包括位于侧行链路非连续接收-激活时间的资源,也可能存在不包括位于侧行链路非连续接收-激活时间的资源。而由媒体接入控制实体根据第二终端的侧行链路非连续接收-激活时间判定是否存在位于侧行链路非连续接收-激活时间的资源。
在本申请的一种可能的实现方式中,当侧行链路非连续接收-激活时间的剩余时间大于或等于剩余包延时预算时,媒体接入控制实体不向物理层发送第一信息。
在本申请的一种可能的实现方式中,第一信息还包括:用于指示侧行链路非连续接收-激活时间的起始时间的信息。这样便于物理层确定侧行链路非连续接收-激活时间的起始时间,从而尽可能的保证向媒体接入控制实体上报的侧行链路资源位于侧行链路非连续接收-激活时间之内。比如,一个或多个侧行链路资源中包括与侧行链路非连续接收-激活时间的起始时间距离小于第一时间阈值的资源。
在本申请的一种可能的实现方式中,当时间单元1位于侧行链路非连续接收-激活时间的起始时间之前时,第一终端的媒体接入控制实体向第一终端的物理层发送用于指示侧行链路非连续接收-激活时间的起始时间的信息,时间单元1为第一终端的物理层确定感知侧行链路资源的时刻。
在本申请的一种可能的实现方式中,本申请实施例提供的方法还包括:第一终端的媒体接入控制实体不向第一终端的物理层发送用于指示侧行链路非连续接收-激活时间的起始时间的信息。
在本申请的一种可能的实现方式中,当时间单元1位于侧行链路非连续接收-激活时间的起始时间内时,第一终端的媒体接入控制实体不向第一终端的物理层发送用于指示侧行链路非连续接收-激活时间的起始时间的信息,时间单元1为第一终端的物理层确定感知侧行链路资源的时刻。
在本申请的一个可能的实现方式中,本申请提供的方法还可以包括:第一终端确定数据的重传结束时间或数据的剩余重传时间。第一终端根据重传结束时间或剩余重传时间确定候选资源集合对应的截止时刻,候选资源集合对应的截止时刻早于或等于剩余重传时间。
在本申请的一个可能的实现方式中,本申请提供的方法还可以包括:第一终端的媒体接入控制实体向物理层发送第二信息。该第二信息用于指示数据的重传结束时间或用于指示数据的剩余重传时间。第一终端确定数据的重传结束时间或数据的剩余重传时间,包括:第一终端的物理层根据第二信息确定重传结束时间或剩余重传时间。
在本申请的一个可能的实现方式中,第二信息为重传结束时间或剩余重传时间。省去了物理层计算重传结束时间或剩余重传时间的过程。
在本申请的一个可能的实现方式中,第二信息为数据的重传次数、RTT timer时长、重传定时器时长中的至少一个。该方案中由物理层计算重传结束时间或剩余重传时间。
在本申请的一个可能的实现方式中,重传结束时间等于侧行链路非连续接收-激活时间的结束时间+(RTT timer时长+重传timer时长)*重传次数。或者,重传结束时间等于侧行链路非连续接收-激活时间的结束时间+重传timer时长*重传次数。
在本申请的一个可能的实现方式中,如果剩余包延时预算小于第一值,或者剩余包延时预算小于剩余重传时间,则媒体接入控制实体向物理层提供剩余包延时预算和 重传结束时间之中的最小值。
在本申请的一个可能的实现方式中,本申请实施例提供的方法还包括:位于第一时间段内的侧行链路资源的数量小于或等于第一阈值,则更新候选侧行链路资源是否被排除的阈值。第一终端根据更新后的阈值,从候选侧行链路资源中确定一个或多个侧行链路资源。这样可以保证位于第一时间段内的侧行链路资源的数量大于或等于第一阈值。
在本申请的一个可能的实现方式中,一个或多个侧行链路资源中位于第二时间段内的侧行链路资源数量大于或等于第二阈值;第二时间段由侧行链路非连续接收-激活时间的截止时刻和候选资源集合对应的截止时刻确定。
在本申请的一个可能的实现方式中,第一侧行链路资源用于初传数据,本申请实施例提供的方法还包括:第一终端确定用于重传数据的第二侧行链路资源。该第二侧行链路资源位于侧行链路非连续接收-激活时间内或者第三时间段内。其中,第三时间段根据第一侧行链路资源确定。这样可以保证待数据传输失败时,第一终端可以采用第二侧行链路资源重新传输该数据,提高了数据传输的成功率。
在本申请的一个可能的实现方式中,第一侧行链路资源和第二侧行链路资源之间的时间间隔大于或等于最小时间间隔。
在本申请的一个可能的实现方式中,当第一侧行链路资源和第二侧行链路资源所在的资源池配置了物理侧链路反馈控制信道资源,则第一侧行链路资源和第二侧行链路资源之间的时间间隔大于或等于最小时间间隔。
在本申请的一个可能的实现方式中,侧行链路非连续接收-激活时间内不存在用于传输该数据的侧行链路资源时,第一终端触发选择/重选侧行链路资源的过程。
在本申请的一个可能的实现方式中,侧行链路非连续接收-激活时间内不存在用于传输该数据的侧行链路资源,且还不存在重传数据的侧行链路资源时,第一终端触发选择/重选侧行链路资源的过程。
在本申请的一个可能的实现方式中,侧行链路非连续接收-激活时间内不存在重传数据的侧行链路资源时,第一终端触发选择/重选侧行链路资源的过程。
在本申请的一个可能的实现方式中,如果用于初传数据的侧行链路资源未位于侧行链路非连续接收-激活时间内,则第一侧行链路资源为用于重传数据的侧行链路资源。
在本申请的一个可能的实现方式中,本申请实施例提供的方法还包括:如果用于初传数据的侧行链路资源未位于侧行链路非连续接收-激活时间内,则第一终端放弃在用于初传数据的侧行链路资源以及用于重传数据的第二侧行链路资源上发送数据。
在本申请的一个可能的实现方式中,本申请实施例提供的方法还包括:第一终端确定第二终端。
在本申请的一个可能的实现方式中,第一终端确定第二终端,包括:第一终端从需要接收该第一终端发送的数据的多个终端中确定第二终端。
在一种可能的实现方式中,该第二终端为上述多个终端中优先级最高的终端。或者第一终端向第二终端发送的数据的优先级高于第一终端向多个终端中除第二终端发送的数据的优先级。
在本申请的一个可能的实现方式中,第一终端确定第二终端,包括:第一终端从 一个或多个侧行链路资源中确定第一侧行链路资源。第一终端根据第一侧行链路资源确定第二终端。
在本申请的一个可能的实现方式中,第一终端根据第一侧行链路资源确定第二终端,包括:第一终端将侧行链路非连续接收-激活时间包括第一侧行链路资源的时域位置的终端确定为第二终端。
第二方面,本申请实施例提供一种方法,该方法包括:第一终端确定用于初传数据的第一侧行链路资源。如果第一终端确定该第一侧行链路资源未位于第二终端的侧行链路DRX-激活时间内,第一终端放弃在用于重传该数据的第二侧行链路资源上向第二终端发送数据。
本申请实施例中涉及到的放弃在用于重传该数据的第二侧行链路资源上向第二终端发送数据也可以理解为不使用侧行链路授权,是指没有在该侧行链路授权指示的第二侧行链路资源上发送数据(比如,PSCCH和/或PSSCH)。
其中,第一授权为初传授权,例如,该第一授权确定的侧行链路资源用于初传数据。第二授权为重传授权。该第二授权指示的侧行链路资源用于重传数据。与第一授权对应的第二授权是用来传输与初传grant相同的MAC PDU/传输块的grant。
在本申请的一个可能的实现方式中,第一终端确定用于初传数据的第一侧行链路资源可以包括:第一终端确定用于初传数据的第一授权,该第一终端将第一授权指示的侧行链路资源确定为用于初传数据的第一侧行链路资源。
在本申请的一个可能的实现方式中,本申请实施例提供的方法还可以包括:第一终端确定第二侧行链路资源。
在本申请的一个可能的实现方式中,第一终端确定第二侧行链路资源,包括:第一终端确定第一授权对应的第二授权。第一终端将第二授权指示的侧行链路资源确定为第二侧行链路资源。
在本申请的一个可能的实现方式中,第一终端放弃在用于重传该数据的第二侧行链路资源上向第二终端发送数据,包括:如果第二侧行链路资源未位于第二终端的DRX-激活时间内,第一终端放弃在该第一授权对应的第二授权所指示的侧行链路资源上向第二终端发送数据。
在本申请的一个可能的实现方式中,本申请实施例提供的方法还可以包括:第一终端确定第二侧行链路资源位于第二终端的DRX-激活时间内,则第一终端在该用于重传该数据的第二侧行链路资源上向第二终端发送数据。
在本申请的一个可能的实现方式中,该第二终端为多个待传输数据中的任一个终端,或者该第二终端为多个待传输数据中优先级最高的终端。
第三方面,本申请实施例提供一种方法,该方法包括:第一终端确定用于初传数据的第一侧行链路资源。如果第一终端确定该第一侧行链路资源未位于第二终端的侧行链路DRX-激活时间内,那么第一终端在用于重传该数据的第二侧行链路资源上向第二终端发送数据。
在本申请的一个可能的实现方式中,第一终端确定用于初传数据的第一侧行链路资源可以包括:第一终端确定用于初传数据的第一授权,该第一终端将第一授权指示的侧行链路资源确定为用于初传数据的第一侧行链路资源。
在本申请的一个可能的实现方式中,本申请实施例提供的方法还可以包括:第一终端确定第二侧行链路资源。
在本申请的一个可能的实现方式中,第一终端确定第二侧行链路资源,包括:第一终端确定第一授权对应的第二授权。第一终端将第二授权指示的侧行链路资源确定为第二侧行链路资源。
其中,第一授权为初传授权,例如,该第一授权确定的侧行链路资源用于初传数据。第二授权为重传授权。该第二授权指示的侧行链路资源用于重传数据。与第一授权对应的第二授权是用来传输与初传grant相同的MAC PDU/传输块的grant。
在本申请的一个可能的实现方式中,第一终端在用于重传该数据的第二侧行链路资源上向第二终端发送数据,包括:如果第二侧行链路资源位于第二终端的DRX-激活时间内,第一终端在该第二侧行链路资源上向第二终端发送数据。
在本申请的一个可能的实现方式中,该第二终端为需要接收第一终端发送的数据中的多个终端中的任一个终端,或者该第二终端为需要接收第一终端发送的数据中的多个终端中优先级最高的终端。
第四方面,本申请实施例提供一种方法,该方法包括:如果在第二终端的侧行链路非连续接收-激活时间内不存在用于重传数据的侧行链路资源,和/或,用于初传数据的侧行链路资源,则第一终端触发选择/重选侧行链路资源的过程。
值得说明的是,上述第一方面~第四方面描述的技术方案可以结合使用,也可以单独使用,本申请实施例对此不做限定。
第五方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第一方面至第一方面的任意一种可能的实现方式中描述的一种通信方法。该计算机可以为第一终端。
第六方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第二方面至第二方面的任意一种可能的实现方式中描述的一种通信方法。该计算机可以为第一终端。
第七方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第三方面至第三方面的任意一种可能的实现方式中描述的一种通信方法。该计算机可以为第一终端。
第八方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第四方面至第四方面的任意一种可能的实现方式中描述的一种通信方法。该计算机可以为第一终端。
第九方面,本申请实施例提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中描述的一种通信方法。
第十方面,本申请实施例提供一种包括指令的计算机程序产品,当指令在计算机 上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中描述的一种通信方法。
第十一方面,本申请实施例提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第三方面或第三方面的各种可能的实现方式中描述的一种通信方法。
第十二方面,本申请实施例提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第四方面或第四方面的各种可能的实现方式中描述的一种通信方法。
第十三方面,本申请实施例提供一种通信装置用于实现上述第一方面至第一方面中任一方面的各种可能的设计中的各种方法。该通信装置可以为上述第一终端,或者包含上述第一终端的装置,或者应用于第一终端中的部件(例如,芯片)。该通信装置包括实现上述方法相应的模块、单元、该模块、单元可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第十四方面,本申请实施例提供一种通信装置用于实现上述第二方面至第二方面中任一方面的各种可能的设计中的各种方法。该通信装置可以为上述第一终端,或者包含上述第一终端的装置,或者应用于第一终端中的部件(例如,芯片)。该通信装置包括实现上述方法相应的模块、单元、该模块、单元可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第十五方面,本申请实施例提供一种通信装置用于实现上述第三方面至第三方面中任一方面的各种可能的设计中的各种方法。该通信装置可以为上述第一终端,或者包含上述第一终端的装置,或者应用于第一终端中的部件(例如,芯片)。该通信装置包括实现上述方法相应的模块、单元、该模块、单元可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第十六方面,本申请实施例提供一种通信装置用于实现上述第三方面至第三方面中任一方面的各种可能的设计中的各种方法。该通信装置可以为上述第一终端,或者包含上述第一终端的装置,或者应用于第一终端中的部件(例如,芯片)。该通信装置包括实现上述方法相应的模块、单元、该模块、单元可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第十七方面,本申请实施例提供了一种通信装置,该通信装置包括:收发器和至少一个处理器。其中,至少一个处理器和收发器通信,当该通信装置运行时,该至少一个处理器执行存储器中存储的计算机执行指令或程序,以使该通信装置执行如上述第一方面或第一方面的任一方面的各种可能的设计中的任一项的方法。例如,该通信装置可以为第一终端,或者为应用于第一终端中的芯片。
第十八方面,本申请实施例提供了一种通信装置,该通信装置包括:收发器和至少一个处理器。其中,至少一个处理器和收发器耦合,当该通信装置运行时,该至少 一个处理器执行存储器中存储的计算机执行指令或程序,以使该通信装置执行如上述第二方面或第二方面的任一方面的各种可能的设计中的任一项的方法。例如,该通信装置可以为第一终端,或者为应用于第一终端中的芯片。
第十九方面,本申请实施例提供了一种通信装置,该通信装置包括:收发器和至少一个处理器。其中,至少一个处理器和收发器耦合,当该通信装置运行时,该至少一个处理器执行存储器中存储的计算机执行指令或程序,以使该通信装置执行如上述第三方面或第三方面的任一方面的各种可能的设计中的任一项的方法。例如,该通信装置可以为第一终端,或者为应用于第一终端中的芯片。
第二十方面,本申请实施例提供了一种通信装置,该通信装置包括:收发器和至少一个处理器。其中,至少一个处理器和收发器耦合,当该通信装置运行时,该至少一个处理器执行存储器中存储的计算机执行指令或程序,以使该通信装置执行如上述第四方面或第四方面的任一方面的各种可能的设计中的任一项的方法。例如,该通信装置可以为第一终端,或者为应用于第一终端中的芯片。
在一种可能的实现方式中,第十七方面和第十八方面中描述的通信装置还可以包括:存储器。其中,存储器用于存储计算机执行指令或程序。
第十七方面至第二十方面任一方面描述的存储器还可以使用存储介质替换,本申请实施例对此不作限定。
在一种可能的实现方式中,第十七方面和第十八方面任一方面描述的存储器可以为该通信装置内部的存储器,当然,该存储器也可以位于该通信装置外部,但是至少一个处理器仍然可以执行该存储器中存储的计算机执行指令或程序。
第二十一方面,本申请实施例提供了一种通信装置,该通信装置包括一个或者多个模块,用于实现上述第一方面、第二方面、第三方面、第四方面中任一方面的方法,该一个或者多个模块可以与上述第一方面、第二方面、第三方面、第四方面中任一方面的方法中的各个步骤相对应。
第二十二方面,本申请实施例提供一种芯片,该芯片包括处理器,该处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面及其任意可能的实现方式中的方法。
第二十三方面,本申请实施例提供一种芯片,该芯片包括处理器,该处理器用于读取并执行存储器中存储的计算机程序,以执行第二方面及其任意可能的实现方式中的方法。
第二十四方面,本申请实施例提供一种芯片,该芯片包括处理器,该处理器用于读取并执行存储器中存储的计算机程序,以执行第三方面及其任意可能的实现方式中的方法。
第二十五方面,本申请实施例提供一种芯片,该芯片包括处理器,该处理器用于读取并执行存储器中存储的计算机程序,以执行第四方面及其任意可能的实现方式中的方法。
可选地,芯片可以为单个芯片,或者多个芯片组成的芯片模组。
可选地,芯片系统还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,芯片系统还包括通信接口。通信接口用于与芯片之外的其它模块 进行通信。
第二十六方面,本申请实施例提供一种通信系统,该通信系统包括:第一终端和第二终端。其中,第一终端用于执行第一方面及其任意可能的实现方式中的方法,第二终端用于在位于该第二终端的侧行链路非连续接收-激活时间内的第一侧行链路资源上接收来自第一终端的数据。
上述提供的任一种装置或计算机可读存储介质或计算机程序产品或芯片或通信系统均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文提供的对应的方法中对应方案的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的架构图;
图2为本申请实施例提供的一种通信设备的结构示意图;
图3为本申请实施例提供的一种终端在Uu口上的DRX周期的示意图;
图4为本申请实施例提供的另一种终端在Uu口上的DRX周期的示意图;
图5为本申请实施例提供的一种通信方法的流程示意图;
图6为本申请实施例提供的一种侧行链路资源的时域位置和第二终端的DRX周期之间关系的示意图;
图7为本申请实施例提供的一种第一终端内部交互的示意图;
图8为本申请实施例提供的MAC实体触发物理层感知侧行链路资源的时刻n位于激活时间之前的示意图;
图9为本申请实施例提供的MAC实体触发物理层感知侧行链路资源的时刻n位于激活时间内的示意图;
图10为本申请实施例提供的另一种MAC实体触发物理层感知侧行链路资源的时刻n位于激活时间内的示意图;
图11~图12为本申请实施例提供的再一种MAC实体触发物理层感知侧行链路资源的时刻n和激活时间关系的示意图;
图13为本申请实施例提供的资源选择窗口和激活时间关系的示意图;
图14为本申请实施例提供的另一种激活时间的示意图;
图15为本申请实施例提供的一种选择侧行链路资源的示意图;
图16为本申请实施例提供的另一种选择侧行链路资源的示意图;
图17为本申请实施例提供的一种初传资源位于激活时间内的示意图;
图18为本申请实施例提供的一种初传资源位于激活时间外,而重传资源位于激活时间内的示意图;
图19为本申请实施例提供的一种初传资源位于激活时间内,而重传资源位于激活时间外的示意图;
图20为本申请实施例提供的另一种初传资源位于激活时间外,而重传资源位于激活时间内的示意图;
图21为本申请实施例提供的一种通信装置的结构示意图;
图22为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
目前两个终端之间可以彼此不经过基站中转而直接在侧行链路上进行数据传输。以两个终端为终端A和终端B为例,当终端A在侧行链路上向终端B发送数据之前,终端A可以通过感知侧行链路资源,然后从感知到的侧行链路资源中选择一个侧行链路资源。之后终端A在该选择的侧行链路资源通过侧行链路上向终端B发送数据。而目前为了降低终端B的功耗,可以为终端B配置DRX机制,即终端B在一段时间段处于激活状态可以接收数据,而在另一段时间内处于休眠状态,在终端B处于休眠状态时,终端B可能无法接收其他终端向该终端B发送的数据。因此,如果终端A所选择的侧行链路资源所指示的时间范围位于终端B处于休眠状态的时间段内时,如果终端A在所选择的侧行链路资源上向终端B发送数据时,终端B可能无法正确接收该数据,从而导致终端A向终端B发送的数据传输失败,此外还浪费了终端A发送数据时带来的功耗。
基于此,本申请实施例提供一种通信方法,该方法中第一终端首先确定一个或多个侧行链路资源。然后第一终端在该一个或多个侧行链路资源中的第一侧行链路资源上向第二终端发送数据。由于该第一侧行链路资源位于第二终端的非连续接收-激活时间内,而该第二终端在第二终端的非连续接收-激活时间处于激活状态。这样就能保证第一终端在该第一侧行链路资源上发送的数据时,第二终端处于能够接收到数据的状态,不仅可以避免数据传输失败,还能避免浪费第一终端发送数据时带来的功耗。
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一终端和第二终端仅仅是为了区分不同的终端,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请的技术方案可以应用于各种通信系统,例如:长期演进(long time evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、公共陆地移动网络(public land mobile network,PLMN)系统、设备对设备(device to device,D2D)网络系统或者机器对机器(machine to machine, M2M)网络系统以及第五代移动通信技术(the 5th generation,5G)系统等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在介绍本申请实施例之前,首先介绍本申请实施例中涉及到的名词:
1)、侧行链路(sidelink,SL)是指:针对终端和终端之间直接通信定义的。也即终端和终端之间不通过基站转发而直接通信的链路。
2)、sidelink资源是指:终端1在侧行链路上与终端2传输sidelink信息使用的资源。
3)、sidelink信息是指:任意两个终端在侧行链路上传输的侧行链路数据或者控制信息,也可以称为数据包或者V2X业务。
4)、非连续接收(discontinuous reception,DRX),是指终端仅在必要的时间打开接收机进入激活状态(也可以称为活动状态),以接收数据和信令。而在其他时间关闭接收机进入休眠状态(也可以称为非活动状态)。在终端处于休眠状态时,该终端停止接收数据和信令。DRX为终端的一种节省终端电力消耗的工作模式。DRX分为空闲态DRX和连接态DRX。空闲态DRX由于没有RRC连接和终端专有承载,所以是通过感知寻呼信道实现。以该DRX机制为Uu上的DRX机制为例,连接态DRX是指终端处于RRC连接态时的DRX特性,通过监听物理下行控制信道(Physical downlink control channel,PDCCH)来实现。
DRX的典型应用场景包括下面几类:对时延不敏感、非大多数时刻都有数据需要接收和发送的业务,如浏览网页、email、FTP。产生稀少小包的业务,例如呈现(Presence)业务。周期性连续小包业务,如VoIP(Voice over IP)业务,自动邻居关系(Automatic Neighbour Relation,ANR)测量。
以该DRX机制为Uu上的DRX机制为例,终端在激活时间内监听PDCCH,包括标准上定义的一个DRX cycle开始时drx-onDurationTimer运行时的时间,终端在激活时间处于激活状态(也可以称为唤醒状态或者活动状态)。
以该DRX机制为Uu上的DRX机制为例,终端在非激活时间(也可以称为休眠期)内可以不监听PDCCH,终端在非激活时间可以处于非激活状态(也可以称为休眠状态、或非活动状态)。
5)、激活状态,以该DRX机制为Uu上的DRX机制为例,指终端能监听业务数据/PDCCH的状态,即处于接收数据/PDCCH时的状态,其是一个可变的概念。在激活状态时终端需要对PDCCH进行检测。
6)、休眠状态,以该DRX机制为Uu上的DRX机制为例,指终端不能监听业务数据/PDCCH,在休眠状态终端不进行PDCCH检测,以节约电量。
基于蜂窝网络的设备到设备(Device-to-Device,D2D)通信,在3GPP中又称为邻近服务(Proximity Service,ProSe),是一种在网络的控制下,终端之间直接进行通信的技术,它能够增加蜂窝通信系统频谱效率,降低终端发射功率,在一定程度上解决无线通信系统频谱资源匮乏的问题。
ProSe直接通信(Direct Communication):邻近的两个或多个ProSe UE之间直接通信,不需要通过任何网络节点。
ProSe Direct Communication通过侧行链路通信(sidelink communication)接入层功能实现。sidelink communication指邻近的两个或多个终端之间直接通信,不需要通过任何网络节点。ProSe Direct Communication通过在两个终端之间通过PC5接口建立直连链路(direct link)实现。
sidelink communication使用E-UTRA技术或NR技术。NR sidelink communication:指使用NR技术的sidelink communication,使能V2X communication的接入层功能。NR sidelink communication还可以使能ProSe Direct Communication,包括5G ProSe Direct Communication。
V2X communication:利用Uu和/或PC5参考点/接口支持V2X服务的通信。V2X服务通过各种类型的V2X应用实现,如车对车Vehicle-to-Vehicle(V2V),车对行人Vehicle-to-Pedestrian(V2P),Vehicle-to-Infrastructure(V2I)and车对网络Vehicle-to-Network(V2N)。V2X communication通过sidelink communication接入层功能实现。
