WO2021095514A1 - 乱気流センシングシステム、航空機及び乱気流センシング方法 - Google Patents

乱気流センシングシステム、航空機及び乱気流センシング方法 Download PDF

Info

Publication number
WO2021095514A1
WO2021095514A1 PCT/JP2020/040291 JP2020040291W WO2021095514A1 WO 2021095514 A1 WO2021095514 A1 WO 2021095514A1 JP 2020040291 W JP2020040291 W JP 2020040291W WO 2021095514 A1 WO2021095514 A1 WO 2021095514A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
eddy
measured
vortex
pressure
Prior art date
Application number
PCT/JP2020/040291
Other languages
English (en)
French (fr)
Inventor
緑 牧
吉郎 濱田
加藤 博司
亮太 菊地
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Publication of WO2021095514A1 publication Critical patent/WO2021095514A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to an eddy sensing system and an eddy sensing method mounted on an aircraft.
  • the present invention relates to an aircraft equipped with such an eddy sensing system.
  • Patent Document 1 Patent Document 2, Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, and the like are disclosed.
  • Clear-air turbulence can occur at any altitude in the troposphere, but clear-air turbulence that occurs around jet streams (altitude 8000 to 13000 m) poses a threat to the safe operation of cruising aircraft.
  • In order to significantly reduce the sway of the aircraft when encountering eddy not only feedback control of inertial sensor information but also predictive feedforward control based on look-ahead of forward wind speed information using Doppler lidar is effective.
  • the achieved performance depends on the accuracy of the forecast information, and there is a risk of amplifying the sway and leading to instability, especially when the phase of the forecast wind speed fluctuation is significantly different from the actual phase.
  • an object of the present invention is to provide an eddy sensing system, an aircraft, and an eddy sensing method capable of suppressing airframe sway at the time of encountering eddy with higher safety and reliability.
  • the present inventors have introduced a new turbulence sensing reinforcement system to reinforce safety and reliability in a system separate from the Doppler lidar in order to sharply study and enable the implementation of sway reduction technology in aircraft. We came to the conclusion that it is necessary to devise the system configuration.
  • the eddy sensing system is arranged at a plurality of points on the surface of the main wing of the aircraft, the eddy prediction unit for predicting the eddy in front of the aircraft using the Doppler lidar mounted on the aircraft and the values measured by the Doppler lidar. It is provided with a plurality of static pressure measuring units, and compensates for the predicted eddy information based on the measured values of the points measured by the plurality of static pressure measuring units.
  • the static pressure on the surface of the main wing of the aircraft which is a system different from the Doppler lidar
  • the information of the turbulence predicted on the Doppler lidar side is compensated from this measurement result.
  • the turbulence sensing system includes a vortex estimation unit that estimates the rotation axis position and strength of a linear vortex yarn according to the predicted turbulence in front of the aircraft based on the measured values by the Doppler lidar, and the vortex estimation unit.
  • a first pressure field estimation unit that estimates a first pressure field on the surface of the main wing of the aircraft based on the estimated rotation axis position and strength of each linear vortex yarn, and each measured by the plurality of static pressure measurement units.
  • a second pressure field estimation unit for estimating the second pressure field on the surface of the main wing is provided from the measured values at the points, and the degree of coincidence between the first pressure field and the second pressure field is obtained. , Compensate for the predicted turbulence information based on the degree of coincidence.
  • the turbulence sensing system includes a first vertical wind velocity field prediction unit that predicts a future first vertical wind velocity induced in the aircraft in ⁇ t seconds from the measured value by the Doppler lidar.
  • the future second vertical wind velocity that the forward vortex induces in the aircraft ⁇ t seconds ahead is predicted from the measured value by the Doppler lidar and the measured value of each of the points measured by the plurality of static pressure measuring units.
  • the second vertical-facing wind velocity field prediction unit obtains the degree of correlation between the first vertical wind velocity and the second vertical wind velocity, and compensates for the predicted turbulence information based on the correlation degree. To do. In this system, the degree of correlation in the already passed region may be evaluated, and whether or not to compensate for the predicted turbulence information may be determined according to the evaluation result.
  • the aircraft according to one embodiment of the present invention is an aircraft equipped with a Doppler lidar and an air data sensor, and is a measured value by the Doppler lidar, a measured value by the air data sensor, and an expanded aircraft model related to the aircraft. It has a pressure estimation unit that estimates the pressure field of the aircraft by calculating the disturbance potential using the panel data. In this case, the pressure estimation unit obtains the aerodynamic force fluctuation acting on the aircraft from the estimated pressure field, and the attitude stabilization that performs the attitude stabilization feedback control of the aircraft with the aerodynamic force fluctuation as one of the parameters. It may further have a chemical control unit.
  • the aircraft according to one embodiment of the present invention is an aircraft equipped with a plurality of static pressure measuring units, and uses the measured values by the static pressure measuring units and the basic pressure field data related to the aircraft to receive the aircraft. It has a pressure estimation unit that calculates the angle change and the trailing edge shape effect by minimum square estimation and estimates the pressure field of the aircraft constituting the aircraft.
  • the aircraft according to one embodiment of the present invention further uses a Doppler lidar, an air data sensor, a pressure field estimated by the pressure estimation unit, a value measured by the Doppler lidar, and a value measured by the air data sensor.
  • the eddy sensing method predicts the eddy in front of the aircraft by using the measured values by the Doppler lidar mounted on the aircraft, and measures the static pressures arranged at a plurality of points on the surface of the main wing of the aircraft. Based on the measured value of the static pressure at each of the measured points, the information on the predicted eddy is compensated.
  • FIG. 1 is an explanatory diagram of a system using a Doppler lidar according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of an eddy air sensing system mounted on the aircraft shown in FIG.
  • the aircraft 1 As shown in FIG. 1, for example, it takes about 50 seconds for an aircraft 1 having a speed of about 200 m / s to pass through a clear-air turbulence having a width of 300 m in the altitude direction and a distance of 10 km in the horizontal direction. If you want to fly to avoid such turbulence, but the avoidance flight is not in time, you also need flight control technology that minimizes damage by suppressing the sway of the aircraft as much as possible when passing through the eddy airspace.
  • the aircraft 1 according to the present embodiment is equipped with the eddy sensing system 10 shown in FIG. 2, and performs not only feedback control of inertial sensor information but also predictive feed forward control based on pre-reading of forward wind velocity information using a Doppler lidar. The sway of the aircraft when encountering turbulence is remarkably reduced, and the sway of the aircraft when encountering eddy is suppressed with higher safety and reliability.
  • the eddy sensing system 10 includes a Doppler lidar 2 mounted near the nose of the airframe 11, a plurality of static pressure measuring units 4 distributed on the surface of the main wing, an eddy prediction unit 21, and a vortex. It has an estimation unit 22, a first pressure field estimation unit 23, a second pressure field estimation unit 24, and a concordance degree verification unit 25.
  • the Doppler lidar 2 typically, a small Doppler lidar for pre-detection of clear-air turbulence can be used.
  • the eddy prediction unit 21 predicts the eddy in front of the aircraft 1 by using the values measured by the Doppler lidar 2.
  • the static pressure measuring unit 4 typically has a pressure hole provided on the surface of the main wing 3 and a pressure transducer. A technique for forming a pressure hole is disclosed in, for example, Patent Document 2.
  • the static pressure measuring unit 4 according to the present invention is not limited to the configuration with pressure holes.
  • the attitude stabilization control unit 31 performs feedback steering of the aircraft 11 from the information obtained by the inertial sensor 32, and the feedforward unit 33 performs feedforward steering of the aircraft 11 from the measured values of the turbulence prediction unit 21.
  • an eddy information compensation unit 34 that compensates for predicted eddy information based on the measured values of each point measured by the plurality of static pressure measuring units 4 is provided. The eddy information compensation unit 34 will be described later.
  • the vortex estimation unit 22 estimates the rotation axis positions and intensities of one or more linear vortex threads according to the predicted eddy in front of the aircraft 1 based on the measured values by the Doppler lidar 2.
  • the first pressure field estimation unit 23 estimates the first pressure field on the surface of the main wing of the aircraft 1 based on the position and strength of the rotation axis of each of the estimated linear vortex threads.
  • a linear vortex thread model is assumed as the most dangerous vortex structure inherent in clear-air turbulence. This vortex model is not a meteorological model. This is an engineering model that approximates the main phenomena inherent in clear-air turbulence and utilizes them in the logic design described below.
  • the vortex estimation unit 22 typically extracts data of the vortex-shaped structure and the velocity of the vortex structure in the atmosphere from the wind speed distribution output by the Doppler lidar 2 (step 301).
  • data extraction of a vortex-shaped structure in the atmosphere an SN image can be used, and known feature detection can be used for extraction of the vortex-shaped structure.
  • the position of the vortex and the rotation axis of the vortex are also extracted at the same time.
  • a Doppler image is used to extract the rotational velocity of the extracted vortex structure.
  • the vortex estimation unit 22 determines the arrangement of the rotation axis of the linear vortex and the strength of the vortex so as to fit the wind speed field induced by the linear vortex with respect to the output of step 301 (step 302). At this time, the output of step 302 is corrected by coordinate conversion, unit conversion, or the like so that it can be handled by the coordinate system of the airframe in the potential equation used in step 305.
  • the aircraft 1 typically includes an air data sensor (not shown) that measures airspeed, angle of attack, skid angle, etc., and the first pressure field estimation unit 23 is a measurement value of this air data sensor. (Airspeed, angle of attack, skid angle) is taken in (step 303).
  • the first pressure field estimation unit 23 extracts all panel data from an enlarged machine model prepared in advance so that a plurality of quadrilateral panels (flat plates) in contact with each other form a closed space (step 304).
  • the enlarged airframe model is composed of an airframe model and a wake model virtually provided behind the airframe model.
  • the wake model is a model of a thin wake sheet (wake) that is elongated behind the trailing edge of the airframe, and is virtually provided for analyzing the flow field.
  • the airframe model and the wake model are continuously connected at the trailing edge of the airframe 11, and the expanded airframe model is integrated.
  • Each panel data includes a panel number (for example, 1 to Z), a panel spatial coordinate, and a panel normal vector, and may also include physical parameters for each panel.
  • the first pressure field estimation unit 23 is a velocity potential equation (continuity equation or mass conservation law) when an expanded aircraft composed of a wake virtually provided in the main body of the airframe 11 and the rear space of the airframe 11 receives a uniform flow.
  • the velocity potential on the surface of the airframe is calculated by adding the data on the external vortex arranged separately from the airframe. In this calculation, the rotation axis direction of the vortex input from step 302, the coordinates of the vortex and the strength of the vortex, the coordinates of the aircraft, the airspeed corresponding to the uniform flow input from step 303, the angle of attack of the aircraft 11, and the angle of attack of the aircraft 11.
  • the skid angle and the panel data input from step 304 are substituted into the velocity potential equation.
  • the above potential equation calculates the disturbance potential for each panel, typically using the following equation by using the known Green's formula and discretization for each panel.
  • S Boundary surface in the enlarged aircraft
  • Disturbance potential
  • i Subscript that specifies the panel of interest (any point on or other than the surface of the aircraft, except for the space inside the expanded aircraft)
  • j Subscript indicating all panels constituting the aircraft (however, j ⁇ i)
  • k Subscript indicating all panels constituting the wake (however, k ⁇ i)
  • u Upper panel of the vortex panel l: Lower panel of the vortex panel
  • ⁇ p Surface integral of each panel
  • r Focus position i and the center of gravity of the panel covering the enlarged body surface
  • Vortex-induced potential
  • n Normal vector on the boundary surface
  • nx x component of the normal vector on the boundary surface
  • S also,
  • xQ and yQ xy coordinates of the moving point Q on the surface of the aircraft x0 and y0: xy coordinates of the vortex after rotation so that the rotation axis of the vortex is parallel to the z axis
  • Vortex intensity (vortex circulation)
  • B 0, so the term (cosa + cosb) may be 2.
  • the first pressure field estimation unit 23 calculates the velocity field by adding the disturbance potential and the velocity potential of the uniform flow in each panel (step 306). This method for calculating the velocity field is described in Non-Patent Document 3.
  • the first pressure field estimation unit 23 calculates the pressure field from the velocity field from Bernoulli's theorem (step 307).
  • the pressure field applied to the machine body 11 can be calculated by the above steps 301 to 307.
  • the pressure distribution applied to the blade can be calculated.
  • the second pressure field estimation unit 24 estimates the second pressure field on the entire surface of the main wing 3 by least squares estimation from the measured values of each point measured by the plurality of static pressure measurement units 4.
  • the second pressure field estimation unit 24 performs simple pressure field estimation, which is an estimation of a quasi-unsteady pressure field with a gentle transient response, and will be described with reference to FIG.
  • FIG. 6 is a perspective view schematically showing one main wing 3, and reference numerals 41 scattered on the surface of the main wing 3 indicate pressure holes of the static pressure measuring unit 4.
  • is the angle of attack variation
  • S j is the area of the blade element corresponding to the change in the shape of the trailing edge
  • ⁇ j is the change in the shape of the trailing edge.
  • X is a multidimensional state vector (finite dimension) in which the surface pressure field (infinite dimension) is discretized.
  • the second pressure field estimation unit 24 selects the observation matrix H according to the multipoint dispersion arrangement of the static pressure measurement unit 4 (step 501).
  • the observation matrix H is a matrix that specifies variables that can be actually observed directly by the pressure hole 41 in the state vector X, and is usually 0 or 1. Since there is a degree of freedom in where the pressure hole 41 is installed on the surface of the main wing 3, it can be regarded as a design parameter (optimization variable) when constructing the estimation system.
  • the second pressure field estimation unit 24 takes in data obtained by creating a database of basic pressure fields obtained by CFD (Computational Fluid Dynamics) and wind tunnel test.
  • the observation error Y ⁇ from the basic pressure field is linearly shown below as a superposition (multiplication of the coefficient matrices B ⁇ and B ⁇ ) of the angle of attack change ⁇ and the trailing edge shape effect ⁇ . Expressed as a stochastic process model.
  • is the true value of the angle of attack fluctuation, and is a parameter for changing the entire surface pressure field.
  • is the true value of the change in the shape of the trailing edge of the blade, and is a parameter that changes the surface pressure field in the span direction. In FIG. 6, since it is divided into eight control surfaces, it is an eight-dimensional vector, but it may be coarser or finer.
  • Y ⁇ is the error between the measured angle of attack ⁇ during flight, the nominal value of the pressure field obtained by referring to the database, and the actual observed pressure.
  • B ⁇ is a sensitivity matrix for fluctuations in the angle of attack of the pressure field, and identification work is required.
  • B ⁇ is a sensitivity matrix for the trailing edge shape effect ⁇ of the pressure field, and identification work is required.
  • W is a change in the pressure field that cannot be explained by the change in the angle of attack and the change in the shape of the trailing edge, and is considered to be a random variable that follows a normal distribution.
  • the second pressure field estimation unit 24 determines the angle-of-attack change ⁇ and the trailing edge shape effect ⁇ that can explain Y ⁇ by least squares estimation (step 502).
  • the second pressure field estimation unit 24 determines the estimated pressure field by the following formula (step 503).
  • overline
  • X ⁇ (both overlined) is a nominal pressure field based on the angle-of-attack reference value, and is a database that has been tabulated in advance.
  • ⁇ (over hat line) and ⁇ (over hat line) are least squares estimates.
  • the second pressure field estimation unit 24 calculates the estimation error covariance P by the following formula (step 504).
  • E ( ⁇ ) is the expected value.
  • ⁇ (overwave line) is an error from the true value.
  • ⁇ (overwave line) is an error vector from the true value. That is, the second pressure field estimation unit 24 is the matrix P.
  • the accuracy of pressure field estimation is evaluated by the diagonal components of.
  • the estimated pressure field can be converted to lift.
  • Unsteady pressure field estimation is also possible by extending to the Kalman filter type. This estimation can typically be done by a Kalman-filtered sequential estimation algorithm.
  • the Kalman filter type dynamic sequential algorithm when the non-stationarity of the pressure field cannot be ignored can be formulated as follows.
  • the unsteady pressure fluctuation is expressed as a discrete-time state equation as follows.
  • ⁇ X is a variable indicating the unsteady component (transient response component)
  • A, ⁇ 1 and ⁇ 2 are parameters expressing the transient response characteristics, which are identified from the wind tunnel test input / output data.
  • V and W represent the modeling error and assume noise that follows an appropriate normal distribution.
  • k is a subscript indicating a time series.
  • the matching degree verification unit 25 obtains the matching degree ( ⁇ : for example, 0 ⁇ ⁇ ⁇ 1) between the first pressure field and the second pressure field estimated as described above.
  • the concordance test unit 25 may, for example, convert the partial static pressure information into a physical feature amount such as a blade cross-sectional pressure coefficient distribution and a main blade surface pressure distribution in consideration of the span direction, and evaluate the concordance.
  • the eddy information compensating unit 34 compensates the predicted value by the eddy prediction unit 21 according to the concordance degree ⁇ obtained by the concordance degree testing unit 25. For example, the eddy information compensation unit 34 increases the feedforward steering amount of the aircraft 11 based on the value predicted by the eddy prediction unit 21 when the degree of coincidence ⁇ between the first pressure field and the second pressure field becomes high, and the degree of coincidence. When ⁇ becomes low, the feedforward steering amount is reduced.
  • the static pressure on the surface of the main wing 3 of the aircraft 1, which is a system different from the Doppler lidar 2 is measured at a plurality of points, and the eddy predicted on the Doppler lidar 2 side from the measurement results. Since the information of the above is compensated, the robustness against the observation error of the Doppler lidar 2 can be reinforced. As a result, it is possible to suppress the sway of the aircraft when encountering eddy with higher safety and reliability.
  • the eddy information compensation unit 34 performs feedforward control according to the degree of coincidence ⁇ , but the outputs of the Doppler lidar 2, the vortex estimation unit 22, and the first pressure field estimation unit 23 are used.
  • the gain of the attitude stabilization control unit 31 may be adaptively adjusted by setting the output of the eddy information compensation unit 34 (feedforward unit) to zero (not shown). In that case, since the information on the aerodynamic force fluctuation acting on the airframe 11 can be obtained from the output of the first pressure field estimation unit 23, the information on the aerodynamic force fluctuation acting on the airframe 11 is input to the attitude stabilization control unit 31 and the attitude.
  • the stabilization control unit 31 also redesigns the information as a parameter and performs feedback control. The redesign is performed in real time, for example, on an airplane. In addition, if real-time operation is uncertain, gain scheduling may be used. In this form, the control system has only feedback gain, but the gain inside the control system is automatically adjusted for when eddy is encountered.
  • the above control is configured to switch the output of the turbulence information compensation unit 34 (feedforward unit) to zero, but the turbulence sensing system 10 is the Doppler lidar 2, the turbulence prediction unit 21, and the vortex estimation unit 22. And the first pressure field estimation unit 23, and the information on the aerodynamic force fluctuation acting on the aircraft 11 which is the output of the first pressure field estimation unit 23 is input to the attitude stabilization control unit 31 to perform feedforward control.
  • the feedback control may be performed without the above.
  • the turbulence sensing system 10 is composed of a Doppler lidar 2, a vortex estimation unit 22, and a first pressure field estimation unit 23, and an aerodynamic force acting on the aircraft 11 which is an output of the first pressure field estimation unit 23. Information on fluctuations may be input to the attitude stabilization control unit 31 to perform feedback control without feedforward control (not shown).
  • FIG. 7 is a block diagram showing a configuration of an eddy air sensing system according to a second embodiment of the present invention.
  • the same elements as those in the first embodiment are designated by the same reference numerals.
  • the eddy sensing system 110 includes a two-axis type or scan type Doppler lidar 2, an eddy prediction unit 21, a first vertical wind speed field prediction unit 111, and a static pressure measurement unit 4. It has a vortex strength and vortex-induced interception angle estimation unit 112, a second vertical wind speed field prediction unit 113, and a correlation unit 114.
  • the configuration of the biaxial type or scan type Doppler lidar 2 is described in, for example, Patent Document 1.
  • the Doppler lidar 2 calculates the relative position R t (distance at time t) of the clear-air turbulence core position with respect to the own aircraft.
  • the first vertical wind speed field prediction unit 111 predicts the future vertical wind velocity to be induced in the aircraft in ⁇ t seconds from the predicted value of the turbulence in front of the aircraft 1 by the turbulence prediction unit 21.
  • the unknown parameters of the linear vortex thread are the rotation axis direction ⁇ (vector) and the intensity ⁇ (scalar).
  • the rotation axis direction of the linear vortex thread is limited to the horizontal plane orthogonal to the traveling direction of the aircraft 1. The first reason is that the true nature of the clear-air turbulence is Helmholtz instability due to shear in the altitude direction, and the axis of rotation does not have a significant vertical component like a tornado.
  • the span length of the aircraft 1 (the length from the left end to the right end of the main wing) is overwhelmingly small compared to the distance Rt and the spatial scale of the vortex, so the influence of ⁇ can be ignored.
  • the only unknown parameter is the intensity ⁇ (a constant value in a short time).
  • the vortex intensity and the vortex-induced angle-of-attack estimation unit 112 calculates the intensity of the vortex thread model from the following equation using the calculated angle-of-attack conversion value ⁇ t of the vortex-induced effect.
  • the second vertical wind velocity field prediction unit 113 predicts the future vertical wind velocity induced in the aircraft by the forward vortex ⁇ t seconds ahead as follows.
  • the correlation unit 114 is a future wind speed time series prediction value after ⁇ t seconds predicted by the first vertical face wind velocity field prediction unit 111 and a ⁇ t second after ⁇ t seconds predicted by the second vertical face wind velocity field prediction unit 113. Obtain the correlation coefficient (0 ⁇ ⁇ ⁇ 1) with the predicted value of the future wind speed time series.
  • the eddy information compensation unit 34 corrects the feedforward steering amount according to the obtained correlation coefficient. For example, if it is judged that the correlation ⁇ is weak, it is judged that the error of the vertical wind speed due only to the signal processing of the Doppler lidar may be large, and the gain is narrowed down. If the correlation ⁇ is strong, it is judged that the reliability of Doppler lidar measurement is high, and the feedforward steering amount is added as it is without correction.
  • the attitude stability control unit 36 of the aircraft 11 performs feedback steering by the Ford back loop of information from the inertial sensor 32, and ⁇ and ⁇ (angle of attack, skid angle) measured by the aerodynamic angle sensor 35 are It is input to the vortex intensity and vortex-induced angle-of-attack estimation unit 112.
  • future feedforward control after ⁇ t seconds can be performed with higher safety and reliability.
  • the panel method calculation as in the first pressure field estimation unit is not used, the calculation load is small and it is suitable for on-board calculation.
  • FIG. 8 is an explanatory diagram of the eddy air sensing system according to the third embodiment of the present invention.
  • the aircraft 1 shown in FIG. 8 is equipped with, for example, the eddy air sensing system 110 shown in FIG. 7. While evaluating the reliability of the Doppler lidar 2 and the eddy prediction unit 21 in the subsequent stage using the current and past sensing information, it is determined whether or not to utilize the prediction information. Based on the past evaluation of the already passed area (A in FIG. 8), the propriety of applying the future prediction control, which is the encounter schedule (B in FIG. 8), is determined.
  • the wing surface pressure field sensing information by the static pressure measuring unit 4 to the second vertical wind speed field prediction unit 113 in the already passed region (A in FIG. 8) is utilized.
  • the already passed region (A in FIG. 8) when the cumulative value of the correlation coefficient in the correlation unit 114 is a predetermined value or more, the future prediction information that is the encounter schedule (B in FIG. 8) is used.
  • Apply feedforward control otherwise do not apply predictive control. This makes it possible to suppress the sway of the aircraft when encountering eddy, in the most careful way to reduce the risk of predictive control.
  • the Doppler lidar 2 is used for detecting eddy, but the present invention is not limited to this. Similar to Doppler lidar 2, any Doppler radar that can be mounted on an aircraft can be mounted on an aircraft as long as it can dynamically measure the flow of the atmosphere and detect the shape of the vortex, the position of the vortex, and the intensity (wind speed) of the vortex. May be good.
  • Aircraft 2 Doppler lidar 3: Main wing 4: Static pressure measurement unit 10: Eddy sensing system 11: Aircraft 21: Eddy prediction unit 22: Vortex estimation unit 23: First pressure field estimation unit 24: Second pressure field Estimating unit 25: Concordance verification unit 31: Attitude stabilization control unit 32: Inertivity sensor 33: Feed forward unit 34: Eddy information compensation unit 35: Aerodynamic angle sensor 41: Pressure hole 110: Eddy sensing system 111: First vertical Surface wind velocity field prediction unit 112: Vortex intensity and vortex-induced interception angle estimation unit 113: Second vertical surface wind velocity field prediction unit 114: Correlation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】より高い安全性及び信頼性で乱気流遭遇時の機体動揺を抑えることができる乱気流センシングシステム及び乱気流センシング方法を提供すること。 【解決手段】乱気流センシングシステム10は、航空機1に搭載されたドップラーライダー2と、前記ドップラーライダー2による計測値を用い、当該航空機1の前方の乱気流を予測する乱気流予測部21と、前記航空機の主翼表面の複数点に配置された複数の静圧計測部4とを具備し、前記複数の静圧計測部4により計測された各前記点の計測値に基づいて、前記予測される乱気流の情報を補償する。

