WO2021095633A1 - R-Fe-B系焼結磁石 - Google Patents

R-Fe-B系焼結磁石 Download PDF

Info

Publication number
WO2021095633A1
WO2021095633A1 PCT/JP2020/041346 JP2020041346W WO2021095633A1 WO 2021095633 A1 WO2021095633 A1 WO 2021095633A1 JP 2020041346 W JP2020041346 W JP 2020041346W WO 2021095633 A1 WO2021095633 A1 WO 2021095633A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
atomic
sintered magnet
based sintered
content
Prior art date
Application number
PCT/JP2020/041346
Other languages
English (en)
French (fr)
Inventor
彰裕 吉成
祐己 飯田
晃一 廣田
三貴夫 吉田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2021556055A priority Critical patent/JP7424388B2/ja
Priority to US17/772,332 priority patent/US20220406498A1/en
Priority to CN202080079647.1A priority patent/CN114730652A/zh
Priority to EP20886644.2A priority patent/EP4060690A4/en
Publication of WO2021095633A1 publication Critical patent/WO2021095633A1/ja
Priority to JP2023189329A priority patent/JP2024016174A/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to an R-Fe-B-based rare earth sintered magnet in which the residual magnetic flux density is improved while suppressing the decrease in coercive force.
  • R-Fe-B-based sintered magnets are functional materials indispensable for energy saving and high functionality, and their application range and production volume are expanding year by year. For example, it is used in drive motors and electric power steering motors in hybrid vehicles and electric vehicles, compressor motors for air conditioners, voice coil motors (VCMs) for hard disk drives, and the like.
  • VCMs voice coil motors
  • the high residual magnetic flux density (hereinafter referred to as Br) of the R-Fe-B-based sintered magnet is a great advantage, but for example, in order to further reduce the size of the motor, further Br Is required to be improved.
  • Methods for increasing Br of R-Fe-B-based sintered magnets include a method of reducing the R content in order to increase the proportion of the R 2 Fe 14 B phase in the sintered magnet, and a method of reducing the R 2 Fe 14 B phase.
  • a method of reducing the amount of an additive element that dissolves in a solid solution and lowers Br has been known.
  • H cJ coercive force related to the heat resistance of the sintered magnet
  • Patent Document 1 the content of B is reduced from the stoichiometric composition, 0.1 to 1.0% by mass of Ga is added, and B, Nd are added. , Pr, C, Ga, and the values of [B] / ([Nd] + [Pr]) and ([Ga] + [C]) / [B] are adjusted to satisfy a specific relationship. By doing so, a sintered magnet capable of obtaining high H cJ even in a composition in which the amount of heavy rare earth elements such as Dy and Tb is reduced has been proposed.
  • Patent Document 2 the content of B is set to about the stoichiometric composition to suppress the formation of R 1.1 Fe 4 B 4 phase, thereby increasing Br. It has been proposed to obtain a sintered magnet having. Furthermore, by containing 0.01 to 0.08% by mass of Ga, the precipitation of the R 2 Fe 17 phase, which causes a decrease in H cJ when B falls below the stoichiometric composition, is suppressed. , It is described that high Br and high H cJ can be compatible.
  • Patent Document 3 when a structure having an R—Ga—C enriched portion is formed to improve H cJ by making the fine powder particle size of the raw material finer, It has been proposed that even when a large amount of lubricant is added to suppress the decrease in orientation, the H cJ does not decrease and a high H cJ can be obtained.
  • the amount of heavy rare earth elements such as Dy and Tb used is relatively reduced by adding 0.1% by mass or more of Ga, so that the saturation magnetization of the R 2 Fe 14 B phase
  • the addition of Ga reduces the saturation magnetization of the R 2 Fe 14 B phase, so that Br cannot always be sufficiently improved.
  • the present invention has been made in view of the above problems, and by adjusting and optimizing the amount ratio and structure of the constituent elements of the R-Fe-B-based sintered magnet, a high Br and stable H cJ It is an object of the present invention to provide an R-Fe-B-based sintered magnet having the above.
  • R is one or more elements selected from rare earth elements and requires Nd
  • B M
  • M is Si, Al, Mn, Ni
  • Co Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi
  • X Ti, Zr, Hf
  • the present invention provides the following R-Fe-B-based sintered magnets.
  • R is one or more elements selected from rare earth elements, Nd is essential
  • 5.0-6.5 atomic% B 0.15- From 5.0 atomic% M
  • M is Si, Al, Mn, Ni, Co, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi
  • X is one or more elements selected from Ti, Zr, Hf, Nb, V, Ta), 0.1 to 1.
  • R-Fe- which contains 6 atomic% C and has a composition in which the balance is Fe, O and unavoidable impurities, and contains a main phase which is an R 2 Fe 14 B intermetallic compound and a grain boundary phase.
  • An R-Fe-B based sintered magnet characterized in that the area ratio of the -C phase exceeds 0 and is 0.5% or less.
  • the R-Fe-B-based sintered magnet of the present invention by adjusting the structure morphology consisting of the main phase and the grain boundary phase, which are R 2 Fe 14 B intermetallic compounds, the characteristics are contradictory to the conventional ones. It is possible to achieve both high Br and high H cJ.
  • the R-Fe-B based sintered magnet of the present invention has R of 12.5-14.5 atomic% (R is one or more elements selected from rare earth elements, and Nd is essential. ), 5.0 to 6.5 atomic% B, 0.15 to 5.0 atomic% M (M is Si, Al, Mn, Ni, Co, Cu, Zn, Ga, Ge, Pd, Ag, One or more elements selected from Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi), 0.02-0.5 atomic% X (X is Ti, Zr, Hf, Nb, V) , One or more elements selected from Ta), containing 0.1 to 1.6 atomic% C, and having a composition in which the balance is Fe, O and unavoidable impurities.
  • R is one or more elements selected from rare earth elements, and Nd is essential.
  • M is Si, Al, Mn, Ni, Co, Cu, Zn, Ga, Ge, Pd, Ag, One or more elements selected from Cd, In, S
  • the element R constituting the sintered magnet of the present invention is one or more elements selected from rare earth elements, and Nd is essential.
  • the rare earth element other than Nd Pr, La, Ce, Gd, Dy, Tb and Ho are preferable, Pr, Dy and Tb are particularly preferable, and Pr is particularly preferable.
  • the ratio of Nd, which is an essential component, of R is preferably 60 atomic% or more, particularly 70 atomic% or more of the total R.
  • the content of R is 12.5 to 14.5 atomic% as described above, preferably 12.8 to 14.0 atomic%. If the R content is less than 12.5 atomic%, ⁇ -Fe crystallizes in the raw material alloy, and it is difficult to eliminate the ⁇ -Fe even if homogenization is performed. The H cJ and squareness of the sintered magnet are greatly reduced. Further, even when the raw material alloy is produced by the strip casting method in which ⁇ -Fe crystallization is unlikely to occur, ⁇ -Fe crystallization occurs, so that the HcJ and squareness of the R-Fe-B-based sintered magnet are greatly reduced. To do.
  • the sintered magnet of the present invention contains 5.0 to 6.5 atomic% of boron (B).
  • a more preferable content is 5.2 to 5.9 atomic%, and even more preferably 5.3 to 5.7 atomic%.
  • the content of B is a factor for determining the range of oxygen concentration required to obtain stable H cJ.
  • the B content is less than 5.0 atomic%, the proportion of the R 2 Fe 14 B phase formed is low, Br is significantly reduced, and the R 2 Fe 17 phase is formed, resulting in H cJ. descend.
  • the B content exceeds 6.5 atomic%, a B-rich phase is formed, and the ratio of the R 2 Fe 14 B phase in the magnet decreases, resulting in a decrease in Br.
  • the sintered magnet of the present invention contains Si, Al, Mn, Ni, Co, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, and Hg as M elements. , Pb, Bi and contains one or more elements selected from.
  • the content of M is 0.15 to 5.0 atomic%, preferably 0.3 to 4.0 atomic%, and more preferably 0.5 to 3.0 atomic% as described above. If the M content is less than 0.15 atomic%, it becomes difficult to obtain sufficient H cJ. On the other hand, if the M content exceeds 5.0 atomic%, Br may be lowered.
  • the Co content may affect the Curie temperature, corrosion resistance, and H cJ , and may be set in consideration of the balance of these characteristics.
  • it is preferably 0.1 atomic% or more, and more preferably 0.5 atomic% or more.
  • the Co content is preferably 3.5 atomic% or less, more preferably 2.0 atomic% or less.
  • the Cu content may affect the optimum temperature range in the low-temperature heat treatment for magnet production, the sinterability during the sintering process, and the obtained magnetic properties (Br, H cJ). It may be set in consideration. For example, from the viewpoint of obtaining the optimum temperature range in the low-temperature heat treatment after sintering which is preferably performed to ensure good mass productivity, it is preferably 0.05 atomic% or more, more preferably 0.1 atomic% or more. That is all. Further, from the viewpoint of obtaining good sinterability and high magnetic properties (Br, H cJ ), it is preferably 0.5 atomic% or less, and more preferably 0.3 atomic% or less.
  • the Al and Ga contents may affect the magnetic characteristics (Br, H cJ ), and may be set in consideration of the balance with Br and H cJ.
  • the Al content is preferably 0.05 atomic% or more from the viewpoint of obtaining sufficient H cJ , and preferably 1.0 atomic% or less from the viewpoint of obtaining high Br, which is more preferable. Is 0.5 atomic% or less.
  • the content of Ga is preferably more than 0 atomic%, 0.1 atomic% or less, and more preferably 0.05 to 0.1 atomic% from the viewpoint of the balance between Br and H cJ. is there.
  • the sintered magnet of the present invention contains one or more elements selected from Ti, Zr, Hf, Nb, V, and Ta as the X element. By containing these elements, abnormal grain growth during sintering can be suppressed by the formed XB phase. Although not particularly limited, it is preferable that Zr is contained as at least one element of X.
