WO2021093591A1 - 确定预编码矩阵的方法、设备及系统 - Google Patents

确定预编码矩阵的方法、设备及系统 Download PDF

Info

Publication number
WO2021093591A1
WO2021093591A1 PCT/CN2020/124542 CN2020124542W WO2021093591A1 WO 2021093591 A1 WO2021093591 A1 WO 2021093591A1 CN 2020124542 W CN2020124542 W CN 2020124542W WO 2021093591 A1 WO2021093591 A1 WO 2021093591A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
end device
channel
oam
receiving end
Prior art date
Application number
PCT/CN2020/124542
Other languages
English (en)
French (fr)
Inventor
祝倩
吕艺
倪锐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20887088.1A priority Critical patent/EP4064584A4/en
Publication of WO2021093591A1 publication Critical patent/WO2021093591A1/zh
Priority to US17/743,875 priority patent/US20220271806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • This application relates to the field of communication technology, and in particular to a method, device, and system for determining a precoding matrix.
  • MIMO multiple input multiple output
  • MIMO technology refers to the use of multiple transmitting antennas and receiving antennas at the transmitting end and the receiving end, respectively. Data is transmitted and received through multiple antennas at the transmitter and receiver.
  • the sending end device obtains the channel state information (CSI) of the channel by means of channel sounding, and then when sending data, the precoding matrix can be determined according to the CSI of the channel, through
  • the precoding matrix maps different transmission layers to different antenna ports, and finally maps the antenna ports to physical antennas through a spatial filter, and the physical antennas perform data transmission.
  • the MIMO channel degenerates into a single input single output (SISO) channel, that is, the MIMO channel can only support single-stream signal transmission.
  • SISO single input single output
  • the space division multiplexing method cannot be used to improve the spectrum efficiency. Therefore, how to improve the performance of traditional MIMO and increase spectrum utilization in a channel environment with a large direct-view path component is an urgent problem to be solved at present.
  • the embodiments of the present application provide a method, device, and system for determining a precoding matrix, which can improve the performance of traditional MIMO and increase spectrum efficiency.
  • the receiving end device obtains the channel state information CSI of the first channel and the information of the P antenna port groups of the transmitting end device, where P is a positive integer; the receiving end device is based on the CSI of the first channel and the first orbital angular momentum OAM Mode, determine V OAM mode groups, the first OAM mode is an OAM mode supported by both the transmitting end device and the receiving end device, and V is a positive integer less than or equal to P; the receiving end device is based on the P antennas
  • the port group and the V OAM modal groups determine a first precoding matrix, where the first precoding matrix includes P*V second precoding matrices, and the first precoding matrix is used to perform processing on the first data.
  • the receiving end device sends first indication information to the sending end device, where the first indication information is used to indicate the first precoding matrix.
  • the OAM modality can be introduced into the precoding matrix, so that OAM can be integrated in the traditional MIMO precoding process, so that OAM can be used in MIMO communication to improve the performance of traditional MIMO, thereby increasing spectral efficiency.
  • the method for determining the precoding matrix further includes: the receiving end device determines, according to the CSI of the first channel, that there is a direct line of sight in the first channel. Based on this solution, it is possible to use the first precoding matrix provided in the embodiment of the present application to precode the data to be sent in a scenario where there is a direct line of sight in the channel, thereby using OAM to improve the performance of traditional MIMO and increase the spectrum efficiency.
  • the CSI of the first channel includes a channel matrix corresponding to the first channel, and the receiving end device determines that there is a direct line of sight in the first channel according to the CSI of the first channel, including: if the channel corresponding to the first channel The difference between the rank of the matrix and 1 is less than the first threshold, or the rank of the channel matrix corresponding to the first channel matrix is less than the second threshold, and the receiving end device determines that there is a direct line of sight in the first channel.
  • the CSI of the first channel includes a channel matrix corresponding to the first channel, and the receiving end device determines that there is a direct line of sight in the first channel according to the CSI of the first channel, including: if the maximum singular value and the minimum singularity The ratio of the values is greater than the third threshold, the receiving end device determines that there is a direct viewing path in the first channel, and the maximum singular value and the minimum singular value are obtained after performing singular value decomposition on the channel matrix corresponding to the first channel.
  • the CSI of the first channel includes a channel matrix corresponding to the first channel
  • the receiving end device determines that there is a direct line of sight in the first channel according to the CSI of the first channel, including: if the channel corresponding to the first channel The difference between the rank of the matrix and 1 is less than the first threshold, and the ratio of the largest singular value to the smallest singular value is greater than the third threshold, the receiving end device determines that there is a direct viewing path, the largest singular value and the smallest singular value in the first channel Is obtained after performing singular value decomposition on the channel matrix corresponding to the first channel; or, if the rank of the channel matrix corresponding to the first channel matrix is less than the second threshold, and the ratio of the largest singular value to the smallest singular value is greater than the third threshold, The receiving end device determines that there is a direct line of sight in the first channel.
  • the method for determining the precoding matrix further includes: the receiving end device receives first information from the transmitting end device, where the first information is a first phase compensation value, or the first information is The direction information of the receiving end device relative to the transmitting end device and the orientation information of the antenna array of the transmitting end device; the receiving end device determines a first phase compensation value according to the first information, and the first phase compensation value is the receiving end device.
  • the phase compensation value corresponding to the end device. Based on this solution, the receiving end device can perform phase compensation, thereby reducing the inter-mode crosstalk of the receiving end device and improving the ability of the receiving end device to demodulate the OAM signal.
  • the receiving end device is a first terminal device
  • the sending end device is a network device.
  • the method for determining a precoding matrix further includes: the first terminal device according to the first precoding matrix and the first channel CSI and the receiving capability of the first terminal device, determine the channel quality indicator CQI group corresponding to the first precoding, and the CQI group includes the corresponding OAM modalities in the OAM modalities corresponding to the first precoding matrix ⁇ CQI; the first terminal device sends the CQI group to the network device.
  • the network equipment can adjust the modulation mode and code rate of the data according to the OAM mode and CQI, thereby increasing the flexibility of data transmission and increasing the transmission rate.
  • the receiving end device is a network device
  • the sending end device is a first terminal device.
  • the first precoding matrix is different from the precoding matrix indicated by the network device to the second terminal device.
  • One or more terminal devices other than the first terminal device that the device serves for the network device, and the precoding matrix indicated by the network device to the second terminal device is determined by the network device according to the CSI of the second channel, The second channel is used by the second terminal device to send data to the network device.
  • the transmitting end device receives first indication information from the receiving end device, and the first indication information is used to indicate a first precoding matrix.
  • the first precoding matrix includes P*V second precoding matrices.
  • the first precoding matrix is used to precode the first data, P represents the number of antenna port groups of the transmitting end device, V represents the number of orbital angular momentum OAM modal groups, P is a positive integer, and V is less than or equal to A positive integer of P; the sending end device determines the first precoding matrix according to the first indication information.
  • the method for determining the precoding matrix further includes: the transmitting-end device determines the P antenna port groups of the transmitting-end device according to the information of the antenna array of the transmitting-end device; The end device transmits the information of the P antenna port groups of the transmitting end device.
  • the method for determining the precoding matrix further includes: the transmitting end device receives second information from the receiving end device, the second information is a second phase reference signal, or the second information is The direction information of the transmitting end device relative to the receiving end device and the orientation information of the antenna array of the receiving end device; the transmitting end device determines a second phase compensation value according to the second information, and the second phase compensation value is the transmitting end device.
  • the phase compensation value corresponding to the end device.
  • the first precoding matrix is used for precoding the first data, including: the first precoding matrix is used for determining the fourth precoding matrix, and the fourth precoding matrix is used for precoding the first data.
  • the data is pre-coded.
  • the sending end device is a network device
  • the receiving end device is a first terminal device
  • the fourth precoding matrix is different from the fifth precoding matrix
  • the fifth precoding matrix is used by the second terminal.
  • the sixth precoding matrix indicated by the device to the network device is determined
  • the second terminal device serves the network device for one or more terminal devices other than the first terminal device
  • the sixth precoding matrix is determined by the third terminal device.
  • the CSI of the channel is determined, and the third channel is used by the network device to send data to the second terminal device.
  • the array elements corresponding to the first antenna port group in the antenna array of the transmitting end device are not distributed on the same straight line, and the first antenna port group is the P antenna ports of the transmitting end device. Any antenna port group in the group.
  • the transmitting end device is a terminal device
  • the receiving end device is a network device.
  • the terminal device determines the CSI of the uplink channel and the P antenna port groups of the terminal device, and P is a positive integer;
  • the terminal device is based on the CSI of the uplink channel and the first An OAM mode, determine V OAM mode groups, the first OAM mode is an OAM mode supported by both the terminal device and the network device, and V is a positive integer less than or equal to P;
  • the terminal device is based on the P antenna ports Group and the V OAM modal groups, determine a first precoding matrix, where the first precoding matrix includes P*V second precoding matrices;
  • the terminal device uses the first 1 to K columns in the first precoding matrix
  • the reference signal is precoded to obtain the first reference signal, and the first reference signal is sent to the network device;
  • the terminal device receives the second indication information from the network device, and the second indication information is
  • the reference signal is part or all of the reference signal in the first reference signal; the terminal device determines a fourth precoding matrix according to the second indication information, and the fourth precoding matrix is used to precode the first data.
  • the OAM modality can be introduced into the precoding matrix, so that OAM can be integrated in the traditional MIMO precoding process, so that OAM can be used in MIMO communication to improve the performance of traditional MIMO, thereby increasing spectral efficiency.
  • the second precoding matrix corresponds to the second precoding matrix among the P*V second precoding matrixes
  • the second precoding matrix is A matrix of M rows and N columns
  • M is the number of antenna ports included in the i-th antenna port group in the P antenna port groups
  • N is the number of antenna ports included in the j-th OAM mode group in the V OAM mode groups
  • M is a positive integer greater than 1
  • N is a positive integer less than or equal to M
  • i is a positive integer less than or equal to P
  • j is a positive integer less than or equal to V.
  • the second precoding matrix corresponds to an element in the i-th row and j-th column in the third precoding matrix, including: the second The position of the precoding matrix in the first precoding matrix is the same as the position of the element in the ith row and the jth column in the third precoding matrix.
  • the foregoing first indication information includes: the number of the V OAM modal groups, the identification of the third precoding matrix, and the V OAM modalities The number of OAM modes included in each OAM mode group in the group, and the identifier of each OAM mode group.
  • the element in the i-th row and j-th column in the third precoding matrix corresponding to the second precoding matrix is 0, then The elements in the second precoding matrix are all 0; if the element in the ith row and the jth column is not 0, the element in the xth row and the yth column in the second precoding matrix is the first value and the The product of the elements in row i and column j.
  • the first value is determined by the azimuth angle of the array element corresponding to the x-th antenna port in the i-th antenna port group relative to the center of the first array and the value in the j-th OAM mode group
  • the y-th OAM mode is determined, where the first array center is the array center of the antenna array corresponding to the i-th antenna port group in the antenna array of the transmitting end device, x is a positive integer less than or equal to M, y It is a positive integer less than or equal to N.
  • a communication device for implementing the various methods described above.
  • the communication device may be the receiving device in the first aspect described above, or a device including the receiving device, or a device included in the receiving device, such as a chip; or, the communication device may be the second or first aspect described above.
  • the sending end device in the three aspects, or a device including the foregoing sending end device, or a device included in the foregoing sending end device.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • the communication device may be the receiving device in the first aspect described above, or a device including the receiving device, or a device included in the receiving device, such as a chip; or, the communication device may be the second or first aspect described above.
  • the sending end device in the three aspects, or a device including the foregoing sending end device, or a device included in the foregoing sending end device.
  • a communication device including: a processor and an interface circuit, the interface circuit may be a code/data read-write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in a memory, It may be directly read from the memory, or may be transmitted through other devices) and transmitted to the processor; the processor is used to run the computer-executable instructions to execute the method described in any of the above aspects.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device may be the receiving device in the first aspect described above, or a device including the receiving device, or a device included in the receiving device, such as a chip; or, the communication device may be the second or first aspect described above.
  • the sending end device in the three aspects, or a device including the foregoing sending end device, or a device included in the foregoing sending end device.
  • a computer-readable storage medium stores instructions that, when run on a communication device, enable the communication device to execute the method described in any of the above aspects.
  • the communication device may be the receiving device in the first aspect described above, or a device including the receiving device, or a device included in the receiving device, such as a chip; or, the communication device may be the second or first aspect described above.
  • the sending end device in the three aspects, or a device including the foregoing sending end device, or a device included in the foregoing sending end device.
  • a computer program product containing instructions which when running on a communication device, enables the communication device to execute the method described in any of the above aspects.
  • the communication device may be the receiving device in the first aspect described above, or a device including the receiving device, or a device included in the receiving device, such as a chip; or, the communication device may be the second or first aspect described above.
  • the sending end device in the three aspects, or a device including the foregoing sending end device, or a device included in the foregoing sending end device.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • the technical effects brought by any one of the design methods in the fourth aspect to the tenth aspect can be referred to the technical effects brought about by the different design methods in the first aspect, the second aspect, or the third aspect. Go into details.
  • a communication system in an eleventh aspect, includes the receiving end device described in the foregoing aspect and the transmitting end device described in the foregoing aspect.
  • FIG. 1a is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 1b is a schematic structural diagram of another communication system provided by an embodiment of this application.
  • FIG. 2a is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 2b is a schematic structural diagram of a terminal device and a network device provided by an embodiment of this application;
  • FIG. 3 is a schematic structural diagram of another terminal device provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a method for determining a precoding matrix provided by an embodiment of this application;
  • FIG. 5 is a schematic diagram of a data-to-physical antenna mapping process provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a phase compensation method provided by an embodiment at the time of this application.
  • FIG. 7 is a schematic flowchart of another method for determining a precoding matrix provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of an antenna array of a transmitting end device according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of an antenna array of another transmitting end device according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a receiving end device according to an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a sending end device provided by an embodiment of this application.
  • the network device For downlink transmission, the network device first sends a channel state information reference signal (CSI-RS) to the terminal device, and the terminal device performs channel measurement according to the CSI-RS to obtain the channel state information (CSI-RS) of the downlink channel. ), and send a CSI report to the network device.
  • the CSI report may include, for example, a channel quality indicator (CQI), a rank indicator (RI), a precoding matrix indicator (PMI), etc.
  • the network device After the network device receives the CSI report reported by the terminal device, it uses the precoding matrix indicated by the PMI in the CSI report or other precoding matrixes determined according to the CSI report to complete the mapping from the transmission layer to the antenna port.
  • both the transmission of CSI-RS and the reporting of CSI reports may be periodic, semi-persistent, or aperiodic.
  • the terminal equipment can obtain the quality of the uplink channel in the following two ways.
  • One way is that the terminal device sends a sounding reference signal (SRS) to the network device, and the network device measures the CSI of the uplink channel according to the SRS, and indicates the appropriate uplink transmission rank and precoding matrix to the terminal device.
  • SRS sounding reference signal
  • Another method can be applied to scenarios where the channel environment has reciprocity between uplink and downlink.
  • the terminal device can measure the CSI of the downlink channel according to the CSI-RS sent by the network device, and then select the uplink precoding matrix deemed optimal by the terminal device. And on each precoding beam corresponding to the uplink precoding matrix, the SRS is sent to the network device.
  • the network device determines the uplink precoding matrix finally used by the terminal device according to the quality of the received SRS, and uses the SRS resource indicator (SRS resource indicator). , SRI) indicates to the terminal equipment the determined uplink precoding matrix finally used by the terminal equipment.
  • SRS resource indicator SRS resource indicator
  • Orbital angular momentum means that the electron rotates around the propagation axis, which is generated by the energy flow (described by the Poynting vector) rotating around the optical axis. It makes the phase wavefront of the electromagnetic wave vortex-like, that is, the wavefront of the electromagnetic wave carrying OAM It will no longer be a planar structure, but will rotate around the beam propagation direction, presenting a spiral phase structure.
  • the number of phase rotations of electromagnetic waves with OAM is called an OAM mode (or can also be called an OAM mode), and different OAM modes are orthogonal to each other.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • OFDMA orthogonal frequency-division multiple access
  • single carrier frequency-division multiple access single carrier frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • NTN system and other systems.
  • the term "system” can be used interchangeably with "network”.
  • the OFDMA system can implement wireless technologies such as evolved universal terrestrial radio access (E-UTRA) and ultra mobile broadband (UMB).
  • E-UTRA is an evolved version of the Universal Mobile Telecommunications System (UMTS).
  • UMTS Universal Mobile Telecommunications System
  • 3rd generation partnership project, 3GPP uses the new version of E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • LTE long term evolution
  • 5G communication system is a next-generation communication system under study.
  • 5G communication systems include non-standalone (NSA) 5G mobile communication systems, standalone (SA) 5G mobile communication systems, or NSA’s 5G mobile communication systems and SA’s 5G mobile communication systems.
  • NSA non-standalone
  • SA standalone
  • 5G mobile communication systems or SA’s 5G mobile communication systems and SA’s 5G mobile communication systems.
  • Communication Systems may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the above-mentioned communication system applicable to the present application is only an example, and the communication system applicable to the present application is not limited to this, and the description is unified here, and the details are not repeated below.
  • the communication system 10a includes a sending end device 101 and a receiving end device 102.
  • the sending end device 101 can be a network device or a terminal device; the receiving end device 102 can be a terminal device or a network device; the sending end device 101 and The receiving end device 102 is a different type of device.
  • the sending end device 101 is a network device, and the receiving end device 102 is a terminal device.
  • the receiving end device obtains the CSI of the first channel and the information of the P antenna port groups of the transmitting end device, and according to The CSI of the first channel and the first OAM mode determine V OAM mode groups.
  • the first OAM mode is an OAM mode supported by both the transmitting end device and the receiving end device; further, the receiving end device is based on the P antenna ports Group and V OAM modal groups, determine a first precoding matrix including P*V second precoding matrices, and send first indication information indicating the first precoding matrix to the transmitting end device, and the first precoding matrix
  • the coding matrix is used for precoding the first data, where P is a positive integer, and V is a positive integer less than or equal to P.
  • the sending end device receives the first indication information from the receiving end device, and determines the first precoding matrix according to the first indication information.
  • the OAM modality can be introduced into the precoding matrix, thereby solving the precoding problem of integrating MIMO and OAM into communication, so that OAM can be used in MIMO communication to improve the performance of traditional MIMO, thereby increasing spectral efficiency.
  • another system 10b for determining a precoding matrix includes a network device 20 and one or more terminals connected to the network device 20 Equipment 30.
  • different terminal devices 30 can communicate with each other.
  • the network device 20 may serve as the sending end device 101 in FIG. 1a.
  • one or more terminal devices 30 may serve as the receiving end device 102 in FIG. 1a; or, the network device 20 may serve as the receiving end device in FIG. 1a. 102.
  • one or more terminal devices 30 serve as the sending device 101 in FIG. 1a.
  • the network device 20 in the embodiment of the present application is a device that connects the terminal device 30 to a wireless network.
  • the network device 20 may be a node in a radio access network, may also be called a base station, or may be called a radio access network (radio access network, RAN) node (or device).
  • RAN radio access network
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as
  • the traditional macro base station eNB and the micro base station eNB in the heterogeneous network scenario may also include the next generation node B (gNB) in the 5G new radio (NR) system, or may also include transmission Reception point (transmission reception point, TRP), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), baseband pool BBU pool, or WiFi access point (access point) , AP), etc., or may also include a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (CloudRAN) system.
  • CU centralized unit
  • DU distributed unit
  • CloudRAN cloud radio access network
  • the terminal device 30 in the embodiment of the present application may be a device for implementing wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and wireless communication in a 5G network or a future evolved PLMN.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving (self-driving), wireless terminal in remote medical (remote medical), wireless terminal in smart grid (smart grid), wireless terminal in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal can be mobile or fixed.
  • FIG. 2a shows a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • the communication device 400 includes a processor 401, a communication line 402, a memory 403, and at least one communication interface (in FIG. 2a, it is only exemplary and the communication interface 404 is included as an example for illustration).
  • the processor 401 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs used to control the execution of the program of this application. integrated circuit.
  • the communication line 402 may include a path to transmit information between the aforementioned components.
  • the communication interface 404 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 403 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 402. The memory can also be integrated with the processor.
  • the memory 403 is used to store computer-executed instructions for executing the solution of the present application, and the processor 401 controls the execution.
  • the processor 401 is configured to execute computer-executable instructions stored in the memory 403, so as to implement the method for determining a precoding matrix provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2a.
  • the communication device 400 may include multiple processors, such as the processor 401 and the processor 408 in FIG. 2a.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication device 400 may further include an output device 405 and an input device 406.
  • the output device 405 communicates with the processor 401, and can display information in a variety of ways.
  • the output device 405 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 406 communicates with the processor 401, and can receive user input in a variety of ways.
  • the input device 406 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the aforementioned communication device 400 may be a general-purpose device or a special-purpose device.
  • the communication device 400 may be a desktop computer, a portable computer, a network server, a handheld computer (personal digital assistant, PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in Figure 2a. equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 400.
  • the network device 20 may be used as the sending end device 101 in FIG. 1a, and one or more terminal devices 30 may be used as the receiving end device 102 in FIG. 1a; or, the network device 20 may be used as the receiving end device 102 in FIG.
  • the embodiment of the present application also provides a structure of a network device 20 and a terminal device 30 Schematic.
  • FIG. 2b it is a schematic structural diagram of the network device 20 and the terminal device 30 provided in this embodiment of the application.
  • the terminal device 30 includes at least one processor (in FIG. 2b exemplarily includes a processor 301 for illustration) and at least one transceiver (in FIG. 2b exemplarily includes a transceiver 303 as an example for illustration) ).
  • the terminal device 30 may further include at least one memory (in FIG. 2b exemplarily includes a memory 302 as an example for illustration), at least one output device (in FIG. 2b exemplarily includes an output device 304 as an example) For description) and at least one input device (in FIG. 2b, one input device 305 is exemplarily described as an example).
  • the processor 301, the memory 302, and the transceiver 303 are connected through a communication line.
  • the communication line may include a path to transmit information between the aforementioned components.
  • the processor 301 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program of the application. Circuit.
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 302 may be a device having a storage function. For example, it can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions. Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory 302 may exist independently, and is connected to the processor 301 through a communication line. The memory 302 may also be integrated with the processor 301.
  • the memory 302 is used to store computer-executable instructions for executing the solution of the present application, and the processor 301 controls the execution.
  • the processor 301 is configured to execute computer-executable instructions stored in the memory 302, so as to implement the method for determining the precoding matrix described in the embodiment of the present application.
  • the processor 301 may also perform processing-related functions in the method for determining a precoding matrix provided in the following embodiments of the present application, and the transceiver 303 is responsible for communicating with other devices or communication networks. Communication, this embodiment of the application does not specifically limit this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiments of the present application.
  • the transceiver 303 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 303 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 304 communicates with the processor 301 and can display information in a variety of ways.
  • the output device 304 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • the input device 305 communicates with the processor 301, and can accept user input in a variety of ways.
  • the input device 305 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the network device 20 includes at least one processor (in FIG. 2b exemplarily includes a processor 201 as an example for illustration), at least one transceiver (in FIG. 2b exemplarily includes a transceiver 203 as an example for illustration), and At least one network interface (in FIG. 2b, one network interface 204 is included as an example for illustration).
  • the network device 20 may further include at least one memory (in FIG. 2b, one memory 202 is exemplarily described as an example).
  • the processor 201, the memory 202, the transceiver 203, and the network interface 204 are connected through a communication line.
  • the network interface 204 is used to connect to the core network device through a link (for example, the S1 interface), or to connect with the network interface of other network devices through a wired or wireless link (for example, the X2 interface) (not shown in FIG. 2b).
  • the application embodiment does not specifically limit this.
  • the processor 201, the memory 202, and the transceiver 203 reference may be made to the description of the processor 301, the memory 302, and the transceiver 303 in the terminal device 30, which are not repeated here.
  • FIG. 3 is a specific structural form of the terminal device 30 provided in an embodiment of the application.
  • the functions of the processor 301 in FIG. 2b may be implemented by the processor 110 in FIG. 3.
  • the function of the transceiver 303 in FIG. 2b may be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 3.
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 30 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the terminal device 30.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 can provide applications on the terminal device 30 including wireless local area networks (WLAN) (such as Wi-Fi networks), Bluetooth (bluetooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • Bluetooth blue, BT
  • global navigation satellite system global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 30, which means that the first device includes an NFC chip.
  • the NFC chip can improve the NFC wireless communication function.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 30, which means that the first device includes an electronic tag (such as a radio frequency identification (RFID) tag). ).
  • RFID radio frequency identification
  • the antenna 1 of the terminal device 30 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 30 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the function of the memory 302 in FIG. 2b may be implemented by an external memory (such as a Micro SD card) connected to the internal memory 121 or the external memory interface 120 in FIG. 3.
  • an external memory such as a Micro SD card
  • the function of the output device 304 in FIG. 2b may be implemented by the display screen 194 in FIG. 3.
  • the display screen 194 is used to display images, videos, and the like.
  • the display screen 194 includes a display panel.
  • the function of the input device 305 in FIG. 2b may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 3.
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • a pressure sensor 180A a pressure sensor 180A
  • a gyroscope sensor 180B an air pressure sensor 180C
  • a magnetic sensor 180D e.g., a magnetic sensor 180D
  • an acceleration sensor 180E e.g., a distance sensor 180F
  • a proximity light sensor 180G e.g., a a proximity light sensor 180G
  • a fingerprint sensor 180H e.g., a fingerprint sensor 180H.
  • the terminal device 30 may also include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, where the audio module 170 can be connected to a speaker 170A (also called a "speaker"), a receiver 170B (also called a “handset"), and a microphone 170C (also called a "microphone", “Microphone”) or the earphone interface 170D, etc., which are not specifically limited in the embodiment of the present application.
  • a speaker 170A also called a "speaker”
  • a receiver 170B also called a "handset”
  • a microphone 170C also called a "microphone", “Microphone”
  • the earphone interface 170D etc.
  • the structure shown in FIG. 3 does not constitute a specific limitation on the terminal device 30.
  • the terminal device 30 may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • a method for determining a precoding matrix includes the following steps:
  • the receiving end device acquires the CSI of the first channel and the information of the P antenna port groups of the transmitting end device.
  • the first channel is a physical channel used by the sending end device to send data to the receiving end device.
  • the transmitting end device may send a reference signal to the receiving end device, and after receiving the reference signal from the transmitting end device, the receiving end device performs channel measurement according to the reference signal to obtain the CSI of the first channel.
  • the information of the P antenna port groups of the transmitting end device is used to indicate the number P of antenna port groups of the transmitting end device and the antenna ports included in each antenna port group of the P antenna port groups, and P is a positive integer.
  • the number of antenna ports included in each antenna port group in the P antenna port groups is greater than 1, that is, the number of antenna port groups of the transmitting end device is less than the total number of antenna ports of the transmitting end device.
  • the transmitting-end device may determine the P antenna port groups of the transmitting-end device according to the information of the antenna array of the transmitting-end device, that is, the transmitting-end device may determine the transmission reference according to the information of the antenna array of the transmitting-end device
  • the antenna ports of the signal are divided into P groups, and the information of the P antenna port groups is sent to the receiving end device.
  • the information of the antenna array of the transmitting end device may be the shape, number, and connection mode of the antenna array of the transmitting end device, which is not specifically limited in the embodiment of the present application.
  • the transmitting end device may send the information of the P antenna port groups to the transmitting end device in different ways.
  • the sending end device can explicitly send the information of the P antenna port groups to the terminal equipment, that is, send the information of the P antenna port groups through dedicated signaling or information elements or messages, for example, ,
  • the information of P antenna port groups can include ⁇ antenna port group 1: antenna port 1, antenna port 2; antenna port group 2: antenna port 3, antenna port 4 ⁇ , that is, indicating that the four antenna ports of the transmitter device can be divided into There are two groups, and the grouping situation is that antenna port group 1 includes two antenna ports, antenna port 1 and antenna port 2, and antenna port group 2 includes two antenna ports, antenna port 3 and antenna port 4.
  • the receiving end device acquires the information of the P antenna port groups of the transmitting end device, that is, the receiving end device receives the information of the P antenna port groups of the transmitting end device from the transmitting end device.
  • the transmitting end device may implicitly send indication information of the P antenna port groups to the terminal device, for example, sending different reference signals to the receiving end device through different antenna port groups.
  • the receiving end device receives the reference signal from the transmitting end device, it can obtain the information of the P antenna port groups according to the reference signal, thereby determining the number of antenna port groups of the transmitting end device and each antenna port group including Antenna port.
  • the receiving end device determines V OAM mode groups according to the CSI of the first channel and the first OAM mode.
  • the first OAM mode is an OAM mode supported by both the sending end device and the receiving end device, and V is a positive integer less than or equal to P.
  • the sending-end device may send the OAM modes supported by the sending-end device to the receiving-end device, so that the receiving-end device can determine V OAM mode groups. It is understandable that, before the sending-end device sends the OAM modalities supported by the sending-end device to the receiving-end device, the receiving-end device may request the sending-end device for the OAM modalities supported by the sending-end device.
  • the first OAM modality provided in this embodiment of the application is [-1, -2, 0, 1, 2], and the number of OAM modality groups V is equal to 2, 2.
  • the number of OAM modes included in the OAM mode group is 2 and 3, all possible forms of the OAM mode group.
  • the number of OAM modes included in the OAM mode group is certain, the number of all possible OAM mode groups satisfies the following formula (1):
  • n represents the number of OAM modes included in the first OAM mode
  • m represents the number of OAM modes included in the OAM mode group. For example, when the number of OAM modes included in the OAM mode group is 2, the number of all possible OAM mode groups is
  • the receiving end device determines a first precoding matrix according to P antenna port groups and V OAM modal groups.
  • the first precoding matrix includes P*V second precoding matrices
  • the second precoding matrix may represent an OAM modality-based coding manner of antenna ports included in an antenna port group.
  • the third precoding matrix represents the inter-group coding mode of P antenna port groups
  • the third precoding matrix is a matrix with P rows and V columns, each row corresponds to an antenna port group, and each column corresponds to an OAM modal group.
  • the number of OAM modal groups can also be understood as the number of transmission layers between P antenna port groups. Therefore, the number of OAM modal groups in Table 1 can also be replaced by inter-group transmission. Number of layers.
  • the correspondence between the elements in the second precoding matrix and the third precoding matrix may be a one-to-one correspondence, that is, one precoding matrix corresponds to one element in the third precoding matrix.
  • the second precoding matrix has a corresponding relationship with the elements in the third precoding matrix, including: the second precoding matrix
  • the coding matrix corresponds to the element in the ith row and the jth column in the third precoding matrix.
  • the second precoding matrix is a matrix with M rows and N columns, and M is the ith antenna port group of the P antenna port groups.
  • N is the number of OAM modes included in the j-th OAM mode group in the V OAM mode groups
  • M is a positive integer greater than 1
  • N is a positive integer less than or equal to M
  • i is A positive integer less than or equal to P
  • j is a positive integer less than or equal to V.
  • the second precoding matrix corresponds to an element in the i-th row and j-th column of the third pre-coding matrix, and includes: the position of the second pre-coding matrix in the first pre-coding matrix and the i-th row and j-th column
  • the positions of the elements in the third precoding matrix are the same. Therefore, the number of columns of the first precoding matrix is the number of OAM modes included in the V OAM mode groups, and each column in the first precoding matrix corresponds to one OAM mode.
  • each column in the first precoding matrix corresponds to The OAM mode may be the same as the OAM mode corresponding to other columns.
  • the number of columns of the first precoding matrix may be expressed as the total number of OAM layers (OAM-TotalLayer).
  • the third precoding matrix is a matrix with 2 rows and 2 columns.
  • the first precoding matrix includes 2*2, that is, 4 second precoding matrices.
  • the third precoding matrix is As an example, among the four second precoding matrices included in the first precoding matrix:
  • the second precoding matrix corresponding to the element "1" in the first row and the first column of the third precoding matrix The number of rows is the number of antenna ports included in the first antenna port group 4, and the number of columns is the number of OAM modes included in the first OAM mode group 2, namely Is a matrix with 4 rows and 2 columns, that is
  • the second precoding matrix corresponding to the element "0" in the first row and second column of the third precoding matrix The number of rows is the number of antenna ports included in the first antenna port group 4, and the number of columns is the number of OAM modes included in the second OAM mode group 3, namely Is a matrix with 4 rows and 3 columns, that is
  • the second precoding matrix corresponding to the element "0" in the second row and the first column of the third precoding matrix The number of rows is the number of antenna ports included in the second antenna port group 4, and the number of columns is the number of OAM modes included in the first OAM mode group 2, namely Is a matrix with 4 rows and 2 columns, that is
  • the second precoding matrix corresponding to the element "0" in the second row and second column of the third precoding matrix The number of rows is the number of antenna ports included in the second antenna port group 4, and the number of columns is the number of OAM modes included in the second OAM mode group 3, namely Is a matrix with 4 rows and 3 columns, that is
  • the first precoding matrix is
  • the above solution provides the form of the second precoding matrix and its position in the first precoding matrix.
  • one of the P*V second precoding matrices is used for the second precoding Take the matrix as an example.
  • the elements in the second precoding matrix are all 0; if The element in the i-th row and j-th column is not 0, then the element in the x-th row and y-th column in the second precoding matrix is the product of the first value and the element in the i-th row and j-th column, and the first value is determined by
  • the azimuth angle of the array element corresponding to the x-th antenna port in the i-th antenna port group relative to the center of the first array is determined and the y-th OAM mode in the j-th OAM mode group is determined, where the first array center Is the array center of the antenna array corresponding
  • the elements in are all 0, with The elements in are determined according to the OAM mode and the azimuth angle corresponding to the array unit corresponding to the antenna port.
  • S404 The receiving end device sends first indication information to the sending end device.
  • the sending end device receives the first indication information from the receiving end device.
  • the first indication information is used to indicate the first precoding matrix, and the first precoding matrix is used to precode the first data.
  • the first indication information may include the number V of OAM modal groups, the identification of the third precoding matrix, and the information included in each OAM modal group of the V OAM modal groups.
  • the first indication information may include the number V of OAM modal groups, the identification of the third precoding matrix, and the OAM modalities included in each OAM modal group in the V OAM modal groups
  • the information not included in the first indication information can be inferred based on the information it includes.
  • the first indication information may include The identification of the third precoding matrix, the number of OAM modalities included in each OAM modal group in the V OAM modal groups, and the identification of each OAM modal group are based on the OAM modalities included in each OAM modal group.
  • the number of states can be derived from the number of OAM modal groups V.
  • the number V of OAM modal groups may be represented by a group index (GpIn)
  • the identification of the third precoding matrix may be represented by PMI_1
  • the number of OAM modalities included in each OAM modal group may be represented by The mode index (MdIn) indicates that the identifier of each OAM mode group can be indicated by PMI_2.
  • the receiving end device may carry the first indication information in the CSI report and send it to the sending end device, or may separately send the first indication information to the sending end device, which is not specifically limited in the embodiment of the present application.
  • the transmitting end device determines a first precoding matrix according to the first indication information.
  • the transmitting end device may first determine the third precoding matrix according to the number V of OAM modal groups, the number P of antenna port groups, and the identification of the third precoding matrix, and then according to the third precoding matrix.
  • the coding matrix, the number of OAM modalities included in each OAM modal group, and the identification of each OAM modal group determine P*V second precoding matrices, and finally according to the second precoding matrix described in step S403 and The correspondence between the elements in the third precoding matrix determines the first precoding matrix.
  • the method for determining a precoding matrix may further include the following steps S406-S407:
  • the transmitting end device precodes the first data according to the first precoding matrix.
  • the first data is data to be sent after layer mapping, and the first data may include multi-stream data.
  • the data obtained by the transmitting end device precoding the first data according to the first precoding matrix is referred to as an OAM signal, which is described here in a unified manner, and will not be repeated in the following embodiments.
  • the sending end device precoding the first data according to the first precoding matrix may include: the sending end device precoding the first data using the first precoding matrix, At this time, the number of data streams included in the first data is the same as the number of columns of the first precoding matrix.
  • the sending end device precoding the first data according to the first precoding matrix may include: the sending end device determines the fourth precoding matrix according to the first precoding matrix, and using the fourth precoding matrix
  • the encoding matrix pre-encodes the first data, that is, the first pre-encoding matrix is used to pre-encode the first data, which can be understood as: the first pre-encoding matrix is used to determine the fourth pre-encoding matrix, and the fourth pre-encoding matrix is used to determine the fourth pre-encoding matrix.
  • the coding matrix is used for precoding the first data. At this time, the number of data streams included in the first data is the same as the number of columns of the fourth precoding matrix.
  • the fourth precoding matrix may be the same as the first precoding matrix, or may be composed of partial columns in the first precoding matrix. It can be understood that, in extreme cases, there may be a situation where the fourth precoding matrix is completely different from the first precoding matrix.
  • the network device finds that the OAM modalities corresponding to the columns in the first precoding matrix are uniform during scheduling. Is occupied. At this time, the fourth precoding matrix finally determined by the network device may be completely different from the first precoding matrix.
  • the sending end device sends an OAM signal to the receiving end device.
  • the receiving end device receives the OAM signal from the transmitting end device.
  • OAM modalities can be introduced into the precoding matrix, so that OAM can be integrated in the traditional MIMO precoding process, so that OAM can be used in MIMO communication to improve the performance of traditional MIMO, thereby increasing spectral efficiency.
  • the receiving end device determines whether there is a direct line of sight in the first channel according to the CSI of the first channel. If it does not exist, perform the traditional MIMO precoding scheme. For the detailed scheme, refer to the prior art, which will not be repeated here; if it does, continue to perform the method for determining the precoding matrix shown in FIG. 4. That is, the method for determining the precoding matrix provided in the embodiment of the present application further includes: the receiving end device determines that there is a direct line of sight in the first channel according to the CSI of the first channel.
  • the receiving end device may determine that there is a direct line of sight in the first channel according to the following manner:
  • Manner 1 If the difference between the rank of the channel matrix corresponding to the first channel and 1 is less than the first threshold, the receiving end device determines that there is a direct line of sight in the first channel;
  • Manner 3 If the ratio of the maximum singular value to the minimum singular value is greater than the third threshold, the receiving end device determines that there is a line of sight in the first channel. Among them, the maximum singular value and the minimum singular value are obtained after performing singular value decomposition on the channel matrix corresponding to the first channel, and the ratio of the maximum singular value to the minimum singular value may also be referred to as a condition number.
  • the receiving end device determines that there is a direct line of sight in the first channel, it can be determined according to any one of the above three methods, or it can be determined according to any combination of the above three methods, for example, combining Mode 1 and Mode 3: When the difference between the rank of the channel matrix corresponding to the first channel and 1 is less than the first threshold, and the ratio of the maximum singular value to the minimum singular value is greater than the third threshold, the receiving end device determines the first There is a direct line of sight in the channel; or, combining method two and method three, when the rank of the channel matrix corresponding to the first channel is less than the second threshold, and the ratio of the largest singular value to the smallest singular value is greater than the third threshold, the receiving device It is determined that there is a line of sight in the first channel.
  • the receiving device And the sending end device can also execute the method for determining the precoding matrix shown in FIG. 4, but it is only necessary to perform corresponding phase compensation on the channel.
  • the first precoding matrix provided in the embodiment of the present application precodes the data to be sent in a scenario where there is a direct line of sight in the channel, thereby using OAM to improve the performance of traditional MIMO and increase the spectrum efficiency.
  • FIG. 5 is a process of mapping data to physical antennas based on the method for determining a precoding matrix provided by an embodiment of the present application.
  • the data after the layer mapping is pre-coded by the first precoding matrix or the fourth precoding matrix (the first precoding matrix is exemplified in FIG. 5 for illustration) and then mapped to the antenna port. After that, the data on the antenna port is mapped onto the physical antenna through the spatial filter, and then transmitted through the physical antenna.
  • y 1 ,...,y ⁇ are the data after layer mapping.
  • z 1 ,...,z ⁇ are antenna ports
  • a 1 ,...,A x are physical antennas
  • is the number of columns of the first precoding matrix or the fourth precoding matrix
  • x is a positive integer
  • is The number of antenna ports included in the P antenna port groups of the transmitting end device.
  • the axes of the transmitter and receiver devices are not aligned or there is interference in the channel.
  • the receiver device will generate inter-mode crosstalk when receiving OAM signals, thereby Affect the demodulation of OAM signals. Therefore, when the receiving end device and the transmitting end device execute the method for determining the precoding matrix as shown in FIG. 4, they can perform phase compensation in combination with the method shown in FIG.
  • the method shown in FIG. 6 includes the following steps:
  • the sending end device sends first information to the receiving end device.
  • the receiving end device receives the first information from the sending end device.
  • the first information may be the first phase reference signal, or the first information may also be information about the direction of the receiving end device relative to the transmitting end device and the azimuth information of the antenna array of the transmitting end device, and the antenna array of the transmitting end device
  • the azimuth information indicates the azimuth of the antenna array of the transmitting end device in the first reference coordinate system
  • the first reference coordinate system may be the coordinate system of the positioning system (for example, GPS positioning system) commonly used by the transmitting end device and the receiving end device.
  • the receiving end device determines a first phase compensation value according to the first information.
  • the receiving end device determines the first direction according to the first phase reference, and then determines the first phase compensation value according to the first direction, where the first direction is the transmitting end device Relative to the direction of the receiving end device, the first phase compensation value is a phase compensation value corresponding to the receiving end device.
  • the receiving end device performs phase compensation according to the first phase compensation value.
  • step S603 may be performed before the receiving end device performs OAM demodulation on the received OAM signal.
  • the receiving end device sends the second information to the sending end device.
  • the sending end device receives the second information from the receiving end device.
  • the second information may be the second phase reference signal, or the first information may also be the information of the first direction and the azimuth information of the antenna array of the receiving end device, and the azimuth information of the antenna array of the receiving end device indicates the receiving end device The azimuth of the antenna array in the first reference coordinate system.
  • the transmitting end device determines a second phase compensation value according to the second information.
