WO2021090747A1 - 分散アンテナ及び分散アンテナシステム - Google Patents

分散アンテナ及び分散アンテナシステム Download PDF

Info

Publication number
WO2021090747A1
WO2021090747A1 PCT/JP2020/040507 JP2020040507W WO2021090747A1 WO 2021090747 A1 WO2021090747 A1 WO 2021090747A1 JP 2020040507 W JP2020040507 W JP 2020040507W WO 2021090747 A1 WO2021090747 A1 WO 2021090747A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
transmission line
distributed antenna
strip
shaped member
Prior art date
Application number
PCT/JP2020/040507
Other languages
English (en)
French (fr)
Inventor
翔 熊谷
森本 康夫
健 茂木
圭祐 新井
加賀谷 修
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202080075207.9A priority Critical patent/CN114600316B/zh
Priority to EP20883728.6A priority patent/EP4057446A4/en
Priority to JP2021554909A priority patent/JPWO2021090747A1/ja
Publication of WO2021090747A1 publication Critical patent/WO2021090747A1/ja
Priority to US17/730,481 priority patent/US11949160B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/085Flexible aerials; Whip aerials with a resilient base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/427Flexible radomes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • H01Q21/12Parallel arrangements of substantially straight elongated conductive units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving

Definitions

  • This disclosure relates to a distributed antenna and a distributed antenna system.
  • the millimeter wave band used for antennas of 5G wireless base stations and the like has high straightness of radio waves, stable communication becomes difficult if the antennas are installed centrally in one place. Further, since the installation of wireless base stations is restricted depending on the device weight, device dimensions, etc., it may be difficult to increase the number of wireless base stations installed in order to widen the coverage area.
  • the distributed antenna system of Patent Document 1 by providing a base band portion that generates a high-frequency signal and a plurality of antennas that are separated from the base band portion and arranged in a radio dead zone or the like, the building premises and the underground street While realizing stable wireless communication in radio dead zones such as in factories, the coverage area can be expanded without being restricted by the installation of wireless base stations.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a distributed antenna that is easy to install.
  • the distributed antenna includes a plate-shaped dielectric and a first surface which is one surface of the dielectric and a first surface opposite to the first surface.
  • a transmission having two surfaces and extending in a band shape and provided on any surface of the first surface and the second surface, or provided between the first surface and the second surface.
  • the line and the transmission line are electrically connected and distributed on any of the first surface and the second surface, or are electrically connected to the transmission line and the first surface. It is provided with a plurality of antenna elements dispersedly arranged between the second surface and the second surface.
  • the distributed antenna of the present disclosure it is possible to obtain a distributed antenna that is easy to install.
  • the figure which shows the arrangement example of a plurality of antenna elements branch-connected to a transmission line The figure which shows the arrangement example of the antenna element 2 cascade connected to the transmission line.
  • the figure which shows the arrangement example of the signal processing circuit arranged on the transmission line The figure which shows the structural example of the band-shaped member 1 which fixed (laminated) the rigid part 1B to the flexible part 1A.
  • the figure which shows the structural example of the signal processing circuit The figure which shows the connection example of the amplifier module provided with a plurality of signal processing circuits, and a plurality of antenna elements connected to an amplifier module.
  • Diagram for explaining the communicable distance when a low noise amplifier is provided The figure which shows the configuration example which extends the communicable distance by providing a plurality of low noise amplifiers.
  • Diagram schematically showing a branch-connected distributed antenna The figure which shows typically the distributed antenna of a cascade connection type Enlarged view of a branch-connected distributed antenna Diagram for explaining the image when a branch connection type distributed antenna is installed on the ceiling surface in the station yard Diagram for explaining the image when a cascade connection type distributed antenna is installed on the ceiling surface in the station yard.
  • the figure for demonstrating the modification of the signal processing circuit The figure which shows the 1st modification of the band-shaped member
  • the figure which shows the 2nd deformation example of a band-shaped member Diagram showing a configuration example of a flexible module
  • the figure which shows the configuration example of the distributed antenna for a repeater The figure which shows the arrangement of the antenna and the pillar in this test
  • the figure which shows the structure of the antenna used in this test The figure which shows the antenna characteristic of the antenna used in this test
  • Graph showing the measurement result (S21) by this test for each pillar installation condition Top view of the flexible antenna according to the embodiment
  • FIG. 32 is a cross-sectional view of the flexible antenna and the XY plane shown in FIG.
  • the figure which shows the 1st modification of the antenna pattern in the flexible antenna which concerns on embodiment The figure which shows the 2nