WO2018196230A1 - 上行多天线信号传输方法、相关设备及系统 - Google Patents

上行多天线信号传输方法、相关设备及系统 Download PDF

Info

Publication number
WO2018196230A1
WO2018196230A1 PCT/CN2017/096990 CN2017096990W WO2018196230A1 WO 2018196230 A1 WO2018196230 A1 WO 2018196230A1 CN 2017096990 W CN2017096990 W CN 2017096990W WO 2018196230 A1 WO2018196230 A1 WO 2018196230A1
Authority
WO
WIPO (PCT)
Prior art keywords
access network
codebook
network device
terminal device
reference signal
Prior art date
Application number
PCT/CN2017/096990
Other languages
English (en)
French (fr)
Inventor
孙彦良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780038861.0A priority Critical patent/CN109417442B/zh
Publication of WO2018196230A1 publication Critical patent/WO2018196230A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an uplink multi-antenna signal transmission method, related device, and system.
  • the 3rd Generation Partnership Project (3GPP) launched a new wireless technology (New Radio, NR) study in the first half of 2016, targeting the fifth generation (5G) wireless communication technology.
  • NR New Radio
  • the frequency band coverage of the NR study is broader, and it is hoped to establish a unified air interface technology framework at sub-6GHz (0-6GHz) and above-6GHz (6-100GHz).
  • NR In the discussion in NR, it is generally believed that beamforming should be performed on both the access network device side and the terminal device side to obtain array gain. Due to the wide range of frequency bands covered by NR, different antenna array configurations may be configured in the terminal in different frequency bands. Since NR supports many types of terminals, different types of terminals may have different antenna array configurations and radio frequency transceiver capabilities. In the existing Long-Term Evolution (LTE) uplink system, there is only one set of uplink codebooks, which cannot be adapted to the requirements of the NR uplink Multiple Input Multiple Output (MIMO) system design. Therefore, it is necessary to design a new uplink codebook configuration mechanism.
  • LTE Long-Term Evolution
  • MIMO Multiple Input Multiple Output
  • the embodiment of the invention provides an uplink multi-antenna signal transmission method, a related device and a system, and the access network device can flexibly configure a codebook for the terminal device based on the codebook capability supported by the terminal device.
  • an embodiment of the present invention provides an uplink multi-antenna signal transmission method, which is applied to an access network device side.
  • the method includes: the access network device receiving, by the terminal device, a first uplink reference codebook set, where the first uplink reference codebook set includes one or more uplink multi-antenna precoding codebooks supported by the terminal device.
  • the access network device performs codebook configuration on the terminal device according to the first uplink reference codebook set.
  • the method further includes: the access network device sending the first reference signal to the terminal device Time-frequency resource configuration information, the first reference signal is used by the access network device to perform uplink beam measurement, and the sending of the first reference signal is aperiodic.
  • the access network device receives the first reference signal from the terminal device, and sends a downlink indication according to the relative power of the received signal of the first reference signal or the relative quality of the received signal, and the information of the codebook configuration, where the downlink indication is used for
  • the terminal device is activated to send a second reference signal, and the second reference signal is used by the access network device to determine a precoding matrix for uplink transmission.
  • the access network device receives the second reference signal from the terminal device.
  • the access network device performs a codebook configuration for the terminal device according to the first uplink reference codebook set, including: the access network device selects one of the first uplink reference codebook sets.
  • the uplink multi-antenna precoding codebook is configured to the terminal device.
  • the uplink multi-antenna precoding codebook includes any one of the following: an antenna port selection codebook, a 2-port phase codebook, a beam linear combination codebook, a low peak-to-average codebook, Hausho Householder codebook, Discrete Fourier Transform (DFT) codebook, Grassmannian codebook, two-stage block codebook and codeless.
  • an antenna port selection codebook a 2-port phase codebook
  • a beam linear combination codebook a low peak-to-average codebook
  • Hausho Householder codebook Discrete Fourier Transform (DFT) codebook
  • Grassmannian codebook two-stage block codebook and codeless.
  • the transmission of the first reference signal is aperiodic.
  • the access network device sends time-frequency resource configuration information of the first reference signal to the terminal device, including: the access network device semi-statically configuring the candidate first reference signal for the terminal device The complete set of time-frequency resource serial numbers.
  • the access network device sends the configuration information of the complete set to the terminal device.
  • the access network device selects a subset from the ensemble.
  • the access network device sends the selected sequence number of the subset to the terminal device, and the sequence number of the subset is sent by using downlink control information.
  • the method before the access network device sends the selected sequence number of the subset to the terminal device, the method further includes: the access network device receiving the first sending request from the terminal device.
  • the access network device sends the selected sequence number of the subset to the terminal device, and the access network device sends the selected sequence number of the subset to the terminal device according to the first sending request.
  • the first sending request is carried in Media Access Control (MAC) signaling.
  • MAC Media Access Control
  • the medium access control signaling further includes time-frequency resource quantity indication information of the first reference signal.
  • the configuration of the sequence number complete set of the first reference signal time-frequency resource includes selecting a sequence of sequence numbers of the first reference signal time-frequency resources.
  • the configuration of the corpus is semi-static.
  • each subset has an independent sequence number.
  • the sequence number of the subset is sent by Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the subset is determined based on the sequence number configuration of the time-frequency resources of the ensemble.
  • an embodiment of the present invention provides another uplink multi-antenna signal transmission method, which is applied to a terminal device side.
  • the method includes: the terminal device sends a first uplink reference codebook set to the access network device, where the first uplink reference codebook set includes one or more uplink multi-antenna precoding codebooks supported by the terminal device, the first uplink The reference codebook set is used by the access network device to perform codebook configuration on the terminal device.
  • the method further includes: receiving, by the terminal device, time-frequency resource configuration information of the first reference signal from the access network device, where The first reference signal is used by the access network device for uplink beam measurement.
  • the terminal device sends the first reference signal to the access network device according to the time-frequency resource configuration information of the first reference signal.
  • the terminal device receives a downlink indication from the access network device, where the downlink indication is used to activate the terminal device to send a second reference signal, where the second reference signal is used by the access network device to determine a precoding matrix for uplink transmission.
  • the terminal device sends the second reference signal to the access network device according to the downlink indication.
  • the uplink multi-antenna precoding codebook includes any one of the following: an antenna port selection codebook, a 2-port phase codebook, a beam linear combination codebook, a low-peak average codebook, and a Householder codebook. , DFT codebook, Grassmannian codebook, two-stage block codebook and no codebook.
  • the transmission of the first reference signal is aperiodic.
  • the terminal device receives time-frequency resource configuration information of the first reference signal from the access network device, and includes: receiving, by the terminal device, a time-frequency resource sequence number of the first reference signal from the access network device Complete works.
  • the terminal device receives a sequence number of the subset from the access network device, and the subset is a subset of the access network device selected from the ensemble.
  • the method before the terminal device receives the sequence number of the subset from the access network device, the method further includes: the terminal device sending a first sending request to the access network device, where the first sending request is used for the request The access network device sends the sequence number of the subset.
  • the terminal device sends a first sending request to the access network device, where the terminal device carries the first sending request in the MAC signaling and sends the first sending request to the access network device.
  • the MAC signaling further includes time-frequency resource quantity indication information of the first reference signal.
  • the configuration of the sequence number complete set of the first reference signal time-frequency resource includes selecting a sequence of sequence numbers of the first reference signal time-frequency resources.
  • the configuration of the corpus is semi-static.
  • each subset has an independent sequence number.
  • the sequence number of the subset is sent via DCI.
  • the subset is determined based on the sequence number configuration of the time-frequency resources of the ensemble.
  • the first reference signal is a measurement reference signal.
  • the second reference signal is a scheduling reference signal.
  • an embodiment of the present invention provides an access network device, where the access network device includes a module or unit for performing the uplink multi-antenna signal transmission method described in the first aspect.
  • an embodiment of the present invention provides a terminal device, where the terminal device includes a module or a unit for performing the uplink multi-antenna signal transmission method described in the second aspect.
  • the embodiment of the present invention provides another access network device, where the access network device implements the function of the access network device in the uplink multi-antenna signal transmission method of the foregoing first aspect, and thus can also implement the first aspect.
  • the beneficial effects of the uplink multi-antenna signal transmission method includes a processor and a receiver, and the processor has a function for implementing the uplink multi-antenna signal transmission method of the first aspect.
  • the embodiment of the present invention provides another terminal device, which implements the function of the terminal device in the uplink multi-antenna signal transmission method in the foregoing second aspect, and thus can also implement the uplink multi-antenna signal transmission in the second aspect.
  • the beneficial effects of the method includes a processor and a transmitter, and the processor has a function for implementing the uplink multi-antenna signal transmission method of the second aspect.
  • an embodiment of the present invention provides a communication system, where the communication system includes an access network device and a terminal device.
  • the access network device is the access network device described in the foregoing third aspect or the fifth aspect
  • the terminal device is the terminal device described in the foregoing fourth aspect or the sixth aspect.
  • an embodiment of the present invention provides a computer storage medium, configured to store computer software instructions used by the access network device in the first aspect, where the instruction is performed by an access network device
  • the access network device performs the method as described in the first aspect above.
  • an embodiment of the present invention provides another computer storage medium for storing the foregoing second aspect.
  • Computer software instructions for the terminal device the instructions, when executed by the terminal device, cause the terminal device to perform the method as described in the second aspect above.
  • an embodiment of the present invention provides a computer program, where the program includes computer software instructions, when the instruction is executed by an access network device, causing the access network device to perform the method as described in the foregoing first aspect. .
  • an embodiment of the present invention provides another computer program, the program comprising computer software instructions, when executed by a terminal device, causing the terminal device to perform the method as described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for transmitting uplink multi-antenna signals according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a time-frequency resource configuration of a measurement reference signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a time-frequency resource configuration of a scheduling reference signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an access network device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another access network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the communication system 100 includes a terminal device 101 and an access network device 102. among them,
  • the terminal device 101 is capable of data communication with the access network device 102.
  • the terminal device 101 may also be referred to as a user equipment, a mobile station, an access terminal device, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal device, a mobile device, a user terminal device, a terminal device, a wireless communication device, a user agent. Or user device, etc.
  • the terminal device may be a handheld terminal device, a notebook computer, a Subscriber Unit, a Cellular Phone, a Smart Phone, a wireless data card, a Personal Digital Assistant (PDA), and has wireless communication. Functional handheld devices, in-vehicle devices, wearable devices, and mobile stations in future 5G networks or terminal devices in the future evolution of the Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the access network device 102 is mainly responsible for radio resource management, quality of service (QoS) management, data compression, and encryption on the air interface side.
  • Access network device 102 may include various forms of access network devices, such as macro access network devices, micro access network devices (also referred to as small stations), relay stations, access points, and the like.
  • the names of access network devices may vary, for example, in a 5G communication system, called a next-generation Node B (gNB); In the (Long Term Evolution, LTE) system, it is called an evolved Node B (eNB or eNodeB); in a 3rd Generation (3G) system, it is called a Node B (Node B).
  • gNB next-generation Node B
  • LTE Long Term Evolution
  • eNB evolved Node B
  • 3G 3rd Generation
  • the terminal device 101 and the access network device 102 communicate via a physical channel.
  • the terminal device 101 transmits a reference signal on the physical channel, and the access network device 102 receives the reference signal transmitted by the terminal device 101, and performs uplink channel estimation based on the reference signal.
  • the access network device 102 sends scheduling information to the terminal device 101, where the scheduling information is used to indicate the physical layer parameters of the uplink transmission performed by the terminal device 101, and the scheduling information is carried by the downlink control channel.
  • the terminal device 101 receives the scheduling information sent by the access network device 102, and determines the upper information based on the scheduling information.
  • Physical layer parameters of the line transmission which may include, but are not limited to, a modulation coding rate, a precoding matrix.
  • the terminal device 101 then uses the physical layer parameters to send uplink data to the access network device 102.
  • the method for transmitting the uplink multi-antenna signal includes, but is not limited to, the following steps S201 to S206:
  • the terminal device sends a first uplink reference codebook set to the access network device, where the first uplink reference codebook set includes one or more uplink multi-antenna pre-coded codebooks supported by the terminal device.
  • the uplink multi-antenna precoding codebook is a set of precoding matrices, wherein each precoding matrix can perform precoding on one or more symbol streams, and the result of precoding is multiple antennas. Or a plurality of new symbol streams corresponding to the antenna ports one by one.
  • the number of rows of the precoding matrix is equal to the number of antennas or antenna ports, and is subsequently recorded as the number of ports of the codebook.
  • the number of columns of the precoding matrix is equal to the number of input symbol streams, which is subsequently recorded as the rank number of the codebook.
  • the terminal device may report the first uplink reference codebook set to the access network device in the terminal device capability reporting process based on the implementation details of the antenna array and the baseband processing capability. For example, the terminal device may select one or more supported uplink multi-antenna pre-encoded codebooks from multiple codebook configuration options and report them to the access network device. .
