WO2024016118A1 - 通信系统、终端设备及网络设备 - Google Patents
通信系统、终端设备及网络设备 Download PDFInfo
- Publication number
- WO2024016118A1 WO2024016118A1 PCT/CN2022/106297 CN2022106297W WO2024016118A1 WO 2024016118 A1 WO2024016118 A1 WO 2024016118A1 CN 2022106297 W CN2022106297 W CN 2022106297W WO 2024016118 A1 WO2024016118 A1 WO 2024016118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal device
- precoding matrix
- antenna port
- network device
- information
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 81
- 239000011159 matrix material Substances 0.000 claims abstract description 192
- 230000005540 biological transmission Effects 0.000 claims abstract description 113
- 238000000034 method Methods 0.000 claims abstract description 100
- 239000013598 vector Substances 0.000 claims abstract description 94
- 230000001427 coherent effect Effects 0.000 claims description 133
- 238000012545 processing Methods 0.000 claims description 22
- 230000015654 memory Effects 0.000 claims description 21
- 238000004590 computer program Methods 0.000 claims description 15
- 230000009977 dual effect Effects 0.000 claims description 5
- 230000011664 signaling Effects 0.000 description 13
- 238000001228 spectrum Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000007726 management method Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 230000003190 augmentative effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 101150077548 DCI1 gene Proteins 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
Definitions
- the present application relates to the field of communication technology, and more specifically, to a communication system, terminal equipment and network equipment.
- the current protocol only supports codebooks for 2-antenna ports and 4-antenna ports, which cannot meet the uplink transmission rate requirements of future communication systems. This is because, with the development of communication technology, the number of antenna ports of terminal equipment will increase to support higher uplink transmission rates. For example, types of terminal equipment such as customer premise equipment (CPE) and augmented reality (AR) equipment usually include 8 or more antenna ports. If 2-antenna port and 4-antenna port codebooks are used, For uplink data transmission, the advantages of such terminal equipment in terms of transmission rate cannot be fully utilized.
- CPE customer premise equipment
- AR augmented reality
- This application provides a communication system, terminal equipment and network equipment. Each aspect involved in this application is introduced below.
- a communication method including: a terminal device receiving transmission precoding matrix indication TPMI information sent by a network device; the terminal device determining a first precoding matrix from a codebook based on the TPMI information; wherein, The codebook includes a precoding matrix set W, and the precoding matrix set W satisfies or Represents the Kronecker product, W1 is one of the vector sets of N ⁇ 1, W2 is one of the matrix sets of M ⁇ K, N is an integer greater than 1, the product of M and N is greater than or equal to 8, K represents Number of transport layers.
- a communication method which is characterized in that it includes: a network device determines a first precoding matrix from a codebook; and the network device sends a transmission precoding corresponding to the first precoding matrix to the terminal device.
- the coding matrix indicates TPMI information; wherein, the codebook includes a precoding matrix set W, and the precoding matrix set W satisfies or Represents the Kronecker product, W1 is one of the vector sets of N ⁇ 1, W2 is one of the matrix sets of M ⁇ K, N is an integer greater than 1, the product of M and N is greater than or equal to 8, K represents Number of transport layers.
- a terminal device including: a receiving unit, configured to receive transmit precoding matrix indication TPMI information sent by a network device; and a processing unit, configured to obtain a codebook from a codebook according to the TPMI information received by the receiving unit.
- the first precoding matrix is determined in; wherein, the codebook includes a precoding matrix set W, and the precoding matrix set W satisfies or Represents the Kronecker product, W1 is one of the vector sets of N ⁇ 1, W2 is one of the matrix sets of M ⁇ K, N is an integer greater than 1, the product of M and N is greater than or equal to 8, K represents Number of transport layers.
- a fourth aspect provides a network device, including: a processing unit, configured to determine a first precoding matrix from a codebook; and a sending unit, configured to send the first precoding matrix determined by the processing unit to the terminal device.
- the transmit precoding matrix corresponding to the coding matrix indicates TPMI information; wherein, the codebook includes a precoding matrix set W, and the precoding matrix set W satisfies or Represents the Kronecker product, W1 is one of the vector sets of N ⁇ 1, W2 is one of the matrix sets of M ⁇ K, N is an integer greater than 1, the product of M and N is greater than or equal to 8, K represents Number of transport layers.
- a terminal device including a transceiver, a memory and a processor.
- the memory is used to store programs.
- the processor is used to call the program in the memory and receive or send information through the transceiver. , causing the terminal device to execute the method described in the first aspect.
- a network device including a transceiver, a memory and a processor.
- the memory is used to store programs.
- the processor is used to call the program in the memory and receive or send information through the transceiver. , causing the network device to perform the method described in the second aspect.
- a seventh aspect provides a device, including a processor, for calling a program from a memory, so that the device executes the method described in the first or second aspect.
- An eighth aspect provides a chip, including a processor for calling a program from a memory, so that a device installed with the chip executes the method described in the first or second aspect.
- a ninth aspect provides a computer-readable storage medium on which a program is stored, and the program causes a computer to execute the method described in the first or second aspect.
- a computer program product including a program that causes a computer to execute the method described in the first or second aspect.
- a computer program is provided, the computer program causing a computer to execute the method described in the first aspect or the second aspect.
- the network device may send precoding matrix indication TPMI information to the terminal device to instruct the terminal device to select the first precoding matrix from the codebook.
- the codebook may include a precoding matrix suitable for greater than or equal to 8 antenna ports, so as to adapt communication to terminal equipment with 8 or more antenna ports. It avoids the problem of mismatch between traditional codebooks and terminal equipment with 8 or more antenna ports, and helps terminal equipment with 8 or more antenna ports communicate at a higher transmission rate.
- W1 can be used to indicate the phase between each antenna port in the antenna port group
- W2 can be used to map the transmission layer to the antenna port group. That is to say, W1 can be used to select coherent antenna ports to map the same transmission. layer, avoiding the codebook traversal method of traversing all the relevant codewords in the antenna port group to select the solution for mapping the antenna ports of the same transmission layer, which causes major problems in the codebook. Therefore, the embodiments of the present application have Helps support partially coherent scenarios with smaller codebooks.
- W1 is used to select an antenna port from each antenna port group
- W2 is used to map the transmission layer to the antenna port group. That is to say, W1 can be used to select an antenna port in different antenna port groups for mapping.
- Figure 1 is a system architecture diagram of a communication system to which embodiments of the present application can be applied.
- Figure 2 is a schematic diagram of the uplink data transmission process based on the codebook.
- Figure 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
- Figure 4 is a schematic flow chart of the communication method according to the embodiment of the present application.
- Figure 5 is a schematic flow chart of a communication method according to another embodiment of the present application.
- Figure 6 is a schematic diagram of a terminal device according to an embodiment of the present application.
- Figure 7 is a schematic diagram of a network device according to an embodiment of the present application.
- Figure 8 is a schematic structural diagram of a device provided by an embodiment of the present application.
- the embodiments of the present application can be applied to various communication systems.
- GSM global system of mobile communication
- CDMA code division multiple access
- WCDMA wideband code division multiple access
- GPRS general packet radio service
- LTE long term evolution
- LTE-A advanced long term evolution
- NR new radio
- the evolution system of the NR system the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed spectrum
- the NR NR-based access to unlicensed spectrum, NR-U) system on the unlicensed spectrum
- UMTS universal mobile telecommunication system
- WLAN wireless local area networks
- WiFi wireless fidelity
- 5G fifth-generation communication
- the embodiments of the present application can also be applied to other communication systems, such as future communication systems.
- the future communication system may be, for example,
- communication systems can not only support traditional cellular communication, but also support one or more other types of communication.
- the communication system may support one or more of the following communications: device to device (D2D) communication, machine to machine (M2M) communication, machine type communication (MTC) , vehicle-to-vehicle (V2V) communication, and vehicle-to-everything (V2X) communication, etc.
- D2D device to device
- M2M machine to machine
- MTC machine type communication
- V2V vehicle-to-vehicle
- V2X vehicle-to-everything
- CA carrier aggregation
- DC dual connectivity
- SA standalone
- the communication system in the embodiment of the present application can be applied to unlicensed spectrum.
- This unlicensed spectrum can also be considered as shared spectrum.
- the communication system in the embodiment of the present application can also be applied to licensed spectrum.
- This licensed spectrum can also be considered as dedicated spectrum.
- the embodiments of the present application can be applied to terrestrial communication networks (terrestrial networks, TN) systems, and can also be applied to non-terrestrial networks (non-terrestrial networks, NTN) systems.
- the NTN system may include an NR-based NTN system and an Internet of things (IoT)-based NTN system.
- IoT Internet of things
- a communication system may include one or more terminal devices.
- the terminal equipment mentioned in the embodiments of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (mobile station, MS), mobile terminal (mobile Terminal, MT), remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
- the terminal device may be a station (STATION, ST) in the WLAN.
- the end device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in next-generation communication systems (such as NR systems), or future evolving public Terminal equipment in the land mobile network (public land mobile network, PLMN) network, etc.
- SIP session initiation protocol
- WLL wireless local loop
- PDA personal digital assistant
- the end device may point to a device that provides voice and/or data connectivity to the user.
- the terminal device may be a handheld device, a vehicle-mounted device, etc. with a wireless connection function.
- the terminal device can be a mobile phone (mobile phone), tablet computer (Pad), notebook computer, handheld computer, mobile Internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
- the terminal device may be deployed on land.
- terminal devices can be deployed indoors or outdoors.
- the terminal device may be deployed on water, such as on a ship.
- the terminal device may be deployed in the air, such as on aircraft, balloons, and satellites.
- a communication system may also include one or more network devices.
- the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
- the network device may also be called an access network device or a wireless access network device.
- the network device may be a base station, for example.
- the network device in the embodiment of this application may refer to an access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
- RAN radio access network
- Access network equipment can broadly cover the following names, or be replaced with the following names, such as: Node B (NodeB), evolved NodeB (eNB), next generation NodeB (gNB) , relay station, access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, Access node, wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), remote radio unit (RRU), active antenna unit ( active antenna unit (AAU), radio frequency head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
- NodeB Node B
- eNB evolved NodeB
- gNB next generation NodeB
- MSR multi-standard wireless
- Access node wireless node
- AP wireless node
- AP access point
- BBU base band unit
- the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
- a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
- the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
- Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
- Base stations can be fixed or mobile.
- a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
- a helicopter or drone may be configured to serve as a device that communicates with another base station.
- the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
- gNB can also include AAU.
- the network device may have mobile characteristics, for example, the network device may be a mobile device.
- the network device may be satellite-based or space-based, that is, the network device is provided on a satellite or aircraft device.
- the network device may also be a base station installed on land, water, or other locations.
- network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
- the cell can be a network equipment ( For example, a cell corresponding to a base station).
- the cell can belong to a macro base station or a base station corresponding to a small cell.
- the small cell here can include: urban cell (metro cell), micro cell (micro cell), pico cell ( Pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
- FIG. 1 is an architectural schematic diagram of a communication system provided by an embodiment of the present application.
- the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (also known as a communication terminal or terminal).
- the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
- Figure 1 exemplarily shows one network device and two terminal devices.
- the communication system 100 may include multiple network devices and other numbers of terminals may be included within the coverage of each network device.
- Equipment the embodiments of this application do not limit this.
- the wireless communication system shown in Figure 1 may also include other networks such as mobility management entity (mobility management entity, MME), access and mobility management function (AMF), etc. Entity, the embodiment of this application does not limit this.
- MME mobility management entity
- AMF access and mobility management function
- the communication device may include a network device 110 and a terminal device 120 with communication functions.
- the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
- the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
- Analog domain processing generally uses beamforming to map the radio frequency signal to the physical antenna for the analog signal to be sent.
- Digital domain processing is generally performed at baseband.
- Digital domain processing usually uses a precoding matrix to The signal is precoded to map the transmission layer data to the antenna port. Due to the limited number of radio frequency channels of the terminal equipment, many terminal equipment will use the above two processing methods for precoding processing at the same time. In other words, when sending uplink data In the process, the terminal equipment will first precode the digital signal, and then use beam forming for the analog signal.