Description

乱気流センシングシステム、航空機及び乱気流センシング方法
 本発明は、航空機に搭載される乱気流センシングシステム及び乱気流センシング方法に関する。本発明は、このような乱気流センシングシステムを搭載する航空機に関する。
 航空機事故の半数以上は乱気流に起因しており、耐乱気流安全技術の必要性は論をまたない。特に晴天乱気流(CAT)は気象レーダでは検知できず、寿命が短いため予報も困難である。この問題に対して、本出願人は、飛行機に搭載可能な晴天乱気流の事前検知用小型ドップラーライダーの開発を進め、危険空域回避、警報発出に役立つことを実証した。加えて、回避飛行が間に合わない場合は、乱気流空域通過時の機体動揺を可能な限り抑え、被害を最小化する飛行制御技術も必要である。
 これに関連する技術として、特許文献1や特許文献2、非特許文献1、非特許文献2、非特許文献3などが開示されている。
特開2017-67680号公報 特開2017-21558号公報
http://www.aero.jaxa.jp/publication/magazine/pdf/fp_no13.pdf http://www.aero.jaxa.jp/research/star/safeavio/news120831.html https://www.jstage.jst.go.jp/article/jjsass1969/34/390/34_390_369/_pdf/-char/ja
 晴天乱気流は、対流圏の任意の高度で起こり得るが、特にジェット気流(高度8000~13000m)の周辺で発生する晴天乱気流は、巡行する航空機の安全運行に脅威となっている。乱気流遭遇時の機体動揺を顕著に低減するためには、慣性センサ情報のフィードバック制御だけでなく、ドップラーライダーを用いた前方風速情報の先読みにもとづく予見フィードフォワード制御が有効である。ただし、達成性能は予見情報の精度に依存し、特に予見風速変動の位相が実際と大きくずれていた場合、動揺を増幅、不安定化につながる危険性がある。
 以上のような事情に鑑み、本発明の目的は、より高い安全性及び信頼性で乱気流遭遇時の機体動揺を抑えることができる乱気流センシングシステム、航空機及び乱気流センシング方法を提供することにある。
 本発明者らは、鋭利検討し、動揺低減技術の航空機実装を可能にするためには、ドップラーライダーとは別系統で安全性や信頼性を補強するための、乱気流センシング補強システムを導入した新しいシステム構成を工夫する必要がある、との結論に至った。
 本発明に係る乱気流センシングシステムは、航空機に搭載されたドップラーライダーと、前記ドップラーライダーによる計測値を用い、当該航空機前方の乱気流を予測する乱気流予測部と、前記航空機の主翼表面の複数点に配置された複数の静圧計測部とを具備し、前記複数の静圧計測部により計測された各前記点の計測値に基づいて、前記予測される乱気流の情報を補償する。
 本発明では、ドップラーライダーとは別系統である航空機の主翼表面の静圧を複数点計測し、この計測結果からドップラーライダー側で予測した乱気流の情報を補償しているので、ドップラーライダーの観測誤差に対するロバスト性を補強できる。これにより、より高い安全性及び信頼性で乱気流遭遇時の機体動揺を抑えることができる。
 本発明の一形態に係る乱気流センシングシステムは、前記ドップラーライダーによる計測値に基づき、前記予測される航空機前方の乱気流に応じた直線渦糸の回転軸位置と強度を推定する渦推定部と、前記推定された各直線渦糸の回転軸位置と強度に基づき前記航空機の主翼表面の第1の圧力場を推定する第1の圧力場推定部と、前記複数の静圧計測部により計測された各前記点の計測値から、前記主翼表面の第2の圧力場を推定する第2の圧力場推定部とを具備し、前記第1の圧力場と前記第2の圧力場との一致度を求め、当該一致度に基づき、前記予測される乱気流の情報を補償する。
 本発明の別形態に係る乱気流センシングシステムは、前記ドップラーライダーによる計測値から、Δt秒先で機体に誘起する未来の第1の鉛直方向風速度を予測する第1の鉛直面風速場予測部と、前記ドップラーライダーによる計測値及び前記複数の静圧計測部により計測された各前記点の計測値から、前方渦がΔt秒先で機体に誘起する未来の第2の鉛直方向風速度を予測する第2の鉛直面風速場予測部と、前記第1の鉛直方向風速度と前記第2の鉛直方向風速度との相関度を求め、当該相関度に基づき、前記予測される乱気流の情報を補償する。このシステムにおいて、既通過領域における相関度を評価し、当該評価結果に応じて、前記予測される乱気流の情報の補償の是非を決めてもよい。
 本発明の一形態に係る航空機は、ドップラーライダーと、エアデータセンサとを搭載した航空機であって、前記ドップラーライダーによる計測値と、前記エアデータセンサによる計測値と、前記航空機に関する拡大機体モデルのパネルデータとを用い、擾乱ポテンシャルを算出することによって前記航空機の圧力場を推定する圧力推定部を有する。この場合、前記圧力推定部は、前記推定された圧力場から当該航空機に働く空気力変動を得るものであり、前記空気力変動をパラメタの1つとして機体の姿勢安定化フィードバック制御を行う姿勢安定化制御部をさらに有してもよい。
 本発明の一形態に係る航空機は、複数の静圧計測部を搭載した航空機であって、前記静圧計測部による計測値と、前記航空機に関する基本圧力場データとを用いて、前記航空機の迎角変化と後縁形状効果とを最小二乗推定により算出し、前記航空機を構成する機体の圧力場を推定する圧力推定部を有する。本発明の一形態に係る航空機は、さらに、ドップラーライダーと、エアデータセンサと、前記圧力推定部が推定する圧力場と、前記ドップラーライダーによる計測値と、前記エアデータセンサによる計測値とを用いて、前記ドップラーライダー視野内の渦の渦強度及び渦誘起迎角を算出し、前記航空機周囲の空間における鉛直面風速場を予測する鉛直面風速場予測部とを有してもよい。
 本発明に係る乱気流センシング方法は、航空機に搭載されたドップラーライダーによる計測値を用い、当該航空機前方の乱気流を予測し、前記航空機の主翼表面の複数点に配置された静圧を計測し、前記計測した各前記点の静圧の計測値に基づいて、前記予測される乱気流の情報を補償する。
 本発明によれば、より高い安全性及び信頼性で乱気流遭遇時の機体動揺を抑えることができる。
本発明の第1の実施形態に係るドップラーライダー2を使ったシステムの説明図である。 図1に示した航空機1に搭載された乱気流センシングシステム10の構成を示すブロック図である。 渦推定部22及び第1の圧力場推定部23の構成及び動作を説明するためのフロー図である。 渦の回転軸をz軸と一致するようにシフトした場合の、動点Qとの位置関係を示す説明図である。 第2の圧力場推定部24の構成及び動作を説明するためのフロー図である。 主翼3を概略的に示した斜視図である。 本発明の第2の実施形態に係る乱気流センシングシステム110の構成を示すブロック図である。 本発明の第3の実施形態に係る乱気流センシングシステムの説明図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 <第1の実施形態>
 図1は、本発明の第1の実施形態に係るドップラーライダーを使ったシステムの説明図である。図2は図1に示した航空機に搭載された乱気流センシングシステムの構成を示すブロック図である。
 図1に示すように、例えば高度方向の幅300mで水平方向距離10kmの範囲の晴天乱気流を時速200m/s程度の航空機1が通過するのに要する時間は50秒程度である。このような乱気流を回避する飛行をしたいが、回避飛行が間に合わない場合は、乱気流空域通過時の機体動揺を可能な限り抑え、被害を最小化する飛行制御技術も必要である。 
 本実施形態に係る航空機1は、図2に示す乱気流センシングシステム10を搭載し、慣性センサ情報のフィードバック制御だけでなく、ドップラーライダーを用いた前方風速情報の先読みにもとづく予見フィードフォワード制御を行い、乱気流遭遇時の機体動揺を顕著に低減し、更により高い安全性及び信頼性で乱気流遭遇時の機体動揺を抑えている。
 図2に示すように、乱気流センシングシステム10は、機体11の機首付近に搭載されたドップラーライダー2と、主翼表面に複数分散配置された静圧計測部4と、乱気流予測部21と、渦推定部22と、第1の圧力場推定部23と、第2の圧力場推定部24と、一致度検定部25とを有する。 
 ドップラーライダー2としては、典型的には、晴天乱気流の事前検知用小型ドップラーライダーを用いることができる。乱気流予測部21は、ドップラーライダー2による計測値を用い、航空機1の前方の乱気流を予測する。このドップラーライダー2を用いて乱気流を予測する技術は例えば特許文献1や非特許文献1、非特許文献2に開示されている。 
 静圧計測部4は、典型的には、主翼3の表面に設けられた圧力孔と、圧力トランスデューサとを有する。圧力孔を構成する技術は例えば特許文献2に開示されている。しかし、本発明に係る静圧計測部4は圧力孔による構成に限定されない。
 この航空機1では、姿勢安定化制御部31が慣性センサ32による情報から機体11のフィーバック操舵を行うとともに、フィードフォワード部33が乱気流予測部21の計測値から機体11のフィードフォワード操舵を行う。フィードフォワード部33の後段には、複数の静圧計測部4により計測された各点の計測値に基づいて、予測される乱気流の情報を補償する乱気流情報補償部34が設けられている。乱気流情報補償部34については後述する。
 渦推定部22は、ドップラーライダー2による計測値に基づき、予測される航空機1の前方の乱気流に応じた単数または複数の直線渦糸の回転軸位置と強度を推定する。 
 第1の圧力場推定部23は、推定された各直線渦糸の回転軸位置と強度に基づき航空機1の主翼表面の第1の圧力場を推定する。 