  • Codebook configuration option 1 Antenna port selection codebook.
  • the applicable scenarios of this option include, but are not limited to, the number of radio units of the terminal is less than the number of antenna elements or antenna arrays, and only one antenna element or antenna array can be connected to each radio unit. Therefore, the main feature of the antenna port selection codebook is that any one input symbol stream can only be directly mapped onto the K output data symbol streams, and different input symbol streams need to be mapped to different output symbol streams. In other words, each column of the precoding matrix has at most K only 1 and the rest is 0.
  • an antenna port selection codebook with a port number of 2 may have the following form:
  • the rank number is 1:
  • the rank number is 2:
  • the rank number is 1:
  • the rank number is 2:
  • Codebook configuration option 2 2-port phase codebook, wherein each column of the precoding matrix reflects a phase difference when a certain input symbol stream is coherently transmitted on a group of antenna ports, and when the rank number is 2,
  • the precoding matrix is a unitary matrix.
  • the applicable scenarios of this option include, but are not limited to, partial reciprocity, that is, the terminal device can learn the precoding matrix of multiple antenna ports in each polarization direction in the dual-polarized antenna array based on reciprocity.
  • the optimal value of the cross-phase between the two single-polarized beams is obtained by means of the codebook-based precoding matrix indication.
  • the 2-port codebook of LTE is a design example of the phase codebook.
  • Equation 1-1 Another design example of a 2-port uplink transmission codebook is given in Equation 1-1 below, which is characterized by supporting 8 phase differences and a nested structure.
  • the nested structure refers to the number of codewords having the same number of codewords under all rank numbers, and the codeword having a low rank number is the previous column or columns of codewords having a high rank number.
  • the rank number is 1:
  • the rank number is 2:
  • the 2-port phase codebook can also have the following design example, which is characterized by supporting 4 phase differences and nested structures:
  • the rank number is 1:
  • the rank number is 2:
  • the codebook configuration option 3 a beam linear combination codebook, or a non-constant modulus codebook, is characterized in that the modulus value of each element in the precoding matrix is not necessarily one.
  • the applicable scenarios of this option include, but are not limited to, the case where the terminal device can support precoding between the beams. Since there may be a large power difference between the beams, when the beams are combined, it is necessary to adjust the transmit power of each beam to achieve optimal transmission.
  • the following equation gives a design example of a linear combination codebook with a rank number of 1 and a port number of 2.
  • Codebook configuration option 4 Low peak-to-average codebook, characterized in that precoding does not increase the peak-to-average ratio, that is, the peak-to-average ratio of the input symbol stream is consistent with the peak-to-average ratio of the output symbol stream.
  • the LTE uplink multi-antenna precoding codebook can be considered as an example of a low peak-to-average codebook.
  • the applicable scenario for this option is that some terminals that require low peak-to-peak ratio characteristics are required.
  • Codebook configuration option 5 Householder codebook, which is characterized by the generation of precoding matrix by column extraction of a Householder transformation matrix.
  • the 4-port single codebook in LTE is the Householder codebook.
  • the application scenario of this option is that the number of antenna ports is >2, and the correlation between antennas is low.
  • Uplink multi-antenna precoding codebook codebook configuration option 6 DFT codebook, characterized in that the generation of the precoding matrix is generated based on the DFT matrix or the oversampled DFT matrix.
  • the first level in the LTE dual codebook is an example of a DFT codebook.
  • the application scenario of this option is that the antenna The number of ports is >2, and the correlation between the antennas is high.
  • Codebook Configuration Option 7 The Grassmannian codebook, characterized in that the generation of the precoding matrix is based on sampling the maximum spacing of the Grassmannian space. For example, for a rank 1 codeword set ⁇ c 1 , c 2 , . . . , c K ⁇ , the Grassmannian codebook needs to satisfy the following Grassmannian spacing ⁇ maximization:
  • Codebook configuration option eight two-stage packet codebook, which is characterized in that the number of ports of the codebook is >2, and multiple ports can be grouped, and the ports in the group have consistent correlation, and the same precoding codebook can be used.
  • One design example of a two-stage block codebook is the LTE dual codebook.
  • the applicable scenarios include: terminal equipment, including Customer Premise Equipment (CPE), which has strong baseband processing capability and a large dual-polarized antenna array, such as a dual-polarized linear array and a dual-polarized planar array. and many more. .
  • CPE Customer Premise Equipment
  • Codebook configuration option nine no codebook. This option is suitable for scenarios where there is superior reciprocity and the terminal device is in low speed motion.
  • codebook configuration option is only a few illustrative examples for the codebook configuration option, and does not limit the codebook configuration option described in the embodiment of the present invention.
  • the codebook configuration option may also include more possible options, including the above options.
  • the cross-combination of the embodiment of the present invention is not specifically limited.
  • the terminal device selects one or more codebooks from the terminal device and reports the result to the access network device through the capability reporting process.
  • the access network device receives the first uplink reference codebook set from the terminal device, and performs codebook configuration on the terminal device according to the first uplink reference codebook set.
  • the access network device performs the codebook configuration based on the first uplink reference codebook set, where the access network device selects one uplink from one or more uplink multi-antenna precoding codebooks reported by the terminal device.
  • the multi-antenna precoding codebook is semi-statically configured to the terminal device.
  • the terminal device may be configured to the terminal device.
  • the access network device may be configured to the terminal by using Radio Resource Control (RRC) configuration signaling of Layer 3.
  • RRC Radio Resource Control
  • the first uplink reference codebook set reported by the terminal device includes a codebook configuration option 2 and a codebook configuration option 4.
  • the access network device selects from the codebook configuration option 2 and the codebook configuration option 4 reported by the terminal device.
  • the codebook configuration option 2 is configured for the terminal device.
  • a manufacturer of a terminal device can design and optimize one or more uplink multi-antenna precoding codebook configuration options according to its own cost, power consumption, and overall design requirements, and codebooks in the terminal device.
  • the codeword parameters are simpler, the codeword indication overhead is smaller, and the access network device performs codeword search. The complexity is also lower.
  • the access network device may further configure the resources, time slots, and the like of the uplink reference signal based on the reporting of the codebook capability of the terminal device and the semi-static configuration of the codebook of the terminal device by the access network device.
  • the embodiments of the present invention relate to two types of uplink reference signals, which are respectively referred to as measurement reference signals and scheduling reference signals according to their respective main functions.
  • the measurement reference signal is used by the access network device for uplink beam measurement.
  • the scheduling reference information is used by the access network device to determine a precoding matrix for the transmission. For each reference signal, the access network device needs to configure the time-frequency resources occupied by each subframe and the subframe timing it transmits by configuring signaling.
  • S203 The access network device sends time-frequency resource configuration information of the measurement reference signal to the terminal device.
  • the subframe timing that is sent is aperiodic, that is, the terminal device sends after receiving the dynamic activation signaling sent by the access network device.
  • the process there are the following three embodiments, which are described separately below.
  • the access network device is configured to configure a time-frequency resource of the measurement reference signal for the terminal device.
  • FIG. 3 is a schematic diagram of a time-frequency resource configuration of a measurement reference signal according to an embodiment of the present invention. As shown in FIG. 3, the time-frequency resource configuration of the access network device for measuring the reference signal can be divided into the following three steps.
  • the access network device sets a time-frequency resource pool of measurement reference signals in all time-frequency resources within the range of N subframes, and a total of time-frequency resource pools There are S (S is a positive integer) parts of time-frequency resources.
  • S is a positive integer
  • Each time-frequency resource in the time-frequency resource pool of the measurement reference signal has the same or similar time-frequency pattern and can be used for signal transmission on one or a group of measurement reference signal ports, each port on the one or a group of ports It carries an uplink beam.
  • Corresponding relationship option 1 measuring reference signal
  • Each time-frequency resource in the time-frequency resource pool has the same time-frequency pattern, and each time-frequency resource can be used for signal transmission on a measurement reference signal port, and the port is used to carry one to be The measured uplink beam. That is to say, one time-frequency resource corresponds to one port.
  • One time-frequency resource is used for one port, that is, the transmission of the measurement reference signal carrying only one uplink beam.
  • Corresponding relationship option 2 Measuring reference signal
  • Each time-frequency resource in the time-frequency resource pool has a similar time-frequency pattern.
  • the time-frequency pattern on a certain group of time-frequency resources can be regarded as another time-frequency resource on the time-frequency resource.
  • the cycle of the pattern is extended.
  • Each time-frequency resource can be used as a signal transmission on a set of measurement reference signal ports, and each port is used to carry an uplink beam to be measured. That is to say, one time-frequency resource corresponds to one port group, and one time-frequency resource is used to carry the transmission of the measurement reference signal of a group of uplink beams.
  • a criterion for measuring time-frequency resources corresponding to the reference signal port is divided, and the following methods are included: according to the comb-tooth division, according to the cyclic shift of the ZC sequence The value is divided, or in the same or different subcarrier spacing setting as the data transmission block, to occupy different time-frequency resources.
  • each time-frequency resource in the time-frequency resource pool of the measurement reference signal has a given time-frequency resource sequence number.
  • the measurement reference signal may only occupy the last one or more Cyclic Prefixed Orthogonal Frequency Divided Multiplexing (CP-OFDM) or discrete in each subframe or each scheduling slot.
  • CP-OFDM Cyclic Prefixed Orthogonal Frequency Divided Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform spread Orthogonal Frequency Divided Multiplexing
  • the access network device semi-statically allocates L (L is a positive integer) time-frequency resources in the S time-frequency resources to the terminal device, and notifies the terminal device through semi-static downlink signaling.
  • L is a positive integer
  • the access network device selects the L time-frequency resources from the S time-frequency resources as a sequential selection process.
  • the L time-frequency resource selected by the access network device is a complete set of time-frequency resource serial numbers that are optional for the terminal device.
  • the semi-static downlink signaling sent by the access network device may be RRC configuration signaling, or system information configuration signaling, or MAC signaling.
  • the access network device selects 4 copies from the S resources, and the 4 resources are in order:
  • the access network device determines that it is necessary to activate the K time-frequency resources in the L-time time-frequency resources, and let the terminal device send the measurement reference signal aperiodically, and then the access network device uses dynamic activation signaling to The activation information is sent to the terminal device.
  • the terminal device transmits a measurement reference signal based on the received activation information.
  • the K time-frequency resources selected by the access network device are a subset. Each subset has an independent serial number, as shown in Figure 3.
  • the dynamic activation signaling sent by the access network device may be DCI signaling or MAC signaling.
  • the configuration sequence is arranged in an inherent order.
  • the definition of the subset of time-frequency resources corresponding to the K time-frequency resources depends on this inherent order. As shown in Figure 3.
  • the subset number in the dynamic activation signaling is 4, that is, when the corresponding bit field is 100, the corresponding active subset is a time-frequency resource 1) and a time-frequency resource 4) encoded in an inherent order, that is, a resource (2) , 2) and resources (3, 3).
  • the signaling overhead of the activation control signaling can be effectively reduced, and the flexibility of the measurement reference signal configuration of the terminal device is provided.
  • the process of the access network device activating the measurement reference signal may be triggered based on the transmission request sent by the terminal device.
  • the sending request sent by the terminal device is triggered by the terminal device based on a motion sensor such as a gyroscope or based on a result of downlink beam measurement, and obtained a pre-judgment of the uplink beam change of the terminal device.
  • the sending request belongs to uplink physical control information, and is carried by an uplink physical control channel or an uplink physical data channel. Specifically, how the terminal device sends a transmission request has the following two transmission options:
  • the sending option 1 is: the terminal device sends a 1-bit request by using the uplink physical control information carried by the uplink physical control channel, and requests the access network device to send a measurement reference signal activation indication, where the activation indication includes the subset configuration of the K time-frequency resources. information.
  • Sending option 2 The terminal device requests the access network device to send the configuration information of the K time-frequency resources by using the 2 to 4 bits of uplink control information carried by the MAC signaling.
  • the 2 to 4 bits of control information also includes an indication of the required level of time-frequency resource of the measurement reference signal.
  • the access network device determines, according to the time-frequency resource quantity level of the measurement reference signal sent by the terminal device, the number of copies of the time-frequency resource occupied by the measurement reference signal, that is, determines the number of K.
  • the terminal device can be made to rotate immediately after the rotation of the beam pairing link has not been seriously damaged. , will send a request to send out.
  • the access network device activates the measurement reference signal sent by the terminal device, there are one or more port packets, and one or more ports exist in each port packet.
  • the signaling form and port packet division after port grouping may have the following port grouping options.
  • Port grouping option 1 The access network device activates the transmission of a set of measurement reference signals through a downlink dynamic signaling. That is to say, one downlink dynamic signaling can only be used to activate the transmission of a set of measurement reference signals.
  • the beam of the activated measurement reference signal is a plurality of candidate uplink beams selected by the terminal device.