  • the transmitting end device determines the second direction according to the second phase reference, and then determines the second phase compensation value according to the second direction, where the second direction is the receiving end device Relative to the direction of the transmitting end device, the second phase compensation value is a phase compensation value corresponding to the transmitting end device.
  • step S606 may be performed; or, in step S406, the transmitter device determines the fourth precoding matrix according to the first precoding matrix, which may include: the transmitter device determines the fourth precoding matrix according to the first precoding matrix.
  • a precoding matrix and a second phase compensation value determine the fourth precoding matrix.
  • the transmitting end device performs phase compensation according to the second phase compensation value.
  • the transmitter device determines the second direction and the second phase compensation value, it can perform the transmitter phase compensation first, and then precode the first data according to the first precoding matrix, that is, perform step S606a first, and then perform Step S406.
  • Step S601-S603 can be performed first, and then steps S604-S606.
  • the first information can be For the first phase reference signal
  • the receiving end device may send the second information in the first direction to the sending end device; or it may first perform steps S604-S606, and then perform steps S601-S603, at this time, step S601
  • the sending end device may send the first information to the receiving end device in the second direction.
  • the second information may be a second phase reference signal.
  • the receiver device and the transmitter device can perform phase compensation, thereby reducing the inter-mode crosstalk of the receiver device and improving the ability of the receiver device to demodulate the OAM signal.
  • the sending end device is a network device
  • the receiving end device is the first terminal device
  • the method for determining the precoding matrix provided in the embodiment of the present application further includes:
  • the first terminal device determines the CQI group corresponding to the first precoding matrix according to the first precoding matrix, the CSI of the first channel, and the receiving capability of the first terminal device, and sends the CQI group to the network device.
  • the CQI group includes the CQI corresponding to each OAM modality in the OAM modality corresponding to the first precoding matrix, and the OAM modality corresponding to the first precoding matrix is the OAM corresponding to each column of the first precoding matrix. Modal.
  • the same OAM modalities may exist in the OAM modalities corresponding to each column of the first precoding matrix.
  • the first precoding matrix includes 5 columns, and the OAM modalities corresponding to each column are 0 and 1 respectively. , 0, 1, -1.
  • the CQI corresponding to the same OAM mode may be the same, and accordingly, the CQI group may include the CQI corresponding to each OAM mode in the same OAM mode, that is, the CQI group It includes the same CQI, or the same CQI corresponding to the same OAM mode appears only once in the CQI group.
  • the OAM mode "0" corresponding to the first column of the first precoding matrix and the OAM mode “0” corresponding to the third column have the same CQI
  • the OAM mode "1" corresponding to the second column The CQI corresponding to the OAM mode "1" corresponding to the fourth column is the same
  • the CQI group can include 5 CQIs, where the first CQI is the same as the third CQI, and the second CQI is the same as the fourth CQI.
  • the CQI group may also include 3 different CQIs, where the first CQI corresponds to the OAM modality "0" corresponding to the first column and the third column in the first precoding matrix, The second CQI corresponds to the OAM mode "1" corresponding to the second column and the fourth column in the first precoding matrix, and the third CQI corresponds to the OAM mode "-1".
  • CQIs corresponding to the same OAM mode may be different, and correspondingly, the CQI group includes different CQIs corresponding to the same OAM mode.
  • the receiving capability of the first terminal device may be the receiving capability of the first terminal device for data transmitted using different OAM modalities, for example, the hardware configuration of the first terminal device and the demodulation of data transmitted using different OAM modalities Algorithm capabilities.
  • the CQI corresponding to each OAM mode in the OAM mode corresponding to the first precoding matrix may indicate the modulation mode and code rate corresponding to the data sent using the OAM mode.
  • the CQI corresponding to the OAM mode can indicate a low-order modulation mode and a low code rate, that is, the modulation mode corresponding to the data sent using the high OAM mode is a low-order modulation mode
  • the corresponding bit rate is a low bit rate; or, if the OAM mode is a low OAM mode, the CQI corresponding to the OAM mode can indicate a high-order modulation mode and a high bit rate, that is, use the low OAM mode
  • the modulation mode corresponding to the data sent in the state is a high-order modulation mode, and the corresponding code rate is a high code rate.
  • the OAM mode used by the data to be sent can be determined first, and then the CQI corresponding to the OAM mode can be obtained from the above-mentioned CQI group, and the modulation mode and code rate indicated by the CQI can be used to send After data modulation and rate matching, the symbol corresponding to the data to be sent is obtained, and the symbol is finally mapped to the transmission layer corresponding to the OAM mode corresponding to the CQI.
  • the modulation mode and code rate of the data can be adjusted according to the OAM modality and CQI, thereby increasing the flexibility of data transmission and increasing the transmission rate.
  • the sending end device is a terminal device
  • the receiving end device is a network device.
  • the first indication information in the embodiment of the present application may also be referred to as a transmitted precoding matrix indicator (TPMI).
  • TPMI transmitted precoding matrix indicator
  • the receiving end device is a network device
  • the sending end device is a first terminal device.
  • the network device also communicates with one or more other terminal devices. Communication, that is, the implementation scenario is a multi-user uplink transmission scenario.
  • the scenario in which the terminal device sends data to the network device is referred to as the uplink transmission scenario.
  • the channel through which the terminal device sends data to the network device is called the uplink channel;
  • the scenario where the device sends data is called a downlink transmission scenario.
  • the channel through which the network device sends data to the terminal device is called a downlink channel, which is described here in a unified manner, and the following embodiments will not be repeated.
  • the network device separately determines the precoding matrix corresponding to each terminal device according to the CSI of the uplink channel between each terminal device and the network device, and the precoding matrix corresponding to each terminal device is used for the terminal.
  • the device precodes the uplink data to be sent.
  • the network device can comprehensively consider the CSI of each terminal device, and determine a different precoding matrix for each terminal device or part of the terminal device.
  • the first precoding matrix is used by the first terminal device to precode the first data
  • the first precoding matrix is different from the precoding matrix indicated by the network device to the second terminal device
  • the second The terminal device serves one or more terminal devices other than the first terminal device for the network device.
  • the precoding matrix indicated by the network device to the second terminal device is determined by the network device according to the CSI of the second channel.
  • the second terminal device sends data to the network device.
  • the network device schedules different precoding matrices for multiple terminal devices that communicate with it, the interference between users can be reduced during simultaneous transmission on the same frequency.
  • the sending end device is a network device
  • the receiving end device is a first terminal device.
  • the network device also communicates with one or more other terminal devices. Communication, that is, the implementation scenario is a multi-user downlink transmission scenario.
  • each terminal device that communicates with the network device can execute the method shown in FIG. 4 to send the first indication information to the network device, and the network device receives the CSI report and the first indication reported by each terminal device.
  • the CSI report of each terminal device and the first indication information can be combined to determine the precoding matrix corresponding to each terminal device.
  • the precoding matrix is used when the network device sends downlink data to the terminal device.
  • the data is pre-coded.
  • the precoding matrix corresponding to each terminal device determined by the network device may be different.
  • the fourth precoding matrix determined by the network device according to the first precoding matrix is used for the network device to precode the first data when sending the first data to the first terminal device, and the fourth precoding matrix
  • the coding matrix is different from the fifth precoding matrix.
  • the fifth precoding matrix is determined by the network device according to the sixth precoding matrix indicated by the second terminal device to the network device.
  • the second terminal device serves the network device except for the first terminal device.
  • the sixth precoding matrix is determined by the second terminal device according to the CSI of the third channel when the second terminal device executes the embodiment shown in FIG. 4, and the third channel is used by the network device to communicate to the second terminal device. send data.
  • the network device schedules different precoding matrices for multiple terminal devices that communicate with it, the interference between users can be reduced during simultaneous transmission on the same frequency.
  • the method shown in FIG. 4 provided by the embodiments of the present application can be implemented in any one of the multiple implementation scenarios described above, or in the absence of logic in the multiple implementation scenarios described above. Implemented in any combination of multiple conflicting scenarios. At this time, the methods provided in each of the combined scenarios can be combined and executed.
  • the sending end device as a terminal device and the receiving end device as a network device as an example, as shown in FIG. 7, another method for determining a precoding matrix is provided in this embodiment of the present application.
  • the method includes the following steps:
  • the terminal device determines the CSI of the uplink channel and the P antenna port groups of the terminal device.
  • obtaining the CSI of the uplink channel by the terminal device includes: the terminal device obtains the CSI of the uplink channel according to the CSI of the downlink channel based on channel reciprocity.
  • the terminal device determining the P antenna port groups of the terminal device may include: the terminal device determines the number P of antenna port groups according to the information of the antenna array of the terminal device, and each antenna port group of the P antenna port groups includes Antenna port.
  • S702-S703 are similar to steps S402-S403 in the embodiment shown in FIG. 4, except that the execution subject in steps S402-S403 is the receiving end device, and the execution subject in steps S702-S703 is the sending end device, namely For the terminal device, the relevant description can refer to the above steps S402-S403, which will not be repeated here.
  • the terminal device uses the first to K columns in the first precoding matrix to precode the reference signal to obtain the first reference signal.
  • the first precoding matrix has the same meaning as the first precoding matrix in the embodiment shown in FIG. 4.
  • the reference signal in this embodiment may be SRS
  • K is the number of columns of the first precoding matrix
  • the first reference signal includes K precoded reference signals.
  • the terminal device sends the first reference signal to the network device.
  • the network device receives the first reference signal from the terminal device.
  • S706 The network device determines the second reference signal.
  • the second reference signal is part or all of the reference signals in the first reference signal.
  • the network device may select one or more precoded reference signals among the K precoded reference signals included in the received first reference signal Signal as the second reference signal.
  • the network device may select one or more precoded reference signals with better quality from the K precoded reference signals according to the signal quality of the received K precoded reference signals; or ,
  • the second reference signal may also be determined from the first reference signal in other manners, which is not specifically limited in the embodiment of the present application.
  • the network device may combine the first reference signal sent by each terminal device communicating with it to determine a different second reference signal for each terminal device.
  • the network device sends second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information is used to indicate the second reference signal.
  • the second indication information may be SRI, that is, the network device may indicate the second reference signal through the SRI.
  • the terminal device determines a fourth precoding matrix according to the second indication information.
  • the fourth precoding matrix is a matrix finally used by the terminal device to precode the data after the layer mapping.
  • the terminal device determines the fourth precoding matrix according to the second indication information, which may be: the terminal device determines the second reference signal according to the second indication information, and corresponds to the second reference signal in the first precoding matrix One or more columns are determined as the columns constituting the second pre-programmed matrix.
  • the terminal device may use a fourth precoding matrix to precode the first data, and send a signal obtained by precoding the first data to the network device.
  • the first data is data to be sent after layer mapping, and the first data may include the number of multiple streams.
  • the number of data streams included in the first data is the same as the number of columns of the fourth precoding matrix.
  • the OAM modality can be introduced into the precoding matrix to solve the precoding problem of integrating MIMO and OAM into communication, so that OAM can be used in MIMO communication to improve the performance of traditional MIMO, thereby increasing spectrum utilization.
  • the method for determining the precoding matrix is related to the antenna array of the transmitting end device. Therefore, in the embodiment of the present application, the antenna array of the transmitting end device corresponds to the first antenna port group The array units are not distributed on the same straight line, where the first antenna port group is any one of the P antenna port groups of the transmitting end device.
  • the antenna array of the transmitting end device may be a circular array, a lattice array, or a spiral array.
  • a lattice antenna array provided by an embodiment of this application includes R*T array units, and the horizontal distance between any two array units is dr , The spacing in the vertical direction is d t .
  • each UCA array includes 16 array elements.
  • the 16 array units are equally spaced, and the phase and amplitude of each array unit are adjustable.
  • each UCA of the transmitting end device corresponds to one antenna port group, that is, the number of antenna port groups of the transmitting end device is 4, each antenna port group includes 16 antenna ports, and the number of OAM mode groups is 4, and each OAM The modal groups all include five OAM modalities [-2, -1, 0, 1, 2], and the third precoding matrix is Then the first precoding matrix used to precode the first data is It is assumed here that the sending end device finally uses the first precoding matrix to precode the first data, where each 0 in F H represents a 0 matrix with 16 rows and 5 columns, and F i H is a matrix with 16 rows and 5 columns.
  • the value of F i H is based on the array center of the array unit corresponding to the i-th antenna port group relative to the antenna array corresponding to the i-th antenna port group in the antenna array of the transmitting end device
  • the azimuth and the OAM modes included in the j-th OAM mode group are determined.
  • the decoding matrix corresponding to UCA, F i H is the second precoding matrix corresponding to the i-th UCA of the transmitting end device.
  • each stream data is decoded in an equalized manner.
  • the multi-stream data transmitted on the OAM modality obtained after equalization of the l OAM modality can be expressed as Therefore, after equalizing the data transmitted on each OAM mode, all the 20 streams of data sent by the sending end device can be solved.
  • x l is the data transmitted on the l-th OAM mode modulated by the transmitting end device
  • I l is the interference caused by other OAM modes and signals on other antennas
  • W l is the filter coefficient.
  • Table 4 is the possible filter coefficients W l corresponding to different OAM modalities provided in the embodiments of this application (the data are all retained to three decimal places).
  • the receiving end device and/or the sending end device can perform some or all of the steps in the embodiment of this application. These steps or operations are only examples, and the embodiment of this application can also perform other operations. Or the deformation of various operations. In addition, each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the operations in the embodiment of the present application.
  • the methods and/or steps implemented by the receiving end device can also be implemented by components (such as chips or circuits) that can be used in the receiving end device, and the methods and/or steps implemented by the sending end device Or steps can also be implemented by components that can be used in the sending end device.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the receiving end device in the foregoing method embodiment, or a device including the foregoing receiving end device, or a component that can be used in the receiving end device; or, the communication device may be the sending end device in the foregoing method embodiment , Or a device that includes the above-mentioned sending-end device, or a component that can be used in a sending-end device.
  • the communication device includes hardware structures and/or software modules corresponding to various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 shows a schematic structural diagram of a receiving end device 100.
  • the receiving end device 100 includes a processing module 1001 and a transceiver module 1002.
  • the transceiver module 1002 may also be referred to as a transceiver unit for implementing sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 1002 may include a receiving module and a sending module, which are respectively used to execute the receiving and sending steps performed by the receiving end device in the above method embodiment, and the processing module 1001 may be used to execute the steps in the above method embodiment. Steps other than receiving and sending steps performed by the receiving end device.
  • the processing module 1001 is used to obtain the channel state information CSI of the first channel and the information of the P antenna port groups of the transmitting end device, where P is a positive integer; the processing module 1001 is also used to obtain the CSI and the first channel of the first channel.
  • An orbital angular momentum OAM mode determine V OAM mode groups, the first OAM mode is an OAM mode supported by both the sending end device and the receiving end device, and V is a positive integer less than or equal to P; processing module 1001, It is also used to determine a first precoding matrix according to P antenna port groups and V OAM modal groups.
  • the first precoding matrix includes P*V second precoding matrices, and the first precoding matrix is used to The data is precoded; the transceiver module 1002 is configured to send first indication information to the sending end device, where the first indication information is used to indicate the first precoding matrix.
  • the processing module 1001 is further configured to determine that there is a direct line of sight in the first channel according to the CSI of the first channel.
  • the CSI of the first channel includes a channel matrix corresponding to the first channel
  • the processing module 1001 is further configured to determine that there is a line of sight in the first channel according to the CSI of the first channel, including: The difference between the rank of the matrix and 1 is less than the first threshold, or the rank of the channel matrix corresponding to the first channel matrix is less than the second threshold, the processing module 1001 is further configured to determine the first channel according to the CSI of the first channel There is a direct view.
  • the CSI of the first channel includes a channel matrix corresponding to the first channel
  • the processing module 1001 is further configured to determine that there is a direct line of sight in the first channel according to the CSI of the first channel, including: if the maximum singular value and the minimum singularity The ratio of the value is greater than the third threshold, and the processing module 1001 is further configured to determine that there is a direct viewing path in the first channel according to the CSI of the first channel.
  • the maximum singular value and the minimum singular value are singular values for the channel matrix corresponding to the first channel Obtained after decomposition.
  • the CSI of the first channel includes a channel matrix corresponding to the first channel
  • the processing module 1001 is further configured to determine that there is a line of sight in the first channel according to the CSI of the first channel, including: The difference between the rank of the matrix and 1 is less than the first threshold, and the ratio of the largest singular value to the smallest singular value is greater than the third threshold.
  • the processing module 1001 is further configured to determine that there is direct current in the first channel according to the CSI of the first channel.
  • the processing module 1001 is further configured to determine according to the CSI of the first channel There is a direct line of sight in the first channel.
  • the transceiver module 1002 is further configured to receive first information from the transmitting end device, where the first information is a first phase compensation value, or the first information is information about the direction of the receiving end device relative to the transmitting end device and The azimuth information of the antenna array of the transmitting end device; the processing module 1001 is further configured to determine a first phase compensation value according to the first information, and the first phase compensation value is the phase compensation value corresponding to the receiving end device; the processing module 1001 is also used for Perform phase compensation according to the first phase compensation value.
  • the processing module 1001 is further configured to determine the first precoding matrix according to the first precoding matrix, the CSI of the first channel, and the receiving capability of the first terminal device.
  • the channel quality indicator CQI group corresponding to the coding, the CQI group including the CQI corresponding to each OAM mode in the OAM mode corresponding to the first precoding matrix; the transceiver module 1002 is also used to send the CQI group to the network device.
  • the receiving end device 100 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module" here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the terminal device is used as the receiving end device, those skilled in the art can imagine that the receiving end device 100 may take the form of the terminal device 30 shown in FIG. 2b.
  • the processor 301 in the terminal device 30 shown in FIG. 2b may invoke the computer execution instructions stored in the memory 302 to make the terminal device 30 execute the method for determining the precoding matrix in the foregoing method embodiment.
  • the function/implementation process of the processing module 1001 and the transceiver module 1002 in FIG. 10 can be implemented by the processor 301 in the terminal device 30 shown in FIG. 2b calling the computer execution instructions stored in the memory 302.
  • the function/implementation process of the processing module 1001 in FIG. 10 can be implemented by the processor 301 in the terminal device 30 shown in FIG. 2b calling the computer execution instructions stored in the memory 302, and the function of the transceiver module 1002 in FIG. 10 /The implementation process can be implemented by the transceiver 303 in the terminal device 30 shown in FIG. 2b.
  • the receiving end device 100 provided in this embodiment can perform the above-mentioned method for determining the precoding matrix, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • Fig. 11 shows a schematic structural diagram of a transmitting end device 110.
  • the sending end device 110 includes a processing module 1101 and a transceiver module 1102.
  • the transceiver module 1102 may also be referred to as a transceiver unit to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, transceiver, transceiver, or communication interface.
  • the transceiver module 1102 may include a receiving module and a sending module, which are respectively used to execute the receiving and sending steps performed by the receiving end device in the above method embodiment, and the processing module 1101 may be used to execute the steps in the above method embodiment. Steps other than receiving and sending steps performed by the receiving end device.
  • the transceiver module 1102 is configured to receive first indication information from the receiving end device, where the first indication information is used to indicate a first precoding matrix, and the first precoding matrix includes P*V second precoding matrices,
  • the first precoding matrix is used to precode the first data
  • P represents the number of antenna port groups of the transmitting end device
  • V represents the number of orbital angular momentum OAM modal groups
  • P is a positive integer
  • V is less than or equal to A positive integer of P
  • the processing module 1001 is configured to determine the first precoding matrix according to the first indication information.
  • the processing module 1101 is further used to determine P antenna port groups of the transmitting end device according to the information of the antenna array of the transmitting end device; the transceiver module 1102 is also used to send the P antenna port groups of the transmitting end device to the receiving end device. Information about each antenna port group.
  • the transceiver module 1102 is further configured to receive second information from the receiving end device.
  • the second information is a second phase reference signal, or the second information is information about the direction of the transmitting end device relative to the receiving end device and The orientation information of the antenna array of the receiving end device;
  • the processing module 1101 is further configured to determine a second phase compensation value according to the second information, and the second phase compensation value is the phase compensation value corresponding to the transmitting end device; the processing module 1101 is also used for Perform phase compensation according to the second phase compensation value.
  • the sending end device 110 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module" here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the sender device 110 may take the form of the network device 20 shown in FIG. 2b.
  • the processor 201 in the network device 20 shown in FIG. 2b may invoke the computer execution instructions stored in the memory 202 to make the network device 20 execute the method for determining the precoding matrix in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1101 and the transceiver module 1102 in FIG. 11 can be implemented by the processor 201 in the network device 20 shown in FIG. 2b calling the computer execution instructions stored in the memory 202.
  • the function/implementation process of the processing module 1101 in FIG. 11 can be implemented by the processor 201 in the network device 20 shown in FIG. 2b calling the computer execution instructions stored in the memory 202, and the function of the transceiver module 1102 in FIG. 11 /The implementation process can be implemented by the transceiver 203 in the network device 20 shown in FIG. 2b.
  • the transmitting end device 110 provided in this embodiment can perform the above-mentioned method for determining the precoding matrix, the technical effect that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device also includes an interface circuit, the interface circuit is a code/data read-write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in a memory and may be directly downloaded from The memory is read, or possibly through other devices) and transferred to the processor.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Abstract