为了提升交通系统的安全性和智能化,智能交通的系统理念逐渐兴起。近阶段,智能交通系统的开发将主要集中在智能公路交通系统领域,也就是俗称的车联网(vehicle to everything,V2X)。V2X通信包括车与车(Vehicle to Vehicle,V2V)通信、车与路侧基础设施(Vehicle to Infrastructure,V2I)通信以及车与行人通信(Vehicle to People,V2P)通信。V2X应用将改善驾驶安全性、减少拥堵和车辆能耗、提高交通效率。比如与红绿灯、校区和铁路道口等设施之间通信。车联网系统是基于长期演进(Long Term Evaluation。LTE)V2V或新空口V2V的一种侧行链传输技术,与传统的LTE系统或者NR中通信数据通过网络设备接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式。
如图1所示,图1示出了本申请实施例涉及到一种通信方法适用的通信系统,该系统包括:终端100以及终端200。其中,终端100和终端200能够在彼此之间具有的侧行链路上使用侧行链路资源进行数据传输。
可选的,该系统还可以包括网络设备300。该终端100和网络设备300通过Uu接口通信。网络设备300可以为该终端100分配用于进行侧行链路传输的侧行链路资源。
终端200是与终端100进行侧行链路通信的终端。可以将终端200看作接收方终端(Rx UE),终端100看作发送方终端(Tx UE)。
其中,终端100和终端200之间具有用于直连通信的第一接口,该第一接口可以称为PC5接口。PC5接口上用于终端100和终端200通信的传输链路可以称为侧行链路。
例如,PC5接口可以采用专用频段(如5.9GHz)。
终端100与终端200之间可以直接通信,通过PC5接口。终端200与终端100之间进行sidelink communication和/或sidelink发现(discovery)。终端200也可以与网络设备连接/通信,也可以不与网络设备连接/通信。终端100还可以与除终端200外的其他终端进行SL通信,考虑其他终端为Rx UE,终端100为Tx UE的场景。终端100 与其他终端之间可以直接通信,通过PC5接口。终端100与其他终端之间进行sidelink communication和/或sidelink discovery。其他终端为网络设备300覆盖范围外的终端。关于终端100和终端200之间如何建立侧行链路的方式可以参考现有技术中的描述,此处不再赘述。
sidelink传输是在一对源设备(source)和目的(destination)之间进行的。source可以用source层(layer)-2 ID标识。destination可以用destination layer-2 ID标识。source layer-2 ID标识在sidelink通信中是指数据的发送端(sender)。destination layer-2 ID标识在sidelink通信中是指数据的目标(target)或者接收端。
以终端100为发送方终端,终端200为接收方终端为例,也就是说终端100指的是sidelink通信(或者是一个MAC PDU)的source,接收方终端指的是sidelink通信(或者是一个MAC PDU)的destination。
PC5-无线资源控制(radio resource control,RRC)连接是在一个source和destination对对应的两个终端之间的逻辑连接。在PC5单播链路(PC5 unicast link)建立后,对应的PC5RRC连接就建立了。PC5-RRC连接和PC5单播链路之间是一一对应的。PC5-RRC连接可以用于在PC5-RRC过程中发送方终端向接收方终端传输发送方终端的能力和/或sidelink配置,例如,SL-数据无线承载(data radio bearer,DRB)配置。
终端10或终端20,是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持或车载。也可以部署在水面上(如轮船等)。还可以部署在空中(例如飞机、气球和卫星上等)。终端又称之为用户设备(user equipment,UE),移动台(mobile station,MS)、移动终端(mobile terminal,MT)以及终端设备等,是一种向用户提供语音和/或数据连通性的设备。例如,终端包括具有无线连接功能的手持式设备、车载设备等。目前,终端可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。本申请一种可能的应用的场景中终端为经常工作在地面的终端,例如车载设备。在本申请中,为了便于叙述,部署在上述设备中的芯片,例如片上系统(System-On-a-Chip,SOC)、基带芯片等,或者其他具备通信功能的芯片也可以称为终端。
终端可以是具有相应通信功能的车辆,或者车载通信装置,或者其它嵌入式通信装置,也可以是用户手持通信设备,包括手机,平板电脑等。
作为示例,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上, 或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例描述的各个方案应用于V2X场景时,可以适用于如下领域:无人驾驶(unmanned driving)、自动驾驶(automated driving/ADS)、辅助驾驶(driver assistance/ADAS)、智能驾驶(intelligent driving)、网联驾驶(connected driving)、智能网联驾驶(Intelligent network driving)、汽车共享(car sharing)。当然,本申请实施例描述的各个方案也可以应用于手环和手机、VR眼镜和手机之间的交互。
上述终端100和终端200可以通过资源在终端100和终端200之间的侧行链路上进行通信。本申请实施例中可以将终端100和终端200在侧行链路上进行通信的场景称为:Sidelink通信场景,作为一种示例,本申请实施例中可以将终端100和终端200在侧行链路上进行通信所使用的资源称为:侧行链路资源,本申请实施例对资源的具体名称不做限定,可以根据需要设置。
终端之间在侧行链路上进行通信时需要侧行链路资源。以终端100利用侧行链路资源向终端200发送数据为例,那么终端100目前可以通过以下方式获取侧行链路资源。
方式1(mode1)、基站调度的资源分配模式,也就是说该终端100的侧行链路资源是终端100从基站接收的。比如,基站向终端100发送侧行链路授权(SL grant)。该SL grant包含侧行链路资源分配等信息,终端100可以使用SL grant指示/分配的侧行链路资源在SL上传输。SL grant包含/指示/调度传输物理侧行链路控制信道(Physical sidelink control channel,PSCCH)和/或物理侧行链路共享信道(Physical sidelink shared channel,PSSCH)的时频资源。比如,一个SL grant可以包括至少一个侧行链路资源的信息。
mode 1:终端100在无线资源控制(radio resource control,RRC)连接态下,与网络设备进行数据传输,那么,与该终端100通信的网络设备可以为该终端100调度用于传输侧行链路业务数据的侧行链路资源。例如,终端100向网络设备发送调度请求(scheduling request,SR)以及sidelink缓冲状态报告(buffer status reporting,BSR)。其中,sidelink BSR用于确定终端100的sidelink通信数据量大小。网络设备基于该sidelink BSR,可以确定终端100的sidelink通信数据量大小,并为终端100调度传输侧行链路业务数据所需的侧行链路资源。其中,网络设备使用配置的侧行链路无线网络临时标识(SL-radio network tempory identity,SL-RNTI)来调度用于sidelink通信的侧行链路资源。
mode 1中,物理下行控制信道(physical downlink control channel,PDCCH)可以被用来调度终端在SL上的传输。在PDCCH上的下行控制信息(down control information,DCI)包括SL grant。mode 1中,支持动态授权(dynamic grant),配置授权类型(configured grant type)1,configured grant type 2。dynamic grant是指SL grant是终端动态地在PDCCH上接收的。configured grant type 1和configured grant type 2是 指基站半静态地通过RRC信令为终端配置configured grant配置的。基站可以为终端配置多个SL configured grant配置(SL-ConfiguredGrantConfig)。例如,基站为终端配置SL configured grant配置列表。该SL configured grant配置列表中包括可以被释放或增加或修改的SL configured grant配置。每个SL configured grant配置对应一个索引,索引可以包含在SL configured grant配置中。SL configured grant配置中包含SL configured grant周期指示信息。对于configured grant type 1,在configured grant配置中包含SL grant的时域资源位置信息、频域资源位置信息等。这样便于终端确定该SL grant的时域位置和频域位置。其中,SL configured grant周期指示信息用于指示该SL grant的周期。
对于configured grant type 2,configured SL grant是通过PDCCH上传输的DCI激活/去激活的,DCI中包含configured grant配置索引信息、SL grant的时域资源位置信息、频域资源位置信息等。
值得说明的是,对于configured grant type 2,在基站确定终端需要使用configured SL grant时通过DCI激活,待激活后终端便可以使用被激活的configured SL grant、
方式2(mode2)、终端自主选择的资源选择模式。换言之,指SL grant是终端自主选择的。SL grant包含资源分配等信息,终端可以使用SL grant指示/分配的侧行链路资源在SL上传输。SL grant包含/指示/调度传输物理侧边链路控制信道(physical sidelink control channel,PSCCH)和/或物理侧边链路共享信道(physical sidelink shared channel,PSSCH)的时频资源。
mode2、终端100从资源池通常包括一个或多个sidelink资源中选择sidelink资源。即终端100从一个或多个SL grant中选择SL grant,并根据选择的SL grant确定sidelink资源。
例如,当终端100处于网络覆盖范围内时,该资源池为网络设备在系统信息中广播的资源。当终端100处于网络覆盖范围外时,该资源池为该终端100预配置的资源。该资源池可以是针对该终端100的特定资源池,即只有终端100可以在该资源池中选择侧行链路资源。或者该资源池可以是包括该终端100在内的多个终端共享的资源池,即除了该终端100之外的其余终端也可以在该资源池中选择资源。针对后者,那么当终端100自主选择资源池中的资源时,终端10可以对资源池执行侦听来选择sidelink资源。
sidelink传输是基于资源池的。所谓资源池,是一个逻辑上的概念,一个资源池包括多个物理资源,其中任意一个物理资源是用于传输数据的。一个终端进行数据传输的时候,可以从资源池中使用一个资源进行传输。
具体的,为了保证终端100发送的sidelink业务数据所使用的sidelink资源的质量,避免终端100在自主选择侧行链路资源时,由于多个终端随机在资源池中选择sidelink资源而导致的资源碰撞,即避免终端100所选择的资源被其他多个终端占用,从而降低通信质量。那么终端100可以通过侦听预测未来某个时间段1内的侧行链路资源的占用情况,并将某个时间段1内的侧行链路资源的占用情况作为侦听结果。所谓的侧行链路资源的占用情况可以包括:其他终端是否占用了未来的该时间段1内的侧行链路资源,和/或占用未来的该时间段1内的侧行链路资源的其他终端发送的信号的接收 功率或接收强度。因此,基于侦听结果,终端100可以选择或预留时间段1内的sidelink资源,保证自身通信质量。另外,终端100通过侦听所预留的侧行链路资源是有时效的,例如,在5G NR中,周期性业务的侦听结果和非周期性业务的侦听结果的时效是不同,均在一定的毫秒时间内。
在基于LTE或NR的V2X通信中,终端100可以使用或基于LTE版本(Release)14标准协议中定义的侦听过程来获取侦听结果。示例性的,侧行链路资源的侦听结果可以用于指示以下任意一项或多项:该资源池中的特定侧行链路资源的标识或者位置,该侧行链路资源上的信号强度,该侧行链路资源上的信号功率,该侧行链路资源的信道占用比(channel busy ratio,CBR)。
对于mode 2,对于每个sidelink进程(process),逻辑信道有数据后,触发资源选择/重选检查。如果检查结果是触发资源选择/重选,则终端的MAC实体通知终端的PHY层提供一组侧行链路资源。之后MAC实体在PHY层提供的一组侧行链路资源中随机选择一个侧行链路资源。如果MAC实体选择了至少一次重选,则MAC实体在PHY层提供的一组侧行链路资源中除上述被选择的侧行链路资源以外的其他资源中继续随机选择侧行链路资源。MAC实体选择的多个侧行链路资源中时域最早的侧行链路资源是初传资源,位于初传资源后的侧行链路资源可看作是重传资源。MAC实体选择的多个侧行链路资源对应的传输机会是selected SL grant。如果MAC实体选择创建用于传输多个MAC PDU的selected SL grant。那么MAC实体在PHY层提供的一组侧行链路资源中选择一个侧行链路资源A。MAC实体根据该侧行链路资源A确定一组周期性的侧行链路资源。侧行链路资源A和根据该资源A选择的一组周期性的资源对应的传输机会作为selected SL grant。每个传输机会对应一个SL grant。对于每个SL grant,MAC实体将每个SL grant、调制编码策略(modulationandcodingscheme,MCS)、以及每个SL grant各自关联的混合自动重传请求(hybrid automatic repeat request,HARQ)信息递交给sidelink HARQ实体。
对于每个SL grant,如果该SL grant用于初传,sidelink HARQ实体从复用和集合(Multiplexing and assembly)实体获取要发送的MAC PDU。如果获取到了一个MAC协议数据单元(protocol data unit,PDU),sidelink HARQ实体将MAC PDU、SL grant、sidelink传输信息给关联的侧行链路进程(sidelink process)。sidelink HARQ实体通知sidelink process触发一个新传(所谓新传指触发传输一个数据包,且该数据包为第一次/首次传输的数据包)。如果sidelink HARQ实体未获取到MAC PDU,则冲掉sidelink process的HARQ缓存(buffer)。如果该SL grant用于重传,则sidelink HARQ实体向SL grant关联的sidelind process递交SL grant,通知sidelink process触发一个重传(所谓重传指触发传输一个数据包,且该数据包为第c次传输的数据包,c为大于或等于2的整数,且c小于或等于该终端的最大重传次数。或者c小于或等于该数据包的侧行链路HARQ进程的最大重传次数。)。
sidelink process与一个HARQ buffer相关联。如果sidelink HARQ实体要求一个新传,sidelink process在关联的HARQ buffer中存储MAC PDU,存储SL grant,生成一个传输。如果sidelink HARQ实体要求一个重传,sidelink process存储SL grant,生成一个传输。sidelink process生成一个传输包括:通知物理层根据存储的SL grant传输 侧行控制信息(sidelink control information,SCI)、生成一个传输。
sidelink HARQ实体从Multiplexing and assembly实体处获取要发送的MAC PDU具体包括:Multiplexing and assembly实体对于每个对应一个新传的SCI,Multiplexing and assembly实体为该SCI关联的SL grant根据规则选择一个destination。然后,Multiplexing and assembly实体再选择属于该destination的逻辑信道。Multiplexing and assembly实体为选择的逻辑信道分配资源。选择destination的规则是该destination有逻辑信道(logical channel,LCH)和媒体访问控制(medium access control,MAC)控制元素(control elements,CE)中至少一个在所有满足条件的逻辑信道和MAC CE中具有最高优先级。针对每个destiantion可能会有一个或多个LCH,每个LCH具有对应的优先级(priority)。MAC CE也具有对应的priority。
图2示出了本申请实施例提供一种通信设备的硬件结构示意图。本申请实施例中的第一终端、第二终端的硬件结构可以参考如图2所示的结构。该通信设备包括处理器21,通信线路24以及至少一个收发器(图2中仅是示例性的以包括收发器23为例进行说明)。
处理器21可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路24可包括一通路,在上述组件之间传送信息。
收发器23,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
可选的,该通信设备还可以包括存储器22。
存储器22可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路24与处理器相连接。存储器22也可以和处理器21集成在一起。
其中,存储器22用于存储执行本申请方案的计算机执行指令,并由处理器21来控制执行。处理器21用于执行存储器22中存储的计算机执行指令,从而实现本申请下述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图2中的 处理器21和处理器25。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
下述将描述本申请涉及到的终端感知和选择侧行链路资源的过程:
终端的PHY层在n时间单元(比如,时隙)收到MAC实体请求确定一组侧行链路资源的通知。物理层将感知到的侧行链路资源中位于[n+T1,n+T2]内的侧行链路资源作为候选侧行链路资源。其中,位于[n+T1,n+T2]内的候选侧行链路资源构成候选资源集合。
可以理解[n+T1,n+T2]为该终端的资源选择窗。
其中,T1满足
Figure PCTCN2021118339-appb-000001
T1的值取决于终端的实现。其中,
Figure PCTCN2021118339-appb-000002
的单位是时隙,如下表1定义,其中,μ SL是SCS配置。如果T2的最小值小于剩余(remaining)包延时预算(packet delay budget,PDB)(单位是时隙),则T2的值取决于终端的实现,满足T2min≤T2≤P,P表示剩余PDB。否则,T2等于remaining PDB。remaining PDB由MAC实体提供给PHY层。
表1
Figure PCTCN2021118339-appb-000003
物理层根据一定规则,从候选资源集合中确定一个或多个侧行链路资源上报给MAC实体。
作为一种示例,以一个或多个侧行链路资源中的侧行链路资源m为例,终端根据该侧行链路资源m上接收的PSCCH/PSSCH的解调参考信号(demodulation reference signal,DMRS)的参考信号接收功率(reference signal receiving power,RSRP),确定候选资源集合中的侧行链路资源k是否被排除。其中,k由m确定的。
例如,侧行链路资源m上接收的PSCCH/PSSCH的DMRS的RSRP大于阈值1,并满足其他条件,则终端的物理层确定侧行链路资源k应该被排除。最终,物理层确定一个或多个侧行链路资源中就不包含侧行链路资源k。如果物理层最终确定的一个或多个侧行链路资源的数量小于候选资源集合中的侧行链路资源总数乘以M,则终端根据阈值2确定侧行链路资源k是否应该被排除。其中,阈值2大于阈值1。比如,阈值2为阈值1加上预设值。比如,预设值为3dB。
目前,当终端与网络设备进行通信时,为了节省终端不必要的功耗,减少终端的监听时间,在Uu口(终端与网络设备之间的接口)上终端可以应用非连续接收机制,以帮助处于无线资源控制(radio resource control,RRC)连接态的终端节能。DRX的基本原理是:当终端与网络设备通信时,网络设备可能在一段时间内有数据传输,而 在接下来的一段较长时间内网络设备可能无数据需要传输给终端。在网络设备无数据向终端发送的情况下,若终端仍然保持监听状态,则对于终端来说是非常耗电的。因此,在终端没有数据接收时,可以通过使终端停止监测物理下行控制信道(physical downlink control channel,PDCCH)来降低终端的功耗,从而提升终端的电池使用时间。
在NR中,当终端处于RRC连接态时,为了节省不必要的功耗,定义了非连续接收Discontinuous Reception(DRX)功能。采用DRX机制的终端在某些时间段内监测PDCCH,在另外一些时间段内不监测PDCCH。因此,DRX通过控制终端在一些时间段内不监测PDCCH来降低终端功耗。
NR中,网络设备为终端配置的DRX机制还包括相应的DRX参数,例如,在5G NR版本中,DRX机制中主要包括的参数和参数的功能如下:
-DRX开启持续时间定时器(drx-onDurationTimer):在一个DRX cycle开始的持续时间(the duration at the beginning of a DRX Cycle)。DRX周期开始时,其中on duration的持续时间,可以认为该DRX-开启持续时间定时器运行过程中终端处于激活状态。
-DRX时隙偏移量(drx-SlotOffset):开启drx-onDurationTimer前的时延。
-DRX非激活定时器(drx-InactivityTimer):当终端成功解码一个Uu口上调度新数据初传的PDCCH后,持续处于激活状态的时间长度,即当终端被调度以后,应该开启该drx-InactivityTimer,以延长终端处于激活状态的时间,所对应的场景可以理解为终端在当前被调度时,很可能在接下来的时间段内继续被调度,因此终端需要保持激活状态以等待接收数据。
-DRX长周期开启偏移(drx-LongCycleStartOffset):表示长DRX周期(Long DRX Cycle)和drx开启偏移(drx-StartOffset)。其中,Long DRX Cycle指定长周期占用的子帧数量/毫秒,drx-StartOffset指定长DRX周期和短DRX周期的起始子帧。
-DRX下行重传定时器(drx-RetransmissionTimerDL)(针对除广播过程之外的每个HARQ过程):终端收到Uu口的下行重传数据之前的最大持续时间,在该drx-RetransmissionTimerDL运行中,终端等待接收来自网络设备的下行重传数据。
-DRX上行重传定时器(drx-RetransmissionTimerUL)(针对每个上行HARQ过程):终端接收到Uu口的上行重传资源之前的最大持续时间(the maximum duration until a grant for UL retransmission is received),在该drx-RetransmissionTimerUL运行中,终端进行上行数据的重传。
-DRX短周期(drx-ShortCycle)(可选):即短DRX周期的时间长度(Short DRX cycle),单位为子帧/毫秒。
-DRX下行HARQ往返定时器(drx-HARQ-RoundTripTime-TimerDL,drx-HARQ-RTT-TimerDL)(针对除广播过程之外的每个下行HARQ过程):终端在Uu口上期望收到下行HARQ重传数据之前的持续时间,可以理解为一个时间窗,在该时间窗内基站不会针对当前传输失败的数据包进行下行重传,需要等待该drx-HARQ-RTT-TimerDL超时以后,终端才能继续接收该数据包的下行重传数据。当终端的drx-HARQ-RTT-TimerDL超时时,终端可以开始接收下行重传数据,则开启drx-RetransmissionTimerDL。即在一个为HARQ重传的下行分配可能出现前的最小持 续时间。
-DRX上行HARQ往返定时器(drx-HARQ-RTT-TimerUL)(针对每个上行HARQ过程):终端在Uu口上期望收到上行HARQ重传资源之前的持续时间,可以理解为一个时间窗,在该时间窗内终端不可以对当前传输失败的数据包进行上行重传,需要等待该drx-HARQ-RTT-TimerUL超时以后,终端才能继续上传该数据包的数据。当终端的drx-HARQ-RTT-TimerUL超时时,终端可以开始进行上行重传,则开启drx-RetransmissionTimerUL,即在一个上行HARQ重传grant可能出现前的最小持续时间。