  • the access network device does not need to consider whether multiple uplink beams are from the same panel, or whether digital beamforming can be performed simultaneously.
  • Port grouping option 2 The access network device activates one or more sets of measurement reference signals through one downlink dynamic signaling. Send. That is to say, one downlink dynamic signaling can be used to activate the transmission of one or more sets of measurement reference signals.
  • the number of ports and time-frequency resources of each group of measurement reference signals is given when the access network device gives the measurement reference signal time-frequency resource pool configuration.
  • the terminal device sends a measurement reference signal that is less than or equal to the configured port number on each set of time-frequency resources based on the measurement reference signal time-frequency resource group configured by the access network device. Wherein, the reference signal time-frequency resource group is measured as a subset described above. In each measurement reference signal time-frequency resource group, the terminal device transmits a port corresponding to the measurement beam from the same panel, or a port corresponding to the measurement beam that can be simultaneously scheduled for digital beamforming.
  • Port grouping option 3 The access network device activates the transmission of multiple sets of measurement reference signals through a plurality of downlink dynamic signaling.
  • Each downlink dynamic signaling gives a time-frequency resource configuration of a set of measurement reference signals.
  • the terminal device After receiving the downlink dynamic signaling, the terminal device sends a measurement reference signal of a plurality of ports on the indicated time-frequency resource. The number of measurement reference signal ports sent is less than or equal to the configured number of ports.
  • the terminal device transmits a port corresponding to the measurement beam from the same panel, or a port corresponding to the measurement beam that can be simultaneously scheduled for digital beamforming.
  • the access network device Based on the design of the port grouping option 2 or the port grouping option 3, the access network device obtains the availability of the beam transmitted by the terminal device by measuring the grouping of the reference signal, that is, whether it has a near co-located (QCL), or Can it be used in the same digital beam.
  • QCL near co-located
  • the configuration details of the measurement reference signal can be determined.
  • the terminal device receives time-frequency resource configuration information of the measurement reference signal from the access network device, and sends a measurement reference signal to the access network device.
  • the terminal device sends a measurement reference signal based on the time-frequency resource configuration of the measurement reference signal by the access network device.
  • the access network device receives the measurement reference signal and performs channel estimation.
  • the access network device receives the measurement reference signal from the terminal device, and sends the measurement reference signal according to the received result of the measurement reference signal, such as Received Signal Relative Power (RSRP) or Received Signal Relative Quality (RSRQ).
  • RSRP Received Signal Relative Power
  • RSSQ Received Signal Relative Quality
  • a downlink indication where the downlink indication is used to activate the terminal device to send a scheduling reference signal.
  • the sending of the scheduling reference signal may be aperiodic or semi-static, and the specific configuration is given by a semi-static configuration related to the uplink scheduling reference signal.
  • the semi-static configuration that is, a set of time-frequency resources for transmitting a scheduling reference signal, the number of corresponding ports corresponding to the dimension in the codebook configuration. If it is a semi-static transmission, the semi-static configuration will also give its period.
  • the access network device can activate the transmission of the scheduling reference signal through a downlink dynamic signaling. In the downlink dynamic signaling, the base beam of the uplink scheduling reference signal, that is, the beam of the measurement reference signal, is indicated.
  • the base beam of the scheduling reference signal refers to that the beam actually carried by the scheduling reference signal is generated based on the beam of the reference beam, that is, the beam of the reference signal.
  • the indication form of the base beam is the port group sequence number and/or the port number of the measurement reference signal selected by the access network device.
  • a port group can also be referred to as a reference signal resource. That is, the access network device selects a beam corresponding to a plurality of ports from the same port group or a plurality of port groups from the received measurement reference signals, and sends the sequence number to the terminal device to indicate that the terminal device sends the scheduling. Reference signal.
  • the number of beams selected by the access network device needs to correspond to the number of transmission ports of the configuration codebook, and cannot be greater than the number of transmission ports of the codebook.
  • FIG. 4 it is a schematic diagram of a time-frequency resource configuration of a scheduling reference signal according to an embodiment of the present invention.
  • the scheduling reference signal is present in the OFDM symbol or DFT-s-OFDM symbol occupied by the uplink data signal.
  • scheduling the transmission of reference signals occupies multiple or more pairs of resource particles in each subband.
  • the scheduling reference signal occupies multiple pairs of resource particles in each sub-band, and the pair of resource particles bears two from the same beam direction. Polarized beams.
  • the terminal device receives a downlink indication from the access network device, and sends a scheduling reference signal to the access network device according to the downlink indication, where the access network device receives the scheduling reference signal sent by the terminal device.
  • the access network device receives the scheduling reference signal sent by the terminal device, and the access network device can determine the precoding codeword scheduled in the next transmission time slot, and the corresponding transmission layer number, modulation coding parameter, based on the received scheduling reference signal. In order to indicate that the terminal device completes the uplink data transmission.
  • the embodiment of the present invention enables the access network device to accurately obtain the instantaneous state of multiple beams, and the access network device can adjust the cross phase between the dual-polarized antennas on the terminal side in time based on the reception of the scheduling reference signal, and Merging coefficients between multiple beams to achieve efficient use of reference signal resources.
  • the uplink multi-antenna pre-encoded codebook has multiple configurations, and the type definition is more flexible than the subset configuration in the codebook ensemble. It also supports the ability of the terminal device to report the codebook, so it can provide flexibility for the terminal device antenna design. And the signaling and reference signal overhead can be minimized. Under partial reciprocity, the precoding of the uplink transmission is guided by the codebook.
  • the embodiment of the present invention may also be applied to an uplink reference signal transmission process of a non-codebook.
  • the uplink reference signal transmission scheme under the non-codebook is consistent with the flow of the codebook-based uplink reference signal transmission scheme, and is given by FIG.
  • the terminal device For non-codebook transmission, when the terminal device reports the codebook capability, it includes the codeless option. Based on the codebook capability reporting of the terminal device, when the access network device configures the uplink multi-antenna precoding codebook to be codeless, the non-codebook uplink reference signal transmission is entered.
  • the configuration, grouping, and transmission of the measurement reference signals under the non-codebook are exactly the same as those under the codebook uplink transmission.
  • Option 1 The scheduling reference signal is not sent, and the terminal device determines the uplink candidate beam based on the measurement reference signal indicated by the access network device, and directly selects one or more uplink beams for uplink transmission.
  • the terminal device determines the precoding of the uplink transmission based on reciprocity.
  • the transmission rank and the number of transmission layers of the terminal device are determined independently by the terminal device after the reference value is given by the access network device.
  • Option 2 The terminal device sends a scheduling reference signal.
  • the access network device Based on the reception result of the measurement reference signal, the access network device sends a downlink indication to activate transmission of the scheduling reference signal.
  • the transmission of the scheduling reference signal may be aperiodic or semi-static, and the specific configuration is given by a semi-static configuration related to the downlink scheduling reference signal.
  • the semi-static configuration that is, configuring a set of candidate time-frequency resources for transmitting a single port or a pair of ports of the scheduling reference signal. If it is a semi-static transmission, the semi-static configuration will also give its period.
  • the access network device may estimate the number of uplink transmission layers based on the signal strength or signal to noise ratio received by the measurement reference signal, and further activate the scheduling reference.
  • the number of one or two transmission layers is indicated, and the terminal device sends a scheduling reference signal.
  • the terminal device needs to send two port groups for scheduling reference signals.
  • the port group of each scheduling reference signal sent by the terminal device includes one or more ports, and the number of ports in each port group is exactly the same as the number of transmission layers indicated by the access network device.
  • the terminal device sends a scheduling reference signal based on the indication of the access network device, and determines uplink precoding based on reciprocity Codeword. If the terminal device has multiple subbands, on each subband, the terminal device determines an uplink precoded codeword on each subband based on reciprocity, and the scheduling reference signals on the different subbands are transmitted using the same time-frequency resource set.
  • the access network device determines the sub-band and modulation parameter set of the downlink scheduling based on the scheduling reference signal sent by the terminal device, thereby indicating the actual data transmission.
  • the present invention provides an access network device and a terminal device, which are used for the uplink multi-antenna signal transmission method provided by the embodiment of the present invention.
  • the access network device 50 can include a processor 501, a transmitter 502, a receiver 503, a coupler 504, a memory 505, a network interface 506, and an antenna 507. These components may be connected by a bus or other means, wherein the connection by a bus is exemplified in FIG.
  • the network interface 506 is used by the access network device 50 to perform data communication with the terminal device.
  • the network interface 506 may include one or more of a GSM (2G) wireless network interface, a WCDMA (3G) wireless network interface, and an LTE (4G) wireless network interface, or may be a wireless device of the future 5G. Network Interface.
  • the antenna 507 is used to convert electromagnetic energy in the transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in the transmission line;
  • the coupler 504 is used to divide the mobile signal into multiple channels and distribute it to multiple Receiver 503.
  • the transmitter 502 is configured to perform a transmission process (eg, modulation) on the mobile communication signal generated by the processor 501
  • the receiver 503 is configured to perform a reception process (eg, demodulation) on the mobile communication signal received by the antenna 507, which may be regarded as one Wireless modem.
  • the number of the transmitter 502 or the receiver 503 may be one or more.
  • the memory 505 is used to store program code and data.
  • the memory 505 can be a read-only memory (ROM) or a random access memory (RAM).
  • the processor 501 is configured to call the program code stored in the memory 505, and performs the following operations:
  • a first uplink reference codebook set from the terminal device, where the first uplink reference codebook set includes one or more uplink multi-antenna precoding codebooks supported by the terminal device.
  • the processor 501 is further configured to:
  • the time-frequency resource configuration information of the first reference signal is sent to the terminal device by the transmitter 502, where the first reference signal is used by the access network device to perform uplink beam measurement;
  • the downlink indication is used to activate the terminal device to send a second reference signal, where the second reference signal is used by the access network device to determine a precoding matrix for uplink transmission;
  • the second reference signal is received by the receiver 503 from the terminal device.
  • the processor 501 performs codebook configuration on the terminal device according to the first uplink reference codebook set, including:
  • the uplink multi-antenna precoding codebook includes any one of the following: an antenna port selection codebook, and a 2-port phase Bit codebook, beam linear combination codebook, low peak average codebook, Householder codebook, DFT codebook, Grassmannian codebook, two-stage block codebook and no codebook.
  • the sending of the first reference signal is aperiodic.
  • the processor 501 sends the time-frequency resource configuration information of the first reference signal to the terminal device by using the transmitter 502, including:
  • the processor 501 configures, for the terminal device, a complete set of time-frequency resource serial numbers of the candidate first reference signal
  • the processor 501 sends the configuration information of the complete set to the terminal device by using the transmitter 502.
  • the processor 501 selects a subset from the ensemble
  • the processor 501 transmits the sequence number of the selected subset to the terminal device via the transmitter 502.
  • the processor 501 before the processor 501 sends the sequence number of the selected subset to the terminal device by using the transmitter 502, the processor 501 is further configured to:
  • the processor 501 sends the sequence number of the selected subset to the terminal device by using the transmitter 502, including:
  • the first sending request is carried in the medium access control signaling.
  • the media access control signaling further includes time-frequency resource quantity indication information of the first reference signal.
  • the configuration of the sequence number complete set of the first reference signal time-frequency resource includes selecting a sequence of sequence numbers of the first reference signal time-frequency resources.
  • the configuration of the corpus is semi-static.
  • each subset has an independent sequence number.
  • the sequence number of the subset is sent by using downlink control information.
  • the subset is determined based on a sequence number configuration of the time-frequency resources of the ensemble.
  • the terminal device 60 may include: an input and output module (including an audio input and output module 608, a key input module 609, and a display 610, etc.), a user interface 606, a processor 601, a transmitter 602, a receiver 603, and a coupler 604. Antenna 607 and memory 605. These components may be connected by a bus or other means, in which the bus connection is taken as an example in FIG.
  • the antenna 607 is used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 604 is used to divide the mobile pass signal into multiple channels and distribute it to a plurality of receivers 603.
  • the transmitter 602 is configured to perform a transmission process (eg, modulation) on the mobile communication signal generated by the processor 601, and the receiver 603 is configured to perform a reception process (eg, demodulation) on the mobile communication signal received by the antenna 607, which may be regarded as one Wireless modem.
  • the number of the transmitter 602 or the receiver 603 may be one or more.
  • the input and output module is mainly used to implement the interaction function between the terminal device 60 and the user/external environment, and mainly includes an audio input and output module 608, a key input module 609, a display 610, and the like.
  • the input and output modules may also include: a camera, a touch screen, a sensor, and the like.
  • the input and output modules communicate with the processor 601 through the user interface 606.
  • Memory 605 is coupled to processor 601 for storing various software programs and/or sets of instructions.