一种确定预编码矩阵的方法、设备及系统,可以改善传统MIMO的性能,提高频谱效率。该方法中,接收端设备获取第一信道的CSI和发送端设备的P个天线端口组的信息,之后,根据第一信道的CSI和第一OAM模态,确定V个OAM模态组,进而根据发送端设备的P个天线端口组和V个OAM模态组确定第一预编码矩阵,最终向发送端设备发送用于指示第一预编码矩阵的第一指示信息;发送端设备接收第一指示信息,并根据第一指示信息,确定第一预编码矩阵。其中,P为正整数,V为小于或者等于P的正整数,第一OAM模态为发送端设备和接收端设备均支持的OAM模态,第一预编码矩阵包括P*V个第二预编码矩阵。

Description

确定预编码矩阵的方法、设备及系统
本申请要求于2019年11月14日提交国家知识产权局、申请号为201911115463.1、申请名称为“确定预编码矩阵的方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及确定预编码矩阵的方法、设备及系统。
背景技术
在第五代(5th generation,5G)网络中,多输入多输出(multiple input multiple output,MIMO)技术被广泛应用,MIMO技术指在发射端和接收端分别使用多个发射天线和接收天线,使数据通过发射端与接收端的多个天线传送和接收。
传统的基于MIMO技术的数据传输方案中,发送端设备利用信道探测的方式获取信道的信道状态信息(channel state information,CSI),之后在发送数据时,可以根据信道的CSI确定预编码矩阵,通过该预编码矩阵将不同的传输层映射到不同的天线端口,最终通过空间滤波器将天线端口映射到物理天线,由物理天线进行数据发送。
然而,该方案中,在直视径分量较大的信道环境下,MIMO信道退化成单输入单输出(single input single output,SISO)信道,也就是说,MIMO信道仅能支持单流信号传输,无法利用空分复用的方式提升频谱效率。因此,在直视径分量较大的信道环境下,如何改善传统MIMO的性能,提升频谱利用率,是目前亟待解决的问题。
发明内容
本申请实施例提供一种确定预编码矩阵的方法、设备及系统,可以改善传统MIMO的性能,提高频谱效率。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种确定预编码矩阵的方法及相应的装置。该方案中,接收端装置获取第一信道的信道状态信息CSI和发送端装置的P个天线端口组的信息,P为正整数;接收端装置根据第一信道的CSI和第一轨道角动量OAM模态,确定V个OAM模态组,该第一OAM模态为发送端装置和接收端装置均支持的OAM模态,V为小于或者等于P的正整数;接收端装置根据该P个天线端口组和该V个OAM模态组,确定第一预编码矩阵,其中,该第一预编码矩阵包括P*V个第二预编码矩阵,该第一预编码矩阵用于对第一数据进行预编码;接收端装置向该发送端装置发送第一指示信息,该第一指示信息用于指示该第一预编码矩阵。基于该方案,可以将OAM模态引入预编码矩阵,使得在传统MIMO的预编码过程中融合OAM,从而使得在MIMO通信中可以利用OAM改善传统MIMO的性能,进而提高频谱效率。
在一种可能的设计中,该确定预编码矩阵的方法还包括:接收端装置根据第一信道的CSI确定第一信道中存在直视径。基于该方案,可以在信道中存在直视径的场景下,利用本申请实施例提供的第一预编码矩阵对待发送数据进行预编码,从而利用OAM改善传统MIMO的性能,提高频谱效率。
在一种可能的设计中,第一信道的CSI包括第一信道对应的信道矩阵,接收端装置根据第一信道的CSI确定第一信道中存在直视径,包括:若第一信道对应的信道矩阵的秩与1之 间的差值小于第一阈值,或者,第一信道矩阵对应的信道矩阵的秩小于第二阈值,接收端装置确定第一信道中存在直视径。
在一种可能的设计中,第一信道的CSI包括第一信道对应的信道矩阵,接收端装置根据第一信道的CSI确定第一信道中存在直视径,包括:若最大奇异值与最小奇异值的比值大于第三阈值,接收端装置确定第一信道中存在直视径,最大奇异值与最小奇异值是对第一信道对应的信道矩阵进行奇异值分解后得到的。
在一种可能的设计中,第一信道的CSI包括第一信道对应的信道矩阵,接收端装置根据第一信道的CSI确定第一信道中存在直视径,包括:若第一信道对应的信道矩阵的秩与1之间的差值小于第一阈值,且最大奇异值与最小奇异值的比值大于第三阈值,接收端装置确定第一信道中存在直视径,最大奇异值与最小奇异值是对第一信道对应的信道矩阵进行奇异值分解后得到的;或者,若第一信道矩阵对应的信道矩阵的秩小于第二阈值,且最大奇异值与最小奇异值的比值大于第三阈值,接收端装置确定第一信道中存在直视径。
在一种可能的设计中,该确定预编码矩阵的方法还包括:接收端装置接收来自该发送端装置的第一信息,该第一信息为第一相位补偿值,或者,该第一信息为该接收端装置相对于该发送端装置的方向的信息和该发送端装置的天线阵列的方位信息;接收端装置根据该第一信息确定第一相位补偿值,该第一相位补偿值为该接收端装置对应的相位补偿值。基于该方案,可以使接收端装置进行相位补偿,从而降低接收端装置的模间串扰,提高接收端装置对OAM信号的解调能力。
在一种可能的设计中,接收端装置为第一终端设备,发送端装置为网络设备,该确定预编码矩阵的方法还包括:第一终端设备根据该第一预编码矩阵、该第一信道的CSI、以及该第一终端设备的接收能力,确定该第一预编码对应的信道质量指示CQI组,该CQI组包括该第一预编码矩阵对应的OAM模态中的每个OAM模态对应的CQI;第一终端设备向该网络设备发送该CQI组。基于该方案,可以时网络设备根据OAM模态和CQI调整数据的调制方式和码率,从而提高数据传输的灵活性,提升传输速率。
在一种可能的设计中,接收端装置为网络设备,发送端装置为第一终端设备,该第一预编码矩阵与该网络设备向第二终端设备指示的预编码矩阵不同,该第二终端设备为该网络设备服务的除该第一终端设备之外的一个或多个终端设备,该网络设备向该第二终端设备指示的预编码矩阵是该网络设备根据第二信道的CSI确定的,该第二信道用于该第二终端设备向该网络设备发送数据。基于该方案,由于网络设备为与其通信的多个终端设备调度不同的预编码矩阵,从而在同频同时传输时,可以降低用户间干扰。
第二方面,提供了一种确定预编码矩阵的方法及相应的装置。该方案中,发送端装置接收来自接收端装置的第一指示信息,该第一指示信息用于指示第一预编码矩阵,该第一预编码矩阵包括P*V个第二预编码矩阵,该第一预编码矩阵用于对第一数据进行预编码,P表示该发送端装置的天线端口组的数量,V表示轨道角动量OAM模态组的数量,P为正整数、V为小于或者等于P的正整数;该发送端装置根据该第一指示信息确定该第一预编码矩阵。其中,第二方面所带来的技术效果可参见上述第一方面所带来的技术效果,此处不再赘述。
在一种可能的设计中,该确定预编码矩阵的方法还包括:发送端装置根据该发送端装置的天线阵列的信息,确定该发送端装置的P个天线端口组;发送端装置向该接收端装置发送该发送端装置的P个天线端口组的信息。
在一种可能的设计中,该确定预编码矩阵的方法还包括:发送端装置接收来自该接收端装置的第二信息,该第二信息为第二相位参考信号,或者,该第二信息为该发送端装置相对 于该接收端装置的方向的信息和该接收端装置的天线阵列的方位信息;发送端装置根据该第二信息确定第二相位补偿值,该第二相位补偿值为该发送端装置对应的相位补偿值。
在一种可能的设计中,第一预编码矩阵用于对第一数据进行预编码,包括:第一预编码矩阵用于确定第四预编码矩阵,该第四预编码矩阵用于对第一数据进行预编码。
在一种可能的设计中,该发送端装置为网络设备,该接收端装置为第一终端设备,该第四预编码矩阵与第五预编码矩阵不同,该第五预编码矩阵由第二终端设备向该网络设备指示的第六预编码矩阵确定,该第二终端设备为该网络设备服务的除该第一终端设备之外的一个或多个终端设备,该第六预编码矩阵由第三信道的CSI确定,该第三信道用于该网络设备向该第二终端设备发送数据。基于该方案,由于网络设备为与其通信的多个终端设备调度不同的预编码矩阵,从而在同频同时传输时,可以降低用户间干扰。
在一种可能的设计中,该发送端装置的天线阵列中与第一天线端口组对应的阵列单元不分布于同一条直线上,该第一天线端口组为该发送端装置的P个天线端口组中的任意一个天线端口组。
第三方面,提供一种确定预编码矩阵的方法及相应的装置。该方案中,发送端装置为终端设备,接收端装置为网络设备,终端装置确定上行信道的CSI和该终端装置的P个天线端口组,P为正整数;终端设备根据上行信道的CSI和第一OAM模态,确定V个OAM模态组,该第一OAM模态为终端设备和网络设备均支持的OAM模态,V为小于或者等于P的正整数;终端设备根据该P个天线端口组和该V个OAM模态组,确定第一预编码矩阵,该第一预编码矩阵包括P*V个第二预编码矩阵;终端设备使用第一预编码矩阵中的第一1至K列对参考信号进行预编码,得到第一参考信号,并向网络装置发送第一参考信号;终端装置接收来自网络装置的第二指示信息,该第二指示信息用于指示第二参考信号,第二参考信号为第一参考信号中的部分或全部参考信号;终端装置根据第二指示信息确定第四预编码矩阵,该第四预编码矩阵用于对第一数据进行预编码。基于该方案,可以将OAM模态引入预编码矩阵,使得在传统MIMO的预编码过程中融合OAM,从而使得在MIMO通信中可以利用OAM改善传统MIMO的性能,进而提高频谱效率。
结合上述第一方面、第二方面和第三方面,在一种可能的设计中,第二预编码矩阵与第三预编码矩阵中的元素存在对应关系,该第三预编码矩阵为P行V列的矩阵。
结合上述第一方面、第二方面和第三方面,在一种可能的设计中,该第二预编码矩阵与该第三预编码矩阵中的元素存在对应关系,包括:第二预编码矩阵与该第三预编码矩阵中第i行第j列的元素对应,该第二预编码矩阵为该P*V个第二预编码矩阵中的一个第二预编码矩阵,该第二预编码矩阵为M行N列的矩阵,M为该P个天线端口组中的第i个天线端口组包括的天线端口的数量,N为该V个OAM模态组中的第j个OAM模态组包括的OAM模态的数量,M为大于1的正整数,N为小于或者等于M的正整数,i为小于或者等于P的正整数,j为小于或者等于V的正整数。
结合上述第一方面、第二方面和第三方面,在一种可能的设计中,该第二预编码矩阵与第三预编码矩阵中第i行第j列的元素对应,包括:该第二预编码矩阵在第一预编码矩阵中的位置与第i行第j列的元素在第三预编码矩阵中的位置相同。
结合上述第一方面和第二方面,在一种可能的设计中,上述第一指示信息包括:该V个OAM模态组的数量、该第三预编码矩阵的标识、该V个OAM模态组中每个OAM模态组包括的OAM模态的数量、该每个OAM模态组的标识。
结合上述第一方面、第二方面和第三方面,在一种可能的设计中,若与该第二预编码矩 阵对应的第三预编码矩阵中第i行第j列的元素为0,则该第二预编码矩阵中的元素均为0;若该第i行第j列的元素不为0,则该第二预编码矩阵中第x行第y列的元素为第一数值与该第i行第j列的元素的乘积,第一数值由第i个天线端口组中的第x个天线端口对应的阵列单元相对于第一阵列中心的方位角和第j个OAM模态组中的第y个OAM模态确定,其中,第一阵列中心为发送端装置的天线阵列中与该第i个天线端口组所对应的天线阵列的阵列中心,x为小于或者等于M的正整数,y为小于或者等于N的正整数。
第四方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的接收端装置,或者包含上述接收端装置的装置,或者上述接收端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第三方面中的发送端装置,或者包含上述发送端装置的装置,或者上述发送端装置中包含的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的接收端装置,或者包含上述接收端装置的装置,或者上述接收端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第三方面中的发送端装置,或者包含上述发送端装置的装置,或者上述发送端装置中包含的装置。
第六方面,提供了一种通信装置,包括:处理器和接口电路,该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器;该处理器用于运行所述计算机执行指令以执行上述任一方面所述的方法。
第七方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的接收端装置,或者包含上述接收端装置的装置,或者上述接收端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第三方面中的发送端装置,或者包含上述发送端装置的装置,或者上述发送端装置中包含的装置。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的接收端装置,或者包含上述接收端装置的装置,或者上述接收端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第三方面中的发送端装置,或者包含上述发送端装置的装置,或者上述发送端装置中包含的装置。
第九方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的接收端装置,或者包含上述接收端装置的装置,或者上述接收端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第三方面中的发送端装置,或者包含上述发送端装置的装置,或者上述发送端装置中包含的装置。
第十方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第四方面至第十方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面或第三方面中不同设计方式所带来的技术效果,此处不再赘述。
第十一方面,提供一种通信系统,该通信系统包括上述方面所述的接收端装置和上述方面所述的发送端装置。
附图说明
图1a为本申请实施例提供的一种通信系统的结构示意图;
图1b为本申请实施例提供的另一种通信系统的结构示意图;
图2a为本申请实施例提供的一种通信设备的结构示意图;
图2b为本申请实施例提供的一种终端设备和网络设备的结构示意图;
图3为本申请实施例提供的另一种终端设备的结构示意图;
图4为本申请实施例提供的一种确定预编码矩阵的方法的流程示意图;
图5为本申请实施例提供的一种数据到物理天线的映射过程示意图;
图6为本申请时实施例提供的相位补偿方法的流程示意图;
图7为本申请实施例提供的另一种确定预编码矩阵的方法的流程示意图;
图8为本申请实施例提供的一种发送端设备的天线阵列的示意图;
图9为本申请实施例提供的另一种发送端设备的天线阵列的示意图;
图10为本申请实施例提供一种接收端设备的结构示意图;
图11为本申请实施例提供的一种发送端设备的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一、信道质量获取方式。
对于下行传输,网络设备首先向终端设备发送信道状态信息参考信号(channel state information reference signal,CSI-RS),终端设备根据CSI-RS进行信道测量得到下行信道的信道状态信息(channel state information,CSI),并向网络设备发送CSI报告,该CSI报告中例如可以包括信道质量指示(channel quality indicator,CQI)、秩指示(rank indicator,RI)、预编码矩阵指示(precoding matrix indicator,PMI)等,网络设备接收到终端设备上报的CSI报告后,使用CSI报告中的PMI指示的预编码矩阵或者根据CSI报告确定的其他预编码矩阵完成传输层到天线端口的映射。其中,CSI-RS的发送和CSI报告的上报均可以是周期性的、或半持续性的、或非周期性的。
对于上行传输,终端设备可以通过如下两种方式获取上行信道的质量。一种方式是终端设备向网络设备发送探测参考信号(sounding reference signal,SRS),网络设备根据SRS进行测量得到上行信道的CSI,并向终端设备指示合适的上行传输秩和预编码矩阵。另一种方式可以应用于信道环境具有上下行互易的场景下,终端设备可以根据网络设备发送的CSI-RS进行测量得到下行信道的CSI,然后选择终端设备认为最优的上行预编码矩阵,并在该上行预编码矩阵对应的每个预编码波束上向网络设备发送SRS,网络设备根据接收到的SRS的质量确定终端设备最终使用的上行预编码矩阵,并通过SRS资源指示(SRS resource indicator,SRI)向终端设备指示其确定的终端设备最终使用的上行预编码矩阵。
第二、轨道角动量(orbital angular momentum,OAM)。
轨道角动量表示电子绕传播轴旋转,是由能量流(由坡印廷矢量描述)围绕光轴旋转而产生的,它使电磁波的相位波前呈涡旋状,即携带有OAM的电磁波波前将不再是平面结构, 而是绕着波束传播方向旋转,呈现出一种螺旋的相位结构。此外,具有OAM的电磁波的相位旋转次数称为OAM模态(或者也可称为OAM模式),不同的OAM模态相互正交。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、NTN系统和其它系统等。术语“系统”可以和“网络”相互替换。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved universal terrestrial radio access,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)等无线技术。E-UTRA是通用移动通信系统(universal mobile telecommunications system,UMTS)演进版本。第三代合作伙伴计划(3rd generation partnership project,3GPP)在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的新版本。5G通信系统是正在研究当中的下一代通信系统。其中,5G通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统,独立组网(standalone,SA)的5G移动通信系统,或者,NSA的5G移动通信系统和SA的5G移动通信系统。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
如图1a所示,为本申请实施例提供的一种确定预编码矩阵的系统10a。该通信系统10a包括发送端装置101和接收端装置102,发送端装置101可以为网络设备,也可以为终端设备;接收端装置102可以为终端设备,也可以为网络设备;发送端装置101和接收端装置102为不同类型的设备,例如,发送端装置101为网络设备,接收端装置102为终端设备。
以图1a所示的发送端装置101与接收端装置102进行交互为例,本申请实施例中,接收端装置获取第一信道的CSI和发送端装置的P个天线端口组的信息,并根据第一信道的CSI和第一OAM模态,确定V个OAM模态组,第一OAM模态为发送端装置和接收端装置均支持的OAM模态;进而,接收端装置根据P个天线端口组和V个OAM模态组,确定包括P*V个第二预编码矩阵的第一预编码矩阵,并向发送端装置发送指示该第一预编码矩阵的第一指示信息,该第一预编码矩阵用于对第一数据进行预编码,其中,P为正整数,V为小于或者等于P的正整数。相应的,发送端装置接收来自接收端装置的第一指示信息,并根据该 第一指示信息确定第一预编码矩阵。基于该方案,可以将OAM模态引入预编码矩阵,进而解决MIMO和OAM融入通信中的预编码问题,从而使得在MIMO通信中可以利用OAM改善传统MIMO的性能,进而提高频谱效率。
如图1b所示,为本申请实施例提供的另一种确定预编码矩阵的系统10b,该确定预编码矩阵的系统10b包括网络设备20,以及与该网络设备20连接的一个或多个终端设备30。可选的,不同的终端设备30之间可以相互通信。其中,网络设备20可以作为图1a中的发送端装置101,此时,一个或多个终端设备30作为图1a中的接收端装置102;或者,网络设备20可以作为图1a中的接收端装置102,此时,一个或多个终端设备30作为图1a中的发送设备101。
可选的,本申请实施例中的网络设备20,是一种将终端设备30接入到无线网络的设备。所述网络设备20可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB,或者也可以包括5G新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或WiFi接入点(access point,AP)等,再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
可选的,本申请实施例中的终端设备30,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