  • the content of X is 0.02 to 0.5 atomic% as described above, preferably 0.05 to 0.3 atomic%, and more preferably 0.07 to 0.2 atomic%. If the content of X is less than 0.02 atomic%, the effect of suppressing abnormal grain growth of crystal grains in the sintering process cannot be obtained. On the other hand, when the content of X exceeds 0.5 atomic%, reduces the amount of B to form the R 2 Fe 14 B phase by X-B phase is formed, R 2 Fe 14 B phase ratio Br decrease due to the decrease in the amount of iron, and the formation of the R 2 Fe 17 phase may lead to a significant decrease in H cJ.
  • the content of carbon (C) contained in the sintered magnet of the present invention is 0.1 to 1.6 atomic%, preferably 0.2 to 1.0 atomic%, as described above. is there. Since C is derived from the raw material and the lubricant added to raise the orientation of the powder in molding in a magnetic field, it is difficult to obtain an R-Fe-B-based sintered magnet having a C content of less than 0.1 atomic%. Is. On the other hand, when the amount of C exceeds 1.6 atomic%, H cJ is remarkably lowered due to the presence of many RC phases in the sintered magnet.
  • the sintered magnet of the present invention contains the above R, B, M, X and C, and further contains Fe and O as the balance.
  • the content of O is not particularly limited, but the content of O is not particularly limited. It is preferably 0.1 to 0.8 atomic%, more preferably 0.2 to 0.5 atomic%.
  • the sintered magnet of the present invention may contain elements such as H, N, F, Mg, P, S, Cl and Ca as unavoidable impurities in addition to the above elements.
  • unavoidable impurities can be allowed up to 0.1% by mass or less in total with respect to the total of the above-mentioned constituent elements of the magnet and the unavoidable impurities, but it is preferable that these unavoidable impurities are as small as possible.
  • the content of N is preferably 0.5 atomic% or less from the viewpoint of obtaining good H cJ.
  • the sintered magnet of the present invention has the above-mentioned elemental composition , contains an R 2 Fe 14 B intermetallic compound as a main phase, and a grain boundary phase, and further has a higher R concentration than the main phase in the grain boundary phase. It has an RC phase with a high C concentration, and the area ratio of the RC phase in the cross section of the sintered magnet exceeds 0 and is 0.5% or less.
  • the melting point of the compound containing R and C as the main elements is higher than the sintering temperature of the R-Fe-B-based sintered magnet, but the RC phase contained in the sintered magnet structure It was found that the content depends on the C concentration contained in the raw material. That is, the formation of the RC phase requires a temperature higher than the sintering temperature of the R 2 Fe 14 B sintered magnet, and the RC phase is mainly formed at the stage of producing the raw material alloy by high frequency melting or the like. It is thought that. Then, C consumed as the RC phase having a high melting point does not contribute to the formation of the main phase, and conversely, consumption of R causes a decrease in H cJ. Based on this idea, the present inventors appropriately reduce the amount of C contained in the alloy raw material to make the amount of RC phase contained in the R-Fe-B-based sintered magnet appropriate. This is the result of achieving both high Br and high H cJ.
  • the above-mentioned "area ratio of RC phase in the cross section of the sintered magnet” may be obtained by measuring the area ratio of the RC phase in a predetermined region of an arbitrary cross section of the sintered magnet.
  • the "arbitrary cross section” may be a cross section obtained by cutting any part of the sintered magnet, and the above area ratio is achieved regardless of where the sintered magnet is cut. means.
  • the size of the "predetermined region” in this cross section is appropriately set according to the measuring device and the like, but it is preferable to set the area to an area of 15,000 ⁇ m 2 or more so that the state of the entire magnet can be surely grasped. More preferably, it is a region of 30,000 ⁇ m 2 or more. It is also preferable to perform measurements in a plurality of regions and use the average value as the area ratio. In that case, it is desirable to set the total area of the plurality of regions used for the measurement to be the above-mentioned preferable area.
  • the area ratio of the RC phase in one region of the above arbitrary cross section is more than 0 and 0.5% or less, but it is preferable to obtain sufficient H cJ more reliably. It is 0.01% or more and 0.3% or less, and more preferably 0.01% or more and 0.27% or less.
  • the area ratio of the RC phase is 0, that is, when the RC phase does not exist substantially, it becomes difficult to achieve both high Br and stable H cJ , and the object of the present invention cannot be achieved.
  • the area ratio is 0.5% or more, the amount of R required for the formation of the grain boundary phase is insufficient due to the formation of the RC phase, and H cJ and squareness are lowered.
  • the above area ratio can be confirmed by observing the structure of the cross section of the sintered magnet with a SEM (Scanning Electron Microscope).
  • the analysis of this composition can be performed by an EDS (energy dispersive X-ray analyzer: Energy dispersive X-ray spectroscopy) attached to the SEM apparatus.
  • EDS energy dispersive X-ray analyzer: Energy dispersive X-ray spectroscopy
  • FIB-SEM focused ion beam scanning
  • the RC phase contained in the grain boundary phase may contain a small amount of O, Fe, Cu, etc. other than R and C, but is substantially composed of R and C, as described above. It is a phase having a higher R concentration and C concentration than the main phase.
  • the R concentration is not particularly limited, but is 30 atomic% or more and 50 atomic% or less, preferably 35 atomic% or more and 45 atomic% or less.
  • the C concentration is preferably 10 atomic% or more higher than that of the main phase, and more preferably 20 atomic% or more.
  • Each step in producing the R-Fe-B-based sintered magnet of the present invention is basically the same as that of a normal powder metallurgy method, and is not particularly limited, but usually a raw material is used.
  • a melting step of melting to obtain a raw material alloy a crushing step of crushing a raw material alloy having a predetermined composition to prepare an alloy fine powder, a molding step of compacting the alloy fine powder in a magnetic field to obtain a molded product, It includes a heat treatment step of heat-treating a molded body to obtain a sintered body.
  • the metal or alloy as the raw material of each element is weighed so as to have the predetermined composition in the present invention described above, and for example, the raw material is melted by high-frequency melting and cooled to obtain the raw material alloy.
  • the raw material metal or alloy it is necessary to use a metal or alloy having a low C content so that the C concentration of the raw material alloy obtained after the melting step is 0.03% by mass or less, and more preferably 0.01. It is desirable to use a high-purity raw material so as to be less than mass%.
  • a melting casting method or a strip casting method in which the raw material alloy is cast into a flat mold or a book mold is generally adopted.
  • an alloy having a composition close to that of the R 2 Fe 14 B compound, which is the main phase of the R—Fe—B alloy, and an R-rich alloy, which serves as a liquid phase aid at the sintering temperature are separately prepared and weighed after coarse grinding.
  • the so-called dialloy method of mixing is also applicable to the present invention.
  • the ⁇ -Fe phase tends to crystallize depending on the cooling rate at the time of casting and the alloy composition. Therefore, if necessary for the purpose of homogenizing the structure and eliminating the ⁇ -Fe phase. It is preferable to carry out the homogenization treatment at 700 to 1200 ° C. for 1 hour or more in a vacuum or Ar atmosphere.
  • the above crushing step can be a plurality of steps including, for example, a coarse crushing step and a fine crushing step.
  • a coarse crushing step for example, a jaw crusher, a brown mill, a pin mill or a hydromill is used, and in the case of an alloy produced by strip casting, usually by applying hydromilling, for example, 0.05 to 3 mm.
  • hydromilling for example, 0.05 to 3 mm.
  • coarse powder that has been coarsely pulverized to 0.05 to 1.5 mm.
  • the fine pulverization step the coarse powder obtained in the coarse pulverization step is finely pulverized to, for example, 0.2 to 30 ⁇ m, particularly 0.5 to 20 ⁇ m, by using a method such as jet mill pulverization.
  • an additive such as a lubricant can be added as necessary to adjust the C content within a predetermined range.
  • the lubricant is not particularly limited, but fatty acids such as stearic acid, alcohols, esters, metal soap and the like can be exemplified.
  • carbon black can be exemplified.
  • Paraffin, hydrocarbons such as polyvinyl alcohol, etc. can also be added as the C source.
  • the coarse pulverization step and the fine pulverization step of the raw material alloy are preferably performed in a gas atmosphere such as nitrogen gas or Ar gas, but the O content is within a predetermined range by controlling the oxygen concentration in the gas atmosphere. It may be adjusted so as to be.
  • the density of the molded product is 2.8 to 4.2 g / cm 3. From the viewpoint of ensuring the strength of the molded product and obtaining good handleability, the density of the molded product is preferably 2.8 g / cm 3 or more. On the other hand, the density of the molded product is preferably 4.2 g / cm 3 or less from the viewpoint of obtaining a suitable Br by ensuring good orientation of the particles at the time of pressurization while obtaining sufficient strength of the molded product. Further, in order to suppress the oxidation of the alloy fine powder, the molding is preferably performed in a gas atmosphere such as nitrogen gas or Ar gas.
  • the molded product obtained in the molding step is sintered in a high vacuum or in a non-oxidizing atmosphere such as Ar gas.
  • a non-oxidizing atmosphere such as Ar gas.
  • cooling may be performed by any of gas rapid cooling (cooling rate: 20 ° C./min or more), controlled cooling (cooling rate: 1 to 20 ° C./min), and furnace cooling.