  • memory 605 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the processor 601 is configured to call the program and data stored in the memory 605, and performs the following operations:
  • the transmitter 602 Transmitting, by the transmitter 602, the first uplink reference codebook set to the access network device, where the first uplink reference codebook set includes one or more uplink multi-antenna precoding codebooks supported by the terminal device, where the first The uplink reference codebook set is used by the access network device to perform codebook configuration on the terminal device.
  • the processor 601 is further configured to:
  • the uplink multi-antenna pre-coding codebook includes any one of the following: an antenna port selection codebook, a 2-port phase codebook, a beam linear combination codebook, a low-peak average codebook, a Householder codebook, and a DFT code. This, Grassmannian codebook, two-stage block codebook and no codebook.
  • the sending of the first reference signal is aperiodic.
  • the processor 601 receives the time-frequency resource configuration information of the first reference signal from the access network device by using the receiver 603, including:
  • the processor 601 before the processor 601 receives the sequence number of the subset from the access network device by using the receiver 603, the processor 601 is further configured to:
  • the processor 601 sends the first sending request to the access network device by using the transmitter 602, including:
  • the first sending request is carried in the medium access control signaling and sent to the access network device.
  • the media access control signaling further includes time-frequency resource quantity indication information of the first reference signal.
  • the configuration of the sequence number complete set of the first reference signal time-frequency resource includes selecting a sequence of sequence numbers of the first reference signal time-frequency resources.
  • the configuration of the corpus is semi-static.
  • each subset has an independent sequence number.
  • the sequence number of the subset is sent by using downlink control information.
  • the subset is determined based on a sequence number configuration of the time-frequency resources of the ensemble.
  • FIG. 7 is a schematic structural diagram of another access network device according to an embodiment of the present invention.
  • the access network device 70 includes a receiving unit 701 and a configuration unit 702.
  • the receiving unit 701 is configured to receive, by the terminal device, a first uplink reference codebook set, where the first uplink reference codebook set includes one or more uplink multi-antenna precoding codes supported by the terminal device.
  • the configuration unit 702 is configured to perform codebook configuration on the terminal device according to the first uplink reference codebook set.
  • the access network device 70 further includes: a sending unit;
  • a sending unit configured to send time-frequency resource configuration information of the first reference signal to the terminal device after the configuration unit 702 performs codebook configuration on the terminal device according to the first uplink reference codebook set, where A reference signal is used by the access network device for uplink beam measurement;
  • the receiving unit 701 is further configured to receive the first reference signal from the terminal device, and send a downlink indication according to the relative power of the received signal of the first reference signal or the relative quality of the received signal, and the information of the codebook configuration.
  • the downlink indication is used to activate the terminal device to send a second reference signal, where the second reference signal is used by the access network device to determine a precoding matrix for uplink transmission;
  • the receiving unit 701 is further configured to receive the second reference signal from the terminal device.
  • the configuration unit 702 performs a codebook configuration for the terminal device according to the first uplink reference codebook set, including:
  • the uplink multi-antenna pre-coding codebook includes any one of the following: an antenna port selection codebook, a 2-port phase codebook, a beam linear combination codebook, a low-peak average codebook, a Householder codebook, and a DFT code. This, Grassmannian codebook, two-stage block codebook and no codebook.
  • the sending of the first reference signal is aperiodic.
  • the sending unit is configured to send time-frequency resource configuration information of the first reference signal to the terminal device, including:
  • the sending unit is configured to: before the sending the sequence number of the selected subset to the terminal device, the receiving unit 701 is further configured to receive the first sending request from the terminal device;
  • a sending unit configured to send the sequence number of the selected subset to the terminal device, including:
  • the first sending request is carried in the medium access control signaling.
  • the media access control signaling further includes time-frequency resource quantity indication information of the first reference signal.
  • the configuration of the sequence number complete set of the first reference signal time-frequency resource includes selecting a sequence of sequence numbers of the first reference signal time-frequency resources.
  • the configuration of the corpus is semi-static.
  • each subset has an independent sequence number.
  • the sequence number of the subset is sent by using downlink control information.
  • the subset is determined based on a sequence number configuration of the time-frequency resources of the ensemble.
  • FIG. 8 is a schematic structural diagram of another terminal device according to an embodiment of the present invention. As shown in FIG. 8, the terminal device 80 includes a transmitting unit 801.
  • the sending unit 801 is configured to send, by the access network device, a first uplink reference codebook set, where the first uplink reference codebook set includes one or more uplink multi-antenna precoding codebooks supported by the terminal device, where The first uplink reference codebook set is used by the access network device to perform codebook configuration on the terminal device.
  • the terminal device 80 further includes a receiving unit 802.
  • a receiving unit configured to receive time-frequency resource configuration information of the first reference signal from the access network device after the sending unit 801 sends the first uplink reference codebook set to the access network device, where the first reference signal is used by Performing uplink beam measurement on the access network device;
  • the sending unit 801 is further configured to send, according to the time-frequency resource configuration information of the first reference signal, the first reference signal to the access network device;
  • the receiving unit 802 is further configured to receive, by the access network device, a downlink indication, where the downlink indication is used to activate the terminal device to send a second reference signal, where the second reference signal is used by the access network device to determine a precoding matrix for uplink transmission;