 本実施形態では、晴天乱気流に内在する最も危険な渦構造として直線渦糸モデルを仮定する。この渦糸モデルは、気象モデルではない。晴天乱気流に内在する主要現象を近似表現し、以下に述べるロジック設計に活用するための工学モデルである。
 このような渦推定部22及び第1の圧力場推定部23の構成及び動作を、図3を参照しながら説明する。
 渦推定部22は、典型的には、ドップラーライダー2が出力する風速分布から、大気において渦形状をなす構造と、渦構造の速度をデータ抽出する(ステップ301)。大気において渦形状をなす構造のデータ抽出の一例としては、SN画像を用い、渦形状をなす構造の抽出には公知の特徴検出を用いることができる。この時、同時に渦の位置、渦の回転軸も併せて抽出する。渦構造の速度をデータ抽出する一例としては、ドップラー画像を用い、抽出した渦構造についての回転速度を抽出する。
 渦推定部22は、ステップ301の出力に対し、直線渦糸が誘起する風速場をフィッテイングさせるように、直線渦糸の回転軸配置及び渦の強度を決定する(ステップ302)。このとき、ステップ302の出力を、ステップ305で使用するポテンシャル方程式における機体の座標系で扱える形に座標変換、単位変換等により補正する。
 航空機1は典型的には対気速度、迎角、横滑り角などの計測するエアデータセンサ(図示を省略)を備えており、第1の圧力場推定部23は、このエアデータセンサの計測値(対気速度、迎角、横滑り角)を取り込む(ステップ303)。
 第1の圧力場推定部23は、互いに接する複数の四辺形パネル(平板)が閉空間を構成するように予め作られた拡大機体モデルから、全パネルデータを抽出する(ステップ304)。ここで、拡大機体モデルとは、機体モデルと、その後方に仮想的に設ける後流モデルとから構成される。後流モデルとは、機体の後縁に対し、その後方に細長く伸びた薄い後流シート(ウエイク)のモデルであり、流れ場を解析するために仮想的に設けたものである。機体モデルと後流モデルとは機体11の後縁において連続的に接続しており、拡大機体モデルは一体をなしている。各パネルデータは、パネル番号(例えば1~Z)、パネルの空間座標、パネルの法線ベクトルを含み、これら以外にパネルごとの物理パラメタを含んでもよい。
 第1の圧力場推定部23は、機体11本体及び機体11の後方空間に仮想的に設けたウエイクからなる拡大機体が一様流を受ける際の速度ポテンシャル方程式(連続の式あるいは質量保存則)に、機体とは別に配置された外部渦に関するデータを加味して、機体表面の速度ポテンシャルを算出する。この算出に際し、ステップ302から入力する渦の回転軸方向、渦の座標及び渦の強度と、機体の座標、ステップ303から入力する上記一様流に相当する対気速度、機体11の迎角及び横滑り角と、ステップ304から入力するパネルデータとを、速度ポテンシャル方程式に代入する。 
 上記ポテンシャル方程式は、公知のグリーンの公式とパネルごとの離散化により、典型的には以下の式を用い、各パネルについて擾乱ポテンシャルを算出する。
Figure JPOXMLDOC01-appb-I000001
 ここで、機体11に向かってx方向から一様流が流れているとし、鉛直方向をzとする。このとき、
 S:拡大機体における境界面
 φ:擾乱ポテンシャル
 i:着目パネルを指定する添字(機体表面上、あるいはそれ以外の任意の点、ただし拡大機体内部の空間は除く)
 j:機体を構成する全パネルを示す添字(ただし、j≠i)
 k:後流を構成する全パネルを示す添字(ただし、k≠i)
 u:後流パネルのうち上方(upper)のパネル
 l:後流パネルのうち下方(lower)のパネル
 ∫p:各パネルにおける面積分
 r:着目位置iと拡大機体表面を覆うパネルの図心との距離
 φν:渦誘起ポテンシャル
 n:境界面S上の法線ベクトル
 nx:境界面S上の法線ベクトルのx成分
 また、φν(渦誘起ポテンシャル)を含む、上式の右辺2番目の積分記号は、以下のように展開できる。
Figure JPOXMLDOC01-appb-I000002
 ここで、機体パネルと渦の回転軸をひとまとめにして原点周りに回転させ、回転軸がz軸と平行になるようにする。その平面(便宜上ここではxy平面と記す)において、
 xQとyQ:機体表面上の動点Qのxy座標
 x0とy0:渦の回転軸がz軸と平行になるように回転後の渦のxy座標
 Γ:渦強度(渦の循環)
 また、a、bは機体表面上の動点Qと渦の回転軸との相対位置により決まる角度であり(図4参照)、渦の始点Aと終点Bの距離が十分大きい場合はa=0、b=0であるから、(cosa+cosb)の項は2としてよい。
 第1の圧力場推定部23は、各パネルにおける擾乱ポテンシャルと一様流の速度ポテンシャルを加えて速度場を算出する(ステップ306)。この速度場の算出法は、非特許文献3に記載されている。
 第1の圧力場推定部23は、速度場から、ベルヌーイの定理より圧力場を算出する(ステップ307)。
 以上のステップ301~ステップ307によって、機体11にかかる圧力場を算出することができる。例えば非特許文献3の第7図に示されるように、翼にかかる圧力分布を算出することができる。
 一方、第2の圧力場推定部24は、複数の静圧計測部4により計測された各点の計測値から、最小二乗推定により主翼3の表面全体の第2の圧力場を推定する。
 本実施形態に係る第2の圧力場推定部24は、過渡応答が穏やかな準非定常圧力場の推定である簡易圧力場推定を行うもので、図5を参照しながら説明する。
 図6は一方の主翼3を概略的に示した斜視図であり、主翼3の表面に点在する符号41は静圧計測部4の圧力孔を示している。Δαは迎角変動、Sは後縁形状変化に対応する翼素の面積、δは後縁形状変化を示す。
 圧力場をN次元状態変数X(N~10)で近似する。Xは表面圧力場(無限次元)を離散化した多次元状態ベクトル(有限次元)である。
Figure JPOXMLDOC01-appb-I000003
 第2の圧力場推定部24は、静圧計測部4の多点分散配置に応じた観測行列Hを選択する(ステップ501)。 
 観測行列Hは状態ベクトルXの中で、圧力孔41により実際に直接観測できる変数を指定する行列であり、通常0あるいは1である。圧力孔41を主翼3の表面のどこに設置するかは自由度があるので、推定系を構成する際の設計パラメタ(最適化変数)とみなすことができる。
 第2の圧力場推定部24は、CFD(Computational Fluid Dynamics:数値流体解析)や風洞試験により得られる基本圧力場をデータベース化したデータを取り込む。
 第2の圧力場推定部24では、基本圧力場からの観測誤差Yεを、迎角変化Δαと後縁形状効果δの重ね合わせ(係数行列Bα、δとの掛け算)として以下に示す線形確率過程モデルで表現する。
Figure JPOXMLDOC01-appb-I000004
 ここで、Δαは迎角変動分の真値であり、表面圧力場全体を変化させるためのパラメタである。δは翼後縁形状変化分の真値であり、表面圧力場をスパン方向に変化させるパラメタである。図6では8舵面に分割されているので8次元ベクトルであるが、もっと粗くても細かくてもよい。Yεは飛行中の迎角計測値αとデータベース参照により得られる圧力場のノミナル値と、実観測圧力の誤差である。Bαは圧力場の迎角変動に対する感度行列であり、同定作業が必要である。Bδは圧力場の後縁形状効果δに対する感度行列であり、同定作業が必要である。Wは迎角変動と後縁形状の変化では説明できない圧力場の変化であり、正規分布に従う確率変数と考える。
 第2の圧力場推定部24は、Yεを説明できる迎角変化Δαと後縁形状効果δを最小二乗推定により決定する(ステップ502)。 
 第2の圧力場推定部24は、下記の式により推定圧力場を決定する(ステップ503)。 
Figure JPOXMLDOC01-appb-I000005
 ここで、α(オーバライン)は飛行中の迎角基準値であり、飛行機に標準搭載される迎角計による測定値又は何らかの推定値である。X(α)(いずれもオーバライン)は迎角基準値にもとづくノミナル圧力場であり、あらかじめテーブル化されたデータベースである。Δα(オーバハットライン)とδ(オーバーハットライン)は最小二乗推定値である。
 また、第2の圧力場推定部24は、下記の式により推定誤差共分散Pを計算する(ステップ504)。
Figure JPOXMLDOC01-appb-I000006
 ここで、E(・)は期待値である。Δα(オーバウェーブライン)は真値との誤差である。δ(オーバウェーブライン)は真値との誤差ベクトルである。 
 つまり、第2の圧力場推定部24は、この行列P
Figure JPOXMLDOC01-appb-I000007
の対角成分により圧力場推定の精度を評価する。
 なお、推定圧力場は揚力へ換算できる。 
 また、カルマンフィルタ型への拡張により非定常圧力場推定も可能である。この推定は、典型的には、カルマンフィルタ型逐次推定アルゴリズムにより行うことができる。 
 まず、圧力場の非定常性が無視できない場合のカルマンフィルタ型動的逐次アルゴリズムは以下のように定式化できる。 
 非定常圧力変動分を以下のように離散時間状態方程式として表現する。 
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
ΔXは非定常成分(過渡応答分)を示す変数、A,Γ1,Γ2は過渡応答特性を表現するパラメタであり、風洞試験入出力データ等から同定する。V,Wはモデル化誤差を表現し、適当な正規分布に従うノイズを仮定する。kは時系列を示す添字である。
 拡大ベクトル、拡大行列をまとめ、上記の数式を以下のように書き直す。 
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
 上式に対して以下のように線形カルマンフィルタを構成して、
Figure JPOXMLDOC01-appb-I000012