一种可能的实现方式中,上述发送端装置101和接收端装置102可以通过图2a中的通信设备来实现。图2a所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备400包括处理器401,通信线路402,存储器403以及至少一个通信接口(图2a中仅是示例性的以包括通信接口404为例进行说明)。处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路402可包括一通路,在上述组件之间传送信息。
通信接口404,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN) 等。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。处理器401用于执行存储器403中存储的计算机执行指令,从而实现本申请下述实施例提供的确定预编码矩阵的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图2a中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备400可以包括多个处理器,例如图2a中的处理器401和处理器408。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接收用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备400可以是一个通用设备或者是一个专用设备。在具体实现中,通信设备400可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图2a中类似结构的设备。本申请实施例不限定通信设备400的类型。
另一种可能的实现方式中,以网络设备20可以作为图1a中的发送端装置101,一个或多个终端设备30作为图1a中的接收端装置102为例;或者,以网络设备20可以作为图1a中的接收端装置102,一个或多个终端设备30作为图1a中的发送端装置101为例,可选的,本申请实施例还提供一种网络设备20和终端设备30的结构示意图。可选的,如图2b所示,为本申请实施例提供的网络设备20和终端设备30的结构示意图。
其中,终端设备30包括至少一个处理器(图2b中示例性的以包括一个处理器301为例进行说明)和至少一个收发器(图2b中示例性的以包括一个收发器303为例进行说明)。可选的,终端设备30还可以包括至少一个存储器(图2b中示例性的以包括一个存储器302为例进行说明)、至少一个输出设备(图2b中示例性的以包括一个输出设备304为例进行说明)和至少一个输入设备(图2b中示例性的以包括一个输入设备305为例进行说明)。
处理器301、存储器302和收发器303通过通信线路相连接。通信线路可包括一通路, 在上述组件之间传送信息。
处理器301可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器301也可以包括多个CPU,并且处理器301可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过通信线路与处理器301相连接。存储器302也可以和处理器301集成在一起。
其中,存储器302用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。具体的,处理器301用于执行存储器302中存储的计算机执行指令,从而实现本申请实施例中所述的确定预编码矩阵的方法。
或者,可选的,本申请实施例中,也可以是处理器301执行本申请下述实施例提供的确定预编码矩阵的方法中的处理相关的功能,收发器303负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器303包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备20包括至少一个处理器(图2b中示例性的以包括一个处理器201为例进行说明)、至少一个收发器(图2b中示例性的以包括一个收发器203为例进行说明)和至少一个网络接口(图2b中示例性的以包括一个网络接口204为例进行说明)。可选的,网络设备20还可以包括至少一个存储器(图2b中示例性的以包括一个存储器202为例进行说明)。其中,处理器201、存储器202、收发器203和网络接口204通过通信线路相连接。网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图2b中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备30中处理器301、存储器302和收发器303的描述,在此不再赘述。
结合图2b所示的终端设备30的结构示意图,示例性的,图3为本申请实施例提供的终 端设备30的一种具体结构形式。
其中,在一些实施例中,图2b中的处理器301的功能可以通过图3中的处理器110实现。
在一些实施例中,图2b中的收发器303的功能可以通过图3中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备30中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备30上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备30上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。当终端设备30是第一设备时,无线通信模块160可以提供应用在终端设备30上的NFC无线通信的解决方案,是指第一设备包括NFC芯片。该NFC芯片可以提高NFC无线通信功能。当终端设备30是第二设备时,无线通信模块160可以提供应用在终端设备30上的NFC无线通信的解决方案,是指第一设备包括电子标签(如射频识别(radio frequency identification,RFID)标签)。其他设备的NFC芯片靠近该电子标签可以与第二设备进行NFC无线通信。
在一些实施例中,终端设备30的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备30可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)或星基增强系统(satellite based augmentation systems,SBAS)。
在一些实施例中,图2b中的存储器302的功能可以通过图3中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图2b中的输出设备304的功能可以通过图3中的显示屏194实现。其 中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图2b中的输入设备305的功能可以通过鼠标、键盘、触摸屏设备或图3中的传感器模块180来实现。示例性的,如图3所示,该传感器模块180例如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图3所示,该终端设备30还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图3所示的结构并不构成对终端设备30的具体限定。比如,在本申请另一些实施例中,终端设备30可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1a至图3,以图1a所示的发送端设备101与接收端设备102进行交互为例,对本申请实施例提供的确定预编码矩阵的方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图4所示,为本申请实施例提供的一种确定预编码矩阵的方法,该确定预编码矩阵的方法包括如下步骤:
S401、接收端装置获取第一信道的CSI和发送端装置的P个天线端口组的信息。
其中,第一信道为用于发送端装置向接收端装置发送数据的物理信道。
可选的,发送端装置可以向接收端装置发送参考信号,接收端装置接收来自发送端装置的参考信号后,根据该参考信号进行信道测量得到第一信道的CSI。
其中,发送端装置的P个天线端口组的信息用于指示发送端装置的天线端口组的个数P,以及P个天线端口组中每个天线端口组包括的天线端口,P为正整数。
需要说明的是,该P个天线端口组中每个天线端口组包括的天线端口的数量均大于1,也就是说,发送端装置的天线端口组数小于发送端装置的天线端口的总数。
可选的,发送端装置可以根据发送端装置的天线阵列的信息,确定发送端装置的P个天线端口组,也就是说,发送端装置可以根据发送端装置的天线阵列的信息,确定发送参考信号的天线端口,将其分为P组,并向接收端装置发送该P个天线端口组的信息。
可选的,发送端装置的天线阵列的信息可以是发送端装置的天线阵列的形状、个数、以及连接方式等,本申请实施例对此不做具体限定。
可选的,发送端装置可以通过不同的方式向发送端装置发送该P个天线端口组的信息。一种可能的实现方式中,发送端装置可以显式地向终端设备发送该P个天线端口组的信息,即通过专用的信令或信元或消息发送该P个天线端口组的信息,例如,P个天线端口组的信息可以包括{天线端口组1:天线端口1,天线端口2;天线端口组2:天线端口3,天线端口4},即指示发送端装置的四个天线端口可以分为两组,分组情况为天线端口组1包括天线端口1和天线端口2两个天线端口,天线端口组2包括天线端口3和天线端口4两个天线端口。相应的,接收端装置获取发送端装置的P个天线端口组的信息,即为:接收端装置接收 来自发送端装置的该发送端装置的P个天线端口组的信息。
另一种可能的实现方式中,发送端装置可以隐式地向终端设备发送该P个天线端口组的指示信息,例如,通过不同的天线端口组向接收端装置发送不同的参考信号。相应的,接收端装置在接收来自发送端装置的参考信号时,可以根据参考信号获取该P个天线端口组的信息,从而确定发送端装置的天线端口组的个数以及每个天线端口组包括的天线端口。
S402、接收端装置根据第一信道的CSI和第一OAM模态,确定V个OAM模态组。
其中,第一OAM模态为发送端装置和接收端装置均支持的OAM模态,V为小于或等于P的正整数。
可选的,发送端装置可以向接收端装置发送其支持的OAM模态,以便接收端装置确定V个OAM模态组。可以理解的是,在发送端装置向接收端装置发送其支持的OAM模态前,接收端装置可以向发送端装置请求发送端装置支持的OAM模态。
示例性的,如表1所示,为本申请实施例提供的第一OAM模态为[-1,-2,0,1,2]、OAM模态组的个数V等于2、2个OAM模态组包括的OAM模态的个数分别为2和3时,OAM模态组的所有可能形式。
表1
Figure PCTCN2020124542-appb-000001
其中,OAM模态组包括的OAM模态的数量一定时,所有可能的OAM模态组的个数满足如下公式(1):
Figure PCTCN2020124542-appb-000002
其中,n表示第一OAM模态中包括的OAM模态的个数,m表示OAM模态组中包括的OAM模态的数量。例如,OAM模态组中包括的OAM模态的数量为2时,所有可能的OAM模态组的个数为
Figure PCTCN2020124542-appb-000003
S403、接收端装置根据P个天线端口组和V个OAM模态组,确定第一预编码矩阵。
其中,第一预编码矩阵包括P*V个第二预编码矩阵,第二预编码矩阵可以表示一个天线端口组中包括的天线端口基于OAM模态的编码方式。
可选的,该第二预编码矩阵与第三预编码矩阵中的元素存在对应关系。其中,第三预编码矩阵表示P个天线端口组的组间编码方式,第三预编码矩阵为P行V列的矩阵,每行对应一个天线端口组,每列对应一个OAM模态组。
示例性的,如表2所示,为本申请实施例提供的天线端口组的个数为2时,第三预编码矩阵的可能形式。
表2
Figure PCTCN2020124542-appb-000004
需要说明的是,本申请实施例中,OAM模态组数也可以理解为P个天线端口组的组间传输层数,因此,表1中的OAM模态组数也可以替换为组间传输层数。
可选的,该第二预编码矩阵与第三预编码矩阵中的元素之间的对应关系可以为一一对应,即一个的预编码矩阵对应第三预编码矩阵中的一个元素。
可选的,以P*V个第二预编码矩阵中的一个第二预编码矩阵为例,该第二预编码矩阵与第三预编码矩阵中的元素存在对应关系,包括:该第二预编码矩阵与第三预编码矩阵中第i行第j列的元素对应,该第二预编码矩阵为M行N列的矩阵,M为P个天线端口组中的第i个天线端口组包括的天线端口的数量,N为V个OAM模态组中的第j个OAM模态组包括的OAM模态的数量,M为大于1的正整数、N为小于或者等于M的正整数,i为小于或者等于P的正整数,j为小于或者等于V的正整数。
进一步的,该第二预编码矩阵与第三预编码矩阵中第i行第j列的元素对应,包括:该第二预编码矩阵在第一预编码矩阵中的位置与第i行第j列的元素在第三预编码矩阵中的位置相同。从而,第一预编码矩阵的列数为V个OAM模态组共包括的OAM模态的数量,且第一预编码矩阵中的每一列对应一个OAM模态。
需要说明的是,由于V个OAM模态组中每个OAM模态组包括的OAM模态可能与其他OAM模态组包括的OAM模态相同,则第一预编码矩阵中的每一列对应的OAM模态可能与其他列对应的OAM模态相同。此外,第一预编码矩阵的列数可以表示为OAM总层数(OAM-TotalLayer)。
示例性的,若发送端装置的天线端口组的个数P为2,第一个天线端口组包括标识为1-4的4个天线端口,第二个天线端口组包括标识为5-8的4个天线端口,OAM模态组的个数V为2,第一个OAM模态组为[0,1],第二个OAM模态组为[0,1,2],则第三预编码矩阵为2行2列的矩阵,第一预编码矩阵包括2*2即4个第二预编码矩阵,以第三预编码矩阵为
Figure PCTCN2020124542-appb-000005
为例,则第一预编码矩阵包括的4个第二预编码矩阵中:
与第三预编码矩阵中第1行第1列的元素“1”对应的第二预编码矩阵
Figure PCTCN2020124542-appb-000006
的行数为第一个天线端口组包括的天线端口的数量4,列数为第一个OAM模态组包括的OAM模态的数量2,即
Figure PCTCN2020124542-appb-000007
为4行2列的矩阵,即
Figure PCTCN2020124542-appb-000008
与第三预编码矩阵中第1行第2列的元素“0”对应的第二预编码矩阵
Figure PCTCN2020124542-appb-000009
的行数为第一个天线端口组包括的天线端口的数量4,列数为第二个OAM模态组包括的OAM模态的数量 3,即
Figure PCTCN2020124542-appb-000010
为4行3列的矩阵,即
Figure PCTCN2020124542-appb-000011
与第三预编码矩阵中第2行第1列的元素“0”对应的第二预编码矩阵
Figure PCTCN2020124542-appb-000012
的行数为第二个天线端口组包括的天线端口的数量4,列数为第一个OAM模态组包括的OAM模态的数量2,即
Figure PCTCN2020124542-appb-000013
为4行2列的矩阵,即
Figure PCTCN2020124542-appb-000014
与第三预编码矩阵中第2行第2列的元素“0”对应的第二预编码矩阵
Figure PCTCN2020124542-appb-000015
的行数为第二个天线端口组包括的天线端口的数量4,列数为第二个OAM模态组包括的OAM模态的数量3,即
Figure PCTCN2020124542-appb-000016
为4行3列的矩阵,即
Figure PCTCN2020124542-appb-000017
此外,由于第二预编码矩阵在所述第一预编码矩阵中的位置与其对应的第三预编码矩阵的元素在第三预编码矩阵中的位置相同,因此,第一预编码矩阵即为
Figure PCTCN2020124542-appb-000018
上述方案提供了第二预编码矩阵的形式和其在第一预编码矩阵中的位置,对于第二预编码矩阵中的元素,以P*V个第二预编码矩阵中的一个第二预编码矩阵为例,可选的,若与该第二预编码矩阵对应的第三预编码矩阵中第i行第j列的元素为0,则该第二预编码矩阵中的元素均为0;若该第i行第j列的元素不为0,则该第二预编码矩阵中第x行第y列的元素为第一数值与该第i行第j列的元素的乘积,第一数值由第i个天线端口组中的第x个天线端口对应的阵列单元相对于第一阵列中心的方位角和第j个OAM模态组中的第y个OAM模态确定,其中,第一阵列中心为发送端装置的天线阵列中与该第i个天线端口组所对应的天线阵列的阵列中心,x为小于或者等于M的正整数,y为小于或者等于N的正整数。
示例性的,基于上述示例,也就是说
Figure PCTCN2020124542-appb-000019
Figure PCTCN2020124542-appb-000020
中的元素均为0,
Figure PCTCN2020124542-appb-000021
Figure PCTCN2020124542-appb-000022
中的元素根据OAM模态和天线端口对应的阵列单元所对应的方位角确定。
S404、接收端装置向发送端装置发送第一指示信息。相应的,发送端装置接收来自接收端装置的第一指示信息。
其中,第一指示信息用于指示第一预编码矩阵,第一预编码矩阵用于对第一数据进行预编码。
可选的,在一种可能的实现方式中,第一指示信息可以包括OAM模态组的数量V、第三预编码矩阵的标识、V个OAM模态组中每个OAM模态组包括的OAM模态的数量、以及每个OAM模态组的标识。
在另一种可能的实现方式中,第一指示信息可以包括OAM模态组的数量V、第三预编码矩阵的标识、V个OAM模态组中每个OAM模态组包括的OAM模态的数量、或者每个OAM模态组的标识中的一项或多项,此时,第一指示信息中没有包括的信息可以根据其包括的信息推断得出,例如,第一指示信息可以包括第三预编码矩阵的标识、V个OAM模态组 中每个OAM模态组包括的OAM模态的数量、以及每个OAM模态组的标识,根据每个OAM模态组包括的OAM模态的数量可以得出OAM模态组的数量V。
可选的,OAM模态组的数量V可以由组指示(group index,GpIn)表示,第三预编码矩阵的标识可以由PMI_1表示,每个OAM模态组包括的OAM模态的数量可以由模态指示(mode index,MdIn)表示,每个OAM模态组的标识可以由PMI_2表示。
示例性的,基于步骤S404中的示例,第一指示信息指示的信息即为GpIn=2,PMI_1=0,MdIn=[2,3],PMI_2=[0,1]。
可选的,接收端装置可以将第一指示信息携带在CSI报告中发送给发送端装置,也可以单独向发送端装置发送第一指示信息,本申请实施例对此不做具体限定。
S405、发送端装置根据第一指示信息,确定第一预编码矩阵。
可选的,当第一指示信息包括OAM模态组的数量V、第三预编码矩阵的标识、V个OAM模态组中每个OAM模态组包括的OAM模态的数量、以及每个OAM模态组的标识时,发送端装置可以先根据OAM模态组的数量V、天线端口组的数量P、以及第三预编码矩阵的标识,确定第三预编码矩阵,再根据第三预编码矩阵、每个OAM模态组包括的OAM模态的数量、以及每个OAM模态组的标识确定P*V个第二预编码矩阵,最终根据步骤S403中描述的第二预编码矩阵与第三预编码矩阵中的元素的对应关系,确定第一预编码矩阵。
可选的,在步骤S405之后,本申请实施例提供的确定预编码矩阵的方法还可以包括如下步骤S406-S407:
S406、发送端装置根据第一预编码矩阵对第一数据进行预编码。
其中,第一数据为经过层映射后待发送的数据,第一数据可以包括多流数据。
本申请下述实施例中,将发送端装置根据第一预编码矩阵对第一数据进行预编码后得到的数据称为OAM信号,在此统一说明,下述实施例中不再赘述。
可选的,当终端设备作为发送端装置时,发送端装置根据第一预编码矩阵对第一数据进行预编码,可以包括:发送端装置使用第一预编码矩阵对第一数据进行预编码,此时,第一数据包括的数据流数与第一预编码矩阵的列数相同。
当网络设备作为发送端装置时,发送端装置根据第一预编码矩阵对第一数据进行预编码,可以包括:发送端装置根据第一预编码矩阵确定第四预编码矩阵,并使用第四预编码矩阵对第一数据进行预编码,也就是说,第一预编码矩阵用于对第一数据进行预编码,可以理解为:第一预编码矩阵用于确定第四预编码矩阵,第四预编码矩阵用于对第一数据进行预编码,此时,第一数据包括的数据流数与第四预编码矩阵的列数相同。
可选的,第四预编码矩阵可以和第一预编码矩阵相同,也可以由第一预编码矩阵中的部分列构成。可以理解的是,在极端情况下,可能存在第四预编码矩阵与第一预编码矩阵完全不同的情况,例如,网络设备在调度时发现第一预编码矩阵中的列对应的OAM模态均被占用,此时,网络设备最终确定的第四预编码矩阵可能和第一预编码矩阵完全不同。
S407、发送端装置向接收端装置发送OAM信号。相应的,接收端装置接收来自发送端装置的OAM信号。
至此,完成发送端装置和接收端装置之间多流数据的传输。