  • the sending unit 801 is further configured to send the second reference signal to the access network device according to the downlink indication.
  • the uplink multi-antenna pre-coding codebook includes any one of the following: an antenna port selection codebook, a 2-port phase codebook, a beam linear combination codebook, a low-peak average codebook, a Householder codebook, and a DFT code. This, Grassmannian codebook, two-stage block codebook and no codebook.
  • the sending of the first reference signal is aperiodic.
  • the receiving unit 802 is configured to receive the time-frequency resource configuration information of the first reference signal from the access network device, including:
  • the receiving unit 802 is configured to send, by the sending unit 801, a first sending request, the first sending request, to the access network device, before receiving the sequence number of the subset from the access network device. And a sequence number for requesting the access network device to send the subset.
  • the sending unit 801 is configured to send the first sending request to the access network device, including:
  • the first sending request is carried in the medium access control signaling and sent to the access network device.
  • the media access control signaling further includes time-frequency resource quantity indication information of the first reference signal.
  • the configuration of the sequence number complete set of the first reference signal time-frequency resource includes selecting a sequence of sequence numbers of the first reference signal time-frequency resources.
  • the configuration of the corpus is semi-static.
  • each subset has an independent sequence number.
  • the sequence number of the subset is sent by using downlink control information.
  • the subset is determined based on a sequence number configuration of the time-frequency resources of the ensemble.
  • the steps of the method or algorithm described in this application may be implemented in a hardware manner or in a manner that the processor executes the software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in RAM, flash memory, ROM, Erasable Programmable ROM (EPROM), and electrically erasable programmable read only memory (Electrically EPROM).
  • EEPROM Electrically erasable programmable read only memory
  • registers hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium may be located in an Application Specific Integrated Circuit (ASIC). Additionally, the ASIC can be located in a primary access network device or a secondary access network device. Of course, the processor and the storage medium may also exist as discrete components in the primary access network device or the secondary access network device.
  • ASIC Application Specific Integrated Circuit
  • the functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种上行多天线信号传输方法、相关设备及系统,该方法包括:接入网设备从终端设备接收第一上行参考码本集合,所述第一上行参考码本集合包括所述终端设备支持的一个或多个上行多天线预编码码本;所述接入网设备根据所述第一上行参考码本集合对所述终端设备进行码本配置。通过本发明实施例,接入网设备可以基于终端设备支持的码本能力来灵活地为终端设备配置码本。

Description

上行多天线信号传输方法、相关设备及系统 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种上行多天线信号传输方法、相关设备及系统。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)在2016年上半年启动了新的无线技术(New Radio,NR)的研究,面向第五代(the fifth generation,5G)无线通信技术,展开了包括物理层信号设计、高层网络切分、信令流程设计等等一系列研究。NR研究的频段覆盖范围更广,目前希望在sub-6GHz(0-6GHz)和above-6GHz(6-100GHz)建立一套统一的空口技术框架。作为这一技术框架的一部分,在当前NR的第一阶段标准化中,已经在高于6GHz的高频段,开展了针对密集场景的高频波束赋型技术研究和讨论。
在NR中的讨论,普遍认为应该在接入网设备侧和终端设备侧都进行波束赋型,以获得阵列增益。由于NR覆盖的频段范围广,在不同的频段中终端可能会配置的不同天线阵列形态。由于NR支持的终端类型多,不同类型的终端可以有不同的天线阵列形态和射频收发能力。而在现有的长期演进(Long-Term Evolution,LTE)上行系统中,上行码本只有一套,无法适应于在NR上行多输入多输出(Multiple Input Multiple Output,MIMO)系统设计的这些需求,因此有必要设计一种新的上行码本配置机制。
发明内容
本发明实施例提供了一种上行多天线信号传输方法、相关设备及系统,接入网设备可以基于终端设备支持的码本能力来灵活地为终端设备配置码本。
本发明实施例具体可以通过如下技术方案实现:
第一方面,本发明实施例提供了一种上行多天线信号传输方法,应用于接入网设备侧。该方法包括:接入网设备从终端设备接收第一上行参考码本集合,该第一上行参考码本集合包括该终端设备支持的一个或多个上行多天线预编码码本。该接入网设备根据该第一上行参考码本集合对该终端设备进行码本配置。通过本发明实施例,
在一种可能的设计中,该接入网设备根据该第一上行参考码本集合对该终端设备进行码本配置之后,还包括:该接入网设备向该终端设备发送第一参考信号的时频资源配置信息,该第一参考信号用于该接入网设备进行上行波束测量,该第一参考信号的发送是非周期的。该接入网设备从该终端设备接收该第一参考信号,根据该第一参考信号的接收信号相对功率或接收信号相对质量,以及该码本配置的信息,发送下行指示,该下行指示用于激活该终端设备发送第二参考信号,该第二参考信号用于该接入网设备确定上行传输的预编码矩阵。该接入网设备从该终端设备接收该第二参考信号。
在一种可能的设计中,该接入网设备根据该第一上行参考码本集合针对该终端设备进行码本配置,包括:该接入网设备从该第一上行参考码本集合中选择一个上行多天线预编码码本配置给该终端设备。
在一种可能的设计中,该上行多天线预编码码本包括以下任一项:天线端口选择码本、2端口相位码本、波束线性组合码本、低峰均比码本、豪斯霍尔德(Householder)码本、离散傅里叶变换(Discrete Fourier Transform,DFT)码本、格拉斯曼(Grassmannian)码本、两阶段分组码本和无码本。
在一种可能的设计中,该第一参考信号的发送是非周期的。
在一种可能的设计中,该接入网设备向该终端设备发送第一参考信号的时频资源配置信息,包括:该接入网设备为该终端设备半静态地配置备选第一参考信号的时频资源序号全集。该接入网设备将该全集的配置信息发送给该终端设备。该接入网设备从该全集中选择一个子集。该接入网设备将选择的该子集的序号发送给该终端设备,该子集的序号是通过下行控制信息发送的。
在一种可能的设计中,该接入网设备将选择的该子集的序号发送给该终端设备之前,还包括:该接入网设备从该终端设备接收第一发送请求。该接入网设备将选择的该子集的序号发送给该终端设备,包括:该接入网设备根据该第一发送请求将选择的该子集的序号发送给该终端设备。
在一种可能的设计中,该第一发送请求是携带在媒体接入控制(Media Access Control,MAC)信令中的。
在一种可能的设计中,该媒体接入控制信令中还包括该第一参考信号的时频资源数量指示信息。
在一种可能的设计中,该第一参考信号时频资源的序号全集的配置包括选出该第一参考信号时频资源的序号顺序的配置。
在一种可能的设计中,该全集的配置是半静态的。
在一种可能的设计中,每个子集具有一个独立的序号。
在一种可能的设计中,该子集的序号是通过下行控制信息(Downlink Control Information,DCI)发送的。
在一种可能的设计中,该子集是基于该全集的时频资源的序号顺序配置来确定的。
第二方面,本发明实施例提供了另一种上行多天线信号传输方法,应用于终端设备侧。该方法包括:终端设备向接入网设备发送第一上行参考码本集合,该第一上行参考码本集合包括该终端设备支持的一个或多个上行多天线预编码码本,该第一上行参考码本集合用于该接入网设备对该终端设备进行码本配置。通过本发明实施例,
在一种可能的设计中,终端设备向接入网设备发送第一上行参考码本集合之后,还包括:该终端设备从该接入网设备接收第一参考信号的时频资源配置信息,该第一参考信号用于该接入网设备进行上行波束测量。该终端设备根据该第一参考信号的时频资源配置信息向该接入网设备发送该第一参考信号。该终端设备从该接入网设备接收下行指示,该下行指示用于激活该终端设备发送第二参考信号,该第二参考信号用于该接入网设备确定上行传输的预编码矩阵。
该终端设备根据该下行指示向该接入网设备发送该第二参考信号。
在一种可能的设计中,该上行多天线预编码码本包括以下任一项:天线端口选择码本、2端口相位码本、波束线性组合码本、低峰均比码本、Householder码本、DFT码本、 Grassmannian码本、两阶段分组码本和无码本。
在一种可能的设计中,该第一参考信号的发送是非周期的。
在一种可能的设计中,该终端设备从该接入网设备接收第一参考信号的时频资源配置信息,包括:该终端设备从该接入网设备接收第一参考信号的时频资源序号全集。该终端设备从该接入网设备接收子集的序号,该子集为该接入网设备从该全集中选择的一个子集。
在一种可能的设计中,该终端设备从该接入网设备接收子集的序号之前,还包括:该终端设备向该接入网设备发送第一发送请求,该第一发送请求用于请求该接入网设备发送该子集的序号。
在一种可能的设计中,该终端设备向该接入网设备发送第一发送请求,包括:该终端设备将该第一发送请求携带在MAC信令中发送给该接入网设备。
在一种可能的设计中,该MAC信令中还包括该第一参考信号的时频资源数量指示信息。
在一种可能的设计中,该第一参考信号时频资源的序号全集的配置包括选出该第一参考信号时频资源的序号顺序的配置。
在一种可能的设计中,该全集的配置是半静态的。
在一种可能的设计中,每个子集具有一个独立的序号。
在一种可能的设计中,该子集的序号是通过DCI发送的。
在一种可能的设计中,该子集是基于该全集的时频资源的序号顺序配置来确定的。
在一种可能的设计中,第一参考信号为测量参考信号。第二参考信号为调度参考信号。
第三方面,本发明实施例提供了一种接入网设备,该接入网设备包括用于执行第一方面所描述的上行多天线信号传输方法的模块或单元。
第四方面,本发明实施例提供了一种终端设备,该终端设备包括用于执行第二方面所描述的上行多天线信号传输方法的模块或单元。
第五方面,本发明实施例提供了另一种接入网设备,该接入网设备实现上述第一方面的上行多天线信号传输方法中接入网设备的功能,因此也能实现第一方面的上行多天线信号传输方法所具备的有益效果。其中,该接入网设备包括处理器和接收器,所述处理器具有用于实现第一方面的上行多天线信号传输方法的功能。
第六方面,本发明实施例提供了另一种终端设备,该终端设备实现上述第二方面的上行多天线信号传输方法中终端设备的功能,因此也能实现第二方面的上行多天线信号传输方法所具备的有益效果。其中,该终端设备包括处理器和发射器,所述处理器具有用于实现第二方面的上行多天线信号传输方法的功能。
第七方面,本发明实施例提供了一种通信系统,该通信系统包括接入网设备和终端设备。该接入网设备为上述第三方面或第五方面所描述的接入网设备,该终端设备为上述第四方面或第六方面所描述的终端设备。
第八方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第一方面所述接入网设备所用的计算机软件指令,所述指令当被接入网设备执行时使所述接入网设备执行如上述第一方面所述的方法。
第九方面,本发明实施例提供了另一种计算机存储介质,用于储存为上述第二方面所 述终端设备所用的计算机软件指令,所述指令当被终端设备执行时使所述终端设备执行如上述第二方面所述的方法。
第十方面,本发明实施例提供了一种计算机程序,该程序包括计算机软件指令,所述指令当被接入网设备执行时使所述接入网设备执行如上述第一方面所述的方法。
第十一方面,本发明实施例提供了另一种计算机程序,该程序包括计算机软件指令,所述指令当被终端设备执行时使所述终端设备执行如上述第二方面所述的方法。
附图说明
图1是本发明实施例提供的一种通信系统的架构示意图;
图2是本发明实施例提供的一种上行多天线信号传输的方法的流程示意图;
图3是本发明实施例提供的一种测量参考信号的时频资源配置的示意图;
图4是本发明实施例提供的一种调度参考信号的时频资源配置的示意图;
图5是本发明实施例提供的一种接入网设备的结构示意图;
图6是本发明实施例提供的一种终端设备的结构示意图;
图7是本发明实施例提供的另一种接入网设备的结构示意图;
图8是本发明实施例提供的另一种终端设备的结构示意图。
具体实施方式
请参见图1,是本发明实施例涉及的一种通信系统的架构示意图。该通信系统100包括:终端设备101和接入网设备102。其中,
终端设备101能够和接入网设备102进行数据通信。终端设备101也可以称为用户设备、移动台、接入终端设备、用户单元、用户站、移动站、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置等。终端设备可以是手持终端设备、笔记本电脑、用户单元(Subscriber Unit)、蜂窝电话(Cellular Phone)、智能电话(Smart Phone)、无线数据卡、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、车载设备、可穿戴设备以及未来5G网络中的移动台或者未来演进的公共陆地移动网(Public Land Mobile Network,PLMN)网络中的终端设备等。