因此,当终端配置DRX机制以后,终端处于DRX-激活时间(active time)主要包括如下情况:
情况1、drx-onDurationTimer或drx-InactivityTimer或drx-RetransmissionTimerDL或drx-RetransmissionTimerUL或随机接入竞争解决定时器(ra-ContentionResolutionTimer)中的任意一个定时器(timer)处于运行状态。其中,ra-ContentionResolutionTimer指终端在随机接入过程中所使用的定时器,用于终端等待获得基站的接入资源。
情况2、终端已经在物理上行链路控制信道(physical uplink control channel,PUCCH)上发送了调度请求(scheduling request,SR),且该SR当前处于pending态,pending可以理解为终端准备但还没有向网络设备发送SR。
情况3、类似于ra-ContentionResolutionTimer,终端成功接收了用于响应非终端选择的基于竞争的随机接入的前导序列(preamble)的随机接入响应(random access response,RAR),却没有收到指示初传(使用小区无线网络临时标识(cell radio network temporary identifier,)C-RNTI)的PDCCH。
相应地,在上述三种情况中任意一种或多种的情况下,终端都需要检测PDCCH,其中,检测PDCCH包括检测对应以下无线网络临时标识(radio network temporaryidentifier,RNTI)的PDCCH:小区RNTI(cell-RNTI,C-RNTI)、配置调度RNTI(configuredscheduling-RNTI,CS-RNTI)、中断RNTI(interruption-RNTI,INT-RNTI)、时隙格式标识RNTI(slot format indicator-RNTI,SFI-RNTI)、半永久性信道状态信息RNTI(semi-persistent channel state information,SP-CSI-RNTI)、PUCCH发送功率控制RNTI(transmit power control-PUCCH-RNTI,TPC-PUCCH-RNTI)、PUSCH发送功率控制RNTI(transmit power control-PUSCH-RNTI,TPC-PUSCH-RNTI)、试探参考信号发送功率控制RNTI(transmit power control-sounding reference signal-RNTI,TPC-SRS-RNTI)。
上文中,RNTI对应的PDCCH可以是指,用RNTI加扰PDCCH承载的DCI的循环冗余校验(cyclic redundancy check,CRC)比特。
还需要说明的是,上述激活时间除了涵盖上述几种情况之外,还可以包括未来通信协议中规定的其他情况,本申请实施例对此不作具体限定。
本申请实施例描述的各种定时器一旦启动后,定时器处于运行状态,直到定时器停止或超时;否则,定时器未处于运行状态。若定时器未处于运行状态,定时器可以被启动。定时器停止后或超时后,定时器未处于运行状态,直到定时器启动。若定时 器处于运行状态,定时器可以被重启。定时器的时间长度可以理解为定时器从启动或重启持续运行直到超时的时间长度。定时器的值在启动或重启时为其初始值。定时器的初始值可以为定时器的时间长度。定时器的值在启动或重启时为定时器的时间长度。
各实施例中的定时器的名字只是举例。下文中的DRX参数/定时器都是SL上的DRX参数/定时器。
当DRX cycle被配置或DRX被配置时,激活时间包括:drx-onDurationTimer或drx-InactivityTimer或drx-RetransmissionTimerDL或drx-RetransmissionTimerUL正在运行的时间。在active Time内,终端需要监测PDCCH。在active Time外,该终端不需要监测PDCCH,因此终端可以不监测PDCCH。
DRX cycle如图3所示,开启持续时间(On Duration)是周期性重复的,DRX cycle是开启持续时间重复的周期。drx-onDurationTimer在开启持续时间的起始时刻启动,drx-onDurationTimer的时长为开启持续时间的时长,也就是说开启持续时间为drx-onDurationTimer运行期间。DRX机会(Opportunity for DRX)是一段不活跃期,如果没有其他导致DRX激活时间的定时器运行,则该段时间属于休眠期。
Drx-onDurationTimer启动的时间是根据drx-StartOffset和drx-SlotOffset确定的。具体的,根据drx-StartOffset确定drx-onDurationTimer启动的子帧,从所述子帧的开始起drx-SlotOffset后启动。
如图4所示,如果终端在开启持续时间接收到指示新传的PDCCH,则在PDCCH接收结束后的第一个符号启动或重启drx-InactivityTimer。那么如图4所示,该终端的激活时间由开启持续时间的起始时刻和drx-InactivityTimer的结束时刻确定。即终端的激活时间的起始时刻为开启持续时间的起始时刻,而终端的激活时间的结束时刻为drx-InactivityTimer的结束时刻。
如果终端在配置的下行分配中接收到一个MAC PDU,在承载下行HARQ反馈的传输结束之后的第一个符号启动相应的HARQ process的drx-HARQ-RTT-TimerDL,并停止相应的HARQ processr的drx-RetransmissionTimerDL。如果接收到一个指示下行传输的PDCCH,在承载下行HARQ反馈的传输结束之后的第一个符号启动相应的HARQ process的drx-HARQ-RTT-TimerDL,并停止相应的HARQ process的drx-RetransmissionTimerDL。如果drx-HARQ-RTT-TimerDL超时,如果相应的HARQ process的数据没有解码成功,则在drx-HARQ-RTT-TimerDL超时后的第一个符号启动相应的HARQ process的drx-RetransmissionTimerDL。
而当前发送方终端(Tx UE)与接收方终端(Rx UE)之间进行侧行链路通信时,具体可以考虑的场景包括但不限于V2X通信、设备对设备(device to device,D2D)、公共安全(public safety)、商业通信(commercial)等sidelink相关通信场景,在Rx UE未使用DRX机制的情况下,Rx UE在整个时间段持续监测Tx UE发送的PSCCH,Rx UE持续保持激活状态并可接收Tx UE发送的调度数据。但是Tx UE并非一直向接收方终端发送数据,因此,如果Rx UE在整个时间段持续监测Tx UE发送的PSCCH势必会使得Rx UE的功耗被浪费。
基于上述描述,3GPP Release 17中讨论在sidelink中引入DRX。SL DRX timer可以参考Uu上的DRX timer。例如,在SL上也采用drx-onDurationTimer、 drx-InactivityTimer、drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL。为了便于和上述Uu口上的各种定时器区分,本申请实施例中可以将SL上采用的各种定时器在命名上加上SL予以区分。比如,在SL上采用的drx-onDurationTimer可以命名为:drx-onDurationTimer-SL。在SL上采用的drx-InactivityTimer可以命名为:drx-InactivityTimer-SL。
SL DRX-active time包括drx-onDurationTimer-SL(DRX开启持续时间定时器-SL)、drx-InactivityTimer-SL(DRX非激活定时器-SL)或drx-RetransmissionTimer-SL(DRX重传定时器-SL)运行期间的时间。接收方终端(Rx UE)在SL DRX-active time内监听/接收PSCCH、PSSCH、SCI或MAC PDU。一种可能的方式是每个source and destination对对应一个SL DRX-active time。每个source and destination对对应一套SL DRX timer。
drx-onDudrationTimer-SL,用于指示侧行链路DRX cycle开始时的持续时间,即DRX cycle的“On Duration”,即“On Duration”表示一个时间段,是由drx-onDurationTimerPC5所决定的,长度等于drx-onDudrationTimer-SL的大小,在侧行链路DRX cycle的开始时刻,终端会启动drx-onDudrationTimer-SL,也就是进入“On Duration”,drx-onDudrationTimer-SL开始运行即进入侧行链路DRX激活时间;
drx-InactivityTimer-SL(也可以称为:drx-InactivityTimerPC5),用于指示一个PSCCH、PSSCH、SCI或MAC PDU传输之后的持续时间,其中,SCI包括第一级SCI、第二级SCI、或第一级SCI和第二级SCI,第一级SCI可以承载在PSCCH上,第二级SCI可以承载在PSSCH上,PSSCH传输可以是新传,相应的,PSCCH或SCI用于调度新传,或者,PSSCH传输可以是新传或重传,PSCCH或SCI用于调度新传或重传。例如,如果在侧链DRX激活时间,终端设备收到PSCCH或SCI指示侧行新的数据传输,则终端设备会启动或重启drx-InactivityTimerPC5,使得终端一直处于侧链DRX激活时间,可以理解为终端设备原本处于侧链DRX激活态的时间长度为“On Duration”的时间长度,运行drx-InactivityTimerPC5可以延长终端设备处于侧链DRX激活态的时间,直到drx-InactivityTimerPC5超时,或者终端设备收到相关的MAC CE信令使该drx-onDurationTimerPC5以及该drx-InactivityTimerPC5停止,例如,DRX Command PC5MAC CE,终端才结束侧链DRX激活时间进入侧链DRX非激活时间,即终端从侧链DRX激活态进入侧链DRX非激活态;
drx-RetransmissionTimer-SL(也可以称为:drx-RetransmissionTimerPC5),用于指示收到侧链HARQ重传或调度侧链HARQ重传的SCI之前的最大持续时间,其中,不同的侧链进程可以对应不同的drx-RetransmissionTimerPC5;
drx-HARQ-RTT-Timer-SL也可以称为drx-HARQ-RTT-TimerPC5,用于指示预期进行侧链HARQ重传或调度侧链HARQ重传的SCI之前的最小持续时间,其中,不同的侧链进程可以对应不同的drx-HARQ-RTT-TimerPC5。
本申请实施例对SL上使用的各个定时器的名称不做限定。上述名称仅是一种示例。
由于现有技术mode 2资源选择机制没有考虑SL DRX,发送方终端为SL grant按上述规则选择的destination。但是,SL grant对应/指示/分配的侧行链路资源的时域 位置可能不在destination的SL DRX-active time内。如果终端在该SL grant对应/指示/分配的侧行链路资源向该destination发送PSCCH、PSSCH、SCI或MAC PDU,destination没有监听/接收PSCCH、PSSCH、SCI或MAC PDU,则该PSCCH、PSSCH、SCI或MAC PDU传输失败,Tx UE还白白浪费了功耗。基于此本申请实施例通过下述图5描述的方案解决如何避免数据包传输失败以及避免Tx UE浪费功耗。
在本申请实施例中,一种通信方法的执行主体的具体结构,本申请实施例并未特别限定,只要可以通过运行记录有本申请实施例的一种通信方法的代码的程序,以根据本申请实施例的一种通信方法进行通信即可。例如,本申请实施例提供的一种通信方法的执行主体可以是第一终端中能够调用程序并执行程序的功能模块,或者为应用于第一终端中的通信装置,例如,芯片、芯片系统、集成电路等等。这些芯片、芯片系统、集成电路可以设置于第一终端内部,也可以相对于第一终端独立,本申请实施例不做限制。
如图5所示,图5示出了本申请实施例提供的一种通信方法,该方法包括:
步骤501、第一终端确定一个或多个侧行链路资源。
该一个或多个侧行链路资源可用于传输第一终端向第二终端发送的数据,即第一终端可以在该一个或多个侧行链路资源中的资源上向第二终端发送数据。其中,一个或多个侧行链路资源中存在位于第二终端的侧行链路非连续接收-激活时间的侧行链路资源。该第二终端在第二终端的侧行链路非连续接收-激活时间内处于激活状态。
如上述描述,第二终端的侧行链路非连续接收-激活时间包括:该第二终端的drx-onDurationTimer-SL、drx-InactivityTimer-SL或drx-RetransmissionTimer-SL中任一个或多个定时器的运行期间的时间。比如,当第二终端的drx-InactivityTimer-SL或drx-RetransmissionTimer-SL中任一个或多个定时器未运行时,第二终端的侧行链路非连续接收-激活时间至少包括drx-onDurationTimer-SL运行期间。当第二终端的drx-InactivityTimer-SL或drx-RetransmissionTimer-SL中任一个或多个定时器时,该第二终端的激活状态被维持,这时,第二终端的侧行链路非连续接收-激活时间由drx-onDurationTimer-SL,以及drx-InactivityTimer-SL或drx-RetransmissionTimer-SL中任一个或多个定时器的运行时长确定。
本申请实施例中的第一终端和第二终端可以在彼此具有的侧行链路上使用侧行链路资源进行数据传输。
在本申请的一个实施例中,该一个或多个侧行链路资源可以为专门用于发送特定数据的资源,或者该一个或多个侧行链路资源可以为发送任何数据的资源,本申请实施例对此不做限定。
在本申请的一个实施例中,上述一个或多个侧行链路资源可以是第一终端从资源池中通过感知(也可以称为:侦听,英文:sensing)得到的。比如,第一终端需要发送数据,那么第一终端可以在资源池中执行感知技术,以确定一个或多个侧行链路资源。
在本申请的一个实施例中,上述一个或多个侧行链路资源可以是空闲的资源,也就是除第二终端以外的其他终端没有使用或没有预留的资源。上述一个或多个侧行链路资源也可以是非空闲的资源,即除第二终端以外的其他终端使用或预留的资源。或 者,第二终端通过感知,预期上述一个或多个侧行链路资源上的信号接收功率或信号强度较小,即使除第二终端以外的其他终端在该一个或多个侧行链路资源上发送数据,第二终端测量的信号接收功率或信号强度较小。
在本申请的一个实施例中,上述一个或多个侧行链路资源可以是除第二终端以外的其他终端向第一终端建议或调度的可用于发送数据的侧行链路资源。由于除第二终端以外的其他终端可能不了解第二终端处于激活状态和休眠状态的时间,因此可能建议或调度的侧行链路资源中包括时间范围位于第二终端的侧行链路非连续接收-激活时间内的侧行链路资源。
在本申请的一个实施例中,上述一个或多个侧行链路资源可以是该第一终端接入的基站为该第一终端分配的可用于发送数据的侧行链路资源。即该一个或多个侧行链路资源可以是第一终端以上述方式1获取的侧行链路资源。
本申请实施例中的第二终端采用DRX机制。第二终端在侧行链路非连续接收-激活时间内处于激活状态。在第二终端处于激活状态时,也就是第二终端处于侧行链路非连续接收-激活时间时,第二终端监听/接收PSCCH、PSSCH、SCI或MAC PDU,即可以接收来自其他终端的数据。
第二终端在侧行链路非连续接收-激活时间以外的时间为非连续接收-非激活时间,也可以称为:侧行链路非连续接收-休眠期。
第二终端在侧行链路非连续接收-非激活时间处于非激活状态,也可以称为休眠状态。在第二终端处于休眠状态时,也就是第二终端不在侧行链路非连续接收-激活时间内时,该第二终端可以不监听/接收PSCCH、PSSCH、SCI或MAC PDU。在第二终端处于侧行链路非连续接收-非激活时间时,该第二终端也可以监听/接收PSCCH、PSSCH、SCI或MAC PDU,本申请实施例对此不做限定。
示例性的,第一终端向第二终端发送的数据可以是第一终端在侧行链路向第二终端发送的PSCCH、PSSCH、SCI或MAC PDU中的一个或多个。其中,SCI包括第一级SCI,或者SCI包括第一级SCI和第二级SCI。PSCCH用于指示PSSCH传输的时频域资源位置、调制编码方式和侧行链路数据信道(PhysicalSidelinkSharedCHannel,PSSCH)中承载的数据的优先级等,PSSCH用于承载数据。
本申请实施例中的第二终端在PC5接口上进行侧行链路通信场景时,采用的非连续接收机制可以称为:侧行链路非连接接收机制(SL DRX)。
本申请实施例中终端的SL DRX可以理解为终端作为接收方终端时的SL DRX,也可以理解为该终端作为发送方终端时,与接收方终端之间的SL DRX,或者,一对source和destination之间的SL DRX。其中,source是用source layer-2 ID标识的发送方终端,destination是用destination layer-2 ID标识的接收方终端,或者,source是用source layer-1 ID标识的发送方终端,destination是用destination layer-1 ID标识的接收方终端。
接收方的终端设备处于SL DRX激活状态时,也就是在SL DRX激活期内监听或接收PSCCH、PSSCH、SCI或MAC PDU。
第二终端也可以理解为destination,用destination layer-2 ID或destination layer-1ID标识的终端。第一终端也可以理解为source,用source layer-2 ID或source layer-1 ID 标识的终端。
步骤502、第一终端在一个或多个侧行链路资源中的第一侧行链路资源上向第二终端发送数据。相应的,第二终端在该第一侧行链路资源上接收来自第一终端的数据。该第一侧行链路资源位于第二终端的侧行链路非连续接收-激活时间内。
本申请实施例中第一侧行链路资源位于第二终端的侧行链路非连续接收-激活时间内可以指该第一侧行链路资源的时域位置位于侧行链路非连续接收-激活时间内,也即第一侧行链路资源从起始位置到结束位置均位于侧行链路非连续接收-激活时间内。或者,第一侧行链路资源的部分时域位置位于侧行链路非连续接收-激活时间内。例如,第一侧行链路资源从起始位置到某一中间位置位于侧行链路非连续接收-激活时间内,剩余时域位置不在侧行链路非连续接收-激活时间内。
举例说明,如图6所示,以第二终端的drx-onDurationTimer-SL运行期间包括时隙1和时隙2为例,该一个或多个侧行链路资源中包括侧行链路资源1、侧行链路资源2以及侧行链路资源3。其中,侧行链路资源1位于时隙1。侧行链路资源2和侧行链路资源3分别位于时隙4和时隙5。由于侧行链路资源1位于侧行链路非连续接收-激活时间内,那么第一终端可以确定侧行链路资源1为第一侧行链路资源。
作为一种示例,当位于第二终端的侧行链路非连续接收-激活时间内的侧行链路资源数量为多个时,第一终端可以根据该多个侧行链路资源的优先级,确定第一侧行链路资源。比如,将位于侧行链路非连续接收-激活时间内的多个侧行链路资源中优先级最高的侧行链路资源确定为第一侧行链路资源。当然,第一终端还可以从位于侧行链路非连续接收-激活时间内的多个侧行链路资源中随机选择一个侧行链路资源确定为第一侧行链路资源。本申请实施例对此不做限定。
本申请实施例提供一种通信方法,该方法中第一终端首先确定一个或多个侧行链路资源。然后第一终端在该一个或多个侧行链路资源中的第一侧行链路资源上向第二终端发送数据。由于该第一侧行链路资源位于第二终端的侧行链路非连续接收-激活时间内,而该第二终端在第二终端的侧行链路非连续接收-激活时间处于激活状态,这样就能保证第一终端在该第一侧行链路资源上发送的数据时,第二终端处于能够接收到数据的状态,不仅可以避免数据传输失败,还能避免浪费第一终端发送数据时带来的功耗。
在本申请的一个实施例中,本申请实施例提供的方法在步骤502之前还可以包括:第一终端确定第二终端的侧行链路非连续接收-激活时间。
关于第一终端确定第二终端的侧行链路非连续接收-激活时间可以通过如下方式实现:
方式1、第一终端从第二终端处获取该第二终端的侧行链路非连续接收-激活时间。
第一终端从第二终端处获取该第二终端的侧行链路非连续接收-激活时间分为主动获取和被动获取。所谓主动获取指:第一终端先向第二终端发送第一请求消息,该第一请求消息用于请求该第二终端的侧行链路非连续接收-激活时间。然后第二终端向第一终端发送该第二终端的DRX配置信息,该DRX配置信息中包括用于确定第二终端的侧行链路非连续接收-激活时间的信息。比如,用于确定第二终端的侧行链路非连续接收-激活时间的信息为第二终端的非连续接收相关参数,比如,DRX周期、 drx-onDurationTimer-SL时长、drx-InactivityTimer-SL时长、drx-RetransmissionTimer-SL时长、DRX起始偏移,这样第一终端可以根据非连续接收相关参数确定第二终端的侧行链路非连续接收-激活时间。
所谓被动获取指:第一终端可以不向第二终端发送第一请求消息,而是第二终端主动向第一终端发送该第二终端的DRX配置信息。比如,第二终端确定需要接收第一终端的数据之前,可以先向第一终端发送该第二终端的DRX配置信息。
方式2、第一终端从为第二终端配置DRX机制的通信设备处获取该第二终端的侧行链路非连续接收-激活时间。
例如,通信设备可以是基站,也可以是配置DRX机制的终端,本申请实施例对此不做限定。
关于方式2中第一终端从通信设备处获取该第二终端的侧行链路非连续接收-激活时间也可以分为主动获取和被动获取。具体的实现方式可以参考上述第一终端从第二终端处获取该第二终端的侧行链路非连续接收-激活时间的方式,此处不再赘述。
为了保证第一终端能够从一个或多个侧行链路资源中选择出位于第二终端的侧行链路非连续接收-激活时间的侧行链路资源,保证第一终端向第二终端发送数据的可靠性,本申请实施例中一个或多个侧行链路资源中位于第一时间段内的侧行链路资源的数量大于或等于第一阈值。其中,第一时间段的起始时刻为候选资源集合对应的起始时刻,或者第一时间段的起始时刻为侧行链路非连续接收-激活时间的起始时刻或晚于侧行链路非连续接收-激活时间的起始时刻。第一时间段的截止时刻为侧行链路非连续接收-激活时间的结束时间。
在本申请的一个实施例中,第一阈值可以为协议预定义的值,比如第一阈值为2、3、4、5等固定值。
在本申请的一个实施例中,第一阈值根据第一时间段中的候选侧先链路资源的总数确定,例如,第一阈值为第一时间段中的候选侧行链路资源的总数乘以M。其中,M大于0小于或等于1。该M可以由第一终端自行确定,或者由协议预定义,或者由网络设备配置,或者是预配置的,本申请实施例对此不做限定。例如,第一时间段为[T1+n,T3],第一阈值由候选资源集合中位于[T1+n,T3]中的候选侧行链路资源的总数乘以M确定。该M可以由第一终端自行确定,或者由协议预定义,或者由网络设备配置,或者是预配置的,本申请实施例对此不做限定。其中,n表示第一终端的MAC实体通知物理层感知侧行链路资源的时刻,即第一终端的PHY层在时隙n收到MAC实体请求确定一个或多个侧行链路资源。T3表示非连续接收-激活时间的结束时间。T1+n表示候选资源集合对应的起始时刻。
本申请实施例中的候选资源集合包括s个候选侧行链路资源,其中,s为大于或等于1的整数。下述将描述第一终端如何确定候选资源集合。
比如,第一终端根据第一终端的资源选择窗口从侧行链路资源中确定s个候选侧行链路资源为候选资源集合。那么候选资源集合对应的起始时刻即为第一终端的资源选择窗口的起始时刻。相应的,该候选资源集合中时域位置最早的侧行链路资源的起始时刻晚于或等于该资源选择窗口的起始时刻。候选资源集合对应的截止时刻即为第一终端的资源选择窗口的结束时间(比如,T2+n),也即候选资源集合中时域位置最晚的侧行链路资源的截止时刻应早于或等于该T2+n。
比如说,以[T1+n,T2+n]作为第一终端的资源选择窗口,那么第一终端可以确定位于[T1+n,T2+n]中的s个侧行链路资源作为候选侧行链路资源。T2+n表示资源选择窗口的结束时间,也即候选资源集合中时域位置最晚的侧行链路资源的截止时刻应早于或等于该T2+n。s个侧行链路资源包括[T1+n,T2+n]中的所有侧行链路资源,一个侧行链路资源为一个时隙中的一个频率单元的资源。或者,s个侧链路资源包括[T1+n,T2+n]中的部分侧行链路资源,例如,某些时隙中的某些频率单元的资源。频率单元可以为L个连续的子信道,L为大于或等于1的整数。
其中,T1和T2所满足的条件可以参考上述表1处的描述,也可以是下文描述的条件,此处不再赘述。
作为一种具体实现,本申请实施例中的步骤501可以通过以下方式实现:第一终端将位于资源选择窗口(比如,[T1+n,T2+n])内的所有侧行链路资源作为候选资源集合。然后第一终端从候选资源集合中确定一个或多个侧行链路资源。具体的,由第一终端的物理层确定候选资源集合以及从候选资源集合中确定一个或多个侧行链路资源。
在本申请的一个实施例中,当T2+n大于或等于T3,即候选资源集合对应的截止时刻晚于或等于侧行链路非连续接收-激活时间的结束时间时,一个或多个侧行链路资源中位于第一时间段内的侧行链路资源的数量大于或等于第一阈值。
举例说明,候选资源集合中包括10个侧行链路资源,而该10个侧行链路资源中位于[T1+n,T3]中的侧行链路资源的总数为6,M=0.5,那么一个或多个侧行链路资源中位于[T1+n,T3]内的侧行链路资源的数量应该大于或等于3。
在本申请的一个可能的实施例中,一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,该候选资源集合对应的起始时刻晚于或等于侧行链路非连续接收-激活时间的起始时间,或者表述为:侧行链路非连续接收-激活时间的起始时间早于或等于候选资源集合对应的起始时刻。该方案中第一终端为了保证候选资源集合中存在位于侧行链路非连续接收-激活时间的侧行链路资源,以保证后续从候选资源集合中确定的一个或多个侧行链路资源中存在位于侧行链路非连续接收-激活时间的侧行链路资源,则第一终端可以更新候选资源集合对应的起始时刻。
比如,第一终端设置候选资源集合对应的起始时刻晚于或等于非连续接收-激活时间的起始时间。由于候选资源集合对应的起始时刻由T1+n确定,因此第一终端可以调整T1所满足的条件从
Figure PCTCN2021118339-appb-000004
变为
Figure PCTCN2021118339-appb-000005
其中,T4小于
Figure PCTCN2021118339-appb-000006
如果T4大于或等于
Figure PCTCN2021118339-appb-000007
T1=T4-n。其中,T4表示非连续接收-激活时间的起始时间。
在本申请的一个可能的实施例中,该候选资源集合对应的截止时刻早于或等于侧行链路非连续接收-激活时间的结束时间。这样可以保证候选资源集合中的侧行链路资源早于或等于侧行链路非连续接收-激活时间的结束时间。
值得说明的是,候选资源集合满足如下条件中的一个或多个:即起始时刻晚于或等于侧行链路非连续接收-激活时间的起始时间,或,截止时刻早于或等于侧行链路非连续接收-激活时间的结束时间。
当候选资源集合对应的起始时刻晚于或等于侧行链路非连续接收-激活时间的起始时间,且候选资源集合对应的截止时刻早于或等于侧行链路非连续接收-激活时间的 结束时间时,可以保障该候选资源集合中的侧行链路资源均位于侧行链路非连续接收-激活时间内。
作为一种示例,第一终端根据第一终端的非连续接收-激活时间的起始时间确定资源选择窗口的起始时刻。然后第一终端根据资源选择窗口的起始时刻和结束时间从侧行链路资源中确定资源选择窗口内的s个候选侧行链路资源为候选资源集合。该资源选择窗口的结束时间由T2+n确定。
在本申请的一个实施例中,一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源。
该候选资源集合对应的截止时刻早于或等于数据的重传结束时间。这样可以保证候选资源集合中存在用于重传该数据的侧行链路资源。例如,可以根据重传次数、RTT定时器(timer)时长、重传timer时长、非连续接收-激活时间的结束时间中的至少一个确定可能的重传结束时间。其中,RTT timer可以是drx-HARQ-RTT-Timer-SL。重传timer可以是drx-RetransmissionTimer-SL。
比如,第一终端设置候选资源集合对应的截止时刻早于或等于数据的重传结束时间。由于候选资源集合对应的截止时刻由T2+n确定,因此第一终端可以调整T2所满足的条件从T2min≤T2≤P变为T2min≤T2≤重传结束时间-n或者,T2min≤T2≤min(重传结束时间-n,P),其中,T2min<重传结束时间-n。如果T2min大于或等于重传结束时间-n,T2=重传结束时间-n,或者,T2=(重传结束时间-n,P)中的最小值。
上述描述一个或多个侧行链路资源所满足的条件以及候选资源集合对应的起始时刻和截止时刻所满足的条件,下述将描述第一终端内的物理(physical,PHY)层和媒体接入控制(Medium Access Control,MAC)层如何交互以确定一个或多个侧行链路资源的过程。
在本申请的一个实施例中,该第一终端具有物理层和MAC实体。相应的,如图7所示,本申请实施例中的步骤501可以通过以下方式实现:
步骤701、第一终端的物理层从候选资源集合中确定一个或多个侧行链路资源。
在本申请的一个可能的实施例中,本申请实施例提供的方法在步骤701之前还可以包括:第一终端的媒体接入控制实体向物理层发送感知通知,该感知通知用于通知物理层感知侧行链路资源。第一终端的媒体接入控制实体向物理层发送感知通知也可以理解为MAC实体要求物理层确定一个或多个侧行链路资源。物理层根据感知通知感知侧行链路资源。物理层可以从侧行链路资源中确定候选侧行链路资源。本申请实施例中物理层在接收到感知通知之后可以立刻感知侧行链路资源,也可以在预设时间之后感知侧行链路资源,也可以在接收到感知通知之前已经感知了侧行链路资源。该预设时间可以第一终端确定,或者协议预定义,本申请实施例对此不做限定。
比如说,第一终端的媒体接入控制实体在时间单元1向第一终端的物理层发送感知通知。例如,时间单元1为上述n。
在本申请的一个可能的实施例中,物理层可以主动感知侧行链路资源。比如物理层确定需要传输数据时,则可以确定感知侧行链路资源。
下述将分别描述由媒体接入控制实体通知物理层感知侧行链路资源时是否向物理层提供第一信息为例描述本申请:
示例1)、媒体接入控制实体向物理层提供第一信息。
在示例1)中,作为本申请的一个可能的实施例,本申请实施例提供的方法在步骤701之前还可以包括:第一终端的媒体接入控制实体向第一终端的物理层发送第一信息。相应的,第一终端的物理层接收来自第一终端的媒体接入控制实体的第一信息。
其中,第一信息用于确定第二终端的侧行链路非连续接收-激活时间的结束时间。
作为一种示例,第一信息为用于指示侧行链路非连续接收-激活时间的结束时间的信息,或,用于指示侧行链路非连续接收-激活时间的剩余时间的信息中的一个或多个。
作为一种示例,该第一信息和感知通知可以携带在同一个消息中发送给PHY层。比如,第一信息和感知通知均携带在消息1中,以实现第一信息和感知通知同时发送给PHY层。
作为另一种示例,该第一信息和感知通知也可以携带在不同的消息中发送给PHY层,本申请实施例对此不做限定。比如,MAC实体先通知PHY层感知侧行链路资源,然后再向PHY层提供第一信息。当然,MAC实体也可以先向PHY层提供第一信息,再向通知PHY感知侧行链路资源。
比如,用于指示侧行链路非连续接收-激活时间的结束时间的信息可以为侧行链路非连续接收-激活时间的截止时间,或者为时间长度L。通过提供时间长度L便于物理层根据当前时刻(比如,时间单元1)和时间长度L确定侧行链路非连续接收-激活时间的结束时间。其中,当前时刻可以理解为物理层接收到时间长度L的时刻,可以认为媒体接入控制实体向物理层发送时间长度L的时刻即为物理层接收到时间长度L的时刻,对于二者之间接收和发送的误差可以忽略不计。
比如,用于指示侧行链路非连续接收-激活时间的剩余时间的信息可以为:剩余时间,或者,为侧行链路非连续接收-激活时间的截止时间。通过提供侧行链路非连续接收-激活时间的截止时间,这样便于PHY层从候选资源集合中选择位于侧行链路非连续接收-激活时间的截止时间之前的侧行链路资源。
举例说明,MAC实体在n时隙要求物理层确定一组侧行链路资源。例如,MAC实体向物理层提供时间Q,Q为侧行链路非连续接收-激活时间的剩余时间,n+Q为侧行链路非连续接收-激活时间的结束时间。值得说明的是,侧行链路非连续接收-激活时间的剩余时间可以理解为当前时刻确定的侧行链路非连续接收-激活时间的剩余时间。进一步的,是连续的一段非连续接收-激活时间。
例如,第一终端根据第二终端的DRX周期(cycle)、DRX起始偏移、drx-onDurationTimer-SL时长,第一终端可以得出周期性的drx-onDurationTimer-SL运行的时间。
如图8所示,在时隙n时,第二终端处于休眠期,即第二终端不在侧行链路非连续接收-激活时间内,但T4~T3时间段以及T5~T6时间段内,第二终端的drx-onDurationTimer-SL会运行,因此第二终端在T4~T3时间段以及T5~T6时间段内处于侧行链路非连续接收-激活时间内,具体为非连续接收-激活期内,该第二终端处于激活状态。在n时隙时,MAC实体向物理层提供T3或T3-n。其中,T3、T6表示侧行链路非连续接收-激活时间的结束时间,T3-n表示侧行链路非连续接收-激活时间的剩余时间。在图8所示的实施例中侧行链路非连续接收-激活时间即为非连续接收-激活期。
如图9所示,在时隙n时,第二终端的drx-onDurationTimer-SL在运行,也即MAC 实体向物理层提供T3或T3-n的时刻位于第二终端的侧行链路非连续接收-激活时间内,在时隙n第一终端的MAC实体向物理层提供时间T3或T3-n。
如图10所示,在时隙n时,第二终端的drx-onDurationTimer-SL(DRX开启持续时间定时器-SL)在运行,且drx-InactivityTimer-SL(DRX非激活定时器-SL)也在运行,时间段1为drx-InactivityTimer-SL在时隙n时确定的运行时间。如果时隙n之后drx-InactivityTimer-SL没有重启,则drx-InactivityTimer-SL在T3后超时。第二终端的非连续接收-激活时间在T3结束。在时隙n,MAC实体向物理层提供时间T3或T3-n。
又如图11所示,在时隙n时,drx-onDurationTimer-SL在运行,且drx-InactivityTimer-SL也在运行,时间段2为drx-InactivityTimer-SL在时隙n时确定的运行时间。在时隙n时可以确定drx-RetransmissionTimer-SL在虚线框内会运行。那么第一终端在时隙n时可以确定第二终端在T3之后不在非连续接收-激活时间内。在时隙n,MAC实体向物理层提供时间T3或T3-n。
在本申请的一个实施例中,当MAC实体确定需要物理层感知侧行链路资源时,MAC实体即向第一终端提供用于指示侧行链路非连续接收-激活时间的结束时间的信息,或,用于指示侧行链路非连续接收-激活时间的剩余时间的信息中的一个或多个。
在本申请的另一个实施例中,MAC实体可以根据侧行链路非连续接收-激活时间的剩余时间和剩余PDB之间的关系,确定是否向物理层提供用于指示侧行链路非连续接收-激活时间的结束时间的信息,或,用于指示侧行链路非连续接收-激活时间的剩余时间的信息中的一个或多个。
比如,当侧行链路非连续接收-激活时间的剩余时间(T3-n)大于或等于剩余(remaininng)PDB时,MAC实体不向物理层提供用于指示侧行链路非连续接收-激活时间的结束时间的信息,或,用于指示侧行链路非连续接收-激活时间的剩余时间的信息中的一个或多个。不提供信息是因为,T2小于等于剩余PDB,因此,资源选择窗的结束早于侧行链路非连续接收-激活时间的结束,因此,不用提供该信息。本申请实施例中的剩余PDB可以指上述第一终端在侧行链路上向第二终端发送的数据的。
比如,当侧行链路非连续接收-激活时间的剩余时间(T3-n)小于或等于剩余(remaininng)PDB时,MAC实体向物理层提供用于指示侧行链路非连续接收-激活时间的结束时间的信息,或,用于指示侧行链路非连续接收-激活时间的剩余时间的信息中的一个或多个。
在媒体接入控制实体向物理层提供侧行链路非连续接收-激活时间的相关信息的情况下,这样便于物理层从候选资源集合中选择位于侧行链路非连续接收-激活时间内的侧行链路资源。避免了物理层向媒体接入控制实体上报的一个或多个侧行链路资源中不包括位于侧行链路非连续接收-激活时间内的侧行链路资源,而导致的媒体接入控制实体无法确定传输数据的第一侧行链路资源的情况发生,进而导致无法进行数据传输。
在示例1)中,本申请实施例提供的步骤701可以通过以下方式实现:物理层根据第一信息从候选资源集合中确定一个或多个侧行链路资源。
作为一种示例,物理层根据第一信息从候选资源集合中确定一个或多个侧行链路资源,包括:物理层从候选资源集合中选择位于侧行链路非连续接收-激活时间的结束时间之前的侧行链路资源确定为一个或多个侧行链路资源。
值得说明的是,本申请实施例中,在媒体接入控制实体向物理层提供第一信息的 情况下,物理层从候选资源集合中选择的一个多个侧行链路资源时参考第一信息,因此一个或多个侧行链路资源中包括位于T3之前的侧行链路资源,以及位于T3之后的侧行链路资源。或者一个或多个侧行链路资源中的所有侧行链路资源均位于T3之前。
进一步可选的,一个或多个侧行链路资源中包括的侧行链路资源还需要满足位于时间单元1之后。这是由于物理层在时间单元1确定需要感知侧行链路资源,那么向MAC实体提供位于时间单元1之前的侧行链路资源可能并无参考价值,因此物理层可以不向第一终端的MAC实体提供位于时间单元1之前的侧行链路资源。比如,时间单元1可以为时隙n。
在本申请的一个实施例中,上述一个或多个侧行链路资源可以为候选资源集合中的全部侧行链路资源,或者部分侧行链路资源,本申请实施例对此不做限定。该一个或多个侧行链路资源可以为PHY层逐个向MAC实体上报的,或者该一个或多个侧行链路资源可以为PHY层统一向MAC实体上报的本申请实施例对此不做限定。
便于第一终端的PHY层明确第二终端的侧行链路非连续接收-激活时间的起始时刻,以保证PHY层向MAC实体提供的一个或多个侧行链路资源中存在位于侧行链路非连续接收-激活时间的侧行链路资源。那么在本申请的一个可能的实施例中,第一信息还包括:用于指示侧行链路非连续接收-激活时间的起始时间的信息。
作为一种示例,用于指示侧行链路非连续接收-激活时间的起始时间的信息可以为侧行链路非连续接收-激活时间的起始时间,或者,用于指示侧行链路非连续接收-激活时间的起始时间的信息可以为当前时刻+L1。其中,L1表示从当前时刻起达到侧行链路非连续接收-激活时间的起始时间之间的时间长度。
在本申请的一个可能的实施例中,当第一信息还包括:用于指示侧行链路非连续接收-激活时间的起始时间的信息时,步骤701可以通过步骤实现:物理层根据第一信息确定侧行链路非连续接收-激活时间。然后物理层根据侧行链路非连续接收-激活时间从候选资源集合中确定一个或多个侧行链路资源。
在本申请的一个可能的实施例中,MAC实体可以向PHY层提供用于指示侧行链路非连续接收-激活时间的起始时间的信息和用于确定侧行链路非连续接收-激活时间的截止时间的信息中的一个或多个。
在本申请的一个可能的实施例中,当MAC实体确定需要物理层感知侧行链路资源时,便向PHY层提供用于指示侧行链路非连续接收-激活时间的起始时间的信息。
在本申请的一个可能的实施例中,MAC实体根据时间单元1和侧行链路非连续接收-激活时间的起始时间之间的关系,确定是否向第一终端的物理层发送用于指示所述侧行链路非连续接收-激活时间的起始时间的信息。时间单元1为第一终端的物理层确定感知侧行链路资源的时刻。
比如,当时间单元1位于侧行链路非连续接收-激活时间的起始时间之前或者时间单元1即为侧行链路非连续接收-激活时间的起始时间时,第一终端的媒体接入控制实体向第一终端的物理层发送用于指示侧行链路非连续接收-激活时间的起始时间的信息。这时由于当时间单元1位于侧行链路非连续接收-激活时间的起始时间之前时表示MAC实体通知PHY感知侧行链路时,该第二终端依旧处于休眠状态,还未从休眠状态进入激活状态,如果不向第一终端的PHY层提供侧行链路非连续接收-激活时间的 起始时间,可能会使得后续PHY层向MAC实体提供的一个或多个侧行链路资源中包括位于侧行链路非连续接收-激活时间的起始时间之前的侧行链路资源,但是位于侧行链路非连续接收-激活时间的起始时间之前的侧行链路资源并不能承载向第二终端发送的数据。
结合图8,比如,第一终端根据DRX cycle、DRX起始偏移、drx-onDurationTimer-SL时长,可以得出周期性的drx-onDurationTimer-SL运行的时间。在时隙n时,第二终端不在SL active time(即上述侧行链路非连续接收-激活时间)内,但已知T4~T3时间段以及T5~T6时间段内,第二终端的drx-onDurationTimer-SL会运行,因此第二终端在T4~T3时间段以及T5~T6时间段内处于侧行链路非连续接收-激活时间内。那么在时隙n时,MAC实体向物理层提供T4或T4-n。T4-n表示从时隙n距离侧行链路非连续接收-激活时间的起始时间的时间长度。
比如,当时间单元1位于侧行链路非连续接收-激活时间的起始时间之后或者时间单元1即为侧行链路非连续接收-激活时间的起始时间时,第一终端的媒体接入控制实体不向第一终端的物理层发送用于指示侧行链路非连续接收-激活时间的起始时间的信息。这时由于时间单元1位于侧行链路非连续接收-激活时间的起始时间之后时表示MAC实体通知PHY层感知侧行链路时,该第二终端已经处于激活状态,因此,后续PHY层向MAC实体提供的一个或多个侧行链路资源中包括位于时间单元1之前的侧行链路资源的可能性就比较小。
又如图9所示,在时隙n时,drx-onDurationTimer-SL在运行,也即第二终端在时隙n时处于侧行链路非连续接收-激活时间内,那么在n时隙时,MAC实体向物理层提供时间为T4或T4-n或0,或者MAC实体不向物理层提供侧行链路非连续接收-激活时间的起始时间。
示例2)、媒体接入控制实体向物理层不提供第一信息。
当媒体接入控制实体向物理层不提供第一信息时,物理层从候选资源集合中选择一个或多个侧行链路资源就不会考虑第一信息。因此,物理层向MAC实体上报的一个或多个侧行链路资源中可能存在位于侧行链路非连续接收-激活时间内的侧行链路资源。也可能存在物理层向MAC实体上报的一个或多个侧行链路资源中不存在位于侧行链路非连续接收-激活时间内的侧行链路资源。
如果物理层向MAC实体上报的一个或多个侧行链路资源中不存在位于侧行链路非连续接收-激活时间内的侧行链路资源,那么MAC实体便不能选择出位于侧行链路非连续接收-激活时间内的资源,则MAC实体不选初传资源和重传资源。或者,MAC实体可以通知物理层重新上报感知到的侧行链路资源,本申请实施例对此不做限定。
在本申请的一个实施例中,如果MAC实体要求物理层确定一组侧行链路资源的时间单元1使得n+T1不早于侧行链路非连续接收-激活时间的起始时间。这样MAC实体就不用向物理层提供侧行链路非连续接收-激活时间的起始时间信息。具体如下:
如图12所示,以时间单元1为时隙n为例,时隙n在非连续接收-激活时间内。如图12中可以看出候选资源集合的起始时刻(n+T1)位于非连续接收-激活时间的起始时间之后。
如图13所示,时隙n晚于或等于在非连续接收-激活时间起始前T1的时隙。例如,图13中时隙n等于active time起始前T1的时隙。
作为本申请的一个可能的实施例,上述描述了第一终端的PHY层可以从s个候选 侧行链路资源中确定上报给MAC实体的一个或多个侧行链路资源。那么PHY层从s个候选侧行链路资源中确定上报给MAC实体的一个或多个侧行链路资源时可以参考如下规则,以使得最终一个或多个侧行链路资源中位于第一时间段内的侧行链路资源的数量大于或等于第一阈值。
举例说明,如果n+T2大于或等于T3(即候选资源集合的截止时刻晚于非连续接收-激活时间的结束时间),那么物理层上报给MAC实体的一个或多个侧行链路资源中,位于[n+T1,T3]中的侧行链路资源的数量要达到一定数值(第一阈值)。例如,该第一阈值可以由候选资源集合中位于[n+T1,T3]中的候选侧行链路资源总数乘以M得到。如果物理层确定一个或多个侧行链路资源中,位于[n+T1,T3]中的侧行链路资源的数量小于该第一阈值,则PHY层提高确定候选侧行链路资源是否被排除的RSRP阈值。PHY层根据提高的RSRP阈值,确定上报给MAC实体的一个或多个侧行链路资源。PHY层可以不断提高RSRP阈值,直到物理层确定的一个或多个侧行链路资源在[n+T1,T3]中的资源达到该数值。
可选的,物理层上报给MAC实体的一个或多个侧行链路资源中,还需要满足在[T3+1,n+T2]中的资源数量大于或等于[T3+1,n+T2]中候选资源总数乘以M,如果不满足,也可以通过不断提高RSRP阈值来满足。这样可以保证在非连续接收-激活时间中有一定数量的资源可供MAC实体选择初传数据的侧行链路资源。在资源选择窗中有一定数量的资源可供MAC实体选择重传数据的侧行链路资源。
步骤702、物理层向第一终端的媒体接入控制实体上报一个或多个侧行链路资源的信息。
如图7所示,本申请实施例中的步骤501可以通过以下步骤703实现:
步骤703、媒体接入控制实体从一个或多个侧行链路资源中选择位于第二终端的侧行链路非连续接收-激活时间内的第一侧行链路资源。
在本申请的一个实施例中,为了保证候选资源集合中具有用于重传数据的侧行链路资源,本申请实施例提供的方法还包括:第一终端确定数据的重传结束时间或数据的剩余重传时间。第一终端根据重传结束时间或剩余重传时间确定候选资源集合对应的截止时刻,候选资源集合对应的截止时刻早于或等于重传结束时间。其中,候选资源集合对应的截止时刻早于或等于重传结束时间可以理解为:候选资源集合对应的截止时刻位于重传结束时间之前,或者即为重传结束时间。当然,该候选资源集合对应的截止时刻还可以位于重传结束时间之后,这样可以充分保障候选资源集合中存在可以在重传结束时间之前用于重传数据的侧行链路资源。这个过程可以认为第一终端重新确定候选资源集合对应的截止时刻的时刻。
值得说明的是,本申请实施例中的重传结束时间和剩余重传时间均为第一终端预先估计的时间,此时第一终端可能还未向第二终端首次传输上述数据。重传结束时间也可以称为:可能的重传结束时间或者最晚重传结束时间。重传结束时间也可以称为最晚重传时间,或者可以称为可能的最晚重传时间。剩余重传时间也可以称为可能的剩余重传时间或者最大剩余重传时间。可能的剩余重传时间为可能的重传结束时间-n。
举例说明,MAC实体在时隙n要求物理层确定一组侧行链路资源,物理层将[T1+n,T2+n]内的资源作为s个候选侧行链路资源。该s个候选侧行链路资源构成候选资源集合。物理层从候选资源集合中确定上报给MAC实体的一个或多个侧行链路 资源。其中,如果T2min<重传结束时间-n,T2min≤T2≤重传结束时间-n。否则,T2=重传结束时间-n。
或者,如果T2min<重传结束时间-n,T2min≤T2≤min(重传结束时间-n,剩余PDB)。如果T2min大于或等于重传结束时间-n,T2min大于或等于剩余PDB,T2=min(重传结束时间-n,剩余PDB)。如果T2min大于或等于重传结束时间-n,T2min小于剩余PDB,T2=重传结束时间-n,或者T2=min(重传结束时间-n,剩余PDB)。如果T2min<重传结束时间-n,T2min大于或等于剩余PDB,T2=剩余PDB,或者T2=min(重传结束时间-n,剩余PDB)。
或者,如果T2min<min(重传结束时间-n,剩余PDB),T2min≤T2≤min(重传结束时间-n,剩余PDB)。如果T2min大于或等于min(重传结束时间-n,剩余PDB),T2=min(重传结束时间-n,剩余PDB)。
下述以第一终端的MAC实体和物理层交互为例描述第一终端确定数据的重传结束时间或数据的剩余重传时间的过程。比如,媒体接入控制实体向物理层发送第二信息,所述第二信息用于指示所述数据的重传结束时间或用于指示所述数据的剩余重传时间。第一终端确定所述数据的重传结束时间或所述数据的剩余重传时间,包括:第一终端的物理层根据所述第二信息确定所述重传结束时间或所述剩余重传时间。
值得说明的是,第二信息可以是第一终端的MAC实体在时间单元1向PHY层发送的,或者是第一终端的MAC实体在时间单元1之后向PHY层发送的。该第二信息可以和上述第一信息一起发送给PHY层,或者分别发送给PHY层,本申请实施例对此不做限定。
作为一种示例,第二信息包括重传结束时间或所述数据的剩余重传时间。这样避免了PHY自行计算重传结束时间或所述数据的剩余重传时间。这时MAC实体可以根据重传次数、RTT timer时长、重传timer时长、非连续接收-激活时间的结束时间中的至少一个确定可能的重传结束时间。
作为另一种示例,第二信息为所述数据的重传次数、RTT timer时长、重传定时器时长中的至少一个。那么PHY层根据所述第二信息确定所述重传结束时间或所述剩余重传时间可以包括:第一终端的PHY层根据数据的重传次数、RTT timer时长、重传定时器时长中的至少一个确定重传结束时间或所述数据的剩余重传时间。该方案中由物理层计算重传结束时间或剩余重传时间。
在本申请的一个可能的实现方式中,重传结束时间等于侧行链路非连续接收-激活时间的结束时间+(RTT timer时长+重传timer时长)*重传次数。或者,所述重传结束时间等于所述侧行链路非连续接收-激活时间的结束时间+重传timer时长*重传次数。或者,所述重传结束时间等于首次数据传输结束时间+(RTT timer时长+重传timer时长)*重传次数。或者,所述重传结束时间等于首次数据传输结束时间+重传timer时长*重传次数。
举例说明,如图14所示,重传次数为2,T3为侧行链路非连续接收-激活时间的结束时间,T5为重传结束时间(或者最晚重传结束时间)。那么候选资源集合的截止时间最晚不能超过T5。
在本申请的一个可能的实施例中,无论剩余包延时预算是否小于第一值,即MAC 实体无需考虑剩余包延时预算和第一值之间的关系,媒体接入控制实体都向所述物理层提供所述剩余包延时预算和所述重传结束时间之中的最小值。
在本申请的一个可能的实施例中,MAC实体考虑剩余包延时预算和第一值之间的关系,确定是否向所述物理层提供所述剩余包延时预算和所述重传结束时间之中的最小值。
比如,如果所述剩余包延时预算小于所述第一值,或者所述剩余包延时预算小于所述剩余重传时间,MAC实体不向物理提供可能的重传结束时间或剩余重传时间。第一值为重传结束时间-n。
比如,如果剩余包延时预算小于第一值,或者剩余包延时预算小于剩余重传时间,MAC实体向物理层提供剩余PDB和重传结束时间之中的最小值。
上述步骤703可以通过以下方式实现:
MAC实体在物理层提供的一个或多个侧行链路资源中选择第一侧行链路资源,使得选择的第一侧行链路资源位于侧行链路非连续接收-激活时间内。本申请实施例中的侧行链路非连续接收-激活时间可以理解为包含当前确定的侧行链路非连续接收-激活时间以及可能的侧行链路非连续接收-激活时间,可能的侧行链路非连续接收-激活时间是根据选择的第一侧行链路资源确定的。具体有几种方式:
1)、选择的初传资源(比如,第一侧行链路资源)在当前确定的侧行链路非连续接收-激活时间内,如果需要选择重传资源(比如,第二侧行链路资源),选择的重传资源在当前确定的侧行链路非连续接收-激活时间内或在可能的重传timer运行期间内。可能的重传timer运行期间根据该资源前面的资源确定。比如选择一个初传资源和两个重传资源,则第一个重传timer运行期间根据初传资源确定,第一个重传timer运行期间根据第一个重传资源确定。比如选择一个初传资源和两个重传资源,则第一个重传资源能被初传的SCI指示,第二个重传资源能被第一个重传资源的SCI指示。
目前,终端可以根据SCI中包含的时域资源分配域和频域资源分配域以及PSCCH传输的资源,确定PSSCH传输的时域和频域资源,其中,时域资源分配域指示了N个资源,以及N个资源中除第一个资源以外的资源的时隙偏移,N可以为1或2或3,第一个资源所在的时隙为SCI所在的时隙,除第一个资源以外的资源的时隙偏移为相对于第一个资源的时隙偏移,频域资源分配域指示了N个资源的每一个资源的连续的子信道的数量,以及除第一个资源以外的资源的起始子信道索引。其中,N个资源用于N次数据传输。
具体的,MAC实体在物理层提供的一个或多个侧行链路资源中选择侧行链路资源,使得选择的初传资源在侧行链路非连续接收-激活时间内。如果需要选择重传资源,则重传资源能被前面的SCI指示,或者在当前确定的侧行链路非连续接收-激活时间或在可能的重传timer运行期间。更具体的一种方式是,MAC实体在物理层提供的一个或多个侧行链路资源中,在位于侧行链路非连续接收-激活时间内的侧行链路资源中随机选择一个资源作为第一侧行链路资源。如果需要选择至少一个重传资源,则在剩下的物理层提供的一个或多个侧行链路资源中继续选择重传资源,使得选择的初传资源在侧行链路非连续接收-激活时间内,重传资源能被前面的SCI指示,或者在当前确定的侧行链路非连续接收-激活时间或可能的重传timer运行期间内。在时间上最早的资源 的是初传资源。这里的选择资源可以理解为选择一个传输机会的资源。初传资源可以理解为初传机会的资源,重传资源可以理解为重传机会的资源。资源在可能的重传timer运行期间内可以理解为资源对应的传输机会在可能的重传timer运行期间内。
本申请实施例中的初传资源为用于第一次传输该数据的资源,即该数据首次被传输时使用的资源。本申请实施例中的重传资源为用于第二次传输该数据的资源,即该数据被第X次传输时使用的资源。X大于或等于2。
本申请实施例中第一终端可以确定多个第二侧行链路资源,该第二侧行链路资源的数量可以根据该数据的重传次数确定,本申请实施例对此不做限定。
可能的重传timer运行时间可根据第一终端选择的侧行链路资源确定。例如,重传timer运行时间的起始时间可以为资源A结束后的第一个时间单元,其中,如果重传timer为第一次重传时的定时器,那么资源A为该第一次重传之前的用于初传的资源。如果重传timer为第g次重传时的定时器,那么资源A为该第g次重传之前的用于重传的资源。g为大于或等于2的整数。重传timer运行时间的结束时间为重传timer运行时间的起始+重传timer时长-1。可能的重传timer运行时间还可根据选择的第一侧行链路资源以及RTT timer确定。例如,第一终端根据选择的侧行链路资源确定RTT timer的运行时间,RTT timer超时后第一个时间单元为重传timer运行时间的起始时间,重传timer运行时间的结束时间为重传timer运行时间的起始+重传timer时长-1。第一终端根据选择的侧行链路资源确定RTT timer的运行时间具体可以为:第一终端根据选择的侧行链路资源确定承载HARQ反馈的传输的资源。在承载HARQ反馈的传输结束后的第一个时间单元为RTT timer运行时间的起始时间。RTT timer运行时间的结束时间为RTT timer运行时间的起始+RTT timer时长-1。时间单元可以为符号、时隙、子帧、毫秒、帧、微时隙等。
如图15所示,侧行链路资源A、侧行链路资源B、侧行链路资源C、侧行链路资源D代表MAC实体选择的侧行链路资源。其中,侧行链路资源A为四个侧行链路资源中时域位置最早的侧行链路资源,侧行链路资源D为四个侧行链路资源中时域位置最晚的侧行链路资源。其中,侧行链路资源A为初传资源。侧行链路资源B~侧行链路资源D为重传资源。其中,侧行链路资源A和侧行链路资源B在当前确定的侧行链路非连续接收-激活时间内。侧行链路资源C在根据侧行链路资源B确定的重传timer运行期间内,侧行链路资源D在根据侧行链路资源C确定的重传timer运行期间内。
重传资源能被前面的SCI指示具体可以为重传资源能被前面的SCI中的时域资源分配域指示。一个资源能被前面的SCI指示需要满足该资源的时域位置与前面的SCI的时域位置的间隔小于或等于一个阈值。一种可能的方式是,该资源所在的时隙-前面的SCI所在的时隙小于或等于31。
2)、选择的初传资源在当前确定的SL DRX-active time内,如果需要选择重传资源,选择的重传资源在当前确定的侧行链路非连续接收-激活时间内或在可能的侧行链路非连续接收-激活时间内,可能的侧行链路非连续接收-激活时间根据该资源前面的资源确定。具体的,MAC实体在物理层提供的一个或多个侧行链路资源中选择侧行链路资源,使得选择的初传资源在侧行链路非连续接收-激活时间内,如果需要选择重传资源,则重传资源能被前面的SCI指示,或者在当前确定的侧行链路非连续接收-激活 时间或可能的侧行链路非连续接收-激活时间内。更具体的一种方式是,MAC实体在物理层提供的一个或多个侧行链路资源中,在位于侧行链路非连续接收-激活时间内的侧行链路资源中随机选择一个侧行链路资源作为初传资源。如果需要选至少一个重传资源,则在物理层提供的一个或多个侧行链路资源中除初传资源以外的其余侧行链路资源中继续选择资源,使得选择的初传资源在侧行链路非连续接收-激活时间内,重传资源能被前面的SCI指示,或者在当前确定的侧行链路非连续接收-激活时间或可能的侧行链路非连续接收-激活时间内。在时间上最早的侧行链路资源是初传资源。这里的选择侧行链路资源可以理解为选择一个传输机会的侧行链路资源。初传资源可以理解为初传机会的侧行链路资源,重传资源可以理解为重传机会的侧行链路资源。侧行链路资源在active time内可以理解为该侧行链路资源对应的传输机会在侧行链路非连续接收-激活时间内。
可能的active time包含1)中的可能的重传timer运行期间,以及可能的其他timer运行期间,例如,可能的drx-InactivityTimerSL运行期间。可能的drx-InactivityTimerSL运行期间根据选择的初传资源确定,例如,drx-InactivityTimerSL在初传资源结束后的第一个时间单元启动/重启,经过drx-InactivityTimerSL时长后超时。
如图16所示,侧行链路资源1~侧行链路资源4为MAC实体选择的侧行链路资源。其中,侧行链路资源1为初传资源。侧行链路资源~侧行链路资源4为重传资源。其中,侧行链路资源1和侧行链路资源2在当前确定的侧行链路非连续接收-激活时间内。侧行链路资源3位于第一终端根据侧行链路资源1确定的drx-InactivityTimerSL运行期间内。侧行链路资源4位于第一终端根据侧行链路资源3确定的重传timer运行期间内。
可选的,MAC实体在物理层提供的一个或多个侧行链路资源中选择的侧行链路资源还需要满足任何两个选择的侧行链路资源之间的时间间隔大于或等于最小时间间隔。可选的,如果资源所在的资源池配置了PSFCH资源,则需要满足上述最小时间间隔的条件。比如,第一侧行链路资源和第二侧行链路资源之间的时间间隔大于或等于最小时间间隔。
可能出现的一种情况是,MAC实体从物理层提供的一个或多个侧行链路资源中,不能选择出X个满足上述条件的重传资源。其中,X是MAC实体确定的重传次数,X大于或等于1,则MAC实体选择能满足上述条件的最多N个重传资源,其中,N大于或等于0。
在本申请的一个可能的实施例中,如果第一终端需要向多个destination发送数据。其中,destination可以为第一终端按LCP过程为一个SL grant选择的destination。具体为有逻辑信道logical channel(LCH)和MAC CE中至少一个在所有满足条件的逻辑信道和MAC CE中具有最高优先级的destination。所述条件包括:该destination中SL数据是可传输的。
或者,destination可以为有待传数据的destination。destination的SL DRX-active time根据有待传数据的至少一个destination的active time确定。例如,为有待传数据的destination的active time的并集或交集。
在本申请的一个可能的实施例中,第一终端可以先确定destination。比如,存在 多个待传数据的destination,第一终端可以从多个待传数据的destination(该多个待传数据的destination可以属于同一个终端,也可以属于不同的终端,本申请实施例对此不做限定)中选择一个目标destination。比如,该目标destination由第二终端的层-2 ID标识,那么第一终端可以确定需要选择侧行链路资源向第二终端发送数据。然后第一终端根据第二终端的SL DRX-active time,从一个或多个侧行链路资源中选择位于该SL DRX-active time内的侧行链路资源作为第一侧行链路资源。然后,第一终端在该第一侧行链路资源上向第二终端发送数据。关于第一终端可以从多个待传数据的destination中选择一个目标destination的方式可以参考上述描述,本申请实施例在此不再赘述。
值得说明的是,当第二终端具有多个待传数据的destination时,第一终端也可以参考上述规则选择出一个目标destination。
上述MAC实体在物理层提供的一个或多个侧行链路资源中选择第一侧行链路资源时考虑的DRX参数可以为按LCP过程为一个SL grant选择的destination的DRX参数。具体为有逻辑信道logical channel(LCH)和MAC CE中至少一个在所有满足条件的逻辑信道和MAC CE中具有最高优先级的destination。或者,destination可以为有待传数据的destination,并且物理层提供的资源至少一个在该destination的SL DRX-active time内,选择有逻辑信道logical channel(LCH)和MAC CE中至少一个在所有满足上述条件的destination的逻辑信道和MAC CE中具有最高优先级的destination。
本申请中的destination的DRX状态/激活时间/timer运行状态等,可以理解为是第一终端针对该destination所维护的DRX状态/激活时间/timer运行状态。进一步,destination的DRX参数/状态/激活时间/timer运行状态等,可以是source和destination对的DRX参数/状态/激活时间/timer运行状态等。
LCP过程中为一个SL grant选择destination时,还需要满足该SL grant在该destination的SL DRX-active time中。即,在SL grant在DRX-active time内的destiation中,选择有LCH和MAC CE中至少一个在所有满足条件的逻辑信道和MAC CE中具有最高优先级的destination。
如图17所示,以destination为DES1和DES2为例,第一终端所选择的destination为DES2,那么后续第一终端可以选择位于该DES2的DRX-active time内的侧行链路资源用于初传向该DES2发送的数据。
在本申请的另一个实施例中,第一终端可以通过如下方式确定第二终端。比如,第一终端可以先选择一个SL grant,然后从一个或多个侧行链路资源中确定该SL grant指示的第一侧行链路资源。第一终端确定该第一侧行链路资源的时间范围。然后第一终端从多个待传输数据的destination中确定第一destination。该第一destination的active time包括该第一侧行链路资源的时间范围,也即第一侧行链路资源的时间范围位于第一destination的SL DRX-active time内。
如果包括该第一侧行链路资源的时间范围的destination有多个,那么第一终端可以根据该多个destination的优先级从该多个destination中确定第一destination。值得说明的是,destination的优先级也可以看作该destination上传输的数据的优先级。
举例说明,如图18所示,第一终端选择的侧行链路资源(比如,初传侧行链路资 源1)的时间范围未与DES1和DES2的SL DRX-active time重叠。即该DES1和DES2,在第一终端选择的侧行链路资源的时间范围内均未处于SL DRX-active time,那么第一终端就不生成MAC PDU,从而该第一终端选择的初传侧行链路资源1对应的SL grant没有使用。
现有标准中,对于重传grant,HARQ实体会指示sidelink process触发重传,sidelink process则通知物理层传输SCI以及生成一个传输。如果上述初传时没生成MAC PDU,则对于重传grant,sidelink process无法传输SCI和数据。那么如图18所示,即使重传侧行链路资源2在DES2的SL DRX-active time内,则第一终端也不在重传侧行链路资源2上传输,即第二终端不使用重传侧行链路资源2对应的重传grant。
如果重传grant不在MAC PDU的destination的active time内,传输的SCI和数据也不会被destination接收到。因此,如果初传grant没有生成MAC PDU,则不在相应的重传grant上传输。
在本申请的另一个可能的实施例中,如图19所示,如果上述初传时没生成MAC PDU,则对于重传grant,如果重传grant不在选择的destination(DES2)的SL DRX-active time内,则不使用重传grant。与初传grant相应的重传grant是用来传输与初传grant相同的MAC PDU/TB的grant。
如果初传grant没有生成MAC PDU,对于重传grant有如下处理方式:
1)如果MAC实体没有获取到初传grant的MAC PDU,则清除与该初传grant相关联的重传grant对应的PSCCH duration和PSSCH duration。或者,如果MAC实体没有获取到初传grant的MAC PDU,则清除与该初传grant相关联的重传grant。或者,如果MAC实体没有在初传grant上传输数据,则MAC实体清除与该初传grant相关联的重传grant对应的PSCCH duration和PSSCH duration。或者,如果MAC实体没有在初传grant上传输数据,则MAC实体清除与该初传grant相关联的重传grant。
2)如果一个SL grant是可用于传输MAC PDU的重传的,并且该SL grant指示的传输资源不在该MAC PDU对应的destination的SL DRX-active time内,则MAC实体清除与该grant对应的PSCCH duration和PSSCH duration,或者,清除与该grant。
3)如果一个重传grant关联的sidelink process关联的HARQ buffer不为空,并且该SL grant指示的传输资源在MAC PDU对应的destination的SL DRX-active time内,则HARQ实体向sidelink process递交该grant,指示sidelink process触发一个重传。如果一个重传grant关联的sidelink process关联的HARQ buffer为空,或者该SL grant指示的传输资源不在MAC PDU对应的destination的SL DRX-active time内,HARQ实体不向sidelink process递交该grant,也不指示sidelink process触发一个重传。
4)如果sidelink process关联的HARQ buffer不为空,并且存储的SL grant指示的传输资源在MAC PDU对应的destination的SL DRX-active time内,则sidelink process指示物理层根据存储的SL grant传输SCI。如果sidelink process关联的HARQ buffer为空,或者存储的SL grant指示的传输资源不在MAC PDU对应的destination的SL DRX-active time内,则sidelink process不指示物理层根据存储的SL grant传输SCI。
为了使sidelink process能够确定SL grant是否在destiation的SL DRX-active time,HARQ实体向Sidelink process提供/递交MAC PDU的Destination信息,例如, destination layer-2 ID,Source and Destination pair,Source layer-2 ID and Destination layer-2 ID pair,或Source layer-1 ID and Destination layer-1 ID pair。
上述方案中,如果初传grant没有使用,则重传grant也不使用可以避免在destination没有监听PSCCH、PSSCH、SCI或MAC PDU时发送PSCCH、PSSCH、SCI或MAC PDU时,避免功耗浪费。
在本申请的另一实施例中,如果第一终端选择的初传SL grant指示的第一侧行链路资源的时域位置不在该第二终端的SL DRX-active time内,但重传SL grant指示的侧行链路资源的时域位置在该第二终端的SL DRX-active time内,则第一终端可以使用重传SL grant指示的侧行链路资源向该第二终端发送数据。
LCP过程中为一个SL grant选择destination时,还需要满足初传SL grant和相应的重传SL grant中至少一个在该destination的SL DRX-active time中。即,在初传SL grant和重传SL grant至少一个在SL DRX-active time内的destination中,选择有逻辑信道logical channel(LCH)和MAC CE中至少一个在所有满足条件的逻辑信道和MAC CE中具有最高优先级的destination。如果没有任何一个符合条件的destination,就没有生成MAC PDU,从而初传SL grant没有使用。如果一个grant不在选择的destination的SL DRX-active time内,则不使用该grant。
另一方面,如果初传grant没有生成MAC PDU,对于初传grant和重传grant有如下处理方式:
1)如果初传SL grant指示的传输资源在MAC PDU对应的destination的SL DRX-active time内,则HARQ实体指示sidelink process触发一个新传。如果初传SL grant指示的传输资源不在MAC PDU对应的destination的SL DRX-active time内,则HARQ实体不指示sidelink process触发一个新传。如果初传SL grant指示的传输资源不在MAC PDU对应的destination的SL DRX-active time内,HARQ实体向sidelink process递交MAC PDU、初传SL grant。
2)如果一个重传grant关联的sidelink process关联的HARQ buffer不为空,并且该SL grant指示的传输资源在MAC PDU对应的destination的SL DRX-active time内,则HARQ实体向sidelink process递交该grant,指示sidelink process触发一个重传。如果一个重传grant关联的sidelink process关联的HARQ buffer为空,或者该SL grant指示的传输资源不在MAC PDU对应的destination的SL DRX-active time内,HARQ实体不向sidelink process递交该grant,也不指示sidelink process触发一个重传。
3)如果sidelink process关联的HARQ buffer不为空,并且存储的SL grant指示的传输资源在MAC PDU对应的destination的SL DRX-active time内,则sidelink process指示物理层根据存储的SL grant传输SCI。如果sidelink process关联的HARQ buffer为空,或者存储的SL grant指示的传输资源不在MAC PDU对应的destination的SL DRX-active time内,则sidelink process不指示物理层根据存储的SL grant传输SCI。
为了使sidelink process能够确定SL grant是否在destiation的SL DRX-active time,HARQ实体向Sidelink process提供/递交MAC PDU的destination信息,例如,destination layer-2 ID,Source and Destination pair,source layer-2 ID and destination layer-2 ID pair,或source layer-1 ID and Destination layer-1 ID pair。
如图20所示,比如终端所选择的初传grant指示的初传侧行链路资源未位于DES1的SL DRX-active time内,但是该终端所选择的重传grant指示的重传侧行链路资源位于DES1的SL DRX-active time内,虽然终端不使用该初传grant进行数据传输,但是该终端可以使用该重传grant传输数据。
避免在destination没有监听PSCCH、PSSCH、SCI或MAC PDU时发送PSCCH、PSSCH、SCI或MAC PDU时,避免功耗浪费。
在本申请的一个实施例中,本申请实施例提供一种触发资源选择/重选的方法,该方法包括:
步骤A1、第一终端确定一个或多个用于初传数据的侧行链路资源Y。
该用于初传数据的侧行链路资源Y由初传grant指示。
步骤B1、如果该第一终端确定一个或多个侧行链路资源Y中不存在时域位置位于第二终端的DRX-active time内的侧行链路资源,则第一终端确定触发资源选择/重选。
上述步骤A1和步骤B1可以看作是第一终端的Resource(re-)selection触发条件。上述Resource(re-)selection触发条件检测是在MAC实体中进行的。另一种可能的方式是在LCP过程中检查:如果没有用于初传数据的侧行链路资源Y在有数据的destination(比如第二终端)的DRX-active time内,则触发资源选择/重选。
值得说明的是,上述第二终端可以为一个特定的终端,比如如果不存在位于该第二终端的DRX-active time内的侧行链路资源,但是存在位于其他终端的DRX-active time内的侧行链路资源,则第一终端可以选择触发资源重选,也可以不触发资源选择/重选。但是如果第二终端代表一个或多个终端,如果一个或多个侧行链路资源Y中不存在位于该一个或多个终端中任一个终端的DRX-active time内的侧行链路资源,则第一终端可以选择触发资源重选。
在本申请的一个实施例中,本申请实施例提供一种触发资源选择/重选的方法,该方法包括:
步骤A2、第一终端确定一个或多个用于初传数据的侧行链路资源Y以及用于重传的侧行链路资源Z。
步骤B2、如果该第一终端确定一个或多个侧行链路资源Y中不存在时域位置位于第二终端的DRX-active time内的用于初传的侧行链路资源,且用于重传的侧行链路资源Z中不存在位于该DRX-active time内用于重传的侧行链路资源,则第一终端确定触发资源选择/重选。
上述步骤A2和步骤B2所描述的资源选择/重选(Resource(re-)selection)触发条件check是在MAC实体中进行的。另一种可能的方式是在LCP过程中检查:如果用于初传的侧行链路资源(初传SL grant)和用于重传的侧行链路资源(比如,重传SLgrant所指示的侧行链路资源)没有任何一个在第二终端的SL DRX-active time内,则触发资源选择/重选。
值得说明的是,上述步骤A1~步骤B2,或者步骤A2~步骤B2描述的方案可以单独作为一个实施例使用。当然,上述步骤A1~步骤B1所描述的方案也可以和上述图5描述的方案结合使用。上述步骤A2~步骤B2所描述的方案也可以和上述图5描述的方案结合使用。当结合使用时可以将步骤A1~步骤B2,或者步骤A2~步骤B2描述的 方案看作第一终端触发资源选择/重选的条件。
上述主要从网元的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如第一终端等为了实现上述功能,其包括了执行各个功能相应的结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例第一终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
上面结合图5至图20,对本申请实施例的方法进行了说明,下面对本申请实施例提供的执行上述方法的通信装置进行描述。本领域技术人员可以理解,方法和装置可以相互结合和引用,本申请实施例提供的通信装置可以执行上述通信方法中由第一终端执行的步骤。
在采用集成单元的情况下,图21示出了上述实施例中所涉及的通信装置,该通信装置可以包括:通信模块2113和处理模块2112。
在一种可选的实现方式中,该通信装置还可以包括存储模块2111,用于存储通信装置的程序代码和数据。
一种示例,该通信装置为第一终端,或者为应用于第一终端中的芯片。在这种情况下,通信模块2113用于支持该通信装置与外部网元(例如,第二终端)通信。例如,通信模块2113用于执行上述方法实施例中第一终端的收发操作。处理模块2112用于执行上述方法实施例中第一终端的处理操作。