- uplink data transmission is divided into codebook-based transmission and non-codebook-based transmission.
- the network device can configure a sounding reference signal (SRS) resource set dedicated to codebook transmission for the terminal device.
- the terminal device may send SRS on multiple SRS resources in the resource set, where the SRS on each SRS resource is sent using different beams.
- the network device can select the target SRS resource (such as the SRS with the best signal quality) based on the received SRS to obtain uplink channel state information (CSI).
- SRS sounding reference signal
- the network device can indicate the resource index corresponding to the target SRS resource to the terminal device through an SRS resource indicator (SRS resource indicator, SRI), so that the terminal device can use the beam corresponding to the target SRS resource to perform beamforming on uplink data.
- SRS resource indicator SRI
- the network side can indicate the rank indicator (RI) and send the precoding matrix indicator (TPMI) to the terminal device through downlink signaling (such as downlink control information (DCI)).
- DCI downlink control information
- the terminal device can determine the precoding matrix corresponding to the TPMI from the codebook according to the RI and the TPMI.
- the current protocol supports 2-port and 4-port transmission.
- the codebooks based on uplink data transmission are different.
- the codebook based on the uplink data transmission is also related to the multiple access method used by the terminal device. The codebooks that can be used by terminal equipment under different numbers of antenna ports and different transmission layers are given below.
- Table 3 (4 antenna ports, layer 1 transmission, cyclic prefix orthogonal frequency division multiplexing (CP-OFDM))
- the terminal device will also send its own antenna coherence capabilities to the network device.
- Antenna-related capabilities include one of fully-coherent, partially coherent, and non-coherent.
- the coherent capabilities of the terminal device may include fully coherent capabilities and non-coherent capabilities.
- Full coherence capability indicates that phase calibration is completed between the two antenna ports of the terminal equipment, and phase weighting can be performed. In other words, for data of the same transmission layer, the terminal device can use the two antenna ports to transmit.
- the non-coherent capability indicates that the phase calibration between the two antenna ports of the terminal equipment has not been completed, and data of the same transmission layer cannot be sent with phase weighting. That is to say, the terminal device can only use one antenna port to send data of the same transport layer.
- the coherent capabilities of the terminal device may include fully coherent capabilities, partially coherent capabilities, and non-coherent capabilities.
- Full coherence capability indicates that all antenna ports of the terminal device have completed phase calibration and can be phase weighted. In other words, all antenna ports of the terminal device can send data of the same transport layer.
- Partial coherence capability indicates that the terminal equipment has completed phase calibration within two or two antenna port groups and can perform phase weighting. However, the terminal equipment has not completed phase calibration between two or two antenna port groups and cannot perform phase weighting. That is to say, the terminal device can use two antenna ports in the antenna port group to send data of the same transmission layer, but can use antennas in different antenna port groups to send data of the same transmission layer.
- the non-coherent capability indicates that phase calibration has not been completed among the four antenna ports of the terminal equipment, and data of the same transmission layer cannot be sent with phase weighting. That is to say, for data of the same transport layer, the terminal device can only use one antenna port to send.
- the network equipment can indicate any precoding matrix in the above codebook; for terminal equipment with partially coherent antennas, the network equipment can only indicate the precoding matrix that includes zero elements in the above codebook; for non- For coherent antenna terminal equipment, each column in the precoding matrix indicated by the network equipment can have at most one non-zero element.
- the above describes in detail the codebooks supported by the current protocol that can be used for the above data transmission.
- the current protocol only supports codebooks for 2-antenna ports and 4-antenna ports, which cannot meet the uplink transmission rate requirements of future communication systems. This is because, with the development of communication technology, the number of antenna ports of terminal equipment will increase to support higher uplink transmission rates.
- types of terminal equipment such as customer premise equipment (CPE) and augmented reality (AR) equipment usually include 8 or more antenna ports. If 2-antenna port and 4-antenna port codebooks are used, For uplink data transmission, the advantages of such terminal equipment in terms of transmission rate cannot be fully utilized.
- Figure 3 is a schematic flowchart of a communication method provided by an embodiment of the present application. Figure 3 is described from the perspective of interaction between network equipment and terminal equipment.
- the network equipment and terminal equipment may be any type of network equipment and terminal equipment mentioned in Figure 1 . It should be understood that the terms "precoding matrix” and “codeword” mentioned below may be used interchangeably depending on the specific context.
- the network device determines a first precoding matrix from a codebook (such as a pre-agreed codebook).
- a codebook such as a pre-agreed codebook.
- the embodiment of the present application does not specifically limit the method of determining the first precoding matrix from the codebook, and reference may be made to related technologies.
- the network device may determine the first precoding matrix from the codebook based on one or more factors such as channel state information and coherence capabilities of the terminal device.
- the network device sends TPMI information to the terminal device.
- the TPMI information refers to the TPMI information corresponding to the first precoding matrix, for example, it may refer to the TPMI index corresponding to the first precoding matrix.
- the TPMI information can be sent through downlink signaling.
- the downlink signaling may be DCI used for scheduling PUSCH.
- the downlink signaling may be radio resource control (RRC) signaling for scheduling persistent PUSCH.
- RRC radio resource control
- step S330 after receiving the TPMI information, the terminal device may determine the first precoding matrix from a codebook (such as a pre-agreed codebook) according to the TPMI information.
- a codebook such as a pre-agreed codebook
- the codebook in step S330 and the codebook in step S310 may be the same codebook.
- the TPMI information may indicate a TPMI index, and different values of the TPMI index may correspond to different precoding matrices in the codebook.
- the corresponding relationship between the TPMI index and the precoding matrix can be mapped in the manner shown above in combination with Table 1 to Table 7.
- the correspondence between the TPMI index and the precoding matrix can be mapped from left to right in the ascending order of the TPMI index in the table. Sort and map the precoding matrices of the embodiment of the present application in sequence.
- the mapping relationship between the TPMI index and the precoding matrix can also be established in other ways, which is not limited in the embodiments of the present application.
- the number of precoding matrices in the codebook is large, the number of TPMI indexes required to indicate the precoding matrix will also increase.
- the bits occupied by the TPMI information also increase. will increase.
- the number of precoding matrices is 2, the number of TPMI indexes may be 2.
- the TPMI information may occupy 1 bit to indicate the above two TPMI indexes.
- the number of precoding matrices is 4, the number of TPMI indexes may be 4. In this way, the TPMI information may occupy 2 bits to indicate the above 4 TPMI indexes.
- precoding matrix in the embodiment of the present application will be introduced in detail below, and for the sake of brevity, it will not be described again here.
- the codebook may include a set of precoding matrices W (which may include one or more precoding matrices).
- the precoding matrix set W can be used to support uplink data transmission of 8 antenna ports (or more than 8 antenna ports, such as 16 antenna ports, 32 antenna ports). Since the precoding matrix set W included in the codebook can be used to support uplink data transmission of 8 antenna ports (or more than 8 antenna ports), the codebook provided by the embodiment of the present application can significantly increase the transmission rate of uplink data.
- the codebook may be a partially coherent codebook; alternatively, the codebook may include a subset of partially coherent codebooks.
- the codebook may be a non-coherent codebook; alternatively, the codebook may include a subset of non-coherent codebooks.
- the precoding matrix set W may include one or more of the following precoding matrices: a precoding matrix that supports fully coherent transmission, a precoding matrix that supports partially coherent transmission, and a precoding matrix that supports non-coherent transmission. precoding matrix. Setting a precoding matrix that supports partially coherent transmission and/or non-coherent transmission in the codebook allows the network device to flexibly configure the codebook used by the terminal device according to the coherent capabilities of the terminal device.
- the precoding matrix set W satisfies or Alternatively, the precoding matrix set W can be based on or get.
- W1 is one of the vector sets of N ⁇ 1
- W2 is one of the matrix sets of M ⁇ K
- N is an integer greater than 1
- the product of M and N is greater than or equal to 8
- K represents Number of transport layers.
- the existing downlink 8-antenna port, 16-antenna port, and 32-port codebook designs different combinations of the two parameters, the DFT vector corresponding to different beams and the phase difference between the two polarization directions, can be used.
- the precoding vectors of each transmission layer are obtained, and these combinations form the codebook of the corresponding port.
- this downlink codebook design method is mainly suitable for fully coherent antenna ports.
- the uplink codebook corresponding to the fully coherent antenna port can be calculated based on the above method.
- the above calculation method of the downlink codebook is not applicable.
- the above calculation method of the downlink codebook is not applicable to terminal equipment with partial coherent capabilities and non-coherent capabilities. capable terminal equipment. Therefore, in order to design a codebook suitable for terminal equipment with partial coherent capabilities and/or terminal equipment with non-coherent capabilities for uplink data transmission, in the embodiment of the present application, the values of W1 and/or W2 are designed to help From 8 or more antenna ports, select coherent antenna ports to send uplink data.
- the precoding matrix set W in the codebook may satisfy :
- the precoding matrix set W in the codebook can be get.
- W1 is used to indicate the phase between each antenna port in the antenna port group
- W2 is used to map the transmission layer to the antenna port group.
- the precoding matrix set It can be understood that the transmission layer is mapped to the antenna ports in a coherent part of the antenna port group with a certain phase.
- This kind of precoding matrix can be applied to partially coherent scenarios, that is, the antenna port groups within the antenna port group and the antenna port groups mapped to the same transmission layer are coherent, and the antenna port groups mapped to different transmission layers are incoherent.
- W1 can be used to select coherent antenna ports to map the same transmission layer, avoiding the need to traverse all coherent codewords in the antenna port group in a codebook traversal manner to select mapping.
- the solution of antenna ports in the same transmission layer leads to a major problem in the codebook.
- the embodiments of the present application help to support partially coherent scenarios with a smaller codebook.
- the precoding matrix set W in the codebook may include satisfy: Alternatively, the precoding matrix set W in the codebook can be get.
- W1 is used to select an antenna port from each antenna port group
- W2 is used to map the transmission layer to the antenna port group.
- the precoding matrix set It can be understood that the antenna port group is first selected, then an antenna port is selected from the selected antenna port group, and then the transmission layer is mapped to the selected antenna port in the selected antenna port group.
- This kind of precoding matrix can be applied to non-coherent scenarios, that is, the antenna ports within the antenna port group and the antenna ports in different antenna port groups are non-coherent.
- M may represent the number of antenna port groups included in the terminal device.
- N may represent the number of antenna ports included in each antenna port group.
- an antenna port group may include a pair of antennas.
- an antenna port group may include a pair of dual-polarized antennas.
- the product of M and N may equal 8.
- the precoding matrix set W can be used to support uplink data transmission of 8 antenna ports.
- M can be equal to 4 and N can be equal to 2. That is, the terminal device may include 4 antenna port groups, and each antenna port group includes 2 antenna ports.
- M can be equal to 2 and N can be equal to 4. That is, the terminal device may include 2 antenna port groups, and each antenna port group includes 4 antenna ports.
- the product of M and N may be greater than 8.
- the product of M and N can be 16 or 32. That is to say, the precoding matrix set W can be used to support uplink data transmission of more than 8 antenna ports, such as supporting uplink data transmission of 16 antenna ports or 32 antenna ports.
- the terminal device may include more antenna port groups and/or each antenna port group may include more antenna ports.
- the value of K (ie, the current number of transmission layers) may be indicated by the network device.
- the network device may indicate the value of K through downlink signaling.
- the downlink signaling may be, for example, DCI used for scheduling PUSCH.
- the downlink signaling may be radio resource control (RRC) signaling for scheduling persistent PUSCH.
- RRC radio resource control
- K and the TPMI information mentioned above can be indicated through the same downlink signaling. If the value of K is different, the value of W2 will be different. Therefore, after determining the value of K, the terminal device can determine W2 corresponding to the corresponding transport layer based on the value of K. The specific correspondence between K and W2 will be described in detail later and will not be detailed here.
- W1 may be used to indicate the relative phase (or phase difference) of the antenna ports within an antenna port group (which may include N antenna ports).
- the W1 may indicate an antenna port group.
- the relative phase of the antenna ports As an example, if an antenna port group includes a pair of dual-polarized antennas, then W1 can be used to indicate that the pair of dual-polarized antennas are plus or minus 45-degree dual-polarized antennas. In this embodiment, the elements in W1 may all be non-zero elements.
- different transmission layers can use different antenna port groups for transmission, and different relative phases can be used within the antenna port groups. Through the combination of antenna port group selection + intra-group phase, it is ensured that Performance of partially coherent codebooks.
- W1 may be used to select some antenna ports from an antenna port group (which may include N antenna ports).
- W1 can be used to select from one antenna port group ( Some antenna ports can be selected from N antenna ports).
- the elements in W1 may include non-zero elements. Therefore, W1 can select the antenna port corresponding to the non-zero element from an antenna port group.
- different transmission layers can be mapped to non-adjacent antenna ports, thereby reducing mutual interference between transmission layers as much as possible and ensuring the performance of non-coherent codebooks.
- W1 may include one or more of the following vectors:
- the coefficient in front of W1 i.e.
- This coefficient can also be replaced by 1 if the power normalization operation is done on the final generated precoding matrix.
- W1 may include one or more of the following vectors: For example, in the case where the terminal device is configured with a partially coherent codebook subset (or in the case where the precoding matrix set W includes a precoding matrix that supports partially coherent transmission), W1 may include one of the above four vectors. one or more. It can be seen from the above four vectors that the elements in W1 are all non-zero elements and can be used to represent the relative phase between two antenna ports in an antenna port group.
- W1 may include one or more of the following vectors: For example, in the case where the terminal device is configured with a non-coherent codebook subset (or in the case where the precoding matrix set W includes a precoding matrix that supports non-coherent transmission), W1 may include one of the above two vectors. one or more. In this case, W1 includes zero elements, which can be used to select an antenna port from an antenna port group including 2 antenna ports, that is, select the antenna port corresponding to the non-zero element.
- W2 may be used to map each transport layer of an end device to one or more antenna port groups.
- each column of W2 may correspond to a transmission layer, and each row of W2 may correspond to an antenna port group (an antenna port group may include N antenna ports).
- some elements of W2 are zero elements.
- the M elements in each column of W2 may include at least one zero element.
- a non-zero element can indicate that the transmission layer is mapped to the corresponding antenna port group (or transmitted on the corresponding antenna port group), and a zero element indicates that the transmission layer is not mapped to the corresponding antenna port. group (or not transmitting on the corresponding antenna port group).
- the W2 can indicate that the first transmission layer of the terminal device is transmitted on the second antenna port group and the third antenna port group, but not on the first antenna port group and the fourth antenna port group;
- the second transport layer transmits on the first and fourth antenna port groups but not on the second and third antenna port groups.
- each column of W2 may include M elements, the number of non-zero elements in the M elements may be 1 or 2, and the non-zero elements in different columns of W2 correspond to different rows. In other embodiments, each column of W2 may include M elements, the number of non-zero elements in the M elements is only 1, and the non-zero elements in different columns of W2 correspond to different rows. As an example, if the terminal device is configured with a partially coherent codebook subset, the number of non-zero elements in the M elements may be 1 or 2; if the terminal device is configured with a non-coherent codebook subset, then The number of non-zero elements among the M elements is only 1.
- each column of W2 may include M elements, and the value of a non-zero element among the M elements is 1.
- W2 may include one or more of the following:
- W2 may include one or more of the following:
- W2 may include one or more of the following:
- W2 may include
- W2 may include one or more of the following:
- W2 may include one or more of the following:
- W2 may include one or more of the following:
- W2 may include
- W2 may include one or more of the following:
- W2 may include one or more of the following:
- W2 may include one or more of the following:
- W2 may include
- W2 can adopt the method described in the above four examples (for example, the above four examples corresponding to the partially coherent codebook subset), Choose different values according to the different values of K.
- W2 can adopt the method described in the above four examples (for example, the above four examples corresponding to the non-coherent codebook subset), according to K Choose different values for different values.
- the coefficient before W2 mentioned above (ie, 1/2) represents the power normalization coefficient. This coefficient can also be replaced by 1 if the power normalization operation is done on the final generated precoding matrix.
- the precoding matrix set W as a precoding matrix that supports 8 ports as an example, several more specific examples of the precoding matrix set W are given below.
- Example 1 The terminal device is configured with a partially coherent codebook subset
- W1 includes the following 4 vectors:
- W2 includes the following 4 vectors: then it can be based on
- the obtained codebook includes the following precoding matrix set W:
- Example 2 The terminal device is configured with an incoherent codebook subset
- W1 includes the following 2 vectors:
- W2 includes the following 6 vectors: then it can be based on
- the obtained codebook includes the following precoding matrix set W:
- the method in Figure 3 may further include: the terminal device receiving the first information (sometimes also called codebook subset configuration information) sent by the network device. This step may be performed before the aforementioned step S310.
- the first information may be used to configure a partially coherent codebook subset and/or a non-coherent codebook subset for the terminal device. In other words, the first information may indicate a partially coherent codebook subset and/or a non-coherent codebook subset.
- the method of FIG. 3 may further include: the terminal device sending capability information of the terminal device to the network device.
- the capability information may be used to indicate one or more of the following: the terminal device supports a partially coherent codebook subset, and the terminal device supports a non-coherent codebook subset.
- the method in Figure 3 may further include: the terminal device receiving second information (sometimes also called codebook constraint information) sent by the network device. This step may be performed before the aforementioned step S310.
- the second information may be used to indicate one or more of the following information: the available vectors (or available values) in the candidate vectors (or candidate values) of W1, and the candidate matrices (or candidate values) of W2. Available matrix (or available values).
- the second information may indicate available vectors from the candidate vectors of W1.
- W1 includes a total of 4 candidate vectors
- the second information may include 4 bits to indicate available vectors among the 4 candidate vectors.
- the value of the second information is "1010", which means that the first vector and the third vector among the four candidate vectors are available vectors, and the second vector and the fourth vector are not. use.
- the second information may indicate available matrices from the candidate matrices of W2. For example, if W2 includes 2 candidate matrices, 2 bits can be used to indicate the available matrix among the 2 candidate matrices. As a more specific example, if the value of the second information is "10", it can mean that the first matrix among the two candidate matrices is an available matrix and the second matrix is unavailable.
- the second information may indicate available vectors from the candidate vectors of W1 and indicate available matrices from the candidate matrices of W2.
- W1 includes a total of 4 candidate vectors
- W2 includes 2 candidate matrices
- the second information may include 6 bits
- the first 4 bits indicate the available vectors among the 4 candidate vectors
- the last 2 bits indicate the 2 Available matrices among the candidate matrices.
- the aforementioned codebook may be generated based on the available vectors of W1 and the available matrices of W2 indicated by the second information.
- the size of the codebook mentioned above and the number of bits occupied by the TPMI information can be changed accordingly based on changes in the number of available vectors of W1 and available matrices of W2 indicated by the second information.
- the codebook mentioned in the embodiments of this application may only include the precoding matrix generated according to the embodiments of this application.
- the codebook mentioned in the embodiment of the present application may not only include the precoding matrix generated according to the embodiment of the present application, but may also include other precoding matrices generated based on other methods. For example, assuming that the terminal device is configured with a partially coherent codebook subset, the partially coherent codebook subset may only include Generated precoding matrix. Alternatively, the partially coherent codebook subset may include The generated precoding matrix may also include Generated precoding matrix. For another example, assuming that the terminal device is configured with a non-coherent codebook subset, the partially coherent codebook subset may only include Generated precoding matrix. Alternatively, the partially coherent codebook subset may include The generated precoding matrix may also include Generated precoding matrix.
- the partially coherent codebook subset may also include a non-coherent precoding matrix.
- the terminal device may perform precoding corresponding to the PUSCH based on the first precoding matrix, and send the PUSCH to the network device.
- Embodiment 1 and Embodiment 2 For ease of understanding, the following uses Embodiment 1 and Embodiment 2, taking PUSCH transmission as an example to introduce the uplink data transmission process of a terminal device that supports partial coherent capabilities, and the uplink data transmission process of a terminal device that supports non-coherent capabilities.
- Figure 4 is a schematic flow chart of the communication method according to the embodiment of the present application.
- the method shown in Figure 4 includes steps S410 to S470. It is assumed that in the communication method shown in Figure 4, the terminal device is a terminal device that supports partial coherent capabilities.
- step S410 the terminal device sends terminal device capability 1 to the network device.
- terminal equipment capability 1 is used to indicate that the terminal equipment capability of the terminal device is a partially coherent capability.
- step S420 the network device sends the codebook subset configuration 1 to the terminal device.
- codebook subset configuration 1 is used to indicate a partially coherent codebook subset.
- step S430 the network device determines precoding matrix 1 from codebook 1.
- step S440 the network device sends codebook constraint information 1 to the terminal device.
- codebook constraint information 1 is used to indicate available vectors from the candidate vectors of W1, and is used to indicate available vectors from the candidate vectors of W2.
- the candidate vector of W1 contains 4 vectors, 4 bits can be used to correspond to the above 4 vectors respectively. If the value of the bit is 1, it means that the vector corresponding to the bit is an available vector. On the contrary, if the value of the bit is 0, it means that the vector corresponding to the bit is not an available vector.
- the candidate matrix of W2 contains 2 matrices
- 2 bits can be used to indicate the available matrix among them. If the value of the bit is 1, it means that the matrix corresponding to the bit is an available matrix. On the contrary, if the value of the bit is 0, it means that the matrix corresponding to the bit is not an available matrix.
- the available vectors and available matrices indicated by the above codebook constraint information 1 are used to generate codebook 2 in step 460. It should be noted that the size of the codebook 2 and the corresponding length of the TPMI information 1 may change as the number of available vectors and available matrices changes.
- step S450 the network device sends DCI1 used for scheduling uplink data 1 to the terminal device.
- DCI1 carries TPMI information corresponding to precoding matrix 1 in precoding set W, and the number of transmission layers K of the terminal device.
- step S460 the terminal device determines the precoding matrix 1 from the codebook 2 according to the TPMI information 1.
- the above precoding matrix 1 belongs to the precoding matrix set W in the codebook 2, and the precoding matrices in the precoding matrix set W satisfy get, where, Represents the Kronecker product, W1 is one of the vector sets of Nx1, W2 is one of the matrix sets of M*K dimensions, N and M are integers greater than 1, the product of M and N is equal to 8, N represents each The number of antenna ports included in an antenna port group, M represents the number of antenna port groups, and K represents the number of transmission layers.
- W1 can include at least one of the following vectors: Among them, the two elements of W1 represent the relative phase between two antenna ports in an antenna port group. Also, different vectors can be used for different codebook subsets.
- the terminal device may determine W2 corresponding to the transmission layer number based on the value of the transmission layer number K.
- W2 may include at least one of the following:
- W2 may include at least one of the following:
- W2 may include at least one of the following:
- W2 includes:
- W1 contains: And W2 includes then according to The precoding matrix set W contained in the above codebook can be obtained as follows:
- the terminal device may perform precoding corresponding to the PUSCH based on the precoding matrix 1, and send the PUSCH to the network device.
- Figure 5 is a schematic flow chart of a communication method according to another embodiment of the present application.
- the method shown in Figure 5 includes steps S510 to S570. It is assumed that in the communication method shown in Figure 5, the terminal device is a terminal device supporting non-coherent capabilities.
- step S510 the terminal device sends terminal device capability 2 to the network device.
- terminal equipment capability 2 is used to indicate that the terminal equipment capability of the terminal device is an incoherent capability.
- step S520 the network device sends the codebook subset configuration 2 to the terminal device.
- codebook subset configuration 2 is used to indicate a non-coherent codebook subset.
- step S530 the network device determines precoding matrix 2 from codebook 1.
- step S540 the network device sends the codebook constraint information 2 to the terminal device.
- codebook constraint information 2 is used to indicate available vectors from the candidate vectors of W1, and is used to indicate available vectors from the candidate vectors of W2.