接入网设备102主要负责空口侧的无线资源管理、服务质量(Quality of Service,QoS)管理、数据压缩和加密等功能。接入网设备102可以包括各种形式的接入网设备,例如:宏接入网设备,微接入网设备(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,接入网设备的名称可能会有所不同,例如,在5G通信系统中,称为下一代节点(next-generation Node B,gNB);在长期演进(Long Term Evolution,LTE)系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB);在第三代(3rd Generation,3G)系统中,称为节点B(Node B)等。
终端设备101和接入网设备102之间通过物理信道进行通信。终端设备101在物理信道上发送参考信号,接入网设备102接收终端设备101发送的参考信号,基于该参考信号进行上行信道估计。接入网设备102基于信道估计的结果,向终端设备101发送调度信息,该调度信息用于指示终端设备101进行上行传输的物理层参数,该调度信息通过下行控制信道承载。终端设备101接收接入网设备102发送的调度信息,基于该调度信息,确定上 行传输的物理层参数,该物理层参数可以包括但不限于:调制编码码率、预编码矩阵。之后终端设备101采用该物理层参数发送上行数据给接入网设备102。
基于图1所示的网络架构,结合图2来描述本发明实施例提供的一种上行多天线信号传输的方法。如图2所示,该上行多天线信号传输的方法包括但不限于如下步骤S201至S206:
S201:终端设备向接入网设备发送第一上行参考码本集合,该第一上行参考码本集合包括终端设备支持的一个或多个上行多天线预编码码本。
其中,所述上行多天线预编码码本,是一组预编码矩阵的集合,其中每一个预编码矩阵都能实现对一个或多个符号流的预编码,预编码的结果是与多个天线或天线端口一一对应的多个新的符号流。预编码矩阵的行数等于天线或天线端口的数目,后续记作码本的端口数。预编码矩阵的列数等于输入符号流的数目,后续记作码本的秩数。
本发明实施例中,终端设备可以基于自身的天线阵列的实现细节,及基带处理能力的判断,在终端设备能力上报过程中将第一上行参考码本集合上报给接入网设备。例如,终端设备可以从多个码本配置选项中选择一个或多个支持的上行多天线预编码码本,上报给接入网设备。。
由于NR新空口需要支持的频段范围更宽,且终端设备天线阵列具体实现方案多样化,因此在NR新空口的上行多天线预编码码本中,存在多种上行多天线预编码码本类型,以适应不同的终端设备的能力配置。下面给出若干种码本配置选项的例子作为说明:
码本配置选项一:天线端口选择码本。举例说明,本选项的适用场景包括但不限于:终端的射频单元数目少于天线阵元或天线阵元组的数目,且每个射频单元只能连接一个天线阵元或天线阵元组。因此,天线端口选择码本的主要特征是,任意的一个输入符号流只能直接映射到K个输出数据符号流上,且不同的输入符号流需映射到不同的输出符号流。换而言之,预编码矩阵的每一列至多只有K个1,其余为0。举例说明,端口数为2的天线端口选择码本可以具有如下形式:
秩数为1:
Figure PCTCN2017096990-appb-000001
秩数为2:
Figure PCTCN2017096990-appb-000002
举例说明,端口数为4的天线端口选择码本可以具有如下形式:(K=2)
秩数为1:
Figure PCTCN2017096990-appb-000003
秩数为2:
Figure PCTCN2017096990-appb-000004
码本配置选项二:2端口相位码本,其特征是,预编码矩阵的每一列反映了某一输入符号流在一组天线端口上进行相干传输时的相位差,且秩数为2时,预编码矩阵是酉矩阵。本选项的适用场景包括但不限于:存在部分互易性,即终端设备基于互易性可以获知双极化天线阵列中,每个极化方向上的多个天线端口的预编码矩阵,仅需在上行调度信令中,借助基于码本的预编码矩阵指示,获知两个单极化波束之间交叉相位的最优值。LTE的2端口码本就是相位码本的一个设计示例。下式1-1给出了2端口上行传输码本的另一个设计示例,其特征是支持8个相位差和嵌套结构。所述嵌套结构指的是所有秩数下的码字数目码字数目相同,且秩数低的码字为秩数高的码字的前一列或多列。
秩数为1:
Figure PCTCN2017096990-appb-000005
秩数为2:
Figure PCTCN2017096990-appb-000006
2端口相位码本还可以有如下的设计示例,其特征是支持4个相位差和嵌套结构:
秩数为1:
Figure PCTCN2017096990-appb-000007
秩数为2:
Figure PCTCN2017096990-appb-000008
码本配置选项三:波束线性组合码本,或称为非恒模码本,其特征是预编码矩阵中的每个元素的模值不一定是1。本选项适用场景包括但不限于,终端设备可以支持跨波束之间预编码的情况。由于波束之间可能存在较大的功率差,因此波束组合时,需要进行调整每个波束的发射功率,以实现最优传输。下式给出了一个秩数是1,端口数为2的线性组合码本的设计示例。
Figure PCTCN2017096990-appb-000009
码本配置选项四:低峰均比码本,其特征是预编码不会带来峰均比增加,即输入符号流的峰均比与输出符号流的峰均比保持一致。LTE上行多天线预编码码本可以视为低峰均比码本的一个例子。本选项的适用场景是某些对发射低峰均比特性要求较高的终端。
码本配置选项五:Householder码本,其特征是预编码矩阵的生成,是通过对一个Householder变换矩阵进行列抽取实现的。LTE中的4端口单码本就是Householder码本。本选项的应用场景是天线端口数>2,且天线间相关性较低。上行多天线预编码码本码本配置选项六:DFT码本,其特征是预编码矩阵的生成是基于DFT矩阵或过采样后的DFT矩阵生成的。LTE双码本中的第一级就是DFT码本的一个实例。本选项的应用场景是,天线 端口数>2,且天线间相关性较高。
码本配置选项七:Grassmannian码本,其特征是,预编码矩阵的生成是基于对Grassmannian空间的最大间距采样获得的。举例说明,对于秩为1的码字集合{c1,c2,…,cK},Grassmannian码本需要满足下述Grassmannian间距δ最大化:
Figure PCTCN2017096990-appb-000010
码本配置选项八:两阶段分组码本,其特征是,码本的端口数>2,且多个端口可以进行分组,组内的端口具有一致的相关性,可以采用相同的预编码码本。两阶段分组码本的一个设计示例是LTE双码本。本选项适用场景包括:终端设备,包括用户前端设备(Customer Premise Equipment,CPE),具有较强的基带处理能力和较大的双极化天线阵列,如双极化线性阵列,双极化平面阵列等等。。
码本配置选项九:无码本。这一选项适用于存在较优互易性的场景,且终端设备处于低速运动下。
需要说明的是,以上只是针对码本配置选项的几种示意性举例,并非限定本发明实施例中所描述的码本配置选项,码本配置选项还可以包括更多可能的选项,包括上述选项的交叉组合,本发明实施例不作具体限定。
基于上述的码本配置选项,终端设备从中选择一个或多个码本,通过能力上报流程上报给接入网设备。
S202:接入网设备从终端设备接收第一上行参考码本集合,根据该第一上行参考码本集合针对该终端设备进行码本配置。
本发明实施例中,接入网设备基于第一上行参考码本集合进行码本配置,是指接入网设备从终端设备上报的一个或多个上行多天线预编码码本中,选择一个上行多天线预编码码本,半静态地配置给该终端设备。举例说明,半静态地配置给该终端设备,可以是接入网设备通过层三的无线资源控制(Radio Resource Control,RRC)配置信令配置给终端。
例如,终端设备上报的第一上行参考码本集合中包括码本配置选项二和码本配置选项四,接入网设备从终端设备上报的码本配置选项二和码本配置选项四中选择了码本配置选项二,配置给该终端设备。
通过实施本发明实施例,终端设备的厂商可以根据自身的成本、功耗、整机设计需求,针对一个或多个上行多天线预编码码本配置选项进行设计优化,并在终端设备的码本能力上报中上报所支持的码本选项,从而实现低成本高性能。并且,由于存在多种码本配置选项,相较于统一的码本设计,本发明实施例中,码字参数更简单,码字指示的开销更小,接入网设备进行码字搜索时,复杂度也更低。
可选的,接入网设备基于终端设备的码本能力的上报和接入网设备对终端设备的码本的半静态配置,可以进一步配置上行参考信号的资源、时隙等等内容。本发明实施例中涉及两类上行参考信号,下面按照其各自的主要功能,分别称为测量参考信号和调度参考信号。测量参考信号用于接入网设备进行上行波束测量。调度参考信息用于接入网设备确定上述传输的预编码矩阵。对于每种参考信号,接入网设备都需通过配置信令,配置其各个子帧内占用的时频资源,以及其发送的子帧定时。
S203:接入网设备向终端设备发送测量参考信号的时频资源配置信息。
针对测量参考信号来说,出于最小化开销考虑,其发送的子帧定时是非周期的,即,终端设备在接收到接入网设备发送的动态激活信令后发送。针对这一过程,存在如下三个实施方式,以下分别进行描述。
在第一个实施方式中,主要介绍接入网设备为终端设备配置测量参考信号的时频资源。参见图3,是本发明实施例提供的一种测量参考信号的时频资源配置的示意图。如图3所示,接入网设备对于测量参考信号的时频资源配置可以分为如下三步。
第一步,基于N(N为正整数)个子帧的周期,接入网设备在N个子帧范围内的所有时频资源内,设定一个测量参考信号时频资源池,时频资源池内一共有S(S为正整数)份时频资源。图3中,测量参考信号时频资源池中的每一个小方格即为一份时频资源,假设测量参考信号时频资源池中的行数(子载波数)为M(M为正整数),列数(子帧数)为N,则S=M*N。测量参考信号时频资源池内的每一份时频资源具有相同或相似的时频图案,可用于一个或一组测量参考信号端口上的信号发送,所述一个或一组端口上,每个端口承载了一个上行波束。具体而言,端口与时频资源的对应关系,存在至少下面两种实施选项:
对应关系选项一:测量参考信号时频资源池内每一份时频资源具有相同的时频图案,每一份时频资源可用于一个测量参考信号端口上的信号发送,该端口用于承载一个待测量的上行波束。也即是说,一个时频资源与一个端口对应。一个时频资源用于一个端口,即仅承载了一个上行波束的测量参考信号的发送。
对应关系选项二:测量参考信号时频资源池内每一份时频资源具有相似的时频图案,例如,某一组时频资源上的时频图案可以视作另一组时频资源上时频图案的周期延拓。每一份时频资源可以用作一组测量参考信号端口上的信号发送,每个端口用于承载一个待测量的上行波束。也即是说,一个时频资源与一个端口组对应,一个时频资源用于承载了一组上行波束的测量参考信号的发送。
针对对应关系选项二来说,所述一个时频资源中,划分出一个测量参考信号端口对应的时频资源的准则,包括下列几种方法:按照梳齿划分,按照ZC序列的循环移位的值划分,或在与数据传输区块相同或不同的子载波间隔设置下,以占用不同的时频资源划分。
可选的,测量参考信号时频资源池内的每一份时频资源具有一个给定的时频资源序号。
可选的,测量参考信号可以仅仅占用每个子帧或每个调度时隙内的最后一个或多个循环前缀正交频分多路复用(Cyclic Prefixed Orthogonal Frequency Divided Multiplexing,CP-OFDM)或离散傅里叶变换扩展正交频分多路复用(Discrete Fourier Transform spread Orthogonal Frequency Divided Multiplexing,DFT-s-OFDM)符号。
第二步,接入网设备半静态地将S份时频资源中的L(L为正整数)份时频资源配置给终端设备,并通过半静态的下行信令通知终端设备。这里,接入网设备从S份时频资源中选择L份时频资源是有顺序的选择过程。并且,接入网设备选择的L份时频资源是为该终端设备备选的时频资源序号全集。
可选的,接入网设备发送的半静态的下行信令可以是RRC配置信令,或系统信息配置信令,或MAC信令。
例如,针对图3来说,L=4,接入网设备从S份资源中选出了4份,4份资源依次为:
1)资源(2,2)
2)资源(1,2)
3)资源(3,1)
4)资源(3,3)
第三步,接入网设备确定需要激活L份时频资源中的K份时频资源,并让终端设备非周期的发送测量参考信号,进而接入网设备通过动态激活信令,将这一激活信息发送给终端设备。终端设备基于接收到的激活信息,发送测量参考信号。这里,接入网设备选择的K份时频资源即为子集。每一个子集具有一个独立的序号,如图3所示。
可选的,接入网设备发送的动态激活信令,可以是DCI信令,或者MAC信令。
可选的,第二步中接入网设备在将L份时频资源配置给终端设备时,配置的顺序是按照固有顺序排列的。所述K份时频资源对应的时频资源子集的定义依赖于这一固有顺序。如图3所示。当动态激活信令中的子集序号为4,即对应比特域为100时,对应的激活子集,为按照固有顺序进行编码的时频资源1)和时频资源4),即资源(2,2)和资源(3,3)。
实施本发明实施例,可以有效的降低激活控制信令的信令开销,并为终端设备的测量参考信号配置提供灵活性。
在第二个实施方式中,接入网设备激活测量参考信号的过程,可以基于终端设备发送的发送请求触发。所述终端设备发送的发送请求,是终端设备基于陀螺仪等运动传感器,或基于下行波束测量的结果,得到的终端设备上行波束发生变化的预判来触发的。所述发送请求属于上行物理控制信息,通过上行物理控制信道或上行物理数据信道承载。具体而言,终端设备如何发送发送请求,存在如下两个发送选项:
发送选项一:终端设备通过上行物理控制信道承载的上行物理控制信息,发送1bit的请求,请求接入网设备发送测量参考信号激活指示,所述激活指示包含上述K份时频资源的子集配置信息。
发送选项二:终端设备通过MAC信令承载的2到4比特的上行控制信息,请求接入网设备发送上述K份时频资源的配置信息。这2到4比特的控制信息,还包括了所需的测量参考信号时频资源数量等级的指示。接入网设备基于终端设备发送的测量参考信号时频资源数量等级,确定测量参考信号占用的时频资源的份数,即确定K的个数。
实施本发明实施例,由于陀螺仪等运动传感器对于终端设备旋转的监测快于波束链路监控过程,这样可以使得终端设备能够在自身旋转刚刚发生,波束配对链路还未遭到严重破坏之时,将发送请求发送出去。
在第三个实施方式中,接入网设备激活终端设备发送的测量参考信号,存在一个或多个端口分组,每个端口分组内存在一个或多个端口。具体而言,端口分组后的信令形式和端口分组划分,可以有以下几个端口分组选项。
端口分组选项一:接入网设备通过一个下行动态信令,激活一组测量参考信号的发送。也即是说,一个下行动态信令只能用于激活一组测量参考信号的发送。所激活的测量参考信号的波束,为终端设备选出的多个备选上行波束。接入网设备无需考虑多个上行波束是否来自同一个面板,或是否可以同时进行数字波束赋型。
端口分组选项二:接入网设备通过一个下行动态信令,激活一组或多组测量参考信号 的发送。也即是说,一个下行动态信令可以用于激活一组或多组测量参考信号的发送。每组测量参考信号的端口数及时频资源的数目,在接入网设备给出测量参考信号时频资源池配置时给出。终端设备基于接入网设备配置的测量参考信号时频资源组,在每组时频资源上发送少于或等于配置端口数的测量参考信号。其中,测量参考信号时频资源组即上文所述的子集。在每个测量参考信号时频资源组内,终端设备发送来自于同一面板的测量波束对应的端口,或可以同时被调度进行数字波束赋型的测量波束对应的端口。
端口分组选项三:接入网设备通过一组多个下行动态信令,激活多组测量参考信号的发送。每个下行动态信令给出一组测量参考信号的时频资源配置。终端设备接收到每个下行动态信令后,在其指示的时频资源上发送一组多个端口的测量参考信号。所发送的测量参考信号端口数少于或等于配置的端口数。在每个测量参考信号时频资源组内,终端设备发送来自于同一面板的测量波束对应的端口,或可以同时被调度进行数字波束赋型的测量波束对应的端口。
基于端口分组选项二或端口分组选项三的设计,接入网设备通过测量参考信号的分组,获知了终端设备所发送波束的可用性,即是否具有近似共位(Quasi co-located,QCL),或是否可以用于同一个数字波束中。
基于上述三个实施方式,可以确定测量参考信号的配置细节。
S204:终端设备从接入网设备接收测量参考信号的时频资源配置信息,向接入网设备发送测量参考信号。
基于接入网设备对测量参考信号的时频资源配置,终端设备发送测量参考信号。接入网设备接收测量参考信号并进行信道估计。
S205:接入网设备从终端设备接收测量参考信号,根据测量参考信号的接收结果,如接收信号相对功率(Received Signal Relative Power,RSRP)或接收信号相对质量(Received Signal Relative Quality,RSRQ),发送下行指示,该下行指示用于激活终端设备发送调度参考信号。