  • the magnetic characteristics of the R-Fe-B-based sintered magnet are the same.
  • the heat treatment may be performed at a temperature lower than the sintering temperature for the purpose of increasing H cJ, although not particularly limited.
  • the post-sintering heat treatment may be a two-step heat treatment of a high temperature heat treatment and a low temperature heat treatment, or may be performed only by a low temperature heat treatment.
  • the sintered body is preferably heat-treated at a temperature of 600 to 950 ° C.
  • the low-temperature heat treatment it is preferably heat-treated at a temperature of 400 to 600 ° C.
  • Cooling at that time may be performed by any of gas rapid cooling (cooling rate: 20 ° C./min or more), controlled cooling (cooling rate: 1 to 20 ° C./min), and furnace cooling.
  • gas rapid cooling cooling rate: 20 ° C./min or more
  • controlled cooling cooling rate: 1 to 20 ° C./min
  • furnace cooling furnace cooling.
  • an R-Fe-B-based sintered magnet having similar magnetic characteristics can be obtained.
  • R-Fe-B-based sintered magnet was ground into a predetermined shape, and R 1 oxide, R 2 fluoride, R 3 acid fluoride, and R 4 hydroxide were formed on the surface of the magnet.
  • R 1 oxide, R 2 fluoride, R 3 acid fluoride, and R 4 hydroxide were formed on the surface of the magnet.
  • One or more selected from R 5 carbonate, R 6 basic carbonate, R 7 single metal or alloy R 1 to R 7 are one or more selected from rare earth elements, and they are the same.
  • heat treatment can be performed in a state where the powder is present on the surface of the sintered magnet. This treatment is a so-called intergranular diffusion method, and the temperature of the intergranular diffusion heat treatment is preferably lower than the sintering temperature and 350 ° C.
  • the time is not particularly limited, but a good sintered magnet. From the viewpoint of obtaining the structure and magnetic properties of the above, it is preferably 5 minutes to 80 hours, more preferably 10 minutes to 50 hours.
  • the above R 1 to R 7 contained in the above powder can be diffused in the magnet to increase H cJ.
  • the rare earth elements introduced by the grain boundary diffusion are R 1 to R 7 as described above for convenience of explanation, but after the grain boundary diffusion, all of them are included in the R component in the magnet of the present invention. To.
  • Example 1 The raw materials were weighed so as to have the composition of the alloy A in Table 1, melted in an Ar gas atmosphere in a high-frequency induction furnace, and the molten alloy was cooled on a water-cooled copper roll to prepare an alloy strip by a strip casting method.
  • the amount of C contained in the alloy can be adjusted by the amount of C contained in the raw material, and can be adjusted by, for example, the amount of C contained in the Nd metal produced by electrolysis or the addition of carbon black. is there.
  • the produced alloy strip was coarsely pulverized by hydrogenation to obtain a crude powder, and then 0.1% by mass of stearic acid was added as a lubricant to the obtained crude powder and mixed.
  • the mixture of the above crude powder and the lubricant was finely pulverized with a jet mill in a nitrogen stream so that the average particle size was about 3.5 ⁇ m.
  • the oxygen concentration in the jet mill system was set to 0 ppm.
  • the fine powder was filled in a mold of a molding apparatus equipped with an electromagnet in a nitrogen atmosphere, and pressure-molded in a direction perpendicular to the magnetic field while being oriented in a magnetic field of 15 kOe (1.19 MA / m). ..
  • the obtained molded product was sintered in vacuum at 1050 ° C. for 3 hours, cooled to 200 ° C. or lower, then subjected to high temperature heat treatment at 900 ° C. for 2 hours, and low temperature heat treatment at 500 ° C. for 3 hours. , A sintered body was obtained.
  • the composition of the obtained sintered body is shown in Table 2.
  • the metal element was measured by ICP analysis, C was measured by a combustion infrared absorption method, and O was measured by an inert gas melting infrared absorption method.
  • Example 1 The raw materials were weighed so as to have the composition of the alloy C in Table 1, and an alloy strip was prepared in the same manner as in Example 1. Next, the produced alloy strip was coarsely pulverized by hydrogenation to obtain a coarse powder, and then the average particle size was obtained by a jet mill in a nitrogen stream without adding a lubricant to the obtained coarse powder. Fine pulverization was performed so as to have a size of about 3.5 ⁇ m. After that, molding and heat treatment were carried out in the same manner as in Example 1 to obtain a sintered body, and the composition was analyzed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 2 The raw materials were weighed so as to have the composition of the alloy B in Table 1, and an alloy strip was prepared in the same manner as in Example 1. Next, the produced alloy strip was roughly pulverized by hydrogenation to obtain a crude powder, and then 0.05% by mass of stearic acid was added as a lubricant to the obtained crude powder and mixed. After that, pulverization, molding, and heat treatment were carried out in the same manner as in Example 1 to obtain a sintered body, and the composition was analyzed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 2 In the same manner as in Example 1, an alloy strip was prepared, hydrogenated and pulverized, and a lubricant was mixed with the coarse powder. Next, a mixture of the crude powder and the lubricant was pulverized with a jet mill in a nitrogen stream to obtain a fine powder having an average particle size of about 3.5 ⁇ m. At this time, the oxygen concentration in the jet mill system was appropriately adjusted so that the O content was higher than that of the powder in Example 1. Next, the prepared fine powder was molded and heat-treated in the same manner as in Example 1 to obtain a sintered body, and the composition was analyzed in the same manner as in Example 1. The results are shown in Table 2.
  • each of the sintered magnets is observed using a focused ion beam scanning electron microscope (FIB-SEM) (Scios; manufactured by FEI) and a scanning transmission electron microscope (STEM) (JEM-ARM200F; manufactured by JEOL Ltd.). Then, the area ratio of the RC phase contained in the grain boundary phase was calculated. The results of this analysis are also shown in Table 2. In the analysis method, the surface portion of the cross section of each of the obtained samples was first ground with FIB, and then backscattered electron images and secondary electron images in a region of 69 ⁇ 46 ⁇ m square were obtained.
  • FIB-SEM focused ion beam scanning electron microscope
  • STEM scanning transmission electron microscope
  • composition analysis of each phase with the same contrast in each image was performed by energy dispersive X-ray analysis (EDS) to identify each phase. Further, the obtained electron image was taken into image analysis software, the contrast was compared with the previously obtained composition information, and the surface integral of the RC phase was calculated. After surface processing by FIB, observation and composition analysis were carried out in a series without exposure to the atmosphere. The results of this tissue observation were taken as the average value of the results of the five measurement points. In addition, Table 3 shows the analytical values of the RC phase in Example 1 as a representative.
  • the sintered magnets of Examples 1 and 2 in which the area ratio of the RC phase is in the range of more than 0 to 0.5% are compared with those of Comparative Examples 1 and 2. Therefore, it has excellent properties in Br and H cJ.
  • Comparative Example 1 since the lubricant was not added at the time of manufacturing the sintered magnet, the orientation at the time of molding was lowered and Br was a low value. It is known that H cJ improves as the value decreases, and specifically, it fluctuates at a ratio of about -4 ⁇ 10 -4 T / (kA / m). Considering this, it is included in the sintered magnet.
  • the H cJ of Comparative Example 1 in which all of C is derived from the raw material alloy is 50 kA / m or more lower than expected when the orientation is similar to that of Example 1, and is significantly inferior to that of Example 1.
  • the H cJ of Example 2 in which the amount of the lubricant added was 0.05 wt% had a difference of 50 kA / m or less from the H cJ in consideration of the decrease in orientation , and a good H cJ was obtained. ..
  • the O concentration in the sintered magnet was higher than the C concentration, and in Comparative Example 2 containing no RC phase, H cJ was significantly lower than that in Example 1.
  • Examples 3 and 4 The raw materials were weighed so as to have the composition of the alloy A in Table 1, and an alloy strip was prepared in the same manner as in Example 1. Next, the produced alloy strip was coarsely pulverized by hydrogenation to obtain a coarse powder, and then the average particle size was obtained by a jet mill in a nitrogen stream without adding a lubricant to the obtained coarse powder. Fine pulverization was performed so as to have a size of about 5 ⁇ m. Then, 0.1 wt% of the C source shown in Table 4 was added, and thereafter, molding and heat treatment were carried out in the same manner as in Example 1 to obtain a sintered body, and the composition was analyzed in the same manner as in Example 1. did. The results are shown in Table 4.
  • the area ratio of the RC phase contained in the magnet may be more than 0 to 0.5% or less. It was possible to achieve the same area ratio as in Example 1 to which the same amount of lubricant was added. Further, these magnetic properties, although Br decreased with the deterioration of the orientation, H cJ increased with the deterioration of the orientation, which was about 80 kA / m higher than that of Example 1, and -4 ⁇ 10 in the orientation and H cJ. H cJ assumed from the relationship of -4 T / (kA / m) was obtained, and good magnetic properties could be obtained even when a C source other than stearic acid, which is a lubricant, was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