- the candidate vector of W1 contains 5 vectors, 5 bits can be used to correspond to the above 5 vectors respectively. If the value of the bit is 1, it means that the vector corresponding to the bit is an available vector. On the contrary, if the value of the bit is 0, it means that the vector corresponding to the bit is not an available vector.
- the candidate matrix of W2 contains 2 matrices
- 2 bits can be used to indicate the available matrix among them. If the value of the bit is 1, it means that the matrix corresponding to the bit is an available matrix. On the contrary, if the value of the bit is 0, it means that the matrix corresponding to the bit is not an available matrix.
- the available vectors and available matrices indicated by the above-mentioned codebook constraint information 2 are used to generate codebook 2 in step 560. It should be noted that the size of the codebook 3 and the corresponding length of the TPMI information 2 may change as the number of available vectors and available matrices changes.
- step S550 the network device sends RRC signaling 1 for scheduling uplink data 2 to the terminal device.
- RRC signaling 1 carries TPMI information 2 corresponding to precoding matrix 2, and the number of transmission layers K of the terminal device.
- step S560 the terminal device determines the precoding matrix 2 from the codebook 3 according to the TPMI information 2.
- the above precoding matrix 2 belongs to the precoding matrix set W ⁇ in the codebook 3, and the precoding matrix in the precoding matrix set W ⁇ satisfies in, Represents the Kronecker product, W1 is a vector of Nx1, W2 is a matrix of M*K dimensions, N and M are integers greater than 1, the product of M and N is equal to 8, and N represents the antennas included in each antenna port group The number of ports, M represents the number of antenna port groups, and K represents the number of transmission layers.
- W1 can include at least one of the following vectors: Among them, the two elements of W1 represent the relative phase between two antenna ports in an antenna port group. Also, different vectors can be used for different codebook subsets.
- the terminal device may determine W2 corresponding to the transmission layer number based on the value of the transmission layer number K.
- W2 may include at least one of the following:
- W2 may include at least one of the following:
- W2 may include at least one of the following:
- W2 includes:
- W1 contains: And W2 includes then according to The precoding matrix set W ⁇ contained in the above codebook can be obtained as follows:
- the terminal device may perform precoding corresponding to the PUSCH based on the precoding matrix 2, and send the PUSCH to the network device.
- a codebook is also provided.
- the codebook includes a precoding matrix that can be applied to a terminal device with 8 antenna ports. It should be noted that the method of generating the codebook is not limited in the embodiment of the present application. That is to say, the codebook provided by the example of this application can be generated in the manner introduced above, or can also be generated in other ways.
- the above codebook suitable for an 8-antenna port terminal device may include one or more of the following precoding matrices:
- each precoding matrix in the above codebook can correspond to a TPMI index.
- the network device may be instructed to send the precoding matrix used by PUSCH through TPMI information indicating the TPMI index.
- TPMI information indicating the TPMI index.
- FIG. 6 is a schematic diagram of a terminal device according to an embodiment of the present application.
- the terminal device 600 shown in FIG. 6 includes: a receiving unit 610 and a processing unit 620.
- the receiving unit 610 is configured to receive the transmit precoding matrix indication TPMI information sent by the network device;
- the processing unit 620 is configured to determine the first precoding matrix from the codebook according to the TPMI information received by the receiving unit;
- the codebook includes a precoding matrix set W, and the precoding matrix set W satisfies or Represents the Kronecker product, W1 is one of the vector sets of N ⁇ 1, W2 is one of the matrix sets of M ⁇ K, N is an integer greater than 1, the product of M and N is greater than or equal to 8, K represents Number of transport layers.
- the W1 is used to indicate the relative phase of the antenna ports in an antenna port group; or, the W1 is used to select some antenna ports from an antenna port group; wherein, the one The antenna port group includes N antenna ports.
- the antenna port group includes a pair of dual-polarized antennas.
- the W2 is used to map each transmission layer of the terminal device to one or more antenna port groups.
- each column of the W2 corresponds to a transmission layer, and each row of the W2 corresponds to an antenna port group, where the one antenna port group includes N antenna ports.
- each column of W2 includes M elements, the number of non-zero elements in the M elements is 1 or 2, and the non-zero elements in different columns of W2 correspond to rows are different.
- N is equal to 2
- M is equal to 4.
- the W1 includes one or more of the following vectors:
- the W1 includes: And/or, if the terminal device is configured with a non-coherent codebook subset, the W1 includes:
- W2 includes one or more of the following:
- W2 includes one or more of the following:
- W2 includes one or more of the following:
- W2 includes
- the precoding matrix set W satisfies: And/or, if the terminal device is configured with a non-coherent codebook subset, then the precoding matrix set W satisfies:
- the receiving unit is configured to receive first information sent by the network device, where the first information is used to configure a partially coherent codebook subset and/or for the terminal device.
- Non-coherent codebook subsets are configured to receive first information sent by the network device, where the first information is used to configure a partially coherent codebook subset and/or for the terminal device.
- the receiving unit is configured to receive second information sent by the network device, where the second information is used to indicate one or more of the following information: candidates for W1 The available vectors in the vector, and the available matrices in the candidate matrix of W2.
- FIG. 7 is a schematic diagram of a network device according to an embodiment of the present application.
- the network device 700 shown in FIG. 7 includes: a processing unit 710 and a sending unit 720.
- Processing unit 710 configured to determine the first precoding matrix from the codebook
- the sending unit 720 is configured to send the transmit precoding matrix indication TPMI information corresponding to the first precoding matrix determined by the processing unit to the terminal device;
- the codebook includes a precoding matrix set W, and the precoding matrix set W satisfies or Represents the Kronecker product, W1 is one of the vector sets of N ⁇ 1, W2 is one of the matrix sets of M ⁇ K, N is an integer greater than 1, the product of M and N is greater than or equal to 8, K represents Number of transport layers.
- the W1 is used to indicate the relative phase of the antenna ports in an antenna port group; or, the W1 is used to select some antenna ports from an antenna port group; wherein, the one The antenna port group includes N antenna ports.
- the antenna port group includes a pair of dual-polarized antennas.
- the W2 is used to map each transmission layer of the terminal device to one or more antenna port groups.
- each column of the W2 corresponds to a transmission layer, and each row of the W2 corresponds to an antenna port group, where the one antenna port group includes N antenna ports.
- each column of W2 includes M elements, the number of non-zero elements in the M elements is 1 or 2, and the non-zero elements in different columns of W2 correspond to rows are different.
- N is equal to 2
- M is equal to 4.
- the W1 includes one or more of the following vectors:
- the W1 includes one or more of the following: And/or, if the terminal device is configured with a non-coherent codebook subset, the W1 includes one or more of the following:
- W2 includes one or more of the following:
- W2 includes one or more of the following:
- W2 includes one or more of the following:
- W2 includes
- the precoding matrix set W satisfies: And/or, if the terminal device is configured with a non-coherent codebook subset, the precoding matrix set W satisfies:
- the sending unit is configured to send first information to the terminal device, where the first information is used to configure a partially coherent codebook subset and/or non- Coherent codebook subsets.
- the sending unit is configured to send second information to the terminal device, where the second information is used to indicate one or more of the following information: the candidate vector of W1 The available vectors in , and the available matrices in the candidate matrix of W2.
- the receiving unit 610 may be a transceiver 840, and the processing unit 620 may be a processor 810.
- the terminal device 600 may also include a memory 820, as specifically shown in FIG. 8 .
- the sending unit 720 may be a transceiver 840, and the processing unit 710 may be a processor 810.
- the network device 700 may also include a memory 820, as shown in FIG. 8 .
- Figure 8 is a schematic structural diagram of the device according to the embodiment of the present application.
- the dashed line in Figure 8 indicates that the unit or module is optional.
- the device 800 can be used to implement the method described in the above method embodiment.
- Device 800 may be a chip or a communication device.
- the communication device may be, for example, the first device or the second device mentioned above.
- Apparatus 800 may include one or more processors 810.
- the processor 810 can support the device 800 to implement the method described in the foregoing method embodiments.
- the processor 810 may be a general-purpose processor or a special-purpose processor.
- the processor may be a central processing unit (CPU).
- the processor 810 can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA). ) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA off-the-shelf programmable gate array
- a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
- Apparatus 800 may also include one or more memories 820.
- the memory 820 stores a program, which can be executed by the processor 810, so that the processor 810 executes the method described in the foregoing method embodiment.
- the memory 820 may be independent of the processor 810 or integrated in the processor 810 .
- Apparatus 800 may also include a transceiver 830.
- Processor 810 may communicate with other devices or chips through transceiver 830.
- the processor 810 can transmit and receive data with other devices or chips through the transceiver 830 .
- An embodiment of the present application also provides a computer-readable storage medium for storing a program.
- the computer-readable storage medium can be applied in the communication device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the communication device in various embodiments of the present application.
- An embodiment of the present application also provides a computer program product.
- the computer program product includes a program.
- the computer program product can be applied in the communication device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the communication device in various embodiments of the present application.
- An embodiment of the present application also provides a computer program.
- the computer program can be applied to the terminal device or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the method performed by the communication device in various embodiments of the present application.
- the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
- a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
- correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
- Configuration in the embodiment of this application may include configuring through at least one of system messages, radio resource control (radio resource control, RRC) signaling, and media access control element (MAC CE) .
- RRC radio resource control
- MAC CE media access control element
- predefined or “preset” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
- predefined can refer to what is defined in the protocol.
- the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
- the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
- the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
- the implementation process constitutes any limitation.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
- the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
- the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
- the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
- magnetic media e.g., floppy disks, hard disks, magnetic tapes
- optical media e.g., digital video discs (DVD)
- semiconductor media e.g., solid state disks (SSD)
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
提供了一种通信系统、终端设备及网络设备。该方法包括:终端设备接收网络设备发送的发送预编码矩阵指示TPMI信息;终端设备根据TPMI信息,从码本中确定第一预编码矩阵;其中,码本包括预编码矩阵集合W,预编码矩阵集合W满足aa或者bb,cc表示克罗内克积,W1为N×1的向量集合中的一个,W2为M×K的矩阵集合中的一个,N为大于1的整数,M与N的乘积大于或等于8,K表示传输层数。其中,码本中可以包括适用于大于或等于8天线端口的预编码矩阵,以适配8个甚至更多的天线端口的终端设备进行通信。有助于帮助终端设备以较高的传输速率进行通信。
Description
本申请涉及通信技术领域,并且更为具体地,涉及一种通信系统、终端设备及网络设备。
目前协议仅支持2天线端口和4天线端口的码本,无法满足未来通信系统对上行传输速率的要求。这是因为,随着通信技术的发展,终端设备的天线端口数量会越来越多,以支持更高的上行传输速率。例如,客户终端设备(customer premise equipment,CPE)和增强现实(augmented reality,AR)设备等类型的终端设备通常包括8个甚至更多的天线端口,如果采用2天线端口和4天线端口的码本进行上行数据的传输,则无法充分发挥此类终端设备在传输速率方面的优势。
发明内容
本申请提供一种通信系统、终端设备及网络设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供一种通信方法,包括:终端设备接收网络设备发送的发送预编码矩阵指示TPMI信息;所述终端设备根据所述TPMI信息,从码本中确定第一预编码矩阵;其中,所述码本包括预编码矩阵集合W,所述预编码矩阵集合W满足
或者
表示克罗内克积,W1为N×1的向量集合中的一个,W2为M×K的矩阵集合中的一个,N为大于1的整数,M与N的乘积大于或等于8,K表示传输层数。
第二方面,提供一种通信方法,其特征在于,包括:网络设备从码本中确定第一预编码矩阵;所述网络设备向所述终端设备发送所述第一预编码矩阵对应的发送预编码矩阵指示TPMI信息;其中,所述码本包括预编码矩阵集合W,所述预编码矩阵集合W满足
或者
表示克罗内克积,W1为N×1的向量集合中的一个,W2为M×K的矩阵集合中的一个,N为大于1的整数,M与N的乘积大于或等于8,K表示传输层数。
第三方面,提供一种终端设备,包括:接收单元,用于接收网络设备发送的发送预编码矩阵指示TPMI信息;处理单元,用于根据所述接收单元接收的所述TPMI信息,从码本中确定第一预编码矩阵;其中,所述码本包括预编码矩阵集合W,所述预编码矩阵集合W满足
或者
表示克罗内克积,W1为N×1的向量集合中的一个,W2为M×K的矩阵集合中的一个,N为大于1的整数,M与N的乘积大于或等于8,K表示传输层数。
第四方面,提供一种网络设备,包括:处理单元,用于从码本中确定第一预编码矩阵;发送单元,用于向所述终端设备发送所述处理单元确定的所述第一预编码矩阵对应的发送预编码矩阵指示TPMI信息;其中,所述码本包括预编码矩阵集合W,所述预编码矩阵集合W满足
或者
表示克罗内克积,W1为N×1的向量集合中的一个,W2为M×K的矩阵集合中的一个,N为大于1的整数,M与N的乘积大于或等于8,K表示传输层数。
第五方面,提供一种终端设备,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,并通过所述收发器接收或发送信息,使得所述终端设备执行如第一方面所述的方法。
第六方面,提供一种网络设备,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,并通过所述收发器接收或发送信息,使得所述网络设备执行如第二方面所述的方法。
第七方面,提供一种装置,包括处理器,用于从存储器中调用程序,使得所述装置执行如第一方面或第二方面所述的方法。
第八方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如第一方面或第二方面所述的方法。
第九方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行第一方面或第二方面述的方法。
第十方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行如第一方面或第二方面所述的方法。
第十一方面,提供一种计算机程序,所述计算机程序使得计算机执行如第一方面或第二方面所述的方法。
本申请实施例中,网络设备可以通过向终端设备发送预编码矩阵指示TPMI信息,以指示终端设备从码本中选择第一预编码矩阵。其中,码本中可以包括适用于大于或等于8天线端口的预编码矩阵, 以适配8个甚至更多的天线端口的终端设备进行通信。避免了传统的码本与8个甚至更多的天线端口的终端设备不匹配的问题,有助于帮助8个甚至更多的天线端口的终端设备以较高的传输速率进行通信。
另一方面,在本申请实例中,若预编码矩阵集合W满足
其中,W1可以用于指示天线端口组内各个天线端口之间的相位,W2可以用于将传输层映射到天线端口组,也就是说,可以通过W1可以选择相干的天线端口来映射同一个传输层,避免了以码本遍历的方式,遍历天线端口组中全部相干的码字,来选择映射同一传输层的天线端口的方案,导致码本的较大的问题,因此,本申请实施例有助于实现以较小的码本支持部分相干的场景。
再一方面,本申请实例中,若预编码矩阵集合W满足
其中,W1用于从各个天线端口组内选择一个天线端口,W2用于将传输层映射到天线端口组,也就是说,可以通过W1可以在不同的天线端口组中分别选择一个天线端口来映射一个传输层,以避免在非相干的场景中,同一传输层被映射在了非相干的天线端口(即未完成相位校准的天线端口)上。
图1是可应用本申请实施例的通信系统的系统架构图。
图2是基于码本的上行数据传输过程的示意图。
图3是本申请实施例提供的通信方法的流程示意图。
图4是本申请实施例的通信方法的示意性流程图。
图5是本申请另一实施例的通信方法的示意性流程图。
图6是本申请实施例的终端设备的示意图。
图7是本申请实施例的网络设备的示意图。
图8是本申请实施例提供的装置的结构示意图。
本申请实施例可以应用于各种通信系统。例如,本申请实施例可应用于全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(new radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、第五代通信(5th-generation,5G)系统。本申请实施例还可应用于其他通信系统,例如未来的通信系统。该未来的通信系统例如可以是第六代移动通信系统,或者卫星通信系统等。
传统的通信系统支持的连接数有限,也易于实现。然而,随着通信技术的发展,通信系统不仅可以支持传统的蜂窝通信,还可以支持其他类型的一种或多种通信。例如,通信系统可以支持以下通信中的一种或多种:设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),车辆间(vehicle to vehicle,V2V)通信,以及车联网(vehicle to everything,V2X)通信等。本申请实施例也可以应用于支持上述通信方式的通信系统中。
本申请实施例中的通信系统可以应用于载波聚合(carrier aggregation,CA)场景,也可以应用于双连接(dual connectivity,DC)场景,还可以应用于独立(standalone,SA)布网场景。
本申请实施例中的通信系统可以应用于非授权频谱。该非授权频谱也可以认为是共享频谱。或者,本申请实施例中的通信系统也可以应用于授权频谱。该授权频谱也可以认为是专用频谱。
本申请实施例可应用于地面通信网络(terrestrial networks,TN)系统,也可以应用于非地面网络(non-terrestrial network,NTN)系统。作为示例,该NTN系统可以包括基于NR的NTN系统和基于物联网(internet of things,IoT)的NTN系统。
通信系统可以包括一个或多个终端设备。本申请实施例提及的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在一些实施例中,终端设备可以是WLAN中的站点(STATION,ST)。在一些实施例中,终端设备也可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路 (wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统(例如NR系统)中的终端设备,或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。
在一些实施例中,终端设备可以指向用户提供语音和/或数据连通性的设备。例如,终端设备可以是具有无线连接功能的手持式设备、车载设备等。作为一些具体的示例,该终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
在一些实施例中,终端设备可以部署在陆地上。例如,终端设备可以部署在室内或室外。在一些实施例中,终端设备可以部署在水面上,如部署在轮船上。在一些实施例中,终端设备可以部署在空中,如部署在飞机、气球和卫星上。
除了终端设备之外,通信系统还可以包括一个或多个网络设备。本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备。该网络设备例如可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的接入网(radio access network,RAN)节点(或设备)。接入网设备可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在本申请一些实施例中,网络设备可以为星基或者空基,即网络设备设置在卫星或者飞行设备上。在本申请一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性地,图1为本申请实施例提供的一种通信系统的架构示意图。如图1所示,通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在本申请一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在本申请一些实施例中,图1所示的无线通信系统还可以包括移动性管理实体(mobility management entity,MME)、接入与移动性管理功能(access and mobility management function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述。通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
下面结合图2,对通信系统中的基于码本的上行数据传输过程进行详细介绍。
终端设备在发送上行数据(如物理上行共享信道(physical uplink shared channel,PUSCH)时,需要对上行数据进行预编码处理,以获得上行预编码增益。预编码处理一般分为两个部分:模拟域处理和数字域处理。模拟域处理针对待发送的模拟信号,一般采用波束赋形的方式把射频信号映射到物理天线上。数字域处理一般在基带进行。数字域处理通常采用预编码矩阵对数字信号进行预编码,从而将传输层的数据映射到天线端口上。由于终端设备的射频通道数量有限,很多终端设备会同时采用上述两种处理方式进行预编码处理。也就是说,在发送上行数据的过程中,终端设备会先对数字信号进行预编码,再对模拟信号采用波束进行赋形。
根据预编码方式的不同,上行数据的传输分为基于码本的传输和基于非码本的传输。在基于码本的传输方式中,网络设备可以为终端设备配置专用于码本传输的探测参考信号(sounding reference signal,SRS)资源集合。终端设备可以在该资源集合中的多个SRS资源上发送SRS,其中,每个SRS资源上的SRS采用不同的波束发送。网络设备可以根据接收到的SRS,从中选择目标SRS资源(如信号质量最好的SRS),以获得上行信道状态信息(channel state information,CSI)。此外,网络设备可以将该目标SRS资源对应的资源索引通过SRS资源指示(SRS resource indicator,SRI)指示给终端设备,使得终端设备可以采用该目标SRS资源对应的波束对上行数据进行波束赋形。此外,网络侧可以通过下行信令(如下行控制信息(downlink control information,DCI))向终端设备指示秩指示(rank indicator,RI)和发送预编码矩阵指示(transmit precoding matrix indicator,TPMI)。相应地,终端设备可以根据RI和TPMI从码本中确定该TPMI对应的预编码矩阵。