本发明实施例中,调度参考信号的发送,可以是非周期的,也可以是半静态的,具体的配置由上行调度参考信号相关的半静态配置给出。所述半静态配置,即配置一组用于发送调度参考信号的时频资源,其对应的端口数目,与码本配置中的维数对应。如果是半静态的发送,则所述半静态配置还会给出其周期。另外无论是非周期的,还是半静态的,接入网设备都可以通过一个下行动态信令激活调度参考信号的发送。所述下行动态信令中,指示了上行调度参考信号的基波束,即测量参考信号的波束。所述调度参考信号的基波束,是指调度参考信号实际承载的波束是基于这些基波束,即测量参考信号的波束来生成的。基波束的指示形式是接入网设备选择的测量参考信号的端口组序号和/或端口序号。端口组也可以称为一个参考信号的资源。也就是说,接入网设备从接收到的测量参考信号中,选出来自同一端口组或多个端口组的若干端口对应的波束,将其序号发送给终端设备,用于指示终端设备发送调度参考信号。显然,接入网设备所选出的波束数目,与其配置码本的传输端口数也需要对应,不可以大于码本的传输端口数。
如图4所示,是本发明实施例提供的一种调度参考信号的时频资源配置的示意图。调度参考信号存在于上行数据信号占用的OFDM符号或DFT-s-OFDM符号内。在终端设备所 处的带宽内的每个子带中,调度参考信号的发送,占用每个子带中的多个或多对资源粒子。特别的,如果接入网设备配置的是双极化阵列对应的码本配置,则调度参考信号占用每个子带中的多对资源粒子,一对资源粒子承载来自于同一个波束方向上的两个极化波束。
S206:终端设备从接入网设备接收下行指示,根据该下行指示向接入网设备发送调度参考信号,接入网设备接收终端设备发送的调度参考信号。
接入网设备接收终端设备发送的调度参考信号,接入网设备基于接收到的调度参考信号,可以确定下一传输时隙中调度的预编码码字,以及相应的传输层数,调制编码参数,以此指示终端设备完成上行数据传输。
实施本发明实施例,使得接入网设备能够准确地获得多个波束的即时状态,接入网设备可以基于调度参考信号的接收,及时调整终端侧的双极化天线之间的交叉相位,以及多个波束之间的合并系数,从而达到有效利用参考信号资源的目的。
综上,本发明实施例中,上行多天线预编码码本存在多种配置,区别于码本全集中的子集配置,其类型定义更为灵活。并且支持终端设备上报码本能力,因此可以为终端设备天线设计提供灵活性。并且可以最小化信令及参考信号开销。在部分互易性下,通过码本指引了上行传输的预编码。
可选的,本发明实施例也可以应用于非码本的上行参考信号传输过程。非码本下的上行参考信号传输方案,与基于码本的上行参考信号传输方案的流程一致,均由图2给出。
非码本传输,需要终端设备上报码本能力时,包括无码本选项。基于终端设备的码本能力上报,接入网设备将上行多天线预编码码本配置为无码本时,则进入非码本的上行参考信号传输。
非码本下的测量参考信号的配置,分组,发送,与码本上行传输下的完全一致。
非码本下的调度参考信号配置存在两个选项:
选项一:不发送调度参考信号,终端设备基于接入网设备指示的测量参考信号,确定上行备选波束,并直接选择其中一个或多个上行波束进行上行传输。终端设备基于互易性,决定上行传输的预编码。终端设备的传输秩和传输层数目,由接入网设备给出参考值后,终端设备独立决定。
选项二:终端设备发送调度参考信号。
基于测量参考信号的接收结果,接入网设备发送下行指示,激活调度参考信号的发送。调度参考信号的发送,可以是非周期的,或是半静态的,具体的配置由下行调度参考信号相关的半静态配置给出。所述半静态配置,即配置一组用于发送调度参考信号的单端口或成对端口的候选时频资源。如果是半静态的发送,则所述半静态配置还会给出其周期。
具体的,考虑测量参考信号与调度参考信号在基础波束上的一致性,接入网设备可以基于测量参考信号接收的信号强度或信噪比,预估上行的传输层数目,进而在激活调度参考信号的发送时,指示1个或2个传输层数目,供终端设备发送调度参考信号。当接入网设备指示2个传输层数目时,终端设备需要发送两个调度参考信号的端口组。终端设备发送的每一个调度参考信号的端口组都包括1个或多个端口,每个端口组内的端口数目,与接入网设备指示的传输层数目完全一致。
基于接入网设备的指示,终端设备发送调度参考信号,并基于互易性确定上行预编码 的码字。如果终端设备存在多个子带,则每个子带上,终端设备基于互易性确定每个子带上的上行预编码的码字,不同子带上的调度参考信号使用相同的时频资源集合发送。
接入网设备基于终端设备发送的调度参考信号,决定下行调度的子带和调制参数集合,以此指示实际的数据传输。
为了便于实施本发明实施例,本发明提供了一种接入网设备和终端设备,用于本发明实施例提供的上行多天线信号传输方法。
参见图5,接入网设备50可包括:处理器501、发射器502、接收器503、耦合器504、存储器505、网络接口506、天线507。这些部件可通过总线或者其它方式连接,其中,图5中以通过总线连接为例。
其中,网络接口506用于接入网设备50与终端设备进行数据通信。具体实现中,网络接口506可包括:GSM(2G)无线网络接口、WCDMA(3G)无线网络接口以及LTE(4G)无线网络接口等等中的一种或几种,也可以是未来5G的无线网络接口。
天线507用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能;耦合器504用于将移动通信号分成多路,分配给多个的接收器503。
发射器502用于对处理器501生成的移动通信信号进行发射处理(例如调制),接收器503用于对天线507接收的移动通信信号进行接收处理(例如解调),二者可看作一个无线调制解调器。具体实现中,发射器502或接收器503的数量可以是一个或多个。
存储器505用于存储程序代码和数据,具体实现中,存储器505可以采用只读存储器(Read-Only Memory,ROM)或随机存取存贮器(Random Access Memory,RAM)。
处理器501用于调用存储于存储器505中存储的程序代码,执行如下操作:
通过接收器503从终端设备接收第一上行参考码本集合,所述第一上行参考码本集合包括所述终端设备支持的一个或多个上行多天线预编码码本。
根据所述第一上行参考码本集合对所述终端设备进行码本配置。
可选的,处理器501根据所述第一上行参考码本集合对所述终端设备进行码本配置之后,处理器501还用于:
通过发射器502向所述终端设备发送第一参考信号的时频资源配置信息,所述第一参考信号用于所述接入网设备进行上行波束测量;
通过接收器503从所述终端设备接收所述第一参考信号,根据所述第一参考信号的接收信号相对功率或接收信号相对质量,以及所述码本配置的信息,发送下行指示,所述下行指示用于激活所述终端设备发送第二参考信号,所述第二参考信号用于所述接入网设备确定上行传输的预编码矩阵;
通过接收器503从所述终端设备接收所述第二参考信号。
可选的,处理器501根据所述第一上行参考码本集合针对所述终端设备进行码本配置,包括:
从所述第一上行参考码本集合中选择一个上行多天线预编码码本配置给所述终端设备。
可选的,所述上行多天线预编码码本包括以下任一项:天线端口选择码本、2端口相 位码本、波束线性组合码本、低峰均比码本、Householder码本、DFT码本、Grassmannian码本、两阶段分组码本和无码本。
可选的,所述第一参考信号的发送是非周期的。
可选的,处理器501通过发射器502向所述终端设备发送第一参考信号的时频资源配置信息,包括:
处理器501为所述终端设备配置备选第一参考信号的时频资源序号全集;
处理器501通过发射器502将所述全集的配置信息发送给所述终端设备;
处理器501从所述全集中选择一个子集;
处理器501通过发射器502将选择的所述子集的序号发送给所述终端设备。
可选的,处理器501通过发射器502将选择的所述子集的序号发送给所述终端设备之前,处理器501还用于:
通过接收器503从所述终端设备接收第一发送请求;
处理器501通过发射器502将选择的所述子集的序号发送给所述终端设备,包括:
根据所述第一发送请求将选择的所述子集的序号发送给所述终端设备。
可选的,所述第一发送请求是携带在媒体接入控制信令中的。
可选的,所述媒体接入控制信令中还包括所述第一参考信号的时频资源数量指示信息。
可选的,所述第一参考信号时频资源的序号全集的配置包括选出所述第一参考信号时频资源的序号顺序的配置。
可选的,所述全集的配置是半静态的。
可选的,每个子集具有一个独立的序号。
可选的,所述子集的序号是通过下行控制信息发送的。
可选的,所述子集是基于所述全集的时频资源的序号顺序配置来确定的。
需要说明的是,本发明实施例所描述的接入网设备50中各功能模块的功能可参见上述图2所示实施例中对应接入网设备的相关描述,此处不再赘述。
参见图6,终端设备60可包括:输入输出模块(包括音频输入输出模块608、按键输入模块609以及显示器610等)、用户接口606、处理器601、发射器602、接收器603、耦合器604、天线607以及存储器605。这些部件可通过总线或者其它方式连接,其中,图6中以通过总线连接为例。
其中:
天线607用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器604用于将移动通信号分成多路,分配给多个的接收器603。
发射器602用于对处理器601生成的移动通信信号进行发射处理(例如调制),接收器603用于对天线607接收的移动通信信号进行接收处理(例如解调),二者可看作一个无线调制解调器。具体实现中,发射器602或接收器603的数量可以是一个或多个。
所述输入输出模块主要用于实现终端设备60和用户/外部环境之间的交互功能,主要包括音频输入输出模块608、按键输入模块609以及显示器610等。具体实现中,所述输 入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口606与处理器601进行通信。
存储器605与处理器601耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器605可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。
处理器601用于调用存储器605中存储的程序和数据,执行如下操作:
通过发射器602向接入网设备发送第一上行参考码本集合,所述第一上行参考码本集合包括所述终端设备支持的一个或多个上行多天线预编码码本,所述第一上行参考码本集合用于所述接入网设备对所述终端设备进行码本配置。
可选的,处理器601通过发射器602向接入网设备发送第一上行参考码本集合之后,处理器601还用于:
通过接收器603从所述接入网设备接收第一参考信号的时频资源配置信息,所述第一参考信号用于所述接入网设备进行上行波束测量;
根据所述第一参考信号的时频资源配置信息通过发射器602向所述接入网设备发送所述第一参考信号;
通过接收器603从所述接入网设备接收下行指示,所述下行指示用于激活所述终端设备发送第二参考信号,所述第二参考信号用于所述接入网设备确定上行传输的预编码矩阵;
根据所述下行指示通过发射器602向所述接入网设备发送所述第二参考信号。
可选的,所述上行多天线预编码码本包括以下任一项:天线端口选择码本、2端口相位码本、波束线性组合码本、低峰均比码本、Householder码本、DFT码本、Grassmannian码本、两阶段分组码本和无码本。
可选的,所述第一参考信号的发送是非周期的。
可选的,处理器601通过接收器603从所述接入网设备接收第一参考信号的时频资源配置信息,包括:
从所述接入网设备接收第一参考信号的时频资源序号全集;
从所述接入网设备接收子集的序号,所述子集为所述接入网设备从所述全集中选择的一个子集。
可选的,处理器601通过接收器603从所述接入网设备接收子集的序号之前,处理器601还用于:
通过发射器602向所述接入网设备发送第一发送请求,所述第一发送请求用于请求所述接入网设备发送所述子集的序号。
可选的,处理器601通过发射器602向所述接入网设备发送第一发送请求,包括:
将所述第一发送请求携带在媒体接入控制信令中发送给所述接入网设备。
可选的,所述媒体接入控制信令中还包括所述第一参考信号的时频资源数量指示信息。
可选的,所述第一参考信号时频资源的序号全集的配置包括选出所述第一参考信号时频资源的序号顺序的配置。
可选的,所述全集的配置是半静态的。
可选的,每个子集具有一个独立的序号。
可选的,所述子集的序号是通过下行控制信息发送的。
可选的,所述子集是基于所述全集的时频资源的序号顺序配置来确定的。
需要说明的是,本发明实施例所描述的终端设备60中各功能模块的功能可参见上述图2所示实施例中对应终端设备的相关描述,此处不再赘述。
请参见图7,是本发明实施例提供的另一种接入网设备的结构示意图。如图7所示,接入网设备70包括:接收单元701和配置单元702。
接收单元701,用于从终端设备接收第一上行参考码本集合,所述第一上行参考码本集合包括所述终端设备支持的一个或多个上行多天线预编码码。
配置单元702,用于根据所述第一上行参考码本集合对所述终端设备进行码本配置。
可选的,接入网设备70还包括:发送单元;
发送单元,用于在配置单元702根据所述第一上行参考码本集合对所述终端设备进行码本配置之后,向所述终端设备发送第一参考信号的时频资源配置信息,所述第一参考信号用于所述接入网设备进行上行波束测量;
接收单元701,还用于从所述终端设备接收所述第一参考信号,根据所述第一参考信号的接收信号相对功率或接收信号相对质量,以及所述码本配置的信息,发送下行指示,所述下行指示用于激活所述终端设备发送第二参考信号,所述第二参考信号用于所述接入网设备确定上行传输的预编码矩阵;
接收单元701,还用于从所述终端设备接收所述第二参考信号。
可选的,配置单元702根据所述第一上行参考码本集合针对所述终端设备进行码本配置,包括:
从所述第一上行参考码本集合中选择一个上行多天线预编码码本配置给所述终端设备。
可选的,所述上行多天线预编码码本包括以下任一项:天线端口选择码本、2端口相位码本、波束线性组合码本、低峰均比码本、Householder码本、DFT码本、Grassmannian码本、两阶段分组码本和无码本。
可选的,所述第一参考信号的发送是非周期的。
可选的,发送单元,用于向所述终端设备发送第一参考信号的时频资源配置信息,包括:
为所述终端设备配置备选第一参考信号的时频资源序号全集;
将所述全集的配置信息发送给所述终端设备;
从所述全集中选择一个子集;
将选择的所述子集的序号发送给所述终端设备。
可选的,发送单元,用于将选择的所述子集的序号发送给所述终端设备之前,接收单元701,还用于从所述终端设备接收第一发送请求;
发送单元,用于将选择的所述子集的序号发送给所述终端设备,包括:
根据所述第一发送请求将选择的所述子集的序号发送给所述终端设备。
可选的,所述第一发送请求是携带在媒体接入控制信令中的。
可选的,所述媒体接入控制信令中还包括所述第一参考信号的时频资源数量指示信息。
可选的,所述第一参考信号时频资源的序号全集的配置包括选出所述第一参考信号时频资源的序号顺序的配置。
可选的,所述全集的配置是半静态的。
可选的,每个子集具有一个独立的序号。
可选的,所述子集的序号是通过下行控制信息发送的。
可选的,所述子集是基于所述全集的时频资源的序号顺序配置来确定的。
需要说明的是,本发明实施例所描述的接入网设备70中各功能单元的功能可参见上述图2所示实施例中对应接入网设备的相关描述,此处不再赘述。
请参见图8,是本发明实施例提供的另一种终端设备的结构示意图。如图8所示,终端设备80包括:发送单元801。
发送单元801,用于向接入网设备发送第一上行参考码本集合,所述第一上行参考码本集合包括所述终端设备支持的一个或多个上行多天线预编码码本,所述第一上行参考码本集合用于所述接入网设备对所述终端设备进行码本配置。
可选的,终端设备80还包括接收单元802,
接收单元,用于在发送单元801向接入网设备发送第一上行参考码本集合之后,从所述接入网设备接收第一参考信号的时频资源配置信息,所述第一参考信号用于所述接入网设备进行上行波束测量;
发送单元801,还用于根据所述第一参考信号的时频资源配置信息向所述接入网设备发送所述第一参考信号;
接收单元802,还用于从所述接入网设备接收下行指示,所述下行指示用于激活所述终端设备发送第二参考信号,所述第二参考信号用于所述接入网设备确定上行传输的预编码矩阵;
发送单元801,还用于根据所述下行指示向所述接入网设备发送所述第二参考信号。
可选的,所述上行多天线预编码码本包括以下任一项:天线端口选择码本、2端口相位码本、波束线性组合码本、低峰均比码本、Householder码本、DFT码本、Grassmannian码本、两阶段分组码本和无码本。
可选的,所述第一参考信号的发送是非周期的。
可选的,接收单元802,用于从所述接入网设备接收第一参考信号的时频资源配置信息,包括:
从所述接入网设备接收第一参考信号的时频资源序号全集;
从所述接入网设备接收子集的序号,所述子集为所述接入网设备从所述全集中选择的一个子集。
可选的,接收单元802,用于从所述接入网设备接收子集的序号之前,发送单元801,还用于向所述接入网设备发送第一发送请求,所述第一发送请求用于请求所述接入网设备发送所述子集的序号。
可选的,发送单元801,用于向所述接入网设备发送第一发送请求,包括:
将所述第一发送请求携带在媒体接入控制信令中发送给所述接入网设备。
可选的,所述媒体接入控制信令中还包括所述第一参考信号的时频资源数量指示信息。