举例说明,通信模块2113用于执行上述实施例的图5的步骤501中由第一终端执行的发送动作。处理模块2112,用于支持该通信装置执行上述实施例中由第一终端执行的处理动作,比如步骤502。
需要说明的是,图21所示的通信模块2113还可以采用通信单元替换,处理模块2112还可以参考处理单元替换。存储模块2111还可以采用存储单元替换。处理单元用于对通信装置的动作进行控制管理,例如,处理单元用于执行在通信装置进行信息/数据处理的步骤。通信单元用于支持通信装置进行信息/数据发送或者接收的步骤。
在一种可能的实现方式中,通信单元可以包括接收单元和发送单元,接收单元用于接收信号,发送单元用于发送信号。
其中,处理模块2112可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。 通信模块可以是收发器、收发电路或通信接口等。存储模块可以是存储器。
当处理模块2112为处理器21或处理器25,通信模块2113为收发器23时,存储模块2111为存储器22时,本申请所涉及的通信装置可以为图2所示的通信设备。
以上通信模块可以是该装置的一种通信接口,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信模块是该芯片用于从其它芯片或装置接收信号或发送信号的通信接口。
图22是本申请实施例提供的芯片220的结构示意图。芯片220包括一个或两个以上(包括两个)处理器2210和通信接口2230。
可选的,该芯片220还包括存储器2240,存储器2240可以包括只读存储器和随机存取存储器,并向处理器2210提供操作指令和数据。存储器2240的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器2240存储了如下的元素,执行模块或者数据结构,或者他们的子集,或者他们的扩展集。
在本申请实施例中,通过调用存储器2240存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
处理器2210控制第一终端的处理操作,处理器2210还可以称为中央处理单元(central processing unit,CPU)。
存储器2240可以包括只读存储器和随机存取存储器,并向处理器2210提供指令和数据。存储器2240的一部分还可以包括NVRAM。例如应用中存储器2240、通信接口2230以及存储器2240通过总线系统2220耦合在一起,其中总线系统2220除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图22中将各种总线都标为总线系统2220。
上述本申请实施例揭示的方法可以应用于处理器2210中,或者由处理器2210实现。处理器2210可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2210中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2210可以是通用处理器、数字信号处理器(digital signal processing,DSP)、ASIC、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2240,处理器2210读取存储器2240中的信息,结合其硬件完成上述方法的步骤。
一种可能的实现方式中,通信接口2230用于执行图5或图7所示的实施例中的第一终端的接收和发送的步骤。处理器2210用于执行图5或图7所示的实施例中的第一终端的处理的步骤。
一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,实现如图5或图7中由第一终端执行的功能。
一方面,提供一种包括指令的计算机程序产品,计算机程序产品中包括指令,当指令被运行时,实现如图5或图7中由第一终端执行的功能。
一方面,提供一种芯片,该芯片应用于第一终端中,芯片包括至少一个处理器和通信接口,通信接口和至少一个处理器耦合,处理器用于运行指令,以实现如图5或图7中由第一终端执行的功能。
本申请实施例提供一种通信系统,该通信系统包括:第一终端和第二终端。其中,第一终端用于执行如图5或图7中由第一终端执行的功能,第二终端用于在第一侧行链路资源上接收来自第一终端的数据,该第一侧行链路资源位于该第二终端的侧行链路非连续接收-激活时间内。
实施例1、一种通信方法,该方法应用于第一终端中,该方法包括:
所述第一终端确定一个或多个侧行链路资源,其中,一个或多个侧行链路资源中至少包括位于第二终端的侧行链路非连续接收-激活时间内的侧行链路资源;
所述第一终端在所述一个或多个侧行链路资源中的第一侧行链路资源上向所述第二终端发送数据,所述第一侧行链路资源位于所述侧行链路非连续接收-激活时间内。
实施例2、根据实施例1所述的方法,所述一个或多个侧行链路资源中位于第一时间段内的侧行链路资源的数量大于或等于第一阈值;
其中,所述第一时间段的起始时刻为候选资源集合对应的起始时刻,所述第一时间段的截止时刻为所述侧行链路非连续接收-激活时间的结束时间。
实施例3、根据实施例1或实施例2所述的方法,所述一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,所述候选资源集合对应的起始时刻晚于或等于所述侧行链路非连续接收-激活时间的起始时间;或者,
所述一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,所述候选资源集合对应的截止时刻早于或等于所述数据的重传结束时间。
实施例4、根据实施例1~实施例3任一所述的方法,第一终端确定所述一个或多个侧行链路资源,包括:所述第一终端的物理层从候选资源集合中确定所述一个或多个侧行链路资源;所述物理层向所述第一终端的媒体接入控制实体上报所述一个或多个侧行链路资源;
在第一终端在所述一个或多个侧行链路资源中的第一侧行链路资源上向所述第二终端发送数据之前,本申请实施例提供的方法还包括:媒体接入控制实体从所述一个或多个侧行链路资源中选择位于所述侧行链路非连续接收-激活时间内的所述第一侧行链路资源。
实施例5、根据实施例4所述的方法,本申请实施例提供的方法还包括:所述媒体接入控制实体向所述物理层发送所述第一信息,所述第一信息包括:用于指示所述侧行链路非连续接收-激活时间的结束时间的信息,或,用于指示所述侧行链路非连续接收-激活时间的剩余时间的信息;
所述第一终端的物理层从候选资源集合中确定所述一个或多个侧行链路资源,包括:
所述物理层根据所述第一信息从候选资源集合中确定所述一个或多个侧行链路资源。
实施例6、根据实施例5所述的方法,所述媒体接入控制实体向所述物理层发送所述第一信息,包括:当所述侧行链路非连续接收-激活时间的剩余时间小于或等于剩余包延时预算时,所述媒体接入控制实体向所述物理层发送所述第一信息。
实施例7、根据实施例5或实施例6所述的方法,所述第一信息还包括:用于指示所述侧行链路非连续接收-激活时间的起始时间的信息。
实施例8、根据实施例7所述的方法,当时间单元1位于所述侧行链路非连续接收-激活时间的起始时间之前时,所述第一终端的媒体接入控制实体向所述第一终端的物理层发送用于指示所述侧行链路非连续接收-激活时间的起始时间的信息,所述时间单元1为所述第一终端的物理层确定感知侧行链路资源的时刻。
实施例9、根据实施例4~实施例8任一项所述的方法,本申请实施例提供的方法还包括:第一终端确定所述数据的重传结束时间或所述数据的剩余重传时间。第一终端根据所述重传结束时间或所述剩余重传时间确定候选资源集合对应的截止时刻,所述候选资源集合对应的截止时刻早于或等于所述重传结束时间。
实施例10、根据实施例9所述的方法,本申请实施例提供的方法还包括:所述媒体接入控制实体向所述物理层发送第二信息,所述第二信息用于指示所述数据的重传结束时间或用于指示所述数据的剩余重传时间;
所述第一终端确定所述数据的重传结束时间或所述数据的剩余重传时间,包括:
所述物理层根据所述第二信息确定所述重传结束时间或所述剩余重传时间。
实施例11、根据实施例10所述的方法,其特征在于,
如果所述剩余包延时预算大于或等于所述剩余重传时间,所述媒体接入控制实体向所述物理层提供所述重传结束时间或所述剩余重传时间中的一个或多个,或者所述媒体接入控制实体向所述物理层提供所述剩余包延时预算和所述重传结束时间之中的最小值。
实施例12、根据实施例2~实施例11任一项所述的方法,本申请实施例提供的方法还包括:
位于所述第一时间段内的侧行链路资源的数量小于或等于所述第一阈值,则第一终端更新候选资源集合是否被排除的阈值;
所述第一终端根据更新后的阈值,从所述候选资源集合中确定所述一个或多个侧行链路资源。
实施例13、根据实施例1~实施例12任一项所述的方法,所述一个或多个侧行链路资源中位于第二时间段内的侧行链路资源数量大于或等于第二阈值;
所述第二时间段由所述侧行链路非连续接收-激活时间的截止时刻和候选资源集合对应的截止时刻确定。
实施例14、根据实施例1~实施例13任一项所述的方法,所述第一侧行链路资源为首次传输所述数据的侧行链路资源,所述方法还包括:
所述第一终端确定第二侧行链路资源,所述第二侧行链路资源为重传所述数据的资源,所述第二侧行链路资源位于所述侧行链路非连续接收-激活时间内或者第三时间段内,所述第三时间段根据所述第一侧行链路资源确定。比如说,第一终端可以从一个或多个侧行链路资源中确定第二侧行链路资源。这时,一个或多个侧行链路资源中 还可以包括第三时间段内的侧行链路资源。
实施例15、根据实施例14所述的方法,所述第一侧行链路资源和所述第二侧行链路资源之间的时间间隔大于或等于最小时间间隔。
实施例16、根据实施例1~14任一项所述的方法,当所述第一侧行链路资源和所述第二侧行链路资源所在的资源池配置了物理侧链路反馈控制信道资源,则所述第一侧行链路资源和所述第二侧行链路资源之间的时间间隔大于或等于最小时间间隔。
实施例17、根据实施例1~实施例16任一项所述的方法,所述侧行链路非连续接收-激活时间内不存在用于首次传输所述数据的侧行链路资源,则所述第一终端触发选择/重选侧行链路资源的过程。
实施例18、根据实施例17所述的方法,所述侧行链路非连续接收-激活时间内还不存在重传所述数据的侧行链路资源,所述第一终端触发选择/重选侧行链路资源的过程。
实施例19、根据实施例1~13、实施例17任一项所述的方法,如果用于初传所述数据的侧行链路资源未位于所述侧行链路非连续接收-激活时间内,则所述第一侧行链路资源为用于重传所述数据的侧行链路资源。
实施例20、根据实施例1~13、实施例17任一项所述的方法,所述方法还包括:
如果用于初传所述数据的侧行链路资源未位于所述侧行链路非连续接收-激活时间内,则所述第一终端放弃在用于重传所述数据的第二侧行链路资源上发送所述数据。
实施例21、一种通信装置,该装置应用于第一终端中,该装置包括:
处理器,用于确定一个或多个侧行链路资源,其中,一个或多个侧行链路资源中至少包括位于第二终端的侧行链路非连续接收-激活时间内的侧行链路资源;
收发器,用于在所述一个或多个侧行链路资源中的第一侧行链路资源上向所述第二终端发送数据,所述第一侧行链路资源位于所述侧行链路非连续接收-激活时间内。
实施例22、根据实施例21所述的装置,所述一个或多个侧行链路资源中位于第一时间段内的侧行链路资源的数量大于或等于第一阈值;
其中,所述第一时间段的起始时刻为候选资源集合对应的起始时刻,所述第一时间段的截止时刻为所述侧行链路非连续接收-激活时间的结束时间。
实施例23、根据实施例21或实施例22所述的装置,所述一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,所述候选资源集合对应的起始时刻晚于或等于所述侧行链路非连续接收-激活时间的起始时间;或者,
所述一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,所述候选资源集合对应的截止时刻早于或等于所述数据的重传结束时间。
实施例24、根据实施例21~实施例23任一所述的装置,处理器,用于确定所述一个或多个侧行链路资源,包括:处理器,用于通过该第一终端的物理层从候选资源集合中确定所述一个或多个侧行链路资源;处理器,用于通过物理层向所述第一终端的媒体接入控制实体上报所述一个或多个侧行链路资源;
本申请实施例提供的方法还包括:处理器,用于通过该第一终端的媒体接入控制实体从所述一个或多个侧行链路资源中选择位于所述侧行链路非连续接收-激活时间内的所述第一侧行链路资源。
实施例25、根据实施例24所述的装置,本申请实施例中处理器,用于通过该第一终端的媒体接入控制实体向该第一终端的物理层发送所述第一信息,所述第一信息包括:用于指示所述侧行链路非连续接收-激活时间的结束时间的信息,或,用于指示所述侧行链路非连续接收-激活时间的剩余时间的信息;
处理器,用于通过该第一终端的物理层从候选资源集合中确定所述一个或多个侧行链路资源,包括:处理器,用于通过该第一终端的物理层根据所述第一信息从候选资源集合中确定所述一个或多个侧行链路资源。
实施例26、根据实施例25所述的装置,所述处理器,用于通过媒体接入控制实体向所述物理层发送所述第一信息,包括:当所述侧行链路非连续接收-激活时间的剩余时间小于或等于剩余包延时预算时,所述处理器,用于通过所述媒体接入控制实体向所述物理层发送所述第一信息。
实施例27、根据实施例25或实施例26所述的装置,所述第一信息还包括:用于指示所述侧行链路非连续接收-激活时间的起始时间的信息。
实施例28、根据实施例26所述的装置,当时间单元1位于所述侧行链路非连续接收-激活时间的起始时间之前时,所述第一终端的媒体接入控制实体向所述第一终端的物理层发送用于指示所述侧行链路非连续接收-激活时间的起始时间的信息,所述时间单元1为所述第一终端的物理层确定感知侧行链路资源的时刻。
实施例29、根据实施例24~实施例28任一项所述的装置,处理器,还用于确定所述数据的重传结束时间或所述数据的剩余重传时间。处理器,还用于根据所述重传结束时间或所述剩余重传时间确定候选资源集合对应的截止时刻,所述候选资源集合对应的截止时刻早于或等于所述重传结束时间。
实施例30、根据实施例29所述的装置,所述处理器,还用于通过媒体接入控制实体向所述物理层发送第二信息,所述第二信息用于指示所述数据的重传结束时间或用于指示所述数据的剩余重传时间;
处理器,用于确定所述数据的重传结束时间或所述数据的剩余重传时间,包括:
所述处理器,用于通过所述物理层根据所述第二信息确定所述重传结束时间或所述剩余重传时间。
实施例31、根据实施例30所述的装置,其特征在于,
如果所述剩余包延时预算大于或等于所述剩余重传时间,处理器,用于通过所述媒体接入控制实体向所述物理层提供所述重传结束时间或所述剩余重传时间中的一个或多个,或者所述处理器,用于通过所述媒体接入控制实体向所述物理层提供所述剩余包延时预算和所述重传结束时间之中的最小值。
实施例32、根据实施例22~实施例31任一项所述的装置,
位于所述第一时间段内的侧行链路资源的数量小于或等于所述第一阈值,则处理器,还用于更新候选资源集合是否被排除的阈值;
所述处理器,还用于根据更新后的阈值,从所述候选资源集合中确定所述一个或多个侧行链路资源。
实施例33、根据实施例21~实施例32任一项所述的装置,所述一个或多个侧行链路资源中位于第二时间段内的侧行链路资源数量大于或等于第二阈值;
所述第二时间段由所述侧行链路非连续接收-激活时间的截止时刻和候选资源集合对应的截止时刻确定。
实施例34、根据实施例21~实施例33任一项所述的装置,所述第一侧行链路资源为用于初传传输所述数据的侧行链路资源,处理器,还用于确定第二侧行链路资源,所述第二侧行链路资源为重传所述数据的资源,所述第二侧行链路资源位于所述侧行链路非连续接收-激活时间内或者第三时间段内,所述第三时间段根据所述第一侧行链路资源确定。比如说,第一终端可以从一个或多个侧行链路资源中确定第二侧行链路资源。这时,一个或多个侧行链路资源中还可以包括第三时间段内的侧行链路资源。
实施例35、根据实施例34所述的装置,所述第一侧行链路资源和所述第二侧行链路资源之间的时间间隔大于或等于最小时间间隔。
实施例36、根据实施例21~实施例35任一项所述的装置,当所述第一侧行链路资源和所述第二侧行链路资源所在的资源池配置了物理侧链路反馈控制信道资源,则所述第一侧行链路资源和所述第二侧行链路资源之间的时间间隔大于或等于最小时间间隔。
实施例37、根据实施例21~实施例36任一项所述的装置,所述侧行链路非连续接收-激活时间内不存在用于首次传输所述数据的侧行链路资源,则所述收发器触发选择/重选侧行链路资源的过程。
实施例38、根据实施例37所述的装置,所述侧行链路非连续接收-激活时间内还不存在重传所述数据的侧行链路资源,所述处理器触发选择/重选侧行链路资源的过程。
实施例39、根据实施例21~33、实施例38任一项所述的装置,如果用于初传所述数据的侧行链路资源未位于所述侧行链路非连续接收-激活时间内,则所述第一侧行链路资源为用于重传所述数据的侧行链路资源。
实施例40、根据实施例21~33、实施例38任一项所述的装置,
如果用于初传所述数据的侧行链路资源未位于所述侧行链路非连续接收-激活时间内,则所述处理器放弃通过所述收发器在用于重传所述数据的第二侧行链路资源上发送所述数据。
实施例41、一种通信方法,该方法包括:
第一终端确定用于初传数据的第一侧行链路资源。
如果第一终端确定该第一侧行链路资源未位于第二终端的SL DRX-激活时间内,那么第一终端放弃在用于重传该数据的第二侧行链路资源上向第二终端发送数据。
其中,第一授权为初传授权,初传授权指示的侧行链路资源用于初传数据。第二授权为重传授权,该第二授权指示的侧行链路资源用于重传数据。与第一授权对应的第二授权是指用于传输与初传grant上承载的数据相同的grant。
实施例42、根据实施例41所述的方法,第一终端确定用于初传数据的第一侧行链路资源可以包括:第一终端确定用于初传数据的第一授权,该第一终端将第一授权指示的侧行链路资源确定为用于初传数据的第一侧行链路资源。
实施例43、根据实施例41或实施例42所述的方法,第一终端确定第二侧行链路资源。
实施例44、根据实施例43所述的方法,第一终端确定第二侧行链路资源,包括: 第一终端确定第一授权对应的第二授权。第一终端将第二授权指示的侧行链路资源确定为第二侧行链路资源。
实施例45、根据实施例41~实施例44任一项所述的方法,第一终端放弃在用于重传该数据的第二侧行链路资源上向第二终端发送数据,包括:如果第二侧行链路资源未位于第二终端的DRX-激活时间内,第一终端放弃在该第一授权对应的第二授权所指示的侧行链路资源上向第二终端发送数据。
实施例46、根据实施例41~实施例45任一项所述的方法,本申请实施例提供的方法还可以包括:第一终端确定第二侧行链路资源位于第二终端的DRX-激活时间内,则第一终端在该用于重传该数据的第二侧行链路资源上向第二终端发送数据。
实施例47、根据权利要求41~实施例46任一个实施例所述的方法,该第二终端为需要接收第一终端发送的数据的多个终端中的任一个终端,或者该第二终端为需要接收第一终端发送的数据的多个终端中优先级最高的终端。
实施例48、一种通信方法,该方法包括:第一终端确定用于初传数据的第一侧行链路资源。如果第一终端确定该第一侧行链路资源未位于第二终端的侧行链路DRX-激活时间内,那么第一终端在用于重传该数据的第二侧行链路资源上向第二终端发送数据。
如果第一终端确定该第一侧行链路资源未位于第二终端的SL DRX-激活时间内,那么第一终端在该第一授权对应的第二授权所指示的侧行链路资源上向第二终端发送数据。
其中,第一授权为初传授权,初传授权指示的侧行链路资源用于初传数据。第二授权为重传授权,该第二授权指示的侧行链路资源用于重传数据。与第一授权对应的第二授权是指用于传输与初传grant上承载的数据相同的grant。
实施例49、根据实施例48所述的方法,第一终端确定用于初传数据的第一侧行链路资源可以包括:第一终端确定用于初传数据的第一授权,该第一终端将第一授权指示的侧行链路资源确定为用于初传数据的第一侧行链路资源。
实施例50、根据实施例48或实施例49所述的方法,本申请实施例提供的方法还可以包括:第一终端确定第二侧行链路资源。
实施例51、根据实施例50所述的方法,第一终端确定第二侧行链路资源,包括:第一终端确定第一授权对应的第二授权。第一终端将第二授权指示的侧行链路资源确定为第二侧行链路资源。
实施例52、根据实施例48~实施例51所述的方法,第一终端在用于重传该数据的第二侧行链路资源上向第二终端发送数据,包括:如果第二侧行链路资源位于第二终端的DRX-激活时间内,第一终端在该第二侧行链路资源上向第二终端发送数据。
实施例53、根据实施例48~实施例52所述的方法,该第二终端为需要接收第一终端发送的数据中的多个终端中的任一个终端,或者该第二终端为需要接收第一终端发送的数据中的多个终端中优先级最高的终端。
实施例54、一种通信装置,该装置包括为第一终端或者为应用于第一终端中的芯片,该装置包括:
处理器,用于确定用于初传数据的第一侧行链路资源。
如果第一终端确定该第一侧行链路资源未位于第二终端的SL DRX-激活时间内,收发器用于放弃在用于重传该数据的第二侧行链路资源上向第二终端发送数据。
其中,第一授权为初传授权,初传授权指示的侧行链路资源用于初传数据。第二授权为重传授权,该第二授权指示的侧行链路资源用于重传数据。与第一授权对应的第二授权是指用于传输与初传grant上承载的数据相同的grant。
实施例55、根据实施例54所述的装置,第一终端确定用于初传数据的第一侧行链路资源可以包括:第一终端确定用于初传数据的第一授权,该第一终端将第一授权指示的侧行链路资源确定为用于初传数据的第一侧行链路资源。
实施例56、根据实施例54或实施例55所述的装置,第一终端确定第二侧行链路资源。
实施例57、根据实施例56所述的装置,第一终端确定第二侧行链路资源,包括:第一终端确定第一授权对应的第二授权。第一终端将第二授权指示的侧行链路资源确定为第二侧行链路资源。
实施例58、根据实施例54~实施例47任一项所述的装置,收发器,用于放弃在用于重传该数据的第二侧行链路资源上向第二终端发送数据,包括:如果第二侧行链路资源未位于第二终端的DRX-激活时间内,则收发器放弃在该第一授权对应的第二授权所指示的侧行链路资源上向第二终端发送数据。
实施例59、根据实施例54~实施例58任一项所述的装置,如果处理器确定第二侧行链路资源位于第二终端的DRX-激活时间内,则收发器用于在该用于重传该数据的第二侧行链路资源上向第二终端发送数据。
实施例60、根据权利要求54~实施例59任一个实施例所述的方法,该第二终端为需要接收第一终端发送的数据的多个终端中的任一个终端,或者该第二终端为需要接收第一终端发送的数据的多个终端中优先级最高的终端。
实施例61、一种通信装置,该装置包括:处理器,用于确定用于初传数据的第一侧行链路资源。如果处理器确定该第一侧行链路资源未位于第二终端的侧行链路DRX-激活时间内,那么收发器,用于在用于重传该数据的第二侧行链路资源上向第二终端发送数据。
其中,第一授权为初传授权,初传授权指示的侧行链路资源用于初传数据。第二授权为重传授权,该第二授权指示的侧行链路资源用于重传数据。与第一授权对应的第二授权是指用于传输与初传grant上承载的数据相同的grant。
实施例62、根据实施例61所述的装置,第一终端确定用于初传数据的第一侧行链路资源可以包括:第一终端确定用于初传数据的第一授权,该第一终端将第一授权指示的侧行链路资源确定为用于初传数据的第一侧行链路资源。
实施例63、根据实施例61或实施例62所述的装置,处理器,还用于确定第二侧行链路资源。
实施例64、根据实施例63所述的装置,处理器,还用于确定第二侧行链路资源,包括:处理器,还用于确定第一授权对应的第二授权。处理器,还用于将第二授权指示的侧行链路资源确定为第二侧行链路资源。
实施例65、根据实施例61~实施例64所述的装置,收发器,用于在用于重传该数 据的第二侧行链路资源上向第二终端发送数据,包括:如果处理器确定第二侧行链路资源位于第二终端的DRX-激活时间内,收发器,用于在该第二侧行链路资源上向第二终端发送数据。
实施例66、根据实施例61~实施例65所述的装置,该第二终端为需要接收第一终端发送的数据中的多个终端中的任一个终端,或者该第二终端为需要接收第一终端发送的数据中的多个终端中优先级最高的终端。
实施例67、一种计算机可读存储介质,所述可读存储介质中存储有指令,当所述指令被执行时,实现如实施例1~实施例20任一项实施例所述的方法。
实施例68、一种计算机可读存储介质,所述可读存储介质中存储有指令,当所述指令被执行时,实现如实施例41~实施例47任一项实施例所述的方法。
实施例69、一种计算机可读存储介质,所述可读存储介质中存储有指令,当所述指令被执行时,实现如实施例48~实施例53任一项实施例所述的方法。
实施例70、一种芯片,所述芯片包括处理器,所述处理器和通信接口耦合,所述处理器用于运行计算机程序或指令,以实现如实施例1~实施例20任一项实施例所述的方法,所述通信接口用于与所述芯片之外的其它模块进行通信。
实施例71、一种芯片,所述芯片包括处理器,所述处理器和通信接口耦合,所述处理器用于运行计算机程序或指令,以实现如实施例41~实施例47任一项实施例所述的方法,所述通信接口用于与所述芯片之外的其它模块进行通信。
实施例72、一种芯片,所述芯片包括处理器,所述处理器和通信接口耦合,所述处理器用于运行计算机程序或指令,以实现如实施例48~实施例53任一项实施例所述的方法,所述通信接口用于与所述芯片之外的其它模块进行通信。
实施例73、一种终端,包括:至少一个处理器,所述至少一个处理器与存储器耦合,所述至少一个处理器用于运行存储器中存储的指令以实现如实施例1~实施例20任一项实施例所述的方法。
实施例74、一种终端,包括:至少一个处理器,所述至少一个处理器与存储器耦合,所述至少一个处理器用于运行存储器中存储的指令以实现如实施例41~实施例47任一项实施例所述的方法。
实施例75、一种终端,包括:至少一个处理器,所述至少一个处理器与存储器耦合,所述至少一个处理器用于运行存储器中存储的指令以实现如实施例48~实施例53任一项实施例所述的方法。

Claims (21)

  1. 一种通信方法,其特征在于,所述方法应用于第一终端中,所述方法包括:
    确定一个或多个侧行链路资源,所述一个或多个侧行链路资源中至少包括位于第二终端的侧行链路非连续接收-激活时间内的侧行链路资源;
    在所述一个或多个侧行链路资源中的第一侧行链路资源上向所述第二终端发送数据,所述第一侧行链路资源位于所述侧行链路非连续接收-激活时间内。
  2. 根据权利要求1所述的方法,其特征在于,
    所述一个或多个侧行链路资源中位于第一时间段内的侧行链路资源的数量大于或等于第一阈值;
    其中,所述第一时间段的起始时刻为候选资源集合对应的起始时刻,所述第一时间段的截止时刻为所述侧行链路非连续接收-激活时间的结束时间。
  3. 根据权利要求1或2所述的方法,其特征在于,所述一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,所述候选资源集合对应的起始时刻晚于或等于所述侧行链路非连续接收-激活时间的起始时间;或者,
    所述一个或多个侧行链路资源为从候选资源集合中确定的侧行链路资源,所述候选资源集合对应的截止时刻早于或等于所述数据的重传结束时间。
  4. 根据权利要求1~3任一所述的方法,其特征在于,所述确定所述一个或多个侧行链路资源,包括:
    所述第一终端的物理层从候选资源集合中确定所述一个或多个侧行链路资源;
    所述物理层向所述第一终端的媒体接入控制实体上报所述一个或多个侧行链路资源;
    所述方法还包括:
    所述媒体接入控制实体从所述一个或多个侧行链路资源中选择位于所述侧行链路非连续接收-激活时间内的所述第一侧行链路资源。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述媒体接入控制实体向所述物理层发送第一信息,所述第一信息包括:用于指示所述侧行链路非连续接收-激活时间的结束时间的信息,或,用于指示所述侧行链路非连续接收-激活时间的剩余时间的信息;
    所述第一终端的物理层从候选资源集合中确定所述一个或多个侧行链路资源,包括:
    所述物理层根据所述第一信息从候选资源集合中确定所述一个或多个侧行链路资源。
  6. 根据权利要求5所述的方法,其特征在于,所述媒体接入控制实体向所述物理层发送所述第一信息,包括:
    当所述侧行链路非连续接收-激活时间的剩余时间小于或等于剩余包延时预算时,所述媒体接入控制实体向所述物理层发送所述第一信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一信息还包括:用于指示所述侧行链路非连续接收-激活时间的起始时间的信息。
  8. 根据权利要求7所述的方法,其特征在于,当时间单元1位于所述侧行链路非连续接收-激活时间的起始时间之前时,所述第一终端的媒体接入控制实体向所述第一终端的物理层发送用于指示所述侧行链路非连续接收-激活时间的起始时间的信息,所述时间单元1为所述第一终端的物理层确定感知侧行链路资源的时刻。
  9. 根据权利要求4~8任一项所述的方法,其特征在于,所述方法还包括:
    确定所述数据的重传结束时间或所述数据的剩余重传时间;
    根据所述重传结束时间或所述剩余重传时间确定候选资源集合对应的截止时刻,所述候选资源集合对应的截止时刻早于或等于所述重传结束时间。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述媒体接入控制实体向所述物理层发送第二信息,所述第二信息用于指示所述数据的重传结束时间或用于指示所述数据的剩余重传时间;
    所述确定所述数据的重传结束时间或所述数据的剩余重传时间,包括:
    所述物理层根据所述第二信息确定所述重传结束时间或所述剩余重传时间。
  11. 根据权利要求10所述的方法,其特征在于,
    如果所述剩余包延时预算大于或等于所述剩余重传时间,所述媒体接入控制实体向所述物理层提供所述重传结束时间或所述剩余重传时间中的一个或多个,或者所述媒体接入控制实体向所述物理层提供所述剩余包延时预算和所述重传结束时间之中的最小值。
  12. 根据权利要求2~11任一项所述的方法,其特征在于,所述方法还包括:
    位于所述第一时间段内的侧行链路资源的数量小于或等于所述第一阈值,则更新候选资源集合是否被排除的阈值;
    根据更新后的阈值,从所述候选资源集合中确定所述一个或多个侧行链路资源。
  13. 根据权利要求1~12任一项所述的方法,其特征在于,所述一个或多个侧行链路资源中位于第二时间段内的侧行链路资源数量大于或等于第二阈值;
    所述第二时间段由所述侧行链路非连续接收-激活时间的截止时刻和候选资源集合对应的截止时刻确定。
  14. 根据权利要求1~13任一项所述的方法,其特征在于,所述第一侧行链路资源用于初传所述数据的侧行链路资源,所述方法还包括:
    所述第一终端确定用于重传所述数据的第二侧行链路资源,所述第二侧行链路资源位于所述侧行链路非连续接收-激活时间内或者第三时间段内,所述第三时间段根据所述第一侧行链路资源确定。
  15. 根据权利要求14所述的方法,其特征在于,所述第一侧行链路资源和所述第二侧行链路资源之间的时间间隔大于或等于最小时间间隔。
  16. 根据权利要求14所述的方法,其特征在于,当所述第一侧行链路资源和所述第二侧行链路资源所在的资源池配置了物理侧链路反馈控制信道资源,所述第一侧行链路资源和所述第二侧行链路资源之间的时间间隔大于或等于最小时间间隔。
  17. 根据权利要求1~16任一项所述的方法,其特征在于,所述侧行链路非连续接收-激活时间内不存在用于首次传输所述数据的侧行链路资源,和/或,不存在重传所述数据的侧行链路资源,则所述第一终端触发选择/重选侧行链路资源的过程。
  18. 根据权利要求1~13、17任一项所述的方法,其特征在于,
    如果用于初传所述数据的侧行链路资源未位于所述侧行链路非连续接收-激活时间内,则所述第一侧行链路资源为用于重传所述数据的侧行链路资源;
    所述方法还包括:
    如果用于初传所述数据的侧行链路资源未位于所述侧行链路非连续接收-激活时间内,则所述第一终端放弃在用于重传所述数据的第二侧行链路资源上发送所述数据。
  19. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有指令,当所述指令被执行时,实现如权利要求1~18任一项所述的方法。
  20. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器和通信接口耦合,所述处理器用于运行计算机程序或指令,以实现如权利要求1~18任一项所述的方法,所述通信接口用于与所述芯片之外的其它模块进行通信。
  21. 一种终端,其特征在于,包括:至少一个处理器,所述至少一个处理器与存储器耦合,所述至少一个处理器用于运行存储器中存储的指令以执行如权利要求1~18任一项所述的方法。
PCT/CN2021/118339 2020-09-28 2021-09-14 一种通信方法、装置及系统 WO2022062973A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21871344.4A EP4207830A4 (en) 2020-09-28 2021-09-14 COMMUNICATION METHOD, APPARATUS AND SYSTEM
JP2023519384A JP2023544557A (ja) 2020-09-28 2021-09-14 通信方法、装置、およびシステム
BR112023005651A BR112023005651A2 (pt) 2020-09-28 2021-09-14 Método, aparelho, e sistema de comunicação
US18/246,774 US20230371005A1 (en) 2020-09-28 2021-09-14 Communication Method, Apparatus, and System