针对上行数据的传输,目前协议支持2端口和4端口的传输。在天线端口确定的情况下,终端设备的传输层数不同,则上行数据传输所基于的码本不同。此外,如果终端设备采用1个传输层,则上行数据传输所基于的码本还与终端设备采用的多址方式相关。下文给出不同天线端口数、不同传输层数情况下,终端设备可以使用的码本。
表1(2天线端口,1层传输)
表2(4天线端口,1层传输,离散傅里叶变换扩展正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM))
表3(4天线端口,1层传输,循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM))
表4(2天线端口,2层传输,DFT-s-OFDM)
表5(4天线端口,2层传输,CP-OFDM)
表6(4天线端口,3层传输,CP-OFDM)
表7(4天线端口,4层传输,CP-OFDM)
进一步地,终端设备还会向网络设备发送自己的天线相干能力。天线相关能力包括全相干(fully-coherent)、部分相干(partially-coherent)以及非相干(non-coherent)中的一种。
对于2天线端口的终端设备,终端设备的相干能力可以包括全相干能力和非相干(non-coherent)能力。全相干能力表明终端设备的2个天线端口之间完成相位校准,可以进行相位加权。也就是说,对于同一传输层的数据,终端设备可以采用该2个天线端口进行发送。非相干能力表明终端设备的2个天线端口之间未完成相位校准,不可以进行相位加权发送同一传输层的数据。也就是说,对于同一传输层的数据,该终端设备只能使用一个天线端口发送。
对于4天线端口的终端设备,终端设备的相干能力可以包括全相干能力、部分相干能力和非相干能力。全相干能力表明终端设备的全部天线端口均完成了相位校准,可以进行相位加权。也就是说,终端设备的所有天线端口均可以发送同一传输层的数据。部分相干能力表明终端设备在两两天线端口组内完成了相位校准,可以进行相位加权,而终端设备的两两天线端口组间未完成相位校准,不可以进行相位加权。也就是说,终端设备可以使用天线端口组内的2个天线端口发送同一传输层的数据,而不同使用不同天线端口组的天线发送同一传输层的数据。非相干能力表明终端设备的4个天线端口之 间均未完成相位校准,均不可以进行相位加权发送相同传输层的数据。也就是说,对于同一传输层的数据,终端设备只能使用一个天线端口进行发送。
对于全相干能力的终端设备,网络设备可以指示以上码本中的任意一个预编码矩阵;对于部分相干天线的终端设备,网络设备只能指示以上码本中包括零元素的预编码矩阵;对于非相干天线的终端设备,网络设备指示的预编码矩阵中每一列最多只能有一个非零元素。
上文对目前协议支持的能够用于上述数据传输的码本的情况进行了详细介绍。从上文的描述可以看出,目前协议仅支持2天线端口和4天线端口的码本,无法满足未来通信系统对上行传输速率的要求。这是因为,随着通信技术的发展,终端设备的天线端口数量会越来越多,以支持更高的上行传输速率。例如,客户终端设备(customer premise equipment,CPE)和增强现实(augmented reality,AR)设备等类型的终端设备通常包括8个甚至更多的天线端口,如果采用2天线端口和4天线端口的码本进行上行数据的传输,则无法充分发挥此类终端设备在传输速率方面的优势。
下文对本申请实施例进行详细介绍。
图3是本申请实施例提供的通信方法的流程示意图。图3是站在网络设备和终端设备交互的角度进行描述的。该网络设备和终端设备可以是图1中提到的任意类型的网络设备和终端设备。应理解,后文中提及的术语“预编码矩阵”和“码字”根据特定上下文可以被互换地使用。
参见图3,在步骤S310,网络设备从码本(如预先约定的码本)中确定第一预编码矩阵。本申请实施例对从码本中确定第一预编码矩阵的方式不作具体限定,可以参照相关技术。例如,网络设备可以基于信道状态信息、终端设备的相干能力等因素中的一种或多种,从码本中确定该第一预编码矩阵。
在步骤S320,网络设备向终端设备发送TPMI信息。该TPMI信息指的是第一预编码矩阵对应的TPMI信息,如可以指第一预编码矩阵对应的TPMI索引。
该TPMI信息可以通过下行信令发送。例如,该下行信令可以是用于调度PUSCH的DCI。又如,该下行信令可以是用于调度持续性PUSCH的无线资源控制(radio resource control,RRC)信令。
在步骤S330,终端设备在接收到该TPMI信息之后,可以根据该TPMI信息从码本(如预先约定的码本)中确定该第一预编码矩阵。步骤S330中的码本与步骤S310中的码本可以是相同的码本。
其中,TPMI信息可以指示TPMI索引,其中,TPMI索引的不同的取值可以对应码本中不同的预编码矩阵。在本申请实施例中,TPMI索引与预编码矩阵之间的对应关系,可以按照上文结合表1至表7所示的方式映射,例如,可以在表中按照TPMI索引的升序从左到右排序,依次映射本申请实施例的预编码矩阵。当然,还可以按照其他方式建立TPMI索引与预编码矩阵之间的映射关系,本申请实施例对此不作限定。
需要说明的是,当码本中的预编码矩阵的数量较多时,指示预编码矩阵所需的TPMI索引的数量也会增加,相应地,TPMI信息为了承载TPMI索引,TPMI信息占用的比特位也会增加。例如,预编码矩阵的数量为2时,TPMI索引的数量可以为2,如此,TPMI信息可以占用1个比特位来指示上述2个TPMI索引。又例如,预编码矩阵的数量为4时,TPMI索引的数量可以为4,如此,TPMI信息可以占用2个比特位来指示上述4个TPMI索引。
另外,本申请实施例的预编码矩阵将在下文详细介绍,为了简洁,在此不再赘述。
该码本可以包括预编码矩阵集合W(可以包括一个或多个预编码矩阵)。该预编码矩阵集合W可用于支持8天线端口(或大于8天线端口,如16天线端口,32天线端口)的上行数据传输。由于码本中包括的预编码矩阵集合W可用于支持8天线端口(或大于8天线端口)的上行数据传输,因此,本申请实施例提供的码本可以显著提升上行数据的传输速率。
在一些实施例中,该码本可以为部分相干的码本;或者,该码本可以包括部分相干的码本子集。
在一些实施例中,该码本可以为非相干的码本;或者,该码本可以包括非相干的码本子集。
在一些实施例中,该预编码矩阵集合W可以包括以下预编码矩阵中的一种或多种:支持全相干传输的预编码矩阵,支持部分相干传输的预编码矩阵,以及支持非相干传输的预编码矩阵。在码本中设置支持部分相干传输和/或非相干传输的预编码矩阵,使得网络设备可以根据终端设备的相干能力,对终端设备使用的码本进行灵活配置。
在一些实施例中,该预编码矩阵集合W满足
或者
或者,该预编码矩阵集合W可以基于
或者
得到。在上式中,
表示克罗内克积,W1为N×1的向量集合中的一个,W2为M×K的矩阵集合中的一个,N为大于1的整数,M与N的乘积大于或等于8,K表示传输层数。
目前,已有的下行8天线端口、16天线端口、以及32端口的码本设计中,可以通过不同波束对应的DFT向量以及两个极化方向之间的相位差这两个参数的不同组合,得到每个传输层的预编码向量,这些组合就组成了相应端口的码本。但是,这种下行码本设计方式主要适用于全相干的天线端口。也 就是说,可以基于上述方式计算全相干的天线端口对应的上行码本。但是对于部分相干能力的天线端口和非相干能力的天线端口,上述下行码本的计算方式并不适用,因此,上述下行码本的计算方式,并不适用于部分相干能力的终端设备以及非相干能力的终端设备。因此,为了设计适用于部分相干能力的终端设备和/或非相干能力的终端设备,进行上行数据传输使用的码本,本申请实施例中通过设计W1和/或W2的取值,有助于从8个或者更多的天线端口中,选择相干的天线端口来发送上行数据。
在本申请实施例中,W1用于指示天线端口组内各个天线端口之间的相位,W2用于将传输层映射到天线端口组,此时,预编码矩阵集合
可以理解为将传输层以一定的相位,映射到相干的一部分天线端口组内的天线端口上。这种预编码矩阵可以适用于部分相干的场景,即天线端口组内和同一个传输层映射的天线端口组之间是相干的,不同传输层映射的天线端口组之间是非相干的。
也就是说,在本申请实施例中,可以通过W1可以选择相干的天线端口来映射同一个传输层,避免了以码本遍历的方式,遍历天线端口组中全部相干的码字,来选择映射同一传输层的天线端口的方案,导致码本的较大的问题,本申请实施例有助于实现以较小的码本支持部分相干的场景。
在本申请实施例中,W1用于从各个天线端口组内选择一个天线端口,W2用于将传输层映射到天线端口组,此时,预编码矩阵集合
可以理解为先选择天线端口组,再从选择的天线端口组内选择一个天线端口,然后将传输层映射到已选的天线端口组中已选的天线端口上。这种预编码矩阵可以适用于非相干的场景,即天线端口组内的天线端口,以及不同天线端口组中的天线端口都是非相干的。
在一些实施例中,M可以表示终端设备包括的天线端口组的数量。相应地,N可以表示每个天线端口组内包括的天线端口数量。在一些实施例中,一个天线端口组可以包括一对天线。例如,一个天线端口组可以包括一对双极化天线。
在一些实施例中,M与N的乘积可以等于8。也就是说,预编码矩阵集合W可用于支持8天线端口的上行数据传输。例如,M可以等于4,N可以等于2。也就是说,终端设备可以包括4个天线端口组,每个天线端口组包括2个天线端口。又如,M可以等于2,N可以等于4。也就是说,终端设备可以包括2个天线端口组,每个天线端口组包括4个天线端口。
在另一些实施例中,M与N的乘积可以大于8。例如,M与N的乘积可以为16或32。也就是说,预编码矩阵集合W可用于支持大于8天线端口的上行数据传输,如支持16天线端口或32天线端口的上行数据传输。在该实施例中,终端设备可以包括更多的天线端口组和/或每个天线端口组可以包括更多的天线端口。
在一些实施例中,K的取值(即当前的传输层数)可以由网络设备指示,例如,网络设备可以通过下行信令指示K的取值。该下行信令例如可以是用于调度PUSCH的DCI。或者,该下行信令可以是用于调度持续性PUSCH的无线资源控制(radio resource control,RRC)信令。进一步地,K与前文提到的TPMI信息可以通过同一下行信令指示。K的取值不同,则W2的取值不同。因此,在确定K的取值之后,终端设备可以根据K的取值,确定相应传输层对应的W2。K与W2的具体对应关系会在后文详细描述,此处暂不详述。
下文分别对W1和W2进行更为详细地举例说明。
在一些实施例中,W1可用于指示一个天线端口组(可以包括N个天线端口)内的天线端口的相对相位(或相位差)。例如,在终端设备被配置了部分相干的码本子集的情况下(或者,在预编码矩阵集合W为支持部分相干传输的预编码矩阵的情况下),该W1可以指示一个天线端口组内的天线端口的相对相位。作为示例,一个天线端口组包括一对双极化天线,则W1可用于指示该一对双极化天线为正负45度的双极化天线。在该实施例中,W1中的元素可以均为非零元素。基于本实施例设计出的预编码矩阵,不同传输层可以采用不同的天线端口组传输,且天线端口组内可以采用不同的相对相位,通过天线端口组选择+组内相位结合的方式,保证了部分相干码本的性能。
在一些实施例中,W1可用于从一个天线端口组(可以包括N个天线端口)内选择部分天线端口。例如,在终端设备被配置了非相干的码本子集的情况下(或者,在预编码矩阵集合W包括支持非相干传输的预编码矩阵的情况下),W1可用于从一个天线端口组(可以包括N个天线端口)内选择部分天线端口。在该实施例中,W1中的元素可以包括非零元素。因此,W1可以从一个天线端口组中选择非 零元素对应的天线端口。基于本实施例设计出的非相干预编码矩阵,不同传输层可以映射到不相邻的天线端口上去,从而尽可能降低了传输层之间的相互干扰,保证了非相干码本的性能。
在一些实施例中,W1可以包括以下向量中的一个或多个:
例如,在终端设备被配置了部分相干的码本子集的情况下(或者,在预编码矩阵集合W包括支持部分相干传输的预编码矩阵的情况下),W1可以包括上述4个向量中的一个或多个。从上述4个向量可以看出,W1中的元素均为非零元素,可用于表示一个天线端口组中的两个天线端口之间的相对相位。
在一些实施例中,W1可以包括以下向量中的一个或多个:
例如,在终端设备被配置了非相干的码本子集的情况下(或者,在预编码矩阵集合W包括支持非相干传输的预编码矩阵的情况下),W1可以包括上述2个向量中的一个或多个。在这种情况下,W1中包括零元素,可用于从包括2个天线端口的天线端口组中选择一个天线端口,即选择非零元素对应的天线端口。
在一些实施例中,W2可用于将终端设备的每个传输层映射至一个或多个天线端口组。例如,W2的每一列可以对应一个传输层,W2的每一行可以对应一个天线端口组(一个天线端口组可以包括N个天线端口)。
在一些实施例中,W2的部分元素为零元素。例如,W2的每一列中的M个元素可以包括至少一个零元素。在一个传输层对应的列中,非零元素可以表示该传输层映射到相应的天线端口组上(或者在相应的天线端口组上传输),零元素表示该传输层不映射到相应的天线端口组上(或者不在相应的天线端口组上传输)。例如,假设W2的取值为
则该W2可以表示终端设备的第一个传输层在第二个天线端口组和第三个天线端口组上传输,而不在第一个天线端口组和第四个天线端口组传输;终端设备的第二个传输层在第一天线端口组和第四个天线端口组上传输,而不在第二个天线端口组和第三个天线端口组上传输。
在一些实施例中,W2的每一列可以包括M个元素,该M个元素中的非零元素的数量可以为1或2,且W2的不同列中的非零元素对应的行不同。在另一些实施例中,W2的每一列可以包括M个元素,该M个元素中的非零元素的数量仅为1,且W2的不同列中的非零元素对应的行不同。作为示例,如果终端设备被配置了部分相干的码本子集,则该M个元素中的非零元素的数量可以为1或2;如果终端设备被配置了非相干的码本子集,则该M个元素中的非零元素的数量仅为1。
在一些实施例中,W2的每一列可以包括M个元素,该M个元素中的非零元素的取值为1。
需要说明的是,如果终端设备被配置了部分相干的码本子集,则W2可以采用上述4个示例(例如,上文中与部分相干码本子集对应的4个示例)所描述的方式,按照K的取值不同选取不同的取值。相应地,如果终端设备被配置了非相干的码本子集,则W2可以采用上述4个示例(例如,上文中与非相干码本子集对应的4个示例)所描述的方式,按照K的取值不同选取不同的取值。
在本申请实施例中,前文提到的W2前面的系数(即1/2)表示功率归一化系数。如果功率归一化操作在最终生成的预编码矩阵上完成,则该系数也可以替换为1。
下面以预编码矩阵集合W为支持8端口的预编码矩阵为例,给出预编码矩阵集合W的几个更为具体的示例。
示例1:终端设备被配置了部分相干的码本子集
示例2:终端设备被配置了非相干的码本子集
在一些实施例中,图3的方法还可以包括:终端设备接收网络设备发送的第一信息(有时也可称为码本子集配置信息)。该步骤可以在前文提到的步骤S310之前执行。该第一信息可用于为终端设备配置部分相干的码本子集和/或非相干的码本子集。或者说,该第一信息可以指示部分相干的码本子集和/或非相干的码本子集。