可选的,所述第一参考信号时频资源的序号全集的配置包括选出所述第一参考信号时频资源的序号顺序的配置。
可选的,所述全集的配置是半静态的。
可选的,每个子集具有一个独立的序号。
可选的,所述子集的序号是通过下行控制信息发送的。
可选的,所述子集是基于所述全集的时频资源的序号顺序配置来确定的。
需要说明的是,本发明实施例所描述的终端设备80中各功能单元的功能可参见上述图2所示实施例中对应终端设备的相关描述,此处不再赘述。
本申请中描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,简称:EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuit,ASIC)中。另外,该ASIC可以位于主接入网设备或辅接入网设备中。当然,处理器和存储介质也可以作为分立组件存在于主接入网设备或辅接入网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (30)

  1. 一种上行多天线信号传输方法,其特征在于,包括:
    接入网设备从终端设备接收第一上行参考码本集合,所述第一上行参考码本集合包括所述终端设备支持的一个或多个上行多天线预编码码本;
    所述接入网设备根据所述第一上行参考码本集合对所述终端设备进行码本配置。
  2. 根据权利要求1所述的方法,其特征在于,所述接入网设备根据所述第一上行参考码本集合对所述终端设备进行码本配置之后,还包括:
    所述接入网设备向所述终端设备发送第一参考信号的时频资源配置信息,所述第一参考信号用于所述接入网设备进行上行波束测量;
    所述接入网设备从所述终端设备接收所述第一参考信号,根据所述第一参考信号的接收信号相对功率或接收信号相对质量,以及所述码本配置的信息,发送下行指示,所述下行指示用于激活所述终端设备发送第二参考信号,所述第二参考信号用于所述接入网设备确定上行传输的预编码矩阵;
    所述接入网设备从所述终端设备接收所述第二参考信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述接入网设备根据所述第一上行参考码本集合针对所述终端设备进行码本配置,包括:
    所述接入网设备从所述第一上行参考码本集合中选择一个上行多天线预编码码本配置给所述终端设备。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述上行多天线预编码码本包括以下任一项:天线端口选择码本、2端口相位码本、波束线性组合码本、低峰均比码本、豪斯霍尔德Householder码本、离散傅里叶变换DFT码本、格拉斯曼Grassmannian码本、两阶段分组码本和无码本。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述第一参考信号的发送是非周期的。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述接入网设备向所述终端设备发送第一参考信号的时频资源配置信息,包括:
    所述接入网设备为所述终端设备配置备选第一参考信号的时频资源序号全集;
    所述接入网设备将所述全集的配置信息发送给所述终端设备;
    所述接入网设备从所述全集中选择一个子集;
    所述接入网设备将选择的所述子集的序号发送给所述终端设备。
  7. 根据权利要求6所述的方法,其特征在于,所述接入网设备将选择的所述子集的序 号发送给所述终端设备之前,还包括:
    所述接入网设备从所述终端设备接收第一发送请求;
    所述接入网设备将选择的所述子集的序号发送给所述终端设备,包括:
    所述接入网设备根据所述第一发送请求将选择的所述子集的序号发送给所述终端设备。
  8. 根据权利要求7所述的方法,其特征在于,所述第一发送请求是携带在媒体接入控制信令中的。
  9. 根据权利要求8所述的方法,其特征在于,所述媒体接入控制信令中还包括所述第一参考信号的时频资源数量指示信息。
  10. 根据权利要求6至9任一项所述的方法,其特征在于,所述第一参考信号时频资源的序号全集的配置包括选出所述第一参考信号时频资源的序号顺序的配置。
  11. 根据权利要求6至10任一项所述的方法,其特征在于,所述全集的配置是半静态的。
  12. 根据权利要求6至11任一项所述的方法,其特征在于,每个子集具有一个独立的序号。
  13. 根据权利要求6至12任一项所述的方法,其特征在于,所述子集的序号是通过下行控制信息发送的。
  14. 根据权利要求6至13任一项所述的方法,其特征在于,所述子集是基于所述全集的时频资源的序号顺序配置来确定的。
  15. 一种上行多天线信号传输方法,其特征在于,包括:
    终端设备向接入网设备发送第一上行参考码本集合,所述第一上行参考码本集合包括所述终端设备支持的一个或多个上行多天线预编码码本,所述第一上行参考码本集合用于所述接入网设备对所述终端设备进行码本配置。
  16. 根据权利要求15所述的方法,其特征在于,终端设备向接入网设备发送第一上行参考码本集合之后,还包括:
    所述终端设备从所述接入网设备接收第一参考信号的时频资源配置信息,所述第一参考信号用于所述接入网设备进行上行波束测量;
    所述终端设备根据所述第一参考信号的时频资源配置信息向所述接入网设备发送所述第一参考信号;
    所述终端设备从所述接入网设备接收下行指示,所述下行指示用于激活所述终端设备 发送第二参考信号,所述第二参考信号用于所述接入网设备确定上行传输的预编码矩阵;
    所述终端设备根据所述下行指示向所述接入网设备发送所述第二参考信号。
  17. 根据权利要求15或16所述的方法,其特征在于,所述上行多天线预编码码本包括以下任一项:天线端口选择码本、2端口相位码本、波束线性组合码本、低峰均比码本、豪斯霍尔德Householder码本、离散傅里叶变换DFT码本、格拉斯曼Grassmannian码本、两阶段分组码本和无码本。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一参考信号的发送是非周期的。
  19. 根据权利要求15至18任一项所述的方法,其特征在于,所述终端设备从所述接入网设备接收第一参考信号的时频资源配置信息,包括:
    所述终端设备从所述接入网设备接收第一参考信号的时频资源序号全集;
    所述终端设备从所述接入网设备接收子集的序号,所述子集为所述接入网设备从所述全集中选择的一个子集。
  20. 根据权利要求19所述的方法,其特征在于,所述终端设备从所述接入网设备接收子集的序号之前,还包括:
    所述终端设备向所述接入网设备发送第一发送请求,所述第一发送请求用于请求所述接入网设备发送所述子集的序号。
  21. 根据权利要求20所述的方法,其特征在于,所述终端设备向所述接入网设备发送第一发送请求,包括:
    所述终端设备将所述第一发送请求携带在媒体接入控制信令中发送给所述接入网设备。
  22. 根据权利要求21所述的方法,其特征在于,所述媒体接入控制信令中还包括所述第一参考信号的时频资源数量指示信息。
  23. 根据权利要求19至22任一项所述的方法,其特征在于,所述第一参考信号时频资源的序号全集的配置包括选出所述第一参考信号时频资源的序号顺序的配置。
  24. 根据权利要求19至23任一项所述的方法,其特征在于,所述全集的配置是半静态的。
  25. 根据权利要求19至24任一项所述的方法,其特征在于,每个子集具有一个独立的序号。
  26. 根据权利要求19至25任一项所述的方法,其特征在于,所述子集的序号是通过下行控制信息发送的。
  27. 根据权利要求19至26任一项所述的方法,其特征在于,所述子集是基于所述全集的时频资源的序号顺序配置来确定的。
  28. 一种接入网设备,其特征在于,包括处理器和接收器,其中,所述处理器用于执行权利要求1至14任一项所述的上行多天线信号传输方法。
  29. 一种终端设备,其特征在于,包括处理器和发射器,其中,所述处理器用于执行权利要求15至27任一项所述的多天线信号传输方法。
  30. 一种通信系统,其特征在于,包括接入网设备和终端设备,其中,所述接入网设备为如权利要求28所述的接入网设备,所述终端设备为如权利要求29所述的终端设备。
PCT/CN2017/096990 2017-04-25 2017-08-11 上行多天线信号传输方法、相关设备及系统 WO2018196230A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780038861.0A CN109417442B (zh) 2017-04-25 2017-08-11 上行多天线信号传输方法、相关设备及系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710279143 2017-04-25
CN201710279143.4 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018196230A1 true WO2018196230A1 (zh) 2018-11-01

Family

ID=63918003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096990 WO2018196230A1 (zh) 2017-04-25 2017-08-11 上行多天线信号传输方法、相关设备及系统

Country Status (2)

Country Link
CN (1) CN109417442B (zh)
WO (1) WO2018196230A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810090B (zh) * 2020-06-16 2023-07-28 华为技术有限公司 通信方法和通信装置
WO2022028325A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 通信方法与通信装置
WO2022147676A1 (en) * 2021-01-06 2022-07-14 Qualcomm Incorporated Uplink mode switching
CN116614163A (zh) * 2022-02-09 2023-08-18 维沃移动通信有限公司 预编码的确定方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255705A (zh) * 2011-07-08 2011-11-23 电信科学技术研究院 一种上行预编码信息指示方法及装置
US20120087425A1 (en) * 2010-10-06 2012-04-12 Krishna Srikanth Gomadam Codebook subsampling for pucch feedback
CN102932115A (zh) * 2011-08-11 2013-02-13 华为技术有限公司 预编码控制指示反馈信道配置方法和装置
CN102938687A (zh) * 2011-08-15 2013-02-20 华为技术有限公司 上行预编码信息发送方法、预编码方法、基站及终端
CN103051429A (zh) * 2011-10-14 2013-04-17 中兴通讯股份有限公司 上行发送分集配置方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7949318B2 (en) * 2007-02-05 2011-05-24 Nec Laboratories America, Inc. Multi-rank beamforming precoding apparatus and method
CN101645757B (zh) * 2008-08-06 2013-06-05 中兴通讯股份有限公司 一种预编码矩阵选择方法和装置
WO2010124445A1 (zh) * 2009-04-27 2010-11-04 华为技术有限公司 码本、码本生成方法、基于码本的上行发射方法及设备
CN102299769B (zh) * 2011-09-01 2014-06-25 电信科学技术研究院 一种下行控制信息传输方法及装置
US9806781B2 (en) * 2015-04-29 2017-10-31 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120087425A1 (en) * 2010-10-06 2012-04-12 Krishna Srikanth Gomadam Codebook subsampling for pucch feedback
CN102255705A (zh) * 2011-07-08 2011-11-23 电信科学技术研究院 一种上行预编码信息指示方法及装置
CN102932115A (zh) * 2011-08-11 2013-02-13 华为技术有限公司 预编码控制指示反馈信道配置方法和装置
CN102938687A (zh) * 2011-08-15 2013-02-20 华为技术有限公司 上行预编码信息发送方法、预编码方法、基站及终端
CN103051429A (zh) * 2011-10-14 2013-04-17 中兴通讯股份有限公司 上行发送分集配置方法及装置

Also Published As

Publication number Publication date
CN109417442B (zh) 2020-09-08
CN109417442A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
US10673507B2 (en) Method and apparatus for channel state information reference signal (CSI-RS)
CN108282207B (zh) 一种预编码矩阵指示方法、装置和系统
CN107872261B (zh) 一种报告信道状态信息的方法、用户设备和基站
US10411868B2 (en) Method and apparatus for channel state information (CSI) reporting
WO2018028310A1 (zh) 用于确定预编码矩阵的方法和装置
JP2022160541A (ja) Lteにおける4txコードブックエンハンスメント
KR102293682B1 (ko) 첨단 무선 통신 시스템의 csi 보고를 위한 프리코더 코드북
KR102027075B1 (ko) 프리코딩 정보 송신 및 피드백 방법 및 장치
EP3637713B1 (en) Nr uplink codebook configuration method and related device
KR20100133883A (ko) 다중 안테나 시스템에서의 코드북 설계 방법 및 데이터 전송 방법
WO2018196230A1 (zh) 上行多天线信号传输方法、相关设备及系统
KR20180122412A (ko) Csi 피드백 방법, 프리코딩 방법 및 장치
US11296759B2 (en) Precoding matrix index reporting method, communications apparatus, and medium
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
EP3384609A1 (en) Efficient techniques to signal codebook subset restriction bit map in wireless communication systems
CN116686224A (zh) 用于分布式mimo传输的高分辨率码本
WO2016026507A1 (en) Periodical feedback design for three-dimensional multiple-input multiple-output (3d-mimo)
WO2018171786A1 (zh) 信息的传输方法和设备
CN116868515A (zh) 码本上报的方法、终端设备和网络设备
US20230283344A1 (en) Csi codebook for multi-trp
CN108288981B (zh) 一种信道信息反馈及确定方法、接收端和发射端设备
CN117616699A (zh) 无线通信的方法、终端设备和网络设备
CN117813774A (zh) 用于基于压缩的csi报告的方法和装置
CN118160231A (zh) 无线通信的方法、终端设备和网络设备
CN117063517A (zh) 用于配置csi报告粒度的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906976

Country of ref document: EP

Kind code of ref document: A1