従来は二律背反的な特性であった高い残留磁束密度と高い保磁力とを両立することを目的として、R(Rは希土類元素から選ばれる1種以上の元素であり、Ndを必須とする)、B、M(MはSi、Al、Mn、Ni、Co、Cu、Zn、Ga、Ge、Pd、Ag、Cd、In、Sn、Sb、Pt、Au、Hg、Pb、Biの少なくとも1種)、X(XはTi、Zr、Hf、Nb、V、Taの少なくとも1種)、Cを含有すると共に、残部がFe、O及び不可避不純物である組成を有し、R2Fe14Bの主相と、該主相よりもR濃度及びC濃度の高いR-C相を含有する粒界相とを有するR-Fe-B系焼結磁石であり、磁石断面における上記R-C相の面積比率が0を超え、0.5%以下であることを特徴とするR-Fe-B系焼結磁石を提供する。

Description

R-Fe-B系焼結磁石
 本発明は、保磁力の低下を抑えつつ、残留磁束密度を向上させたR-Fe-B系の希土類焼結磁石に関するものである。
 R-Fe-B系焼結磁石(以下、Nd磁石という場合がある。)は、省エネや高機能化に必要不可欠な機能性材料として、その応用範囲と生産量は年々拡大している。例えば、ハイブリッド自動車や電気自動車における駆動用モータや電動パワーステアリング用モータ、エアコンのコンプレッサー用モータ、ハードディスクドライブのボイスコイルモータ(VCM)などに用いられている。これら種々の用途においては、R-Fe-B系焼結磁石の高い残留磁束密度(以下、Brという。)が大きな利点となっているが、例えばモータを更に小型化するために、更なるBrの向上が求められている。
 R-Fe-B系焼結磁石のBrを高める手法としては、焼結磁石中のR2Fe14B相の割合を増加させるためにRの含有量を減らす方法や、R2Fe14B相に固溶してBrを低下させる添加元素量を減らす方法が、従来より知られている。
 しかしながら、Rやその他添加元素量を低減することによって、焼結磁石の耐熱性に関わる保磁力(以下、HcJという。)が低下してしまうことが知られている。特に、R元素量が減少した場合、液相の生成を伴って緻密化が起こるR-Fe-B系焼結磁石の焼結工程においては、その焼結性が低下するとともに異常粒成長が起こるリスクもある。そのため、より高特性なR-Fe-B系焼結磁石を得るにはRやその他添加元素量を低減することによるHcJの低下を抑えつつ、高Brを達成する必要がある。HcJの低下を抑えるもしくは増大させるためにはDyやTb等の重希土類元素を添加することが一般的に知られているが、その添加によってBrの低下を招くことや資源的にも希少であり高価であることから、DyやTb等の重希土類元素の使用量低減に関する手法がこれまで提案されている。
 例えば、国際公開第2013/191276号(特許文献1)には、Bの含有量を化学量論組成よりも低減し、0.1~1.0質量%のGaを添加すると共に、B、Nd、Pr、C、Gaの量比について、[B]/([Nd]+[Pr])、及び([Ga]+[C])/[B]の値を特定の関係を満たすように調整することによって、DyやTb等の重希土類元素の使用量を少なくした組成においても高いHcJを得ることができる焼結磁石が提案されている。
 また、国際公開第2004/081954号(特許文献2)には、Bの含有量を化学量論組成程度とすることで、R1.1Fe44相の生成を抑制し、これにより高いBrを有する焼結磁石を得ることが提案されている。さらに、Gaを0.01~0.08質量%含有することで、Bが化学量論組成を下回った場合にHcJの低下を招くことになるR2Fe17相の析出を抑制することによって、高Brと高HcJとを両立し得ることが記載されている。
 また、特開2016-143828号公報(特許文献3)には、R-Ga-C濃縮部を有する組織を形成することで、原料の微粉粒径の微細化によってHcJを向上させる際に、配向の低下を抑制するために多くの潤滑剤を添加した場合にもHcJの低下がなく、高いHcJを得られることが提案されている。
国際公開第2013/191276号 国際公開第2004/081954号 特開2016-143828号公報
 しかしながら、上記特許文献1に記載の磁石では、0.1質量%以上のGa添加によって相対的にDyやTb等の重希土類元素の使用量が少なくなることによりR2Fe14B相の飽和磁化の増大が図れる一方、Ga添加によりR2Fe14B相の飽和磁化は減少することから、必ずしも十分なBrの向上が図られることにはならない。
 また、特許文献2に記載の技術においては、確かに酸素濃度0.4質量%程度のR-Fe-B系焼結磁石の場合には、良好な磁気特性は得られるが、焼結磁石中の酸素濃度と磁気特性との関係についての記載は不十分であり、それ以下、特に0.2質量%以下の酸素濃度では大きくその特性挙動は変化してしまい、必ずしも高Brと高HcJとの両立を達成することができない。
 更に、特許文献3に記載の技術においては、0.42~1.5質量%の比較的多量のGaを含有するため、R2Fe14B相の飽和磁化は減少し、高いBrを得ることは困難である。また、R-Ga-C濃縮部を形成するために、通常の焼結工程中に500~700℃で所定時間保持する保持工程を有するため、生産性において不利である。
 本発明は、上記課題を鑑みてなされたものであり、R-Fe-B系焼結磁石について、その構成元素の量比及び組織を調整し最適化することで、高いBrと安定したHcJを有するR-Fe-B系焼結磁石を提供することを目的とする。
 本発明者らは、上記目的を達成するため、R(Rは希土類元素から選ばれる1種以上の元素であり、Ndを必須とする)、B、M(MはSi、Al、Mn、Ni、Co、Cu、Zn、Ga、Ge、Pd、Ag、Cd、In、Sn、Sb、Pt、Au、Hg、Pb、Biから選ばれる1種以上の元素)、X(Ti、Zr、Hf、Nb、V、Taの1種以上の元素)、C、O及びFeを含有するR-Fe-B系焼結磁石について、R2Fe14B金属間化合物である主相と、粒界相とを有する磁石組織つき鋭意検討を行った結果、この主相と粒界相とからなる組成が下記所定の組織形態を持つことにより、高いBr及び安定したHcJが得られることを見出し、本発明を完成したものである。
 即ち、本発明は下記のR-Fe-B系焼結磁石を提供するものである。
〔1〕
 12.5~14.5原子%のR(Rは希土類元素から選ばれる1種以上の元素であり、Ndを必須とする)、5.0~6.5原子%のB、0.15~5.0原子%のM(MはSi、Al、Mn、Ni、Co、Cu、Zn、Ga、Ge、Pd、Ag、Cd、In、Sn、Sb、Pt、Au、Hg、Pb、Biから選ばれる1種以上の元素)、0.02~0.5原子%のX(XはTi、Zr、Hf、Nb、V、Taから選ばれる1種以上の元素)、0.1~1.6原子%のCを含有すると共に、残部がFe、O及び不可避不純物である組成を有し、R2Fe14B金属間化合物である主相と、粒界相とを含有するR-Fe-B系焼結磁石であって、前記粒界相中に前記主相よりもR濃度及びC濃度の高いR-C相を有し、当該R-Fe-B系焼結磁石の断面における上記R-C相の面積比率が0を超え、0.5%以下であることを特徴とするR-Fe-B系焼結磁石。
〔2〕
 上記Rの含有量が12.8~14.0原子%である〔1〕のR-Fe-B系焼結磁石。
〔3〕
 上記Oの含有量が0.1~0.8原子%である〔1〕又は〔2〕のR-Fe-B系焼結磁石。
〔4〕
 上記Cの含有量が0.2~1.0原子%である〔1〕~〔3〕のいずれかのR-Fe-B系焼結磁石。
〔5〕
 上記Bの含有量が5.2~5.9原子%である〔1〕~〔4〕のいずれかのR-Fe-B系焼結磁石。
〔6〕
 上記M元素の一部として、0を超え、0.1原子%以下のGaを含有する〔1〕~〔5〕のいずれかのR-Fe-B系焼結磁石。
〔7〕
 上記R-C相のC濃度が主相と比較して20原子%以上高い〔1〕~〔6〕のいずれかのR-Fe-B系焼結磁石。
 本発明のR-Fe-B系焼結磁石によれば、R2Fe14B金属間化合物である主相と粒界相とからなる組織形態を調整したことにより、従来は二律背反的な特性であった高Brと高HcJとを両立することが可能である。