需要说明的是,本申请实施例中,当P等于1,且V等于1时,表示发送端装置的所有天线端口用于传输一组OAM模态;当P不等于1,且V等于1,表示发送端装置的P个天线端口组用来传输一个OAM模态组。
基于该方案,可以将OAM模态引入预编码矩阵,使得在传统MIMO的预编码过程中融 合OAM,从而使得在MIMO通信中可以利用OAM改善传统MIMO的性能,进而提高频谱效率。
在本申请实施例一种实施场景下,在步骤S403之前,本申请实施例提供的确定预编码矩阵的方法中,接收端装置根据第一信道的CSI判断第一信道中是否存在直视径,若不存在,则进行传统MIMO的预编码方案,详细方案可参考现有技术,在此不再赘述;若存在,则继续执行上述图4所示的确定预编码矩阵的方法。也就是说,本申请实施例提供的确定预编码矩阵的方法还包括:接收端装置根据第一信道的CSI确定第一信道中存在直视径。
可选的,在第一信道的CSI包括第一信道对应的信道矩阵时,接收端装置可以根据如下方式确定第一信道中存在直视径:
方式一:若第一信道对应的信道矩阵的秩与1之间的差值小于第一阈值,接收端装置确定第一信道中存在直视径;
方式二、若第一信道对应的信道矩阵的秩小于第二阈值,接收端装置确定第一信道中存在直视径;
方式三、若最大奇异值与最小奇异值的比值大于第三阈值,接收端装置确定第一信道中存在直视径。其中,最大奇异值与最小奇异值是对第一信道对应的信道矩阵进行奇异值分解后得到的,最大奇异值与最小奇异值的比值也可称为条件数(condition number)。
需要说明的是,接收端装置在确定第一信道中存在直视径时可以根据上述三种方式中的任意一种方式确定,也可以根据上述三种方式中的任意组合来确定,例如,结合方式一和方式三,当第一信道对应的信道矩阵的秩与1之间的差值小于第一阈值,且最大奇异值与最小奇异值的比值大于第三阈值时,接收端装置确定第一信道中存在直视径;或者,结合方式二和方式三,当第一信道对应的信道矩阵的秩小于第二阈值,且最大奇异值与最小奇异值的比值大于第三阈值时,接收端装置确定第一信道中存在直视径。
可以理解的是,当第一信道对应的信道矩阵满足上述三种方式所述的任意一种或多种条件时,也有可能是第一信道中存在一条最强反射径,此时,接收端装置和发送端装置也可以执行上述图4所示的确定预编码矩阵的方法,只是需要对信道进行相应的相位补偿。
基于该方案,可以在信道中存在直视径的场景下,利用本申请实施例提供的第一预编码矩阵对待发送数据进行预编码,从而利用OAM改善传统MIMO的性能,提高频谱效率。
示例性的,图5为基于本申请实施例提供的确定预编码矩阵的方法的数据到物理天线的映射过程。经过层映射后的数据经过第一预编码矩阵或第四预编码矩阵(图5中示例性的以第一预编码矩阵为例进行说明)进行预编码后映射到天线端口。之后,天线端口上的数据经过空间滤波器映射到物理天线上,并经物理天线发射出去。其中,y 1,...,y β为经过层映射后的数据。z 1,...,z ρ为天线端口,A 1,...,A x为物理天线,β为第一预编码矩阵或第四预编码矩阵的列数,x为正整数,ρ为发送端装置的P个天线端口组共包括的天线端口的数量。
在本申请实施例的另一种实施场景下,发送端装置和接收端装置轴不对齐或者信道中存在干扰,在该场景下,接收端装置在接收OAM信号时,会产生模间串扰,从而影响OAM信号的解调。因此,接收端装置和发送端装置在执行如图4所示的确定预编码矩阵的方法时,可结合如图6所示的方法进行相位补偿。
其中,如图6所示的方法包括如下步骤:
S601、发送端装置向接收端装置发送第一信息。相应的,接收端装置接收来自发送端装置的第一信息。
其中,第一信息可以为第一相位参考信号,或者,第一信息也可以为接收端装置相对于 发送端装置的方向的信息和发送端装置的天线阵列的方位信息,发送端装置的天线阵列的方位信息指示发送端装置的天线阵列在第一参考坐标系中的方位,第一参考坐标系可以为发送端装置和接收端装置共同使用的定位系统(例如,GPS定位系统)的坐标系。
S602、接收端装置根据第一信息确定第一相位补偿值。
可选的,当第一信息为第一相位参考信号时,接收端装置根据第一相位参考确定第一方向,再根据第一方向确定第一相位补偿值,其中,第一方向为发送端装置相对于接收端装置的方向,第一相位补偿值为接收端装置对应的相位补偿值。
S603、接收端装置根据第一相位补偿值进行相位补偿。
其中,步骤S603可在接收端装置对接收到的OAM信号进行OAM解调前执行。
S604、接收端装置向发送端装置发送第二信息。相应的,发送端装置接收来自接收端装置的第二信息。
其中,第二信息可以为第二相位参考信号,或者,第一信息也可以为第一方向的信息和接收端装置的天线阵列的方位信息,接收端装置的天线阵列的方位信息指示接收端装置的天线阵列在第一参考坐标系中的方位。
S605、发送端装置根据第二信息确定第二相位补偿值。
可选的,当第二信息为第二相位参考信号时,发送端装置根据第二相位参考确定第二方向,再根据第二方向确定第二相位补偿值,其中,第二方向为接收端装置相对于发送端装置的方向,第二相位补偿值为发送端装置对应的相位补偿值。可选的,发送端装置确定第二相位补偿值后,可以执行步骤S606;或者,步骤S406中,发送端装置根据第一预编码矩阵确定第四预编码矩阵,可以包括:发送端装置根据第一预编码矩阵和第二相位补偿值,确定第四预编码矩阵。
S606、发送端装置根据第二相位补偿值进行相位补偿。
也就是说,发送端装置确定第二方向和第二相位补偿值后,可以先进行发送端相位补偿,再根据第一预编码矩阵对第一数据进行预编码,即先执行步骤S606a,再执行步骤S406。
需要说明的是,上述步骤S601-S603和步骤S604-S606之间没有必然的先后顺序,可以先执行步骤S601-S603,再执行步骤S604-S606,此时,步骤S601中,第一信息可以为第一相位参考信号,步骤S604中,接收端装置可以在第一方向上向发送端装置发送第二信息;或者也可以先执行步骤S604-S606,再执行步骤S601-S603,此时,步骤S601中,发送端装置可以在第二方向上向接收端装置发送第一信息,步骤S604中,第二信息可以为第二相位参考信号。
基于该方案,可以使接收端装置和发送端装置进行相位补偿,从而降低接收端装置的模间串扰,提高接收端装置对OAM信号的解调能力。
在本申请实施例的又一种实施场景下,发送端装置为网络设备,接收端装置为第一终端设备。
可选的,在该场景下,在第一终端设备确定第一预编码矩阵后,本申请实施例提供的确定预编码矩阵的方法还包括:
第一终端设备根据第一预编码矩阵、第一信道的CSI、以及第一终端设备的接收能力,确定第一预编码矩阵对应的CQI组,并向网络设备发送该CQI组。
其中,该CQI组中包括第一预编码矩阵对应的OAM模态中的每个OAM模态对应的CQI,第一预编码矩阵对应的OAM模态为第一预编码矩阵的每一列对应的OAM模态。
需要说明的是,第一预编码矩阵的每一列对应的OAM模态中可能存在相同的OAM模 态,例如,第一预编码矩阵包括5列,每列对应的OAM模态分别为0、1、0、1、-1。
此时,在一种可能的情况下,相同的OAM模态对应的CQI可能相同,相应的,该CQI组中可以包括相同的OAM模态中每个OAM模态对应的CQI,即该CQI组中包括相同的CQI,或者,相同的OAM模态对应的相同的CQI只在该CQI组中出现一次。
示例性的,第一预编码矩阵中的第一列对应的OAM模态“0”和第三列对应的OAM模态“0”所对应的CQI相同,第二列对应的OAM模态“1”和第四列对应的OAM模态“1”所对应的CQI相同,则该CQI组中可以包括5个CQI,其中,第一个CQI和第三个CQI相同,第二个CQI和第四个CQI相同;或者,该CQI组中也可以包括3个不同的CQI,其中,第一个CQI对应第一预编码矩阵中的第一列和第三列所对应的OAM模态“0”,第二个CQI对应第一预编码矩阵中的第二列和第四列所对应的OAM模态“1”,第三个CQI对应OAM模态“-1”。
在另一种可能的情况下,相同的OAM模态对应的CQI可能不同,相应的,该CQI组中分别包括该相同的OAM模态对应的不同的CQI。其中,第一终端设备的接收能力可以是第一终端设备对使用不同OAM模态传输的数据的接收能力,例如,第一终端设备的硬件配置和对使用不同OAM模态传输的数据的解调算法能力。
可选的,第一预编码矩阵对应的OAM模态中的每个OAM模态对应的CQI,可以指示使用该OAM模态发送的数据所对应的调制方式和码率,例如,一般情况下,若该OAM模态为高OAM模态,则该OAM模态对应的CQI可以指示低阶调制方式和低码率,即使用该高OAM模态发送的数据所对应的调制方式为低阶调制方式,其所对应的码率为低码率;或者,若该OAM模态为低OAM模态,则该OAM模态对应的CQI可以指示高阶调制方式和高码率,即使用该低OAM模态发送的数据所对应的调制方式为高阶调制方式,其所对应的码率为高码率。
进一步地,后续在层映射时,可以先确定待发送的数据使用的OAM模态,再从上述CQI组中获取该OAM模态对应的CQI,通过该CQI指示的调制方式和码率对待发送的数据进行调制和速率匹配后得到待发送的数据对应的符号,最终将该符号映射到该CQI对应的OAM模态所对应的传输层。
基于该方案,可以根据OAM模态和CQI调整数据的调制方式和码率,从而提高数据传输的灵活性,提升传输速率。
在本申请实施例的又一种实施场景下,发送端装置为终端设备,接收端装置为网络设备。在该场景下,本申请实施例中的第一指示信息也可以称为发射预编码矩阵指示(transmitted precoding matrix indicator,TPMI)。
在本申请实施例的又一种实施场景下,接收端装置为网络设备,发送端装置为第一终端设备,网络设备除与第一终端设备通信外,还与其他一个或多个终端设备进行通信,即该实施场景为多用户的上行传输场景。
需要说明的是,本申请实施例中,将终端设备向网络设备发送数据的场景称为上行传输场景,相应的,将终端设备向网络设备发送数据的信道称为上行信道;将网络设备向终端设备发送数据的的场景称为下行传输场景,相应的,将网络设备向终端设备发送数据的信道称为下行信道,在此统一说明,下述实施例不再赘述。
可选的,在该场景下,网络设备根据各个终端设备与网络设备之间的上行信道的CSI,分别确定各个终端设备对应的预编码矩阵,每个终端设备对应的预编码矩阵用于该终端设备对待发送的上行数据进行预编码。此时,网络设备可以综合考虑各个终端设备的CSI,为每 个终端设备或者部分终端设备确定不同的预编码矩阵。
也就是说,在该场景下,第一预编码矩阵用于第一终端设备对第一数据进行预编码,第一预编码矩阵与网络设备向第二终端设备指示的预编码矩阵不同,第二终端设备为网络设备服务的除第一终端设备之外的一个或多个终端设备,网络设备向第二终端设备指示的预编码矩阵是网络设备根据第二信道的CSI确定的,第二信道用于第二终端设备向网络设备发送数据。
基于该方案,由于网络设备为与其通信的多个终端设备调度不同的预编码矩阵,从而在同频同时传输时,可以降低用户间干扰。
在本申请实施例的又一种实施场景下,发送端装置为网络设备,接收端装置为第一终端设备,网络设备除与第一终端设备通信外,还与其他一个或多个终端设备进行通信,即该实施场景为多用户的下行传输场景。
可选的,在该场景下,与网络设备通信的各个终端设备可以执行如图4所示的方法,向网络设备发送第一指示信息,网络设备在接收到各个终端设备上报的CSI报告和第一指示信息后,可以结合各个终端设备的CSI报告和第一指示信息,分别确定各个终端设备对应的预编码矩阵,该预编码矩阵用于网络设备向该终端设备发送下行数据时,对该下行数据进行预编码。其中,网络设备确定的各个终端设备对应的预编码矩阵可以不同。
也就是说,在该场景下,网络设备根据第一预编码矩阵确定的第四预编码矩阵用于网络设备向第一终端设备发送第一数据时,对第一数据进行预编码,第四预编码矩阵与第五预编码矩阵不同,第五预编码矩阵是网络设备根据第二终端设备向网络设备指示的第六预编码矩阵确定的,第二终端设备为网络设备服务的除第一终端设备之外的一个或多个终端设备,第六预编码矩阵由第二终端设备执行上述图4所示的实施例时根据第三信道的CSI确定,第三信道用于网络设备向第二终端设备发送数据。
基于该方案,由于网络设备为与其通信的多个终端设备调度不同的预编码矩阵,从而在同频同时传输时,可以降低用户间干扰。
需要说明的是,本申请实施例提供的如图4所示的方法可以在上述描述的多种实施场景中的任意一种实施场景下实施,也可以在上述多种实施场景中的不存在逻辑冲突的多个场景的任意组合场景下实施,此时,该组合场景中的每个场景下提供的方法可以结合执行。
可以理解的是,本申请实施例描述的上述多种实施场景只是示例性的说明,并不对本申请提供的如图4所示的方法进行任何限制,如图4所示的方法也可以在其他场景下实施。
可选的,以发送端装置为终端设备,接收端装置为网络设备为例,如图7所示,为本申请实施例提供的另一种确定预编码矩阵的方法,该确定预编码矩阵的方法包括如下步骤:
S701、终端设备确定上行信道的CSI和该终端设备的P个天线端口组。
可选的,终端设备获取上行信道的CSI,包括:终端设备基于信道互易性,根据下行信道的CSI,获取上行信道的CSI。
其中,终端设备确定该终端设备的P个天线端口组,可以包括:终端设备根据终端设备的天线阵列的信息,确定天线端口组的个数P和P个天线端口组中每个天线端口组包括的天线端口。
S702-S703、与图4所示的实施例中的步骤S402-S403类似,区别在于,步骤S402-S403中的执行主体为接收端装置,步骤S702-S703中的执行主体为发送端装置,即终端设备,相关描述可参考上述步骤S402-S403,在此不再赘述。
S704、终端设备使用第一预编码矩阵中的第1至K列对参考信号进行预编码,得到第一 参考信号。
其中,第一预编码矩阵与图4所示的实施例中的第一预编码矩阵的含义相同,相关描述可参考图4所示的实施例中的相关描述;本实施例中的参考信号可以为SRS,K为第一预编码矩阵的列数,第一参考信号包括K个预编码后的参考信号。
S705、终端设备向网络设备发送第一参考信号。相应的,网络设备接收来自终端设备的第一参考信号。
S706、网络设备确定第二参考信号。
其中,第二参考信号为第一参考信号中的部分或全部参考信号。
可选的,网络设备在接收到来自终端设备的第一参考信号后,可以选择接收到的第一参考信号包括的,K个预编码后的参考信号中的一个或多个预编码后的参考信号,作为第二参考信号。
可选的,网络设备可以根据接收到的K个预编码后的参考信号的信号质量,从K个预编码后的参考信号中选择质量较好的一个或多个预编码后的参考信号;或者,也可以使用其他方式从第一参考信号中确定第二参考信号,本申请实施例对此不做具体限定。
可选的,在多个终端设备与网络设备通信的多用户场景下,网络设备可以结合与其通信的各个终端设备发送的第一参考信号,为各个终端设备确定不同的第二参考信号。
S707、网络设备向终端设备发送第二指示信息。相应的,终端设备接收来网自络设备的第二指示信息。
其中,第二指示信息用于指示第二参考信号。可选的,第二指示信息可以为SRI,即网络设备可以通过SRI指示第二参考信号。
S708、终端设备根据第二指示信息,确定第四预编码矩阵。
其中,第四预编码矩阵为终端设备最终使用的对经过层映射后的数据进行预编码的矩阵。
可选的,终端设备根据第二指示信息,确定第四预编码矩阵,可以为:终端设备根据第二指示信息,确定第二参考信号,并将第一预编码矩阵中第二参考信号对应的一列或多列确定为构成第二预编矩阵的列。
可选的,在步骤S708后,终端设备可以使用第四预编码矩阵对第一数据进行预编码,并向网络设备发送对第一数据进行预编码后的得到的信号。
其中,第一数据为经过层映射后待发送的数据,第一数据可以包括多流数,例如,第一数据包括的数据流数与第四预编码矩阵的列数相同。
基于该方案,可以将OAM模态引入预编码矩阵,进而解决MIMO和OAM融入通信中的预编码问题,从而使得在MIMO通信中可以利用OAM改善传统MIMO的性能,进而提高频谱利用率。
需要说明的是,图4所示的实施例的实施场景也适用于图7所示的实施例,因此,上述各种实施场景下提供的方法也可以结合图7所示的方法执行。
需要说明的是,本申请实施例提供的确定预编码矩阵的方法与发送端装置的天线阵列有关,因此,在本申请实施例中,发送端装置的天线阵列中与第一天线端口组对应的阵列单元不分布于同一条直线上,其中,第一天线端口组为发送端装置的P个天线端口组中的任意一个天线端口组。
此外,发送端装置的天线阵列可以为圆形阵列,或者格形阵列,或者螺旋形阵列。示例性的,如图8所示,为本申请实施例提供的一种格形天线阵列,其包括R*T个阵列单元,任意两个阵列单元之间水平方向上的间距均为d r,垂直方向上的间距均为d t
下面通过一个具体示例来说明本申请实施例提供的确定预编码矩阵的方法。
如图9所示,假设发送端装置和接收端装置的天线阵列相同,均由4个同心的均匀圆形阵列(uniform circular array,UCA)构成,每个UCA阵列中包括16个阵列单元且该16个阵列单元均等间隔分布,每个阵列单元的相位和幅度均可调。
假设发送端装置的一个UCA对应一个天线端口组,即发送端装置的天线端口组的数量为4,每个天线端口组包括16个天线端口,且OAM模态组的数量为4,每个OAM模态组均包括[-2,-1,0,1,2]五个OAM模态,第三预编码矩阵为
Figure PCTCN2020124542-appb-000023
则用于对第一数据进行预编码的第一预编码矩阵为
Figure PCTCN2020124542-appb-000024
此处假设发送端装置最终使用第一预编码矩阵对第一数据进行预编码,其中,F H中的每个0代表一个16行5列的0矩阵,F i H为16行5列的矩阵,i=1,2,3,4,F i H的值根据第i个天线端口组对应的阵列单元相对于发送端装置的天线阵列中与第i个天线端口组对应的天线阵列的阵列中心的方位角和第j个OAM模态组包括的OAM模态确定。
示例性的,如表3所示,为本申请实施例提供的F i H的一种可能取值(数据均保留小数点后三位),其中,行表示第i个天线端口组中的天线端口,列表示OAM模态。
表3
  -2 -1 0 1 2
1 1.000+0.000i 1.000+0.000i 1.000+0.000i 1.000+0.000i 1.000+0.000i
2 0.707-0.707i 0.924-0.383i 1.000+0.000i 0.924+0.383i 0.707+0.707i
3 0.000-1.000i 0.707-0.707i 1.000+0.000i 0.707+0.707i 0.000+1.000i
4 -0.707-0.707i 0.383-0.924i 1.000+0.000i 0.383+0.924i -0.707+0.707i
5 -1.000+0.000i 0.000-1.000i 1.000+0.000i 0.000+1.000i -1.000+0.000i
6 -0.707+0.707i -0.383-0.924i 1.000+0.000i -0.383+0.924i -0.707-0.707i
7 0.000+1.000i -0.707-0.707i 1.000+0.000i -0.707+0.707i 0.000-1.000i
8 0.707+0.707i -0.924-0.383i 1.000+0.000i -0.924+0.383i 0.707-0.707i
9 1.000+0.000i -1.000+0.000i 1.000+0.000i -1.000+0.000i 1.000+0.000i
10 0.707-0.707i -0.924+0.383i 1.000+0.000i -0.924-0.383i 0.707+0.707i
11 0.000-1.000i -0.707+0.707i 1.000+0.000i -0.707-0.707i 0.000+1.000i
12 -0.707-0.707i -0.383+0.924i 1.000+0.000i -0.383-0.924i -0.707+0.707i
13 -1.000+0.000i 0.000+1.000i 1.000+0.000i 0.000-1.000i -1.000+0.000i
14 -0.707+0.707i 0.383+0.924i 1.000+0.000i 0.383-0.924i -0.707-0.707i
15 0.000+1.000i 0.707+0.707i 1.000+0.000i 0.707-0.707i 0.000-1.000i
16 0.707+0.707i 0.924+0.383i 1.000+0.000i 0.924-0.383i 0.707-0.707i
假设经过层映射后的第一数据为20行1列的矩阵x,表示第一数据包括20流数据,预编码后映射到天线阵列上发送的数据为s,则有s=F Hx。
相应的,在接收端,接收端装置接收到的信号为
Figure PCTCN2020124542-appb-000025
其中,F表 示接收OAM信号的解码矩阵,F由第一预编码矩阵确定,与第一预编码矩阵互为复共轭转置矩阵;H表示第一信道对应的信道矩阵,H=[H j,i],i=1,2,3,4,j=1,2,3,4,H j,i表示第一信道对应的信道矩阵中包括的发送端装置的第i个UCA和接收端装置的第j个UCA之间的信道矩阵,n和
Figure PCTCN2020124542-appb-000026
是噪声矢量。