これにより、
Figure JPOXMLDOC01-appb-I000013
を求める。 
 この結果を用いて第2の圧力場の推定値を以下のように更新する。 
Figure JPOXMLDOC01-appb-I000014
 ここで、
Figure JPOXMLDOC01-appb-I000015
は基本空力特性を格納したデータベースである。
 一致度検定部25は、上記のように推定された第1の圧力場と第2の圧力場との一致度(γ:例えば0≦γ≦1)を求める。一致度検定部25は、例えば部分静圧情報を、翼断面圧力係数分布、さらにスパン方向も考慮した主翼表面圧力分布という物理的特徴量に変換し、その一致性を評価すればよい。
 乱気流情報補償部34は、一致度検定部25により求められた一致度γに応じて、乱気流予測部21による予測値を補償する。例えば、乱気流情報補償部34は、第1の圧力場と第2の圧力場との一致度γが高くなると、乱気流予測部21による予測値による機体11のフィードフォワード操舵量を多くし、一致度γが低くなると、フィードフォワード操舵量を少なくする。このように本実施形態に係る乱気流センシングシステムでは、ドップラーライダー2とは別系統である航空機1の主翼3の表面の静圧を複数点計測し、この計測結果からドップラーライダー2側で予測した乱気流の情報を補償しているので、ドップラーライダー2の観測誤差に対するロバスト性を補強できる。これにより、より高い安全性及び信頼性で乱気流遭遇時の機体動揺を抑えることができる。
 なお、上記実施形態では、乱気流情報補償部34が一致度γに応じてフィードフォワード制御を行っていたが、ドップラーライダー2、渦推定部22、第1の圧力場推定部23の出力を利用し、乱気流情報補償部34(フィードフォワード部)の出力をゼロとして、姿勢安定化制御部31のゲインを適応的に調整してもよい(図示せず)。その場合、第1の圧力場推定部23の出力より機体11に働く空気力変動に関する情報が得られるので、この機体11に働く空気力変動に関する情報を姿勢安定化制御部31に入力し、姿勢安定化制御部31はその情報もパラメタとして再設計してフィードバック制御を行う。再設計は、例えば飛行機搭載状態で、実時間で行う。また、実時間動作が不安視される場合は、ゲインスケジューリング化してもよい。この形態では、フィードバックゲインのみの制御系となるが、制御系内部のゲインが乱気流遭遇時用に自動調整されることとなる。以上の制御は、乱気流情報補償部34(フィードフォワード部)の出力をゼロに切り替えるように構成しているが、乱気流センシングシステム10を、ドップラーライダー2と、乱気流予測部21と、渦推定部22と、第1の圧力場推定部23とから構成し、第1の圧力場推定部23の出力である機体11に働く空気力変動に関する情報を姿勢安定化制御部31に入力し、フィードフォワード制御をせずにフィードバック制御を行うようにしてもよい。また、乱気流センシングシステム10を、ドップラーライダー2と、渦推定部22と、第1の圧力場推定部23とから構成し、第1の圧力場推定部23の出力である機体11に働く空気力変動に関する情報を姿勢安定化制御部31に入力し、フィードフォワード制御をせずにフィードバック制御を行うようにしてもよい(図示せず)。
 <第2の実施形態>
 図7は、本発明の第2の実施形態に係る乱気流センシングシステムの構成を示すブロック図である。なお、第1の実施形態と同一の要素には同一の符号を付す。
 図7に示すように、乱気流センシングシステム110は、2軸タイプ又はスキャンタイプのドップラーライダー2と、乱気流予測部21と、第1の鉛直面風速場予測部111と、静圧計測部4と、渦強度及び渦誘起迎角推定部112と、第2の鉛直面風速場予測部113と、相関部114とを有する。 
 2軸タイプ又はスキャンタイプのドップラーライダー2の構成は、例えば特許文献1に記載されている。
 ドップラーライダー2は、晴天乱気流コア位置の自機に対する相対位置R(時刻tでの距離)を算出する。 
 第1の鉛直面風速場予測部111は、乱気流予測部21による航空機1の前方の乱気流を予測値から、Δt秒先で機体に誘起する未来の鉛直方向風速度を予測する。
 渦糸までの距離Rはドップラーライダー2より得られるので、直線渦糸の未知パラメタは回転軸方向ψ(ベクトル)と強度Γ(スカラー)である。ただし、以下の理由により、直線渦糸の回転軸方向を、航空機1の進行方向と直交する水平面内に限定する。第1の理由として、晴天乱気流の正体は高度方向のシアによるヘルムホルツ不安定であり、竜巻のように回転軸が有意な鉛直成分をもたない。第2の理由として、航空機1のスパン長(主翼の左端から右端までの長さ)は、距離Rや渦の空間スケールに比較して圧倒的に小さいので、ψの影響は無視できる。この仮定により、未知パラメタは強度Γ(短時間では一定値)のみとなる。
 渦強度及び渦誘起迎角推定部112は、静圧計測部4による主翼3の表面の多点圧力計測結果に基づき、最小二乗推定により、第1の実施形態と同様のアルゴリズムにより主翼表面圧力場を推定し、その圧力場を積分することにより揚力Lを計算し、その時間変化ΔL=Lt-Lt-Δtと、揚力傾斜CLα(機体形状に応じて決まる揚力曲線の傾き)より、迎角変動換算値Δα=ΔL/CLαを計算する。飛行機の標準的なエアデータセンサである迎角計を用いて渦誘起分の迎角変動Δαを算出することも考えられるが、従来迎角計の計測点が擾乱大気中の1点のみで、定常風はともかく、渦誘起迎角分を十分な精度で抽出することは困難である。これに対して、主翼表面流れの多点圧力観測から主翼発生揚力変化を算出し、渦強度及び渦誘起迎角相当値の算出に結び付けることで、機体上下動揺に直結する渦の影響をよりロバストに峻別できる。なお、ここで第1の実施形態と同様のアルゴリズムとは、定常圧力場推定のアルゴリズム(ステップ501~504)と、上述した非定常圧力場推定のアルゴリズム(典型的には、カルマンフィルタ型逐次推定アルゴリズム)とが含まれる。
 渦強度及び渦誘起迎角推定部112は、算出した渦誘起効果の迎角換算値Δαを用いて、次式より、渦糸モデルの強度を計算する。
Figure JPOXMLDOC01-appb-I000016
 第2の鉛直面風速場予測部113は、前方渦がΔt秒先で機体に誘起する未来の鉛直方向風速度を以下のように予測する。
Figure JPOXMLDOC01-appb-I000017
 相関部114は、第1の鉛直面風速場予測部111で予測されたΔt秒後の未来の風速時系列予測値と、第2の鉛直面風速場予測部113で予測されたΔt秒後の未来の風速時系列予測値との相関係数(0≦γ≦1)を求める。
 乱気流情報補償部34は、求められた相関係数に応じてフィードフォワード操舵量を補正する。例えば、相関γが弱いと判断された場合はドップラーライダーの信号処理のみによる鉛直方向風速の誤差が大きい可能性ありと判断しゲインを絞る。相関γが強い場合はドップラーライダー計測の信頼性は高いと判断し、補正なしでフィードフォワード操舵量をそのまま加える。
 この航空機1では、慣性センサ32による情報のフォードバックループにより機体11の姿勢安定制御部36がフィーバック操舵を行うとともに、空力角センサ35で計測されたα、β(迎角、横滑り角)は渦強度及び渦誘起迎角推定部112に入力される。
 本実施形態に係る乱気流センシングシステム110では、Δt秒後の未来のフィードフォワード制御をより高い安全性及び信頼性で行うことができる。加えて、第2の実施形態では、第1の圧力場推定部におけるようなパネル法計算を用いないので、計算負荷が小さく、オンボード演算に向いている。
 <第3の実施形態>
 図8は本発明の第3の実施形態に係る乱気流センシングシステムの説明図である。 
 図8に示す航空機1は、例えば図7に示した乱気流センシングシステム110を搭載する。現在と過去のセンシング情報を用いて、ドップラーライダー2と後段の乱気流予測部21の信頼性を評価しながら、予見情報を活用するか否かを判定する。既通過領域(図8のA)である過去の評価に基づき、遭遇予定(図8のB)である未来の予見制御の適用の是非を判定する。その判定指標として、既通過領域(図8のA)での静圧計測部4~第2の鉛直面風速場予測部113による主翼表面圧力場センシング情報を活用する。例えば、既通過領域(図8のA)において、相関部114における相関係数の累積値が所定以上の値の場合には、遭遇予定(図8のB)である未来の予見情報を用いたフィードフォワード制御を適用し、そうでない場合には予見制御を適用しない。 
 これにより、予見制御のリスクを低減する最も注意深い方法で、乱気流遭遇時の機体動揺を抑えることができる。
 <その他>
 本発明は、上記の実施形態には限定されず、本発明の技術思想の範囲内で変形や応用が可能であり、その変形や応用による実施の範囲も本発明の技術的範囲に属する。
 例えば、上記の実施形態では、乱気流の検出にドップラーライダー2を用いたが、これに限るものではない。ドップラーライダー2と同様に、大気の流れを動的に測定し、渦の形状、渦の位置、渦の強度(風速)を検出できるものであればよく、航空機に搭載可能なドップラーレーダであってもよい。
1    :航空機
2    :ドップラーライダー
3    :主翼
4    :静圧計測部
10   :乱気流センシングシステム
11   :機体
21   :乱気流予測部
22   :渦推定部
23   :第1の圧力場推定部
24   :第2の圧力場推定部
25   :一致度検定部
31   :姿勢安定化制御部
32   :慣性センサ
33   :フィードフォワード部
34   :乱気流情報補償部
35   :空力角センサ
41   :圧力孔
110  :乱気流センシングシステム
111  :第1の鉛直面風速場予測部
112  :渦強度及び渦誘起迎角推定部
113  :第2の鉛直面風速場予測部
114  :相関部