 本発明のR-Fe-B系焼結磁石は、上記のとおり、12.5~14.5原子%のR(Rは希土類元素から選ばれる1種以上の元素であり、Ndを必須とする)、5.0~6.5原子%のB、0.15~5.0原子%のM(MはSi、Al、Mn、Ni、Co、Cu、Zn、Ga、Ge、Pd、Ag、Cd、In、Sn、Sb、Pt、Au、Hg、Pb、Biから選ばれる1種以上の元素)、0.02~0.5原子%のX(XはTi、Zr、Hf、Nb、V、Taから選ばれる1種以上の元素)、0.1~1.6原子%のCを含有し、残部がFe、O及び不可避不純物である組成を有するものである。
 本発明の焼結磁石を構成する元素Rは、上記のように、希土類元素から選ばれる1種以上の元素であり、かつNdを必須とする。Nd以外の希土類元素としては、Pr、La、Ce、Gd、Dy、Tb、Hoが好ましく、特にPr、Dy、Tbが好ましく、とりわけPrが好ましい。Rのうち、必須成分であるNdの比率は、R全体の60原子%以上、特に70原子%以上であることが好ましい。
 Rの含有率は、上記のとおり12.5~14.5原子%であり、好ましくは12.8~14.0原子%である。Rの含有率が12.5原子%未満であると、原料合金においてα-Feの晶出が起こり、均質化を施してもそのα-Feを消失させることは難しく、R-Fe-B系焼結磁石のHcJや角形性が大きく低下する。また、α-Feの晶出が起こり難いストリップキャスト法により原料合金を作製する場合でもα-Feの晶出が起こることからR-Fe-B系焼結磁石のHcJや角形性が大きく低下する。加えて、焼結過程において緻密化を促進させる役割をもつ主にR成分からなる液相量が少なくなるため焼結性が低下し、R-Fe-B系焼結磁石の緻密化が不足することになる。一方、Rの含有量が14.5原子%を超えると、作製においては何等問題ないものの、焼結磁石中のR2Fe14B相の割合が低くなりBrが低下することとなる。
 本発明の焼結磁石は、上記のとおり、ホウ素(B)を5.0~6.5原子%含有する。より好ましい含有量は5.2~5.9原子%であり、さらに好ましくは5.3~5.7原子%である。本発明において、Bの含有量は後述するC、Xの含有量と合わせて、安定したHcJを得るために必要な酸素濃度の範囲を決定する要因となる。Bの含有量が5.0原子%未満であると、形成されるR2Fe14B相の割合が低くなりBrが大幅に低下すると共に、R2Fe17相が形成されるためHcJが低下する。一方、Bの含有量が6.5原子%を超えると、Bリッチ相が形成され、磁石中のR2Fe14B相の比率が下がることでBrの低下が生じる。
 本発明の焼結磁石は、上記のとおりM元素として、Si、Al、Mn、Ni、Co、Cu、Zn、Ga、Ge、Pd、Ag、Cd、In、Sn、Sb、Pt、Au、Hg、Pb、Biから選ばれる1種以上の元素を含有する。Mの含有量は、上記のとおり0.15~5.0原子%であり、好ましくは0.3~4.0原子%であり、より好ましくは0.5~3.0原子%である。Mの含有量が0.15原子%未満であると、十分なHcJを得ることが困難となる。一方、Mの含有量が5.0原子%を超えた場合、Brを低下させるおそれがある。なお、特に制限されるものではないが、M元素の内でも特に、Co、Cu、Al、Gaを含有することが好ましい。
 上記Coの含有量は、キュリー温度、耐食性、HcJに影響する場合があり、これら特性のバランスを考慮して設定すればよい。例えば、Coの含有によるキュリー温度、及び耐食性の向上効果を得る観点からは、好ましくは0.1原子%以上であり、より好ましくは0.5原子%以上である。また、高いHcJを安定的に得る観点からは、Coの含有量は好ましくは3.5原子%以下であり、より好ましくは2.0原子%以下である。
 上記Cuの含有量は、磁石製造の低温熱処理における最適温度幅や焼結処理時の焼結性、更には得られる磁気特性(Br、HcJ)に影響する場合があり、これら特性のバランスを考慮して設定すればよい。例えば、良好な量産性を確保するために好適に行われる焼結後の低温熱処理において最適温度幅を得る観点からは、好ましくは0.05原子%以上であり、より好ましくは0.1原子%以上である。また、良好な焼結性及び高い磁気特性(Br、HcJ)を得る観点からは、好ましくは0.5原子%以下であり、より好ましくは0.3原子%以下である。
 上記Al、Ga含有量は、磁気特性(Br、HcJ)に影響する場合があり、Br、HcJとのバランスを考慮して設定すればよい。例えば、Alの含有量は、十分なHcJを得る観点からは、好ましくは0.05原子%以上であり、高いBrを得る観点からは、好ましくは1.0原子%以下であり、より好ましくは0.5原子%以下である。更に、上記Gaの含有量は、BrとHcJとのバランスの観点から、好ましくは0原子%を超え、0.1原子%以下であり、より好ましくは0.05~0.1原子%である。
 本発明の焼結磁石は、上記の通りX元素としてTi、Zr、Hf、Nb、V、Taから選ばれる1種以上の元素を含有する。これらの元素を含有することにより、形成されるX-B相によって焼結時の異常粒成長を抑制することができる。なお、特に制限されるものではないが、このXの少なくとも一元素としてZrを含有することが好ましい。
 Xの含有量は、上記のとおり0.02~0.5原子%であり、好ましくは0.05~0.3原子%であり、より好ましくは0.07~0.2原子%である。Xの含有量が0.02原子%未満であると、焼結過程における結晶粒の異常粒成長を抑制する効果が得られない。一方、Xの含有量が0.5原子%を超えた場合、X-B相が形成されることでR2Fe14B相を形成するためのB量が減り、R2Fe14B相比率の減少によるBr低下、ひいてはR2Fe17相が形成されることによって大幅なHcJ減少を招くおそれがある。
 また、本発明の焼結磁石が含有する炭素(C)の含有量は、上記のように、0.1~1.6原子%であり、好ましくは、0.2~1.0原子%である。Cは原料および磁場中成形において粉の配向を上げるために添加される潤滑剤などに由来するため、C量が0.1原子%未満のR-Fe-B系焼結磁石を得ることは困難である。一方、C量が1.6原子%を超えた場合、焼結磁石中に多くのR-C相が存在することで著しくHcJが低下してしまう。
 本発明の焼結磁石は、上記R、B、M、X及びCを含有し、更に残部としてFe、Oを含有するが、この場合Oの含有量は、特に制限されるものではないが、好ましくは0.1~0.8原子%、より好ましくは0.2~0.5原子%である。Oの含有量をこのように調整することにより、後述のR-C相などの所定の相が良好に析出すると考えられる。
 また、本発明の焼結磁石は、上記元素以外に、不可避不純物としてH、N、F、Mg、P、S、Cl、Caなどの元素を含有することがある。この場合、上述した磁石の構成元素と当該不可避不純物との合計に対し、不可避不純物は合計で0.1質量%以下まで許容することができるが、これらの不可避不純物はできるだけ少ない方が好ましい。またこれら不可避不純物の中で、特にNの含有量は、良好なHcJを得る観点から、0.5原子%以下であることが好ましい。
 本発明の焼結磁石は、上記の元素組成からなり、かつ、主相としてのR2Fe14B金属間化合物と、粒界相とを含み、更に粒界相中に主相よりもR濃度及びC濃度の高いR-C相を有し、上記焼結磁石の断面におけるR-C相の面積比率が0を超え、0.5%以下のものである。このような組織形態を有することにより、高いBrと安定したHcJを両立することが可能となる。その理由は必ずしも明らかではないが、次のように推測することができる。
 即ち、R2Fe14B金属間化合物のBの一部は、Cで置換可能であることが知られているが、通常、Cは結晶粒界三重点において不純物相であるR-O-C相を形成しており、主相の形成にはほとんど寄与しない。一方で、本発明のようにR含有量を低減させることで高いBrを得ようと試みるとき、液相焼結を促進させるために不純物であるOの含有量を低減させる必要がある。このような低酸素含有量の条件においては、R-O-C相の形成量が減少するとともに、Cの一部はR2Fe14C、もしくはR-C相を形成することが可能と考えられる。一方、RとCを主元素とする化合物の融点はR-Fe-B系焼結磁石の焼結温度よりも高いことが知られているが、焼結磁石組織に含まれるR-C相の含有量は原料に含まれるC濃度に依存することを見出した。すなわち、R-C相の形成にはR2Fe14B焼結磁石の焼結温度よりも高い温度が必要であり、R-C相は高周波溶解等による原料合金の作製段階において主に形成されると考えられる。そして、高融点のR-C相として消費されるCは主相の形成に寄与せず、逆にRを消費することによりHcJの低下を招く。このような考えのもと、本発明者らは、合金原料中に含まれるCの量を極力低減することにより、R-Fe-B系焼結磁石に含まれるR-C相の量を適正化し、高Brと高HcJとの両立を達成したものである。