在一些实施例中,在接收指示部分相干的码本子集的第一信息之前,图3的方法还可以包括:终端设备向网络设备发送终端设备的能力信息。该能力信息可用于指示以下中的一种或多种:终端设备支持部分相干的码本子集,以及终端设备支持非相干的码本子集。
在一些实施例中,图3的方法还可以包括:终端设备接收网络设备发送的第二信息(有时也可称为码本约束信息)。该步骤可以在前文提到的步骤S310之前执行。第二信息可用于指示以下信息中的一种或多种:W1的候选向量(或称候选值)中的可用向量(或称可用值),以及W2的候选矩阵(或称候选值)中的可用矩阵(或称可用值)。
作为一个示例,第二信息可以从W1的候选向量中指示可用向量。例如,W1共包括4个候选向量,则第二信息可以包括4个比特,以指示该4个候选向量中的可用向量。作为一个更为具体的例子,第二信息的取值为“1010”,则表示4个候选向量中的第1个向量和第3个向量为可用向量,第2个向量和第4个向量不可用。
作为一个示例,第二信息可以从W2的候选矩阵中指示可用矩阵。例如,W2包括2个候选矩阵,则可以用2个比特指示该2个候选矩阵中的可用矩阵。作为一个更为具体的例子,第二信息的取值为“10”,则可以表示2个候选矩阵中的第1个矩阵为可用矩阵,第2个矩阵不可用。
作为又一示例,第二信息可以从W1的候选向量中指示可用向量,并从W2的候选矩阵中指示可用矩阵。例如,W1共包括4个候选向量,且W2包括2个候选矩阵,则第二信息可以包括6个比特,前4个比特指示该4个候选向量中的可用向量,后2个比特指示该2个候选矩阵中的可用矩阵。
在一些实施例中,前文提到的码本可以基于第二信息指示的W1的可用向量和W2的可用矩阵生成。
在一些实施例中,前文提到的码本的大小以及TPMI信息所占的比特数,可以基于第二信息指示的W1的可用向量和W2的可用矩阵的数量的变化进行相应地变化。
在一些实施例中,本申请实施例提及的码本中可以仅包括根据本申请实施例生成的预编码矩阵。在另一些实施例中,本申请实施例提及的码本中不仅可以包括根据本申请实施例生成的预编码矩阵,还可以包括基于其他方式所生成的其他预编码矩阵。例如,假设终端设备被配置了部分相干的码本子集,该部分相干的码本子集中可以仅包括通过
生成的预编码矩阵。或者,该部分相干的码本子集中除了可以包括通过
生成的预编码矩阵,也可以包括通过
生成的预编码矩阵。又如,假设终端设备被配置了非相干的码本子集,该部分相干的码本子集中可以仅包括通过
生成的预编码矩阵。或者,该部分相干的码本子集中除了可以包括通过
生成的预编码矩阵,也可以包括通过
生成的预编码矩阵。
在一些实施例中,假设终端设备被配置了部分相干的码本子集,则该部分相干的码本子集中也可以包括非相干的预编码矩阵。
在一些实施例中,在确定第一预编码矩阵之后,终端设备可以基于该第一预编码矩阵进行PUSCH对应的预编码,并向网络设备发送该PUSCH。
为了便于理解,下文结合实施例1和实施例2,以传输PUSCH为例,分别介绍支持部分相干能力的终端设备的上行数据传输过程,以及支持非相干能力的终端设备的上行数据传输过程。
实施例1
图4是本申请实施例的通信方法的示意性流程图。图4所示的方法包括步骤S410至步骤S470。假设在图4所示的通信方法中,终端设备为支持部分相干能力的终端设备。
在步骤S410中,终端设备向网络设备发送终端设备能力1。其中,终端设备能力1用于指示终端设备的终端设备能力为部分相干能力。
在步骤S420中,网络设备向终端设备发送码本子集配置1。其中,码本子集配置1用于指示部分相干的码本子集。
在步骤S430中,网络设备从码本1中确定预编码矩阵1。
在步骤S440中,网络设备向终端设备发送码本约束信息1。其中,码本约束信息1用于从W1的候选向量中指示可用的向量,用于从W2的候选向量中指示可用的向量。
若W1的候选向量包含4个向量,则可以用4个比特分别对应上述4个向量。若比特的值为1,表示该比特对应的向量为可用向量。相反地,若比特的值为0,表示该比特对应的向量不为可用向量。
若W2的候选矩阵包含2个矩阵,则可以用2个比特指示其中的可用矩阵。若比特的值为1,表示该比特对应的矩阵为可用矩阵。相反地,若比特的值为0,表示该比特对应的矩阵不为可用矩阵。
在本申请实施例中,上述码本约束信息1指示的可用向量和可用矩阵用于生成步骤460中的码本2。需要说明的是,码本2的大小及相应的TPMI信息1的长度可以随着可用向量以及可用矩阵的数量的变化而变化。
在步骤S450中,网络设备向终端设备发送用于调度上行数据1的DCI1。其中,DCI1中承载预编码集合W中预编码矩阵1对应的TPMI信息,以及终端设备的传输层数K。
在步骤S460中,终端设备根据TPMI信息1,从码本2中确定预编码矩阵1。
上述预编码矩阵1属于码本2中的预编码矩阵集合W,预编码矩阵集合W中的预编码矩阵满足
得到,其中,
表示克罗内克积,W1为Nx1的向量集合中的一个,W2为M*K维度的矩阵集合中的一个,N和M为大于1的整数,M与N的乘积等于8,N表示每个天线端口组中包括的天线端口的数量,M表示天线端口组的数量,K表示传输层数。
若N=2且M=4,即终端设备包括4个天线端口组,且每个天线端口组包含2个天线端口,那么W1可以包含以下向量中的至少一个:
其中,W1的两个元素表示一个天线端口组内的两个天线端口之间的相对相位。并且,不同的向量可以用于不同的码本子集。
在一种实施方式中,终端设备可以根据传输层数K的取值,确定传输层数对应的W2。
在步骤S470中,终端设备可以基于预编码矩阵1进行PUSCH对应的预编码,并向网络设备发送该PUSCH。
实施例2
图5是本申请另一实施例的通信方法的示意性流程图。图5所示的方法包括步骤S510至步骤S570。假设在图5所示的通信方法中,终端设备为支持非相干能力的终端设备。
在步骤S510中,终端设备向网络设备发送终端设备能力2。其中,终端设备能力2用于指示终端设备的终端设备能力为非相干能力。
在步骤S520中,网络设备向终端设备发送码本子集配置2。其中,码本子集配置2用于指示非相干的码本子集。
在步骤S530中,网络设备从码本1中确定预编码矩阵2。
在步骤S540中,网络设备向终端设备发送码本约束信息2。其中,码本约束信息2用于从W1的候选向量中指示可用的向量,用于从W2的候选向量中指示可用的向量。
若W1的候选向量包含5个向量,则可以用5个比特分别对应上述5个向量。若比特的值为1,表示该比特对应的向量为可用向量。相反地,若比特的值为0,表示该比特对应的向量不为可用向量。
若W2的候选矩阵包含2个矩阵,则可以用2个比特指示其中的可用矩阵。若比特的值为1,表示该比特对应的矩阵为可用矩阵。相反地,若比特的值为0,表示该比特对应的矩阵不为可用矩阵。
在本申请实施例中,上述码本约束信息2指示的可用向量和可用矩阵用于生成步骤560中的码本2。需要说明的是,码本3的大小及相应的TPMI信息2的长度可以随着可用向量以及可用矩阵的数量的变化而变化。
在步骤S550中,网络设备向终端设备发送用于调度上行数据2的RRC信令1。其中,RRC信令1中承载预编码矩阵2对应的TPMI信息2,以及终端设备的传输层数K。
在步骤S560中,终端设备根据TPMI信息2,从码本3中确定预编码矩阵2。
上述预编码矩阵2属于码本3中的预编码矩阵集合W`,预编码矩阵集合W`中的预编码矩阵满足
其中,
表示克罗内克积,W1为Nx1的向量,W2为M*K维度的矩阵,N和M为大于1的整数,M与N的乘积等于8,N表示每个天线端口组中包括的天线端口的数量,M表示天线端口组的数量,K表示传输层数。
若N=2且M=4,即终端设备包括4个天线端口组,且每个天线端口组包含2个天线端口,那么W1可以包含以下向量中的至少一个:
其中,W1的两个元素表示一个天线端口组内的两个天线端口之间的相对相位。并且,不同的向量可以用于不同的码本子集。
在一种实施方式中,终端设备可以根据传输层数K的取值,确定传输层数对应的W2。
在步骤S570中,终端设备可以基于预编码矩阵2进行PUSCH对应的预编码,并向网络设备发送该PUSCH。
在本申请实施例中,还提供了一种码本,该码本包括的预编码矩阵可以适用8天线端口的终端设备。需要说明的是,在本申请实施例中并不限定生成码本的方式。也就是说,本申请实例提供的码本可以按照上文介绍的方式生成,还可以按照其他方式生成。
作为一个示例,上述适用8天线端口的终端设备的码本可以包括以下一个或多个预编码矩阵:
需要说明的是,在本申请实例中,使用上述码本的方式可以与传统的码本使用方式相似,例如,上述码本中的每个预编码矩阵可以对应一个TPMI索引,相应地,网络设备可以通过指示TPMI索引的 TPMI信息,指示终端设备发送PUSCH使用的预编码矩阵。具体可以参见上文介绍,为了简洁,在次不再赘述。
上文结合图1至图5,详细描述了本申请的方法实施例,下面结合图6至图8,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图6是本申请实施例的终端设备的示意图。图6所示的终端设备600包括:接收单元610和处理单元620。
接收单元610,用于接收网络设备发送的发送预编码矩阵指示TPMI信息;
处理单元620,用于根据所述接收单元接收的所述TPMI信息,从码本中确定第一预编码矩阵;
其中,所述码本包括预编码矩阵集合W,所述预编码矩阵集合W满足
或者
表示克罗内克积,W1为N×1的向量集合中的一个,W2为M×K的矩阵集合中的一个,N为大于1的整数,M与N的乘积大于或等于8,K表示传输层数。
在一种可能的实现方式中,所述W1用于指示一个天线端口组内的天线端口的相对相位;或者,所述W1用于从一个天线端口组内选择部分天线端口;其中,所述一个天线端口组包括N个天线端口。
在一种可能的实现方式中,所述天线端口组包括一对双极化天线。
在一种可能的实现方式中,所述W2用于将所述终端设备的每个传输层映射至一个或多个天线端口组。
在一种可能的实现方式中,所述W2的每一列对应一个传输层,所述W2的每一行对应一个天线端口组,其中,所述一个天线端口组包括N个天线端口。
在一种可能的实现方式中,所述W2的每一列包括M个元素,所述M个元素中的非零元素的数量为1或2,且所述W2的不同列中的非零元素对应的行不同。
在一种可能的实现方式中,所述N等于2,所述M等于4。
在一种可能的实现方式中,所述接收单元,用于接收所述网络设备发送的第一信息,所述第一信息用于为所述终端设备配置部分相干的码本子集和/或非相干的码本子集。
在一种可能的实现方式中,所述接收单元,用于接收所述网络设备发送的第二信息,所述第二信息用于指示以下信息中的一种或多种:所述W1的候选向量中的可用向量,以及所述W2的候选矩阵中的可用矩阵。
图7是本申请实施例的网络设备的示意图。图7所示的网络设备700包括:处理单元710和发送单元720。
处理单元710,用于从码本中确定第一预编码矩阵;
发送单元720,用于向所述终端设备发送所述处理单元确定的所述第一预编码矩阵对应的发送预编码矩阵指示TPMI信息;
其中,所述码本包括预编码矩阵集合W,所述预编码矩阵集合W满足
或者
表示克罗内克积,W1为N×1的向量集合中的一个,W2为M×K的矩阵集合中的一个,N为大于1的整数,M与N的乘积大于或等于8,K表示传输层数。
在一种可能的实现方式中,所述W1用于指示一个天线端口组内的天线端口的相对相位;或者,所述W1用于从一个天线端口组内选择部分天线端口;其中,所述一个天线端口组包括N个天线端口。
在一种可能的实现方式中,所述天线端口组包括一对双极化天线。
在一种可能的实现方式中,所述W2用于将所述终端设备的每个传输层映射至一个或多个天线端口组。
在一种可能的实现方式中,所述W2的每一列对应一个传输层,所述W2的每一行对应一个天线端口组,其中,所述一个天线端口组包括N个天线端口。
在一种可能的实现方式中,所述W2的每一列包括M个元素,所述M个元素中的非零元素的数量为1或2,且所述W2的不同列中的非零元素对应的行不同。
在一种可能的实现方式中,所述N等于2,所述M等于4。
在一种可能的实现方式中,所述发送单元,用于向所述终端设备发送第一信息,所述第一信息用于为所述终端设备配置部分相干的码本子集和/或非相干的码本子集。
在一种可能的实现方式中,所述发送单元,用于向所述终端设备发送第二信息,所述第二信息用于指示以下信息中的一种或多种:所述W1的候选向量中的可用向量,以及所述W2的候选矩阵中的可用矩阵。
在可选的实施例中,所述接收单元610可以为收发器840,处理单元620可以为处理器810。终端设备600还可以包括存储器820,具体如图8所示。
在可选的实施例中,所述发送单元720可以为收发器840,处理单元710可以为处理器810。网络设备700还可以包括存储器820,具体如图8所示。
图8是本申请实施例的装置的示意性结构图。图8中的虚线表示该单元或模块为可选的。该装置800可用于实现上述方法实施例中描述的方法。装置800可以是芯片或通信设备。该通信设备例如可以是前文提到的第一设备或第二设备。
装置800可以包括一个或多个处理器810。该处理器810可支持装置800实现前文方法实施例所描述的方法。该处理器810可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器810还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置800还可以包括一个或多个存储器820。存储器820上存储有程序,该程序可以被处理器810执行,使得处理器810执行前文方法实施例所描述的方法。存储器820可以独立于处理器810也可以集成在处理器810中。
装置800还可以包括收发器830。处理器810可以通过收发器830与其他设备或芯片进行通信。例如,处理器810可以通过收发器830与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的通信设备中,并且该程序使得计算机执行本申请各个实施例中的由通信设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的通信设备中,并且该程序使得计算机执行本申请各个实施例中的由通信设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端设备或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由通信设备执行的方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中的“配置”可以包括通过系统消息、无线资源控制(radio resource control,RRC)信令和媒体接入控制单元(media access control control element,MAC CE)中的至少一种来配置。