由于相同OAM模态传输的数据是叠加在一起的,因此,接收端装置对接收到的信号先进行解调得到每个OAM模态上传输的叠加在一起的数据,其可以表示为∑ l=[σ l,l,j,i],其中,σ l,l,j,i表示用接收设备的第j个UCA的第l个模态接收的发送端装置通过第i个UCA的第l个模态发送的数据,σ l,l,j,i为∑ j,i=F jH j,iF i H中的第l个斜对角矩阵单元,F j为接收端装置的第j个UCA对应的解码矩阵,F i H为发送端装置的第i个UCA对应的第二预编码矩阵。
在接收端装置解调出每个OAM模态上传输的叠加在一起的数据后,通过均衡的方式解出每一流数据。其中,第l个OAM模态经过均衡后得到的在该OAM模态上传输的多流数据可以表示为
Figure PCTCN2020124542-appb-000027
从而,对每个OAM模态上传输的数据均通过均衡后可以将发送端装置发送的20流数据全部解出。其中,x l是发送端装置调制在第l个OAM模态上传输的数据,I l是其他OAM模态和其他天线上的信号造成的干扰,W l是滤波器系数。
示例性的,表4为本申请实施例提供的不同OAM模态对应的可能的滤波器系数W l(数据均保留小数点后三位)。
表4
Figure PCTCN2020124542-appb-000028
Figure PCTCN2020124542-appb-000029
可以理解的是,本申请实施例中,接收端装置和/或发送端装置可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由接收端装置实现的方法和/或步骤,也可以由可用于接收端装置的部件(例如芯片或者电路)实现,由发送端装置实现的方法和/或步骤,也可以由可用于发送端装置的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的接收端装置,或者包含上述接收端装置的装置,或者为可用于接收端装置的部件;或者,该通信装置可以为上述方法实施例中的发送端装置,或者包含上述发送端装置的装置,或者为可用于发送端装置的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的接收端装置为例。图10示出了一种接收端装置100的结构示意图。该接收端装置100包括处理模块1001和收发模块1002。所述收发模块1002,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块1002,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由接收端装置执行的接收和发送类的步骤,处理模块1001,可以用于执行上述方法实施例中由接收端装置执行的除接收和发送类步骤之外的其他步骤。
例如,处理模块1001,用于获取第一信道的信道状态信息CSI和发送端装置的P个天线端口组的信息,P为正整数;处理模块1001,还用于根据第一信道的CSI和第一轨道角动量OAM模态,确定V个OAM模态组,第一OAM模态为发送端装置和接收端装置均支持的OAM模态,V为小于或者等于P的正整数;处理模块1001,还用于根据P个天线端口组和V个OAM模态组,确定第一预编码矩阵,第一预编码矩阵包括P*V个第二预编码矩阵,第一预编码矩阵用于对第一数据进行预编码;收发模块1002,用于向发送端装置发送第一指示信息,第一指示信息用于指示第一预编码矩阵。
可选的,处理模块1001,还用于根据第一信道的CSI确定第一信道中存在直视径。
可选的,第一信道的CSI包括第一信道对应的信道矩阵,处理模块1001,还用于根据第一信道的CSI确定第一信道中存在直视径,包括:若第一信道对应的信道矩阵的秩与1之间的差值小于第一阈值,或者,第一信道矩阵对应的信道矩阵的秩小于第二阈值,处理模块1001,还用于根据第一信道的CSI确定第一信道中存在直视径。
可选的,第一信道的CSI包括第一信道对应的信道矩阵,处理模块1001,还用于根据第一信道的CSI确定第一信道中存在直视径,包括:若最大奇异值与最小奇异值的比值大于第三阈值,处理模块1001,还用于根据第一信道的CSI确定第一信道中存在直视径,最大奇异值与最小奇异值是对第一信道对应的信道矩阵进行奇异值分解后得到的。
可选的,第一信道的CSI包括第一信道对应的信道矩阵,处理模块1001,还用于根据第一信道的CSI确定第一信道中存在直视径,包括:若第一信道对应的信道矩阵的秩与1之间的差值小于第一阈值,且最大奇异值与最小奇异值的比值大于第三阈值,处理模块1001,还用于根据第一信道的CSI确定第一信道中存在直视径;或者,若第一信道矩阵对应的信道矩阵的秩小于第二阈值,且最大奇异值与最小奇异值的比值大于第三阈值,处理模块1001,还用于根据第一信道的CSI确定第一信道中存在直视径。
可选的,收发模块1002,还用于接收来自发送端装置的第一信息,第一信息为第一相位补偿值,或者,第一信息为接收端装置相对于发送端装置的方向的信息和发送端装置的天线阵列的方位信息;处理模块1001,还用于根据第一信息确定第一相位补偿值,第一相位补偿值为接收端装置对应的相位补偿值;处理模块1001,还用于根据第一相位补偿值进行相位补偿。
可选的,当该接收端装置100作为第一终端设备时,处理模块1001,还用于根据第一预编码矩阵、第一信道的CSI、以及第一终端设备的接收能力,确定第一预编码对应的信道质量指示CQI组,CQI组包括第一预编码矩阵对应的OAM模态中的每个OAM模态对应的CQI;收发模块1002,还用于向网络设备发送CQI组。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该接收端装置100以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,若终端设备作为接收端装置,本领域的技术人员可以想到该接收端装置100可以采用图2b所示的终端设备30的形式。
比如,图2b所示的终端设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得终端设备30执行上述方法实施例中的确定预编码矩阵的方法。
具体的,图10中的处理模块1001和收发模块1002的功能/实现过程可以通过图2b所示的终端设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图10中的处理模块1001的功能/实现过程可以通过图2b所示的终端设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图10中的收发模块1002的功能/实现过程可以通过图2b所示的终端设备30中的收发器303来实现。
由于本实施例提供的接收端装置100可执行上述的确定预编码矩阵的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的发送端装置为例。图11示出了一种发送 端装置110的结构示意图。该发送端装置110包括处理模块1101和收发模块1102。所述收发模块1102,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块1102,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由接收端装置执行的接收和发送类的步骤,处理模块1101,可以用于执行上述方法实施例中由接收端装置执行的除接收和发送类步骤之外的其他步骤。
例如,收发模块1102,用于接收来自接收端装置的第一指示信息,该第一指示信息用于指示第一预编码矩阵,该第一预编码矩阵包括P*V个第二预编码矩阵,该第一预编码矩阵用于对第一数据进行预编码,P表示发送端装置的天线端口组的数量,V表示轨道角动量OAM模态组的数量,P为正整数、V为小于或者等于P的正整数;处理模块1001,用于根据第一指示信息确定第一预编码矩阵。
可选的,处理模块1101,还用于根据发送端装置的天线阵列的信息,确定发送端装置的P个天线端口组;收发模块1102,还用于向接收端装置发送该发送端装置的P个天线端口组的信息。
可选的,收发模块1102,还用于接收来自接收端装置的第二信息,第二信息为第二相位参考信号,或者,第二信息为发送端装置相对于接收端装置的方向的信息和接收端装置的天线阵列的方位信息;处理模块1101,还用于根据第二信息确定第二相位补偿值,第二相位补偿值为发送端装置对应的相位补偿值;处理模块1101,还用于根据第二相位补偿值进行相位补偿。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该发送端装置110以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,若网络设备作为发送端装置,本领域的技术人员可以想到该发送端装置110可以采用图2b所示的网络设备20的形式。
比如,图2b所示的网络设备20中的处理器201可以通过调用存储器202中存储的计算机执行指令,使得网络设备20执行上述方法实施例中的确定预编码矩阵的方法。
具体的,图11中的处理模块1101和收发模块1102的功能/实现过程可以通过图2b所示的网络设备20中的处理器201调用存储器202中存储的计算机执行指令来实现。或者,图11中的处理模块1101的功能/实现过程可以通过图2b所示的网络设备20中的处理器201调用存储器202中存储的计算机执行指令来实现,图11中的收发模块1102的功能/实现过程可以通过图2b所示的网络设备20中的收发器203来实现。
由于本实施例提供的发送端装置110可执行上述的确定预编码矩阵的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。在另一种可能的设计中,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在 存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种确定预编码矩阵的方法,其特征在于,所述方法包括:
    接收端装置获取第一信道的信道状态信息CSI和发送端装置的P个天线端口组的信息,P为正整数;
    所述接收端装置根据所述第一信道的CSI和第一轨道角动量OAM模态,确定V个OAM模态组,所述第一轨道角动量OAM模态为所述发送端装置和所述接收端装置均支持的OAM模态,V为小于或者等于P的正整数;
    所述接收端装置根据所述P个天线端口组和所述V个OAM模态组,确定第一预编码矩阵,其中,所述第一预编码矩阵包括P*V个第二预编码矩阵,所述第一预编码矩阵用于对第一数据进行预编码;
    所述接收端装置发送第一指示信息,所述第一指示信息用于指示所述第一预编码矩阵。
  2. 根据权利要求1所述的方法,其特征在于,所述第二预编码矩阵与第三预编码矩阵中的元素存在对应关系,所述第三预编码矩阵为P行V列的矩阵。
  3. 根据权利要求2所述的方法,其特征在于,所述第二预编码矩阵与所述第三预编码矩阵中的元素存在对应关系,包括:
    所述第二预编码矩阵与所述第三预编码矩阵中第i行第j列的元素对应,所述第二预编码矩阵为所述P*V个第二预编码矩阵中的一个第二预编码矩阵,所述第二预编码矩阵为M行N列的矩阵,M为所述P个天线端口组中的第i个天线端口组包括的天线端口的数量,N为所述V个OAM模态组中的第j个OAM模态组包括的OAM模态的数量,M为大于1的正整数,N为小于或者等于M的正整数,i为小于或者等于P的正整数,j为小于或者等于V的正整数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一指示信息包括:所述V个OAM模态组的数量、所述第三预编码矩阵的标识、所述V个OAM模态组中每个OAM模态组包括的OAM模态的数量、所述每个OAM模态组的标识。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述接收端装置根据所述第一信道的CSI确定所述第一信道中存在直视径。
  6. 根据权利要求5所述的方法,其特征在于,所述第一信道的CSI包括所述第一信道对应的信道矩阵;
    所述接收端装置根据所述第一信道的CSI确定所述第一信道中存在直视径,包括:
    若所述第一信道对应的信道矩阵的秩与1之间的差值小于第一阈值,或者,所述第一信道对应的信道矩阵的秩小于第二阈值,所述接收端装置确定所述第一信道中存在直视径。
  7. 根据权利要求5所述的方法,其特征在于,所述第一信道的CSI包括所述第一信道对应的信道矩阵;
    所述接收端装置根据所述第一信道的CSI确定所述第一信道中存在直视径,包括:
    若最大奇异值与最小奇异值的比值大于第三阈值,所述接收端装置确定所述第一信道中存在直视径,所述最大奇异值与最小奇异值是对所述第一信道对应的信道矩阵进行奇异值分解后得到的。
  8. 根据权利要求5所述的方法,其特征在于,所述第一信道的CSI包括所述第一信道对应的信道矩阵;
    所述接收端装置根据所述第一信道的CSI确定所述第一信道中存在直视径,包括:
    若所述第一信道对应的信道矩阵的秩与1之间的差值小于第一阈值,且最大奇异值与最 小奇异值的比值大于第三阈值,所述接收端装置确定所述第一信道中存在直视径,所述最大奇异值与最小奇异值是对所述第一信道对应的信道矩阵进行奇异值分解后得到的;或者,
    若所述第一信道对应的信道矩阵的秩小于第二阈值,且所述最大奇异值与所述最小奇异值的比值大于第三阈值,所述接收端装置确定所述第一信道中存在直视径。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述接收端装置接收来自所述发送端装置的第一信息,所述第一信息为第一相位补偿值,或者,所述第一信息为所述接收端装置相对于所述发送端装置的方向的信息和所述发送端装置的天线阵列的方位信息;
    所述接收端装置根据所述第一信息确定第一相位补偿值,所述第一相位补偿值为所述接收端装置对应的相位补偿值;
    所述接收端装置根据所述第一相位补偿值进行相位补偿。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述接收端装置为第一终端设备,所述发送端装置为网络设备,所述方法还包括:
    所述第一终端设备根据所述第一预编码矩阵、所述第一信道的CSI、以及所述第一终端设备的接收能力,确定所述第一预编码矩阵对应的信道质量指示CQI组,所述CQI组包括所述第一预编码矩阵对应的OAM模态中的每个OAM模态对应的CQI;
    所述第一终端设备向所述网络设备发送所述CQI组。
  11. 根据权利要求1-9任一项所述的方法,其特征在于,所述接收端装置为网络设备,所述发送端装置为第一终端设备,所述第一预编码矩阵与所述网络设备向第二终端设备指示的预编码矩阵不同,所述第二终端设备为所述网络设备服务的除所述第一终端设备之外的一个或多个终端设备,所述网络设备向所述第二终端设备指示的预编码矩阵是所述网络设备根据第二信道的CSI确定的,所述第二信道用于所述第二终端设备向所述网络设备发送数据。
  12. 一种确定预编码矩阵的方法,其特征在于,所述方法包括:
    发送端装置接收来自接收端装置的第一指示信息,所述第一指示信息用于指示第一预编码矩阵,所述第一预编码矩阵包括P*V个第二预编码矩阵,P表示所述发送端装置的天线端口组的数量,V表示轨道角动量OAM模态组的数量,P为正整数、V为小于或者等于P的正整数;
    所述发送端装置根据所述第一指示信息确定所述第一预编码矩阵,所述第一预编码矩阵用于对第一数据进行预编码。
  13. 根据权利要求12所述的方法,其特征在于,所述第二预编码矩阵与第三预编码矩阵中的元素存在对应关系,所述第三预编码矩阵为P行V列的矩阵。
  14. 根据权利要求13所述的方法,其特征在于,所述第二预编码矩阵与所述第三预编码矩阵中的元素存在对应关系,包括:
    所述第二预编码矩阵与所述第三预编码矩阵中第i行第j列的元素对应,所述第二预编码矩阵为所述P*V个第二预编码矩阵中的一个第二预编码矩阵,所述第二预编码矩阵为M行N列的矩阵,M为P个天线端口组中的第i个天线端口组包括的天线端口的数量,N为所述V个OAM模态组中的第j个OAM模态组包括的OAM模态的数量,M大于1的正整数,N为小于或者等于M的正整数,i为小于或者等于P的正整数,j为小于或者等于V的正整数。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一指示信息包括:所述V个OAM模态组的数量、所述第三预编码矩阵的标识、所述V个OAM模态组中每个OAM模态组包括的OAM模态的数量、所述每个OAM模态组的标识。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述方法还包括:
    所述发送端装置根据所述发送端装置的天线阵列的信息,确定所述发送端装置的P个天线端口组;
    所述发送端装置向所述接收端装置发送所述发送端装置的P个天线端口组的信息。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述方法还包括:
    所述发送端装置接收来自所述接收端装置的第二信息,所述第二信息为第二相位参考信号,或者,所述第二信息为所述发送端装置相对于所述接收端装置的方向的信息和所述接收端装置的天线阵列的方位信息;
    所述发送端装置根据所述第二信息确定第二相位补偿值,所述第二相位补偿值为所述发送端装置对应的相位补偿值;
    所述发送端装置根据所述第二相位补偿值进行相位补偿。
  18. 根据权利要求12-17任一项所述的方法,其特征在于,所述第一预编码矩阵用于对第一数据进行预编码,包括:
    所述第一预编码矩阵用于确定第四预编码矩阵,所述第四预编码矩阵用于对所述第一数据进行预编码。
  19. 根据权利要求18所述的方法,其特征在于,所述发送端装置为网络设备,所述接收端装置为第一终端设备,所述第四预编码矩阵与第五预编码矩阵不同,所述第五预编码矩阵由第二终端设备向所述网络设备指示的第六预编码矩阵确定,所述第二终端设备为所述网络设备服务的除所述第一终端设备之外的一个或多个终端设备,所述第六预编码矩阵由第三信道的CSI确定,所述第三信道用于所述网络设备向所述第二终端设备发送数据。
  20. 一种通信装置,其特征在于,所述通信装置包括:处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述处理器执行所述计算机执行指令时,以使所述通信装置执行如权利要求1-11中任一项所述的方法,或者,以使所述通信装置执行如权利要求12-19中任一项所述的方法。
  21. 一种通信装置,其特征在于,所述通信装置包括:处理器和接口电路;
    所述接口电路,用于接收计算机执行指令并传输至所述处理器;
    所述处理器用于执行所述计算机执行指令,以使所述通信装置执行如权利要求1-11中任一项所述的方法,或者,以使所述通信装置执行如权利要求12-19中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在通信装置上运行时,以使所述通信装置执行如权利要求1-11中任一项所述的方法,或者,以使所述通信装置执行如权利要求12-19中任一项所述的方法。
  23. 一种通信装置,其特征在于,所述通信装置包括:处理器;
    所述处理器,用于执行存储器中存储的计算机执行指令,以使所述通信装置执行如权利要求1-11中任一项所述的方法,或者,以使所述通信装置执行如权利要求12-19中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,使得所述通信装置执行如权利要求1-11中任一项所述的方法,或者,使得所述通信装置执行如权利要求12-19中任一项所述的方法。
PCT/CN2020/124542 2019-11-14 2020-10-28 确定预编码矩阵的方法、设备及系统 WO2021093591A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20887088.1A EP4064584A4 (en) 2019-11-14 2020-10-28 METHOD OF DETERMINING A PRECODING MATRIX, DEVICE AND SYSTEM
US17/743,875 US20220271806A1 (en) 2019-11-14 2022-05-13 Precoding Matrix Determining Method, Device, And System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911115463.1A CN112803975B (zh) 2019-11-14 2019-11-14 确定预编码矩阵的方法、设备及系统
CN201911115463.1 2019-11-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/743,875 Continuation US20220271806A1 (en) 2019-11-14 2022-05-13 Precoding Matrix Determining Method, Device, And System