 ここで、上記「焼結磁石の断面におけるR-C相の面積比率」は、焼結磁石の任意の断面の所定領域においてR-C相の面積比率を測定すればよい。この場合、「任意の断面」は、焼結磁石のいずれの箇所を切断した断面であってもよく、焼結磁石の何処を切断した断面であっても上記面積比率が達成されていることを意味する。また、この断面における「所定領域」の大きさは、測定機器等に応じて適宜設定されるが、磁石全体の状態を確実に把握できるように、面積15000μm2以上の領域とすることが好ましく、より好ましくは30000μm2以上の領域である。また、複数の領域で測定を行い、その平均値を上記面積比率とすることも好適である。その場合、測定に供した複数の領域の合計面積が、上記好ましい面積となるように設定することが望ましい。
 上記任意の断面の一領域におけるR-C相の面積比率は、上記のとおり、0を超え、0.5%以下とされるが、より確実に十分なHcJを得るためには、好ましくは0.01%以上0.3%以下であり、より好ましくは0.01%以上0.27%以下である。このR-C相の面積比率が0、即ち実質的にR-C相が存在しない場合は、高いBrと安定したHcJの両立が困難となり、本発明の目的を達成し得ない。一方、0.5%以上の面積比率を有する場合、R-C相の形成により粒界相の形成に必要なR量が不足してHcJや角形性が低下する。
 上記面積比率については、SEM(走査電子顕微鏡:Scanning Electron Microscope)によって、焼結磁石の断面の組織を観察することにより確認することができる。この場合、この組成の分析は、SEM装置に付属のEDS(エネルギー分散形X線分析装置:Energy dispersive X-ray spectrometry)によって行うことが出来る。一般的に金属表面の観察には湿式の機械研磨を用いて観察断面の前処理を行う場合があるが、本発明では、最表面の酸化等の影響を取り除くためFIB-SEM(集束イオンビーム走査電子顕微鏡:Focused Ion Beam-Scanning Electron Microscope)を用いて表面加工を行い、そのまま大気暴露せずに観察及び組成分析を行うことも出来る。そして、上記面積比率は、得られた電子像を画像解析ソフトに取り込み、コントラストと組成情報を比較することで算出できる。
 なお、粒界相に含まれる上記R-C相は、R及びC以外のO、Fe、Cuなどを少量含んでいてもよいが、実質的にRとCとからなり、上記のように、主相よりもR濃度及びC濃度の高い相である。そのR濃度は、特に制限されるものではないが、30原子%以上50原子%以下であり、好ましくは35原子%以上45原子%以下である。また、C濃度は主相よりも10原子%以上高いことが好ましく、20原子%以上高いことがより好ましい。R-C相のR濃度及びC濃度がこのように調整されている場合、R-C相が良好な状態で形成されており、本発明の目的をより確実かつ良好に達成することができる。
 次に、本発明のR-Fe-B系焼結磁石を製造する方法について、以下に説明する。
 本発明のR-Fe-B系焼結磁石を製造する際の各工程は、基本的には、通常の粉末冶金法と同様であり、特に制限されるものではないが、通常は、原料を溶解して原料合金を得る溶融工程、所定の組成を有する原料合金を粉砕して合金微粉末を調製する粉砕工程、合金微粉末を磁場印加中で圧粉成形して成形体を得る成形工程、成形体を熱処理して焼結体を得る熱処理工程を含む。
 まず、上記溶融工程においては、上述した本発明における所定の組成となるように各元素の原料となる金属、又は合金を秤量し、例えば、高周波溶解により原料を溶解し、冷却して原料合金を製造する。このとき、原料となる金属又は合金は、溶融工程後に得られる原料合金のC濃度が0.03質量%以下となるようにC含有量の少ないものを用いる必要があり、より好ましくは0.01質量%以下となるよう純度の高い原料を使用することが望ましい。原料合金の鋳造は、平型やブックモールドに鋳込む溶解鋳造法やストリップキャスト法が一般的には採用される。また、R-Fe-B系合金の主相であるR2Fe14B化合物組成に近い合金と焼結温度で液相助剤となるRリッチな合金とを別々に作製し、粗粉砕後に秤量混合する、いわゆる二合金法も本発明には適用可能である。ただし、主相組成に近い合金は、鋳造時の冷却速度や合金組成に依存してα-Fe相が晶出しやすいことから、組織を均一化し、α-Fe相を消去する目的で必要に応じて真空あるいはAr雰囲気中で700~1200℃で1時間以上の均質化処理を施すことが好ましい。なお、主相組成に近い合金をストリップキャスト法にて作製した場合は均質化を省略することもできる。液相助剤となるRリッチな合金については上記鋳造法のほかに、いわゆる液体急冷法を採用することもできる。
 上記粉砕工程は、例えば粗粉砕工程と微粉砕工程を含む複数段階の工程とすることができる。粗粉砕工程では、例えば、ジョークラッシャー、ブラウンミル、ピンミルあるいは水素化粉砕が用いられ、ストリップキャストにより作製された合金の場合、通常は水素化粉砕を適用することで、例えば0.05~3mm、特に0.05~1.5mmに粗粉砕された粗粉を得ることができる。上記微粉砕工程においては、上記粗粉砕工程で得られた粗粉を、例えばジェットミル粉砕などの方法を用いて例えば0.2~30μm、特に0.5~20μmに微粉砕する。なお、原料合金の粗粉砕、微粉砕の一方又は双方の工程において、必要に応じて潤滑剤等の添加剤を添加し、C含有量が所定の範囲となるように調整することができる。この場合、潤滑剤としては、特に制限されるものではないが、ステアリン酸をはじめとする脂肪酸類、アルコール類、エステル類、金属石鹸等を例示することができ、潤滑剤以外にも、カーボンブラック、パラフィン、ポリビニルアルコール等の炭化水素類などをC源として添加することもできる。また、原料合金の粗粉砕工程及び微粉砕工程は、窒素ガス、Arガスなどのガス雰囲気中で行うことが好ましいが、ガス雰囲気中の酸素濃度を制御することにより、O含有量が所定の範囲となるように調整してもよい。
 上記成形工程においては、400~1600kA/mの磁界を印加し、合金粉末を磁化容易軸方向に配向させながら、圧縮成形機で圧粉成形する。このとき、成形体密度を2.8~4.2g/cm3にすることが好ましい。成形体の強度を確保して良好な取扱性を得る観点から、成形体密度は2.8g/cm3以上とすることが好ましい。一方、十分な成形体強度を得つつ、加圧時の粒子の配向を良好に確保することで好適なBrを得る観点から、成形体密度は4.2g/cm3以下とすることが好ましい。また、成形は合金微粉の酸化を抑制するため、窒素ガス、Arガスなどのガス雰囲気で行うことが好ましい。
 上記熱処理工程においては、成形工程で得られた成形体を高真空中又はArガスなどの非酸化性雰囲気中で焼結する。一般的に前記焼結は950℃~1200℃の温度範囲で0.5~5時間保持することで行うことが好ましい。前記焼結が終了した際の冷却はガス急冷(冷却速度:20℃/min以上)、制御冷却(冷却速度:1~20℃/min)、炉冷のいずれの方法で行っても良く、得られるR-Fe-B系焼結磁石の磁気特性は同様となる。
 焼結のための上記熱処理に続いて、特に制限されるものではないが、HcJを高めることを目的に、前記焼結温度より低い温度で熱処理を実施しても良い。この焼結後熱処理は、高温熱処理と低温熱処理の2段階の熱処理を行っても良いし、低温熱処理のみを行っても良い。この焼結後熱処理における高温熱処理では、焼結体を600~950℃の温度で熱処理することが好ましく、低温熱処理では400~600℃の温度で熱処理することが好ましい。その際の冷却もガス急冷(冷却速度:20℃/min以上)、制御冷却(冷却速度:1~20℃/min)、炉冷のいずれの方法で行っても良く、いずれの冷却方法であっても同様な磁気特性を有するR-Fe-B系焼結磁石が得られる。