在本申请一些实施例中,"预定义的"或"预设的"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义的可以是指协议中定义的。
在本申请一些实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实 现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (71)
- 如权利要求1所述的方法,其特征在于:所述W1用于指示一个天线端口组内的天线端口的相对相位;或者所述W1用于从一个天线端口组内选择部分天线端口;其中,所述一个天线端口组包括N个天线端口。
- 如权利要求2所述的方法,其特征在于,所述天线端口组包括一对双极化天线。
- 如权利要求1-3中任一项所述的方法,其特征在于,所述W2用于将所述终端设备的每个传输层映射至一个或多个天线端口组。
- 如权利要求4所述的方法,其特征在于,所述W2的每一列对应一个传输层,所述W2的每一行对应一个天线端口组,其中,所述一个天线端口组包括N个天线端口。
- 如权利要求1-5中任一项所述的方法,其特征在于,所述W2的每一列包括M个元素,所述M个元素中的非零元素的数量为1或2,且所述W2的不同列中的非零元素对应的行不同。
- 如权利要求1-6中任一项所述的方法,其特征在于,所述N等于2,所述M等于4。
- 如权利要求1-14中任一项所述的方法,其特征在于,所述方法还包括:所述终端设备接收所述网络设备发送的第一信息,所述第一信息用于为所述终端设备配置部分相干的码本子集和/或非相干的码本子集。
- 如权利要求1-15中任一项所述的方法,其特征在于,所述方法还包括:所述终端设备接收所述网络设备发送的第二信息,所述第二信息用于指示以下信息中的一种或多种:所述W1的候选向量中的可用向量,以及所述W2的候选矩阵中的可用矩阵。
- 如权利要求17所述的方法,其特征在于:所述W1用于指示一个天线端口组内的天线端口的相对相位;或者所述W1用于从一个天线端口组内选择部分天线端口;其中,所述一个天线端口组包括N个天线端口。
- 如权利要求18所述的方法,其特征在于,所述天线端口组包括一对双极化天线。
- 如权利要求17-19中任一项所述的方法,其特征在于,所述W2用于将所述终端设备的每个传输层映射至一个或多个天线端口组。
- 如权利要求20所述的方法,其特征在于,所述W2的每一列对应一个传输层,所述W2的每一行对应一个天线端口组,其中,所述一个天线端口组包括N个天线端口。
- 如权利要求17-21中任一项所述的方法,其特征在于,所述W2的每一列包括M个元素,所述M个元素中的非零元素的数量为1或2,且所述W2的不同列中的非零元素对应的行不同。
- 如权利要求17-22中任一项所述的方法,其特征在于,所述N等于2,所述M等于4。
- 如权利要求17-30中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备向所述终端设备发送第一信息,所述第一信息用于为所述终端设备配置部分相干的码本子集和/或非相干的码本子集。
- 如权利要求17-31中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示以下信息中的一种或多种:所述W1的候选向量中的可用向量,以及所述W2的候选矩阵中的可用矩阵。
- 如权利要求33所述的终端设备,其特征在于:所述W1用于指示一个天线端口组内的天线端口的相对相位;或者所述W1用于从一个天线端口组内选择部分天线端口;其中,所述一个天线端口组包括N个天线端口。
- 如权利要求34所述的终端设备,其特征在于,所述天线端口组包括一对双极化天线。
- 如权利要求33-35中任一项所述的终端设备,其特征在于,所述W2用于将所述终端设备的 每个传输层映射至一个或多个天线端口组。
- 如权利要求36所述的终端设备,其特征在于,所述W2的每一列对应一个传输层,所述W2的每一行对应一个天线端口组,其中,所述一个天线端口组包括N个天线端口。
- 如权利要求33-37中任一项所述的终端设备,其特征在于,所述W2的每一列包括M个元素,所述M个元素中的非零元素的数量为1或2,且所述W2的不同列中的非零元素对应的行不同。
- 如权利要求33-38中任一项所述的终端设备,其特征在于,所述N等于2,所述M等于4。
- 如权利要求33-46中任一项所述的终端设备,其特征在于,所述接收单元,用于接收所述网络设备发送的第一信息,所述第一信息用于为所述终端设备配置部分相干的码本子集和/或非相干的码本子集。
- 如权利要求33-47中任一项所述的终端设备,其特征在于,所述接收单元,用于接收所述网络设备发送的第二信息,所述第二信息用于指示以下信息中的一种或多种:所述W1的候选向量中的可用向量,以及所述W2的候选矩阵中的可用矩阵。
- 如权利要求49所述的网络设备,其特征在于:所述W1用于指示一个天线端口组内的天线端口的相对相位;或者所述W1用于从一个天线端口组内选择部分天线端口;其中,所述一个天线端口组包括N个天线端口。
- 如权利要求50所述的网络设备,其特征在于,所述天线端口组包括一对双极化天线。
- 如权利要求49-51中任一项所述的网络设备,其特征在于,所述W2用于将所述终端设备的每个传输层映射至一个或多个天线端口组。
- 如权利要求52所述的网络设备,其特征在于,所述W2的每一列对应一个传输层,所述W2的每一行对应一个天线端口组,其中,所述一个天线端口组包括N个天线端口。
- 如权利要求49-53中任一项所述的网络设备,其特征在于,所述W2的每一列包括M个元素,所述M个元素中的非零元素的数量为1或2,且所述W2的不同列中的非零元素对应的行不同。
- 如权利要求49-54中任一项所述的网络设备,其特征在于,所述N等于2,所述M等于4。
- 如权利要求49-62中任一项所述的网络设备,其特征在于,所述发送单元,用于:向所述终端设备发送第一信息,所述第一信息用于为所述终端设备配置部分相干的码本子集和/或非相干的码本子集。
- 如权利要求49-63中任一项所述的网络设备,其特征在于,所述发送单元,用于:向所述终端设备发送第二信息,所述第二信息用于指示以下信息中的一种或多种:所述W1的候选向量中的可用向量,以及所述W2的候选矩阵中的可用矩阵。
- 一种终端设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,通过所述收发器接收或发送信息,使得所述终端设备执行如权利要求1-16中任一项所述的方法。
- 一种网络设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,通过所述收发器接收或发送信息,使得所述终端设备执行如权利要求17-32中任一项所述的方法。
- 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,使得所述装置执行如权利要求1-32中任一项所述的方法。
- 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-32中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-32中任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-32中任一项所述的方法。
- 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-32中任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/106297 WO2024016118A1 (zh) | 2022-07-18 | 2022-07-18 | 通信系统、终端设备及网络设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/106297 WO2024016118A1 (zh) | 2022-07-18 | 2022-07-18 | 通信系统、终端设备及网络设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024016118A1 true WO2024016118A1 (zh) | 2024-01-25 |
Family
ID=89616689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/106297 WO2024016118A1 (zh) | 2022-07-18 | 2022-07-18 | 通信系统、终端设备及网络设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024016118A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108631831A (zh) * | 2017-03-24 | 2018-10-09 | 华为技术有限公司 | 信息的传输方法和设备 |
CN112399402A (zh) * | 2019-08-16 | 2021-02-23 | 华为技术有限公司 | 一种通信方法、装置及设备 |
CN112803975A (zh) * | 2019-11-14 | 2021-05-14 | 华为技术有限公司 | 确定预编码矩阵的方法、设备及系统 |
-
2022
- 2022-07-18 WO PCT/CN2022/106297 patent/WO2024016118A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108631831A (zh) * | 2017-03-24 | 2018-10-09 | 华为技术有限公司 | 信息的传输方法和设备 |
CN112399402A (zh) * | 2019-08-16 | 2021-02-23 | 华为技术有限公司 | 一种通信方法、装置及设备 |
CN112803975A (zh) * | 2019-11-14 | 2021-05-14 | 华为技术有限公司 | 确定预编码矩阵的方法、设备及系统 |
Non-Patent Citations (1)
Title |
---|
CATT: "Considerations on uplink full Tx power transmission", 3GPP TSG RAN WG1 MEETING #98 R1-1908604, 17 August 2019 (2019-08-17), XP051765212 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12040852B2 (en) | Beam management for multi-TRP | |
US20200252116A1 (en) | Apparatus and method for beam management in wireless communication system | |
JP2022122939A (ja) | New radioのためのcsiフィードバック設計 | |
CN110880958B (zh) | 一种射频参数的上报方法及装置 | |
KR20200127529A (ko) | 무선 통신 시스템에서 단말의 위치를 결정하기 위한 장치 및 방법 | |
CN108024365A (zh) | 一种信息传输方法及设备 | |
CN109495879A (zh) | 一种资源配置方法、基站和终端 | |
WO2019191932A1 (zh) | 上行天线的选择方法和装置 | |
US20220286251A1 (en) | Method for transmitting srs and terminal therefor | |
JP6984667B2 (ja) | ビーム失敗回復要求の伝送リソース設定装置、ビーム失敗回復要求の応答装置、方法及び通信システム | |
JP2023025118A (ja) | データ伝送方法、装置、ネットワーク側機器およびユーザ機器 | |
US20220393839A1 (en) | Method and device for determining computing architecture and wireless communication protocol architecture in wireless communication system | |
JP2022553031A (ja) | 無線通信システムにおける基地局のラジオユニットのリソースを管理するための装置及び方法 | |
WO2022036720A1 (zh) | 码本处理方法、终端设备和网络设备 | |
WO2022199346A1 (zh) | 指示方法及相关产品 | |
US20240178895A1 (en) | Wireless communication method, first terminal device, and second terminal device | |
WO2018196230A1 (zh) | 上行多天线信号传输方法、相关设备及系统 | |
WO2024016837A1 (zh) | 一种通信方法及装置 | |
WO2024016118A1 (zh) | 通信系统、终端设备及网络设备 | |
WO2023060449A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
EP4199629A1 (en) | Device and method for fronthaul transmission in wireless communication system | |
WO2022227041A1 (zh) | 上行传输方法、终端设备和网络设备 | |
JP2023538918A (ja) | 異なる用途のsrsリソースセット間でsrsリソースを共有する方法 | |
WO2018126894A1 (zh) | 一种功率配置方法及相关设备 | |
WO2023160357A1 (zh) | 上行传输方法与装置、终端设备和网络设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22951397 Country of ref document: EP Kind code of ref document: A1 |