Publications (1)

Publication Number Publication Date
WO2021093591A1 true WO2021093591A1 (zh) 2021-05-20

Family

ID=75803904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124542 WO2021093591A1 (zh) 2019-11-14 2020-10-28 确定预编码矩阵的方法、设备及系统

Country Status (4)

Country Link
US (1) US20220271806A1 (zh)
EP (1) EP4064584A4 (zh)
CN (1) CN112803975B (zh)
WO (1) WO2021093591A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092494A1 (zh) * 2021-11-26 2023-06-01 北京小米移动软件有限公司 一种预编码信息的反馈方法及其装置
WO2023097546A1 (en) * 2021-12-01 2023-06-08 Qualcomm Incorporated Mode division multiplex for data and reference signals in orbital angular momentum communication

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112887989B (zh) * 2019-11-30 2023-03-03 华为技术有限公司 基于oam的通信方法和相关设备及存储介质
WO2023019596A1 (zh) * 2021-08-20 2023-02-23 北京小米移动软件有限公司 基于轨道角动量oam的通信方法及其装置
CN115842574A (zh) * 2021-09-22 2023-03-24 华为技术有限公司 通信方法、装置、设备以及存储介质
WO2023108435A1 (zh) * 2021-12-14 2023-06-22 北京小米移动软件有限公司 一种预编码方法及设备/存储介质/装置
WO2023115452A1 (en) * 2021-12-23 2023-06-29 Qualcomm Incorporated Formula-based inter-circle precoding weight determination for orbital angular momentum (oam) communication systems
WO2023132476A1 (ko) * 2022-01-05 2023-07-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2023220899A1 (zh) * 2022-05-16 2023-11-23 北京小米移动软件有限公司 发送和接收参考信号配置信息的方法及其装置
WO2024000527A1 (zh) * 2022-06-30 2024-01-04 北京小米移动软件有限公司 轨道角动量oam模态指示方法及装置
WO2024016118A1 (zh) * 2022-07-18 2024-01-25 Oppo广东移动通信有限公司 通信系统、终端设备及网络设备
WO2024045143A1 (zh) * 2022-09-01 2024-03-07 北京小米移动软件有限公司 一种轨道角动量oam的预编码矩阵确定方法及其装置
WO2024050777A1 (zh) * 2022-09-08 2024-03-14 北京小米移动软件有限公司 传输配置方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150326297A1 (en) * 2014-05-08 2015-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Beam forming using an antenna arrangement
WO2016164146A2 (en) * 2015-03-16 2016-10-13 Lockheed Martin Corporation Apparatus and method for increased data rates in underwater communications using orbital angular momentum
CN106209195A (zh) * 2015-03-06 2016-12-07 电信科学技术研究院 信道状态信息获取方法、信道状态信息反馈方法及装置
CN106537814A (zh) * 2014-05-22 2017-03-22 三星电子株式会社 用于在采用二维天线阵列的移动通信系统中生成并传输信道反馈的方法和装置
CN107346982A (zh) * 2016-05-06 2017-11-14 北京信威通信技术股份有限公司 一种下行多天线传输方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974194B1 (ko) * 2007-03-05 2010-08-05 삼성전자주식회사 다중 입출력 무선통신 시스템에서 역호환성을 갖는 공간다중화 장치 및 방법
KR20160146850A (ko) * 2014-04-17 2016-12-21 라이 라디오텔레비지오네 이탈리아나 에스.페.아. 궤도 각 모멘텀을 갖는 전자기 모드들을 가지는 신호들의 송신 및/또는 수신을 위한 시스템, 및 그 디바이스 및 방법
CN108463954A (zh) * 2016-02-04 2018-08-28 株式会社Ntt都科摩 基站、用户装置、预编码矩阵应用方法及预编码矩阵取得方法
EP3272046B8 (en) * 2016-03-27 2019-06-05 Ofinno Technologies, LLC Channel state information transmission in a wireless network
US11202211B2 (en) * 2017-09-25 2021-12-14 Nippon Telegraph And Telephone Corporation OAM multiplexing communication system and OAM multiplexing communication method
JP6962135B2 (ja) * 2017-10-31 2021-11-05 日本電信電話株式会社 Oam多重通信システムおよびoam多重通信方法
CN111903080B (zh) * 2018-03-30 2022-07-22 日本电信电话株式会社 Oam多路复用通信系统和模式间干扰消除方法
CN110022171A (zh) * 2019-05-29 2019-07-16 重庆邮电大学 用于oam-mimo系统的功率分配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150326297A1 (en) * 2014-05-08 2015-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Beam forming using an antenna arrangement
CN106537814A (zh) * 2014-05-22 2017-03-22 三星电子株式会社 用于在采用二维天线阵列的移动通信系统中生成并传输信道反馈的方法和装置
CN106209195A (zh) * 2015-03-06 2016-12-07 电信科学技术研究院 信道状态信息获取方法、信道状态信息反馈方法及装置
WO2016164146A2 (en) * 2015-03-16 2016-10-13 Lockheed Martin Corporation Apparatus and method for increased data rates in underwater communications using orbital angular momentum
CN107346982A (zh) * 2016-05-06 2017-11-14 北京信威通信技术股份有限公司 一种下行多天线传输方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "On the channel reciprocity support for CSI acquisition", 3GPP TSG RAN WG1#89; R1-1708914, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 14 May 2017 (2017-05-14), Hangzhou, China; 20170515 - 20170519, XP051274092 *
PENG RUI; TIAN YAFEI: "Wideband hybrid precoder design in MU-MIMO based on channel angular information", 2017 IEEE 18TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), IEEE, 3 July 2017 (2017-07-03), pages 1 - 5, XP033286518, DOI: 10.1109/SPAWC.2017.8227759 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092494A1 (zh) * 2021-11-26 2023-06-01 北京小米移动软件有限公司 一种预编码信息的反馈方法及其装置
WO2023097546A1 (en) * 2021-12-01 2023-06-08 Qualcomm Incorporated Mode division multiplex for data and reference signals in orbital angular momentum communication

Also Published As

Publication number Publication date
EP4064584A1 (en) 2022-09-28
US20220271806A1 (en) 2022-08-25
CN112803975A (zh) 2021-05-14
EP4064584A4 (en) 2023-03-15
CN112803975B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2021093591A1 (zh) 确定预编码矩阵的方法、设备及系统
CN105846965B (zh) 无线通信系统中的用于下行链路协调多点的信令
WO2018202154A1 (zh) 传输预编码矩阵的指示方法和设备
WO2021052179A1 (zh) 一种上行数据传输方法及装置
JP2023025118A (ja) データ伝送方法、装置、ネットワーク側機器およびユーザ機器
US11101866B2 (en) Rank indication reporting method and apparatus, and indication method and apparatus
WO2016185749A1 (ja) 装置、方法、及びプログラム
WO2019191970A1 (zh) 通信方法、通信装置和系统
WO2020143807A1 (zh) 准共址指示方法及装置
WO2023060449A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2022199346A1 (zh) 指示方法及相关产品
WO2022082380A1 (zh) 一种通信方法和装置
WO2020135451A1 (zh) 功率调整的方法、设备及系统
CN116114183A (zh) 一种信息传输的方法、相关装置以及设备
WO2023159575A1 (zh) 通信方法、终端设备及网络设备
WO2024000179A1 (zh) 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
WO2022057569A1 (zh) 确定信道状态信息的方法、装置及系统
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2024065333A1 (zh) 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置
WO2024031718A1 (zh) 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024026798A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023201500A1 (zh) 基于码本的pusch传输方法及其装置
WO2023184449A1 (zh) 一种发送tri的方法及其装置、接收tri的方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020887088

Country of ref document: EP

Effective date: 20220523

NENP Non-entry into the national phase

Ref country code: DE