 また、得られたR-Fe-B系焼結磁石を所定形状に研削し、磁石表面にR1の酸化物、R2のフッ化物、R3の酸フッ化物、R4の水酸化物、R5の炭酸塩、R6の塩基性炭酸塩、R7の単体金属もしくは合金から選ばれる1種以上(R1~R7は希土類元素から選ばれる1種以上で、これらは同一であっても、それぞれ異なっていてもよい)の粉末を含むスラリーを塗布又は塗着させた後、焼結磁石表面に上記粉末を存在させた状態で熱処理することができる。この処理は所謂、粒界拡散法であり、粒界拡散熱処理の温度は焼結温度より低い温度で、かつ350℃以上が好ましく、時間は特に制限されるものではないが、良好な焼結磁石の組織や磁気特性を得る観点から、好ましくは5分~80時間、より好ましくは10分~50時間である。この粒界拡散処理によって上記粉末中に含まれる上記R1~R7を磁石中に拡散させてHcJの増大を図ることができる。なお、この粒界拡散により導入される希土類元素は、説明の便宜上、上記の通りR1~R7の としたが、粒界拡散後は、いずれも上記本発明磁石における上記R成分に包含される。
 以下、実施例、比較例を示し、本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。
  [実施例1]
 表1の合金Aの組成となるように原料を秤量し、Arガス雰囲気中、高周波誘導炉で溶解し、水冷銅ロール上で溶融合金を冷却するストリップキャスト法によって合金薄帯を作製した。このとき、合金に含まれるCの量は原料に含まれるCの量により調整可能であり、例えば電解によって作製されるNd金属に含まれるCの量やカーボンブラックの添加によって調整することが可能である。次に、作製した合金薄帯を水素化による粗粉砕を行い粗粉末を得、続いて、得られた粗粉末に潤滑剤としてステアリン酸を0.1質量%加えて混合した。
 上記粗粉末と潤滑剤との混合物を、窒素気流中のジェットミルで平均粒径3.5μm程度になるよう微粉砕を行った。このとき、ジェットミル系内の酸素濃度を0ppmとした。次に、微粉末を窒素雰囲気中で電磁石を備えた成形装置の金型に充填し、15kOe(1.19MA/m)の磁界中で配向させながら、磁界に対して垂直方向に加圧成形した。
 得られた上記成形体を真空中にて1050℃で3時間焼結し、200℃以下まで冷却した後、900℃で2時間の高温熱処理を行い、500℃で3時間の低温熱処理を行って、焼結体を得た。得られた焼結体の組成を表2に示す。なお、金属元素についてはICP分析、Cについては燃焼赤外吸収法、Oについては不活性ガス融解赤外吸収法により測定した。
  [比較例1]
 表1の合金Cの組成となるように原料を秤量し、実施例1と同様にして合金薄帯を作製した。次に、作製した合金薄帯に対して水素化による粗粉砕を行い粗粉末を得、続いて、得られた粗粉末に潤滑剤を添加することなく、窒素気流中のジェットミルで平均粒径3.5μm程度になるよう微粉砕を行った。以降、実施例1と同様な方法にて成形、熱処理を行って焼結体を得、実施例1と同様にして組成を分析した。結果を表2に示す。
  [実施例2]
 表1の合金Bの組成となるように原料を秤量し、実施例1と同様にして合金薄帯を作製した。次に、作製した合金薄帯に対して水素化による粗粉砕を行い粗粉末を得、続いて、得られた粗粉末に潤滑剤としてステアリン酸を0.05質量%加えて混合した。以降、実施例1と同様な方法にて粉砕、成形、熱処理を行って焼結体を得、実施例1と同様にして組成を分析した。結果を表2に示す。
  [比較例2]
 実施例1と同様にして、合金薄帯の作製、水素化粉砕、粗粉末への潤滑剤の混合を行った。次に、粗粉末と潤滑剤との混合物を、窒素気流中のジェットミルで粉砕して平均粒径3.5μm程度の微粉末を得た。このとき、ジェットミル系内の酸素濃度を適宜調整することにより、実施例1における粉末よりもO含有量が多くなるようにした。次に、作製した微粉末を実施例1と同様な方法にて成形、熱処理を行って、焼結体を得、実施例1と同様にして組成を分析した。結果を表2に示す。
 上記実施例1,2及び比較例1,2で得られた各焼結体の中心部を18mm×15mm×12mmのサイズの直方体形状に切出して焼結磁石を得、かかる各焼結磁石についてB-Hトレーサを用いて磁気特性(Br、HcJ)を測定した結果を表2に併記する。
 また、上記各焼結磁石の組織を集束イオンビーム走査電子顕微鏡(FIB-SEM)(Scios;FEI社製)及び走査透過型電子顕微鏡(STEM)(JEM-ARM200F;日本電子製)を用いて観察し、粒界相に含まれるR-C相の面積率を算出した。この分析結果を表2に併記する。分析方法は、まず得られた各試料の断面の表面部をFIBで削り、次いで69×46μm角の領域の反射電子像および二次電子像を取得した。同領域において各像で同一のコントラストの各相の組成分析をエネルギー分散型X線分析(EDS)により行い、各相の同定を行った。さらに、得られた電子像を画像解析ソフトに取り込み、コントラストと先に得られた組成情報を比較し、R-C相の面積分率を算出した。なお、FIBによる表面加工の後そのまま大気暴露せずに観察および組成分析を一連で作業を行った。この組織観察の結果については、5点の測定箇所の結果を平均した値とした。また、表3には実施例1におけるR-C相の分析値を代表として記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示されているように、R-C相の面積率が0超~0.5%の範囲である実施例1、2の焼結磁石は、比較例1、2と比較して、Br及びHcJにおいて優れた特性を有する。比較例1については、焼結磁石作製時に潤滑剤を添加していないため成形時の配向が低下し、Brは低い値となってしまっているが、R-Fe-B系焼結磁石において配向が低下するほどHcJが向上することが知られており、具体的には約-4×10-4T/(kA/m)の割合で変動し、これを考慮すると、焼結磁石に含まれるCが全て原料合金に由来する比較例1のHcJは、実施例1と同程度の配向を有する場合に想定されるよりも50kA/m以上低く、実施例1に比べて大きく劣っていると認定することができる。また、潤滑剤の添加量が0.05wt%である実施例2のHcJは、配向の低下を考慮したHcJとの差が50kA/m以下であり、良好なHcJが得られていた。一方、焼結磁石中のO濃度がC濃度に比べて高く、R-C相を含まない比較例2は、実施例1に比べてHcJが大幅に低かった。
Figure JPOXMLDOC01-appb-T000003
 表3に示されているように、実施例1に含まれるR-C相、および主相であるR2Fe14B相をEDSで分析した結果、R-C相のR濃度及びC濃度はいずれも主相よりも高かった。また、R-C相のC濃度は、表3のとおり、主相と比較して20原子%以上高かった。これについては、R-C相に含まれるCは、試料表面のコンタミネーションを含む値であるため、主相にも同程度のコンタミネーションが存在すると仮定し、主相からの増分がR-C相に含まれるCであると考えられる。
 [実施例3、4]
 表1の合金Aの組成となるように原料を秤量し、実施例1と同様にして合金薄帯を作製した。次に、作製した合金薄帯を水素化による粗粉砕を行い粗粉末を得、続いて、得られた粗粉末に潤滑剤を添加することなく、窒素気流中のジェットミルで平均粒径3.5μm程度になるよう微粉砕を行った。その後、表4に示したC源を0.1wt%添加し、以降、実施例1と同様な方法にて成形、熱処理を行って焼結体を得、実施例1と同様にして組成を分析した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されているように、潤滑剤とは異なるC源を添加した場合も、磁石に含まれるR-C相の面積率は、いずれも0超~0.5%以下とすることができ、同量の潤滑剤を添加した実施例1と同程度の面的率を達成することができた。また、これらの磁気特性は、配向の悪化に伴いBrは低下するものの、HcJは配向の悪化に伴い上昇し、実施例1よりも約80kA/m高く、配向とHcJにおける-4×10-4T/(kA/m)の関係から想定されるHcJが得られており、潤滑剤であるステアリン酸以外のC源を用いた場合においても良好な磁気特性を得ることができた。