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011042899.5 2020-09-28
CN202011042899 2020-09-28
CN202011116071.XA CN114286310A (zh) 2020-09-28 2020-10-16 一种通信方法、装置及系统
CN202011116071.X 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022062973A1 true WO2022062973A1 (zh) 2022-03-31

Family

ID=80846207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118339 WO2022062973A1 (zh) 2020-09-28 2021-09-14 一种通信方法、装置及系统

Country Status (5)

Country Link
US (1) US20230371005A1 (zh)
EP (1) EP4207830A4 (zh)
JP (1) JP2023544557A (zh)
BR (1) BR112023005651A2 (zh)
WO (1) WO2022062973A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148193A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 一种信息传输方法及通信装置
CN111480391A (zh) * 2020-03-13 2020-07-31 北京小米移动软件有限公司 直连链路数据传输方法、装置及存储介质
CN111567070A (zh) * 2020-04-07 2020-08-21 北京小米移动软件有限公司 唤醒时间控制方法、装置及计算机可读存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11252753B2 (en) * 2019-02-21 2022-02-15 Asustek Computer Inc. Method and apparatus for improving retransmission scheduling of sidelink communication in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148193A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 一种信息传输方法及通信装置
CN111480391A (zh) * 2020-03-13 2020-07-31 北京小米移动软件有限公司 直连链路数据传输方法、装置及存储介质
CN111567070A (zh) * 2020-04-07 2020-08-21 北京小米移动软件有限公司 唤醒时间控制方法、装置及计算机可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Physical layer impacts of sidelink DRX", 3GPP DRAFT; R1-2006402, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051918014 *
See also references of EP4207830A4

Also Published As

Publication number Publication date
EP4207830A1 (en) 2023-07-05
BR112023005651A2 (pt) 2023-04-25
US20230371005A1 (en) 2023-11-16
JP2023544557A (ja) 2023-10-24
EP4207830A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
EP4057681B1 (en) Sidelink channel status information report transmission
JP7462766B2 (ja) サイドリンク通信のための方法およびデバイス
CN113382379B (zh) 无线通信方法和通信装置
CN113645680B (zh) 一种确定侧行链路资源的方法、装置以及系统
WO2021218740A1 (zh) 一种确定侧行链路资源的方法、装置以及系统
CN114286310A (zh) 一种通信方法、装置及系统
CN113596963B (zh) 通信方法及装置
EP4169314A1 (en) Energy-efficient autonomous resource selection for nr v2x sidelink communication
WO2022213828A1 (zh) 用于资源确定的方法及装置
WO2021244256A1 (zh) 一种通信方法、装置及系统
EP3997918A1 (en) User equipment involved in monitoring the downlink control channel
US20230319950A1 (en) Consideration of Active Reception Status in Resource Selection for D2D Communication
CN115209558A (zh) 一种侧行链路的传输方法及装置
WO2022206925A1 (zh) 一种侧行链路的传输方法及装置
WO2022178813A1 (zh) 一种侧行链路通信方法及装置
WO2022062973A1 (zh) 一种通信方法、装置及系统
WO2021228163A1 (zh) 确定资源的方法、装置及系统
WO2022151311A1 (en) Discontinuous reception configuration for sidelink operation
JP2024513196A (ja) サイドリンク間欠受信手順
JP2024501702A (ja) Nr v2xにおける端末タイプによるsl drx動作方法及び装置
WO2023071407A1 (zh) 一种通信方法及设备
WO2022077507A1 (zh) 一种用于侧行链路传输资源的确定方法及装置
WO2022022339A1 (zh) 信息配置方法、装置及系统
WO2022267593A1 (zh) 一种通信方法及设备
WO2022193282A1 (zh) 资源选取方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519384

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005651

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202337025464

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021871344

Country of ref document: EP

Effective date: 20230330

ENP Entry into the national phase

Ref document number: 112023005651

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230327

NENP Non-entry into the national phase

Ref country code: DE