Claims (10)

  1.  航空機に搭載されたドップラーライダーと、
     前記ドップラーライダーによる計測値を用い、当該航空機前方の乱気流を予測する乱気流予測部と、
     前記航空機の主翼表面の複数点に配置された複数の静圧計測部とを具備し、
     前記複数の静圧計測部により計測された各前記点の計測値に基づいて、前記予測される乱気流の情報を補償する
     乱気流センシングシステム。
  2.  請求項1に記載の乱気流センシングシステムであって、
     前記ドップラーライダーによる計測値に基づき、前記予測される航空機前方の乱気流に応じた直線渦糸の回転軸位置と強度を推定する渦推定部と、
     前記推定された各直線渦糸の回転軸位置と強度に基づき前記航空機の主翼表面の第1の圧力場を推定する第1の圧力場推定部と、
     前記複数の静圧計測部により計測された各前記点の計測値から、前記主翼表面の第2の圧力場を推定する第2の圧力場推定部とを具備し、
     前記第1の圧力場と前記第2の圧力場との一致度を求め、当該一致度に基づき、前記予測される乱気流の情報を補償する
     乱気流センシングシステム。
  3.  請求項1に記載の乱気流センシングシステムであって、
     前記ドップラーライダーによる計測値から、Δt秒先で機体に誘起する未来の第1の鉛直方向風速度を予測する第1の鉛直面風速場予測部と、
     前記ドップラーライダーによる計測値及び前記複数の静圧計測部により計測された各前記点の計測値から、前方渦がΔt秒先で機体に誘起する未来の第2の鉛直方向風速度を予測する第2の鉛直面風速場予測部と、
     前記第1の鉛直方向風速度と前記第2の鉛直方向風速度との相関度を求め、当該相関度に基づき、前記予測される乱気流の情報を補償する
     乱気流センシングシステム。
  4.  請求項3に記載の乱気流センシングシステムであって、
     既通過領域における相関度を評価し、当該評価結果に応じて、前記予測される乱気流の情報の補償の是非を決める
     乱気流センシングシステム。
  5.  請求項1乃至4に記載の乱気流センシングシステムを搭載した航空機。
  6.  ドップラーライダーと、エアデータセンサとを搭載した航空機であって、
     前記ドップラーライダーによる計測値と、前記エアデータセンサによる計測値と、前記航空機に関する拡大機体モデルのパネルデータとを用い、擾乱ポテンシャルを算出することによって前記航空機の圧力場を推定する圧力推定部を有する航空機。
  7.  請求項6に記載の航空機であって、
     前記圧力推定部は、前記推定された圧力場から当該航空機に働く空気力変動を得るものであり、
     前記空気力変動をパラメタの1つとして機体の姿勢安定化フィードバック制御を行う姿勢安定化制御部をさらに有する航空機。
  8.  複数の静圧計測部を搭載した航空機であって、
     前記静圧計測部による計測値と、前記航空機に関する基本圧力場データとを用いて、前記航空機の迎角変化と後縁形状効果とを最小二乗推定により算出し、前記航空機を構成する機体の圧力場を推定する圧力推定部を有する航空機。
  9.  請求項8に記載の航空機であって、
     ドップラーライダーと、
     エアデータセンサと、
     前記圧力推定部が推定する圧力場と、前記ドップラーライダーによる計測値と、前記エアデータセンサによる計測値とを用いて、前記ドップラーライダー視野内の渦の渦強度及び渦誘起迎角を算出し、前記航空機周囲の空間における鉛直面風速場を予測する鉛直面風速場予測部と
     をさらに有する航空機。
  10.  航空機に搭載されたドップラーライダーによる計測値を用い、当該航空機前方の乱気流を予測し、
     前記航空機の主翼表面の複数点に配置された静圧を計測し、
     前記計測した各前記点の静圧の計測値に基づいて、前記予測される乱気流の情報を補償する
     乱気流センシング方法。
PCT/JP2020/040291 2019-11-14 2020-10-27 乱気流センシングシステム、航空機及び乱気流センシング方法 WO2021095514A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019206279A JP7458052B2 (ja) 2019-11-14 2019-11-14 乱気流センシングシステム、航空機及び乱気流センシング方法
JP2019-206279 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021095514A1 true WO2021095514A1 (ja) 2021-05-20

Family

ID=75912350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040291 WO2021095514A1 (ja) 2019-11-14 2020-10-27 乱気流センシングシステム、航空機及び乱気流センシング方法

Country Status (2)

Country Link
JP (1) JP7458052B2 (ja)
WO (1) WO2021095514A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024035272A (ja) * 2022-09-02 2024-03-14 国立研究開発法人宇宙航空研究開発機構 航空機の自動制御システム、その有効性評価方法およびその自動制御システム用の計測装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365496A (ja) * 1989-04-18 1991-03-20 Boeing Co:The 統合された航空機エアデータシステム
JP2001101240A (ja) * 1999-10-01 2001-04-13 Mitsubishi Heavy Ind Ltd 大次元境界要素法の解析装置・方法、その解析用記録媒体
JP2007317656A (ja) * 2006-04-28 2007-12-06 Toshiba Corp 気流発生装置、気流発生ユニット、翼、熱交換装置、マイクロマシーン、ガス処理装置、気流発生方法および気流制御方法
JP2010217077A (ja) * 2009-03-18 2010-09-30 Japan Aerospace Exploration Agency 遠隔気流の警報表示方法及びそのシステム
US20110188029A1 (en) * 2008-07-04 2011-08-04 Eads Deutschland Gmbh Direct detection doppler lidar method and direction detection doppler lidar device
JP2017523089A (ja) * 2014-08-14 2017-08-17 ガルフストリーム エアロスペース コーポレーション 飛行中の航空機周辺の圧力場を制御するシステムおよび方法
JP2019105577A (ja) * 2017-12-13 2019-06-27 メトロウェザー株式会社 ドップラーライダー装置、及び乱気流警報システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7097052B2 (ja) 2018-04-04 2022-07-07 国立研究開発法人宇宙航空研究開発機構 飛行機の突風応答軽減システム及び飛行機の突風応答軽減方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365496A (ja) * 1989-04-18 1991-03-20 Boeing Co:The 統合された航空機エアデータシステム
JP2001101240A (ja) * 1999-10-01 2001-04-13 Mitsubishi Heavy Ind Ltd 大次元境界要素法の解析装置・方法、その解析用記録媒体
JP2007317656A (ja) * 2006-04-28 2007-12-06 Toshiba Corp 気流発生装置、気流発生ユニット、翼、熱交換装置、マイクロマシーン、ガス処理装置、気流発生方法および気流制御方法
US20110188029A1 (en) * 2008-07-04 2011-08-04 Eads Deutschland Gmbh Direct detection doppler lidar method and direction detection doppler lidar device
JP2010217077A (ja) * 2009-03-18 2010-09-30 Japan Aerospace Exploration Agency 遠隔気流の警報表示方法及びそのシステム
JP2017523089A (ja) * 2014-08-14 2017-08-17 ガルフストリーム エアロスペース コーポレーション 飛行中の航空機周辺の圧力場を制御するシステムおよび方法
JP2019105577A (ja) * 2017-12-13 2019-06-27 メトロウェザー株式会社 ドップラーライダー装置、及び乱気流警報システム

Also Published As

Publication number Publication date
JP2021079731A (ja) 2021-05-27
JP7458052B2 (ja) 2024-03-29

Similar Documents

Publication Publication Date Title
US8209159B2 (en) Method for reconstructing gusts and structural loads at aircraft, in particular passenger aircraft
Melody et al. Parameter identification for inflight detection and characterization of aircraft icing
US8219266B2 (en) Method and device for reducing on an aircraft lateral effects of a turbulence
KR101842966B1 (ko) 자기력을 활용한 비행체의 동안정 미계수 추출방법
Dong et al. Research on inflight parameter identification and icing location detection of the aircraft
WO2021095514A1 (ja) 乱気流センシングシステム、航空機及び乱気流センシング方法
US9863974B2 (en) Method and system for determining aerodynamic loads from downstream flow properties
US20110246097A1 (en) Method and System for Determining Aerodynamic Loads from Leading Edge Flow Parameters
Venkatachari et al. Assessment of RANS-based transition models based on experimental data of the common research model with natural laminar flow
Butler et al. Initial BiGlobal Stability Analysis of the BOLT II Flight Experiment
Mavriplis et al. Supersonic Configurations at Low Speeds (SCALOS): CFD Aided Wind Tunnel Data Corrections
EP3223100A1 (en) Method and system for gust speed estimation
US8340840B2 (en) Method and device for reducing on an aircraft lateral effects of a turbulence
Aykan et al. Kalman filter and neural network‐based icing identification applied to A340 aircraft dynamics
Martinez et al. An overview of sensorcraft capabilities and key enabling technologies
Bennett et al. CFD simulation of flow around angle of attack and sideslip angle vanes on a BAe Jetstream 3102–Part 1
Lakebrink et al. Traveling crossflow wave predictions on the HIFiRE-5 at Mach 6: stability analysis vs. quiet tunnel data
Mangalam et al. Unsteady aerodynamic observables for gust load alleviation
Polivanov et al. Comparison of a quadcopter and an airplane as a means of measuring atmospheric parameters
KR20160036369A (ko) 동체만의 비행체 형상에 대한 측추력 상호 간섭 현상의 공력 모델링 기법
MacLeod et al. Design of a collector for sampling volcanic ash using unmanned aerial systems
Wiggen Experimental results for vortex dominated flow at a Lambda-wing with a round leading edge in steady flow
JP2021079731A5 (ja)
Montel et al. Validation of a nonlinear observer implementation for empennage loads estimation
de Kat et al. Towards instantaneous lift and drag from stereo-PIV wake measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887649

Country of ref document: EP

Kind code of ref document: A1