Claims (7)

  1.  12.5~14.5原子%のR(Rは希土類元素から選ばれる1種以上の元素であり、Ndを必須とする)、5.0~6.5原子%のB、0.15~5.0原子%のM(MはSi、Al、Mn、Ni、Co、Cu、Zn、Ga、Ge、Pd、Ag、Cd、In、Sn、Sb、Pt、Au、Hg、Pb、Biから選ばれる1種以上の元素)、0.02~0.5原子%のX(XはTi、Zr、Hf、Nb、V、Taから選ばれる1種以上の元素)、0.1~1.6原子%のCを含有すると共に、残部がFe、O及び不可避不純物である組成を有し、R2Fe14B金属間化合物である主相と、粒界相とを含有するR-Fe-B系焼結磁石であって、前記粒界相中に前記主相よりもR濃度及びC濃度の高いR-C相を有し、当該R-Fe-B系焼結磁石の断面における上記R-C相の面積比率が0を超え、0.5%以下であることを特徴とするR-Fe-B系焼結磁石。
  2.  上記Rの含有量が12.8~14.0原子%である請求項1に記載のR-Fe-B系焼結磁石。
  3.  上記Oの含有量が0.1~0.8原子%である請求項1又は2に記載のR-Fe-B系焼結磁石。
  4.  上記Cの含有量が0.2~1.0原子%である請求項1~3のいずれか1項に記載のR-Fe-B系焼結磁石。
  5.  上記Bの含有量が5.2~5.9原子%である請求項1~4のいずれか1項に記載のR-Fe-B系焼結磁石。
  6.  上記M元素の一部として、0を超え、0.1原子%以下のGaを含有する請求項1~5のいずれか1項に記載のR-Fe-B系焼結磁石。
  7.  上記R-C相のC濃度が主相と比較して20原子%以上高い請求項1~6のいずれか1項に記載のR-Fe-B系焼結磁石。
PCT/JP2020/041346 2019-11-11 2020-11-05 R-Fe-B系焼結磁石 WO2021095633A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021556055A JP7424388B2 (ja) 2019-11-11 2020-11-05 R-Fe-B系焼結磁石
US17/772,332 US20220406498A1 (en) 2019-11-11 2020-11-05 R-fe-b-based sintered magnet
CN202080079647.1A CN114730652A (zh) 2019-11-11 2020-11-05 R-Fe-B系烧结磁体
EP20886644.2A EP4060690A4 (en) 2019-11-11 2020-11-05 SINTERED MAGNET BASED ON R-FE-B
JP2023189329A JP2024016174A (ja) 2019-11-11 2023-11-06 R-Fe-B系焼結磁石

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019203978 2019-11-11
JP2019-203978 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021095633A1 true WO2021095633A1 (ja) 2021-05-20

Family

ID=75912049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041346 WO2021095633A1 (ja) 2019-11-11 2020-11-05 R-Fe-B系焼結磁石

Country Status (6)

Country Link
US (1) US20220406498A1 (ja)
EP (1) EP4060690A4 (ja)
JP (2) JP7424388B2 (ja)
CN (1) CN114730652A (ja)
TW (1) TW202132584A (ja)
WO (1) WO2021095633A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184901A (ja) * 1990-11-20 1992-07-01 Shin Etsu Chem Co Ltd 希土類鉄系永久磁石およびその製造方法
JPH04330702A (ja) * 1990-11-20 1992-11-18 Shin Etsu Chem Co Ltd 耐触性に優れた希土類永久磁石
JPH0931608A (ja) * 1995-07-19 1997-02-04 Sumitomo Special Metals Co Ltd 耐食性のすぐれた高性能R−Fe−B−C系磁石材料
WO2004081954A1 (ja) 2003-03-12 2004-09-23 Neomax Co., Ltd. R-t-b系焼結磁石およびその製造方法
WO2009004994A1 (ja) * 2007-06-29 2009-01-08 Tdk Corporation 希土類磁石
JP2009260338A (ja) * 2008-03-28 2009-11-05 Tdk Corp 希土類磁石
WO2013122255A1 (ja) * 2012-02-13 2013-08-22 Tdk株式会社 R-t-b系焼結磁石
WO2013191276A1 (ja) 2012-06-22 2013-12-27 Tdk株式会社 焼結磁石
JP2016143828A (ja) 2015-02-04 2016-08-08 Tdk株式会社 R−t−b系焼結磁石

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056188A (ja) * 2016-09-26 2018-04-05 信越化学工業株式会社 R−Fe−B系焼結磁石
JP6614084B2 (ja) * 2016-09-26 2019-12-04 信越化学工業株式会社 R−Fe−B系焼結磁石の製造方法
WO2018101239A1 (ja) * 2016-12-02 2018-06-07 信越化学工業株式会社 R-Fe-B系焼結磁石及びその製造方法
JP6950595B2 (ja) * 2018-03-12 2021-10-13 Tdk株式会社 R−t−b系永久磁石

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184901A (ja) * 1990-11-20 1992-07-01 Shin Etsu Chem Co Ltd 希土類鉄系永久磁石およびその製造方法
JPH04330702A (ja) * 1990-11-20 1992-11-18 Shin Etsu Chem Co Ltd 耐触性に優れた希土類永久磁石
JPH0931608A (ja) * 1995-07-19 1997-02-04 Sumitomo Special Metals Co Ltd 耐食性のすぐれた高性能R−Fe−B−C系磁石材料
WO2004081954A1 (ja) 2003-03-12 2004-09-23 Neomax Co., Ltd. R-t-b系焼結磁石およびその製造方法
WO2009004994A1 (ja) * 2007-06-29 2009-01-08 Tdk Corporation 希土類磁石
JP2009260338A (ja) * 2008-03-28 2009-11-05 Tdk Corp 希土類磁石
WO2013122255A1 (ja) * 2012-02-13 2013-08-22 Tdk株式会社 R-t-b系焼結磁石
WO2013191276A1 (ja) 2012-06-22 2013-12-27 Tdk株式会社 焼結磁石
JP2016143828A (ja) 2015-02-04 2016-08-08 Tdk株式会社 R−t−b系焼結磁石

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060690A4

Also Published As

Publication number Publication date
JPWO2021095633A1 (ja) 2021-05-20
TW202132584A (zh) 2021-09-01
EP4060690A4 (en) 2023-11-22
JP2024016174A (ja) 2024-02-06
EP4060690A1 (en) 2022-09-21
JP7424388B2 (ja) 2024-01-30
CN114730652A (zh) 2022-07-08
US20220406498A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
KR102394072B1 (ko) R―Fe―B계 소결 자석 및 그의 제조 방법
CN109478452B (zh) R-t-b系烧结磁体
JP6520789B2 (ja) R−Fe−B系焼結磁石及びその製造方法
EP3076406B1 (en) Making method of a r-fe-b sintered magnet
CN109964290B (zh) R-t-b系烧结磁体的制造方法
CN109983553B (zh) R-t-b系烧结磁体的制造方法
WO2018101239A1 (ja) R-Fe-B系焼結磁石及びその製造方法
CN116368585B (zh) R-t-b系烧结磁体
JP7424388B2 (ja) R-Fe-B系焼結磁石
JP7059995B2 (ja) R-t-b系焼結磁石
JP2021182623A (ja) 希土類焼結磁石及びその製造方法
JP2022077979A (ja) 希土類焼結磁石の製造方法
JP7226281B2 (ja) 希土類焼結磁石
JP2020155657A (ja) R−t−b系焼結磁石の製造方法
WO2021095630A1 (ja) R-Fe-B系焼結磁石
JP7243609B2 (ja) 希土類焼結磁石
US20240161952A1 (en) R-t-b sintered magnet
JP7380369B2 (ja) R-t-b系焼結磁石の製造方法及び拡散用合金
JP7476601B2 (ja) R-t-b系焼結磁石の製造方法
KR20240072054A (ko) R-t-b계 소결 자석
JP2023163209A (ja) 希土類焼結磁石及び希土類焼結磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020886644

Country of ref document: EP

Effective date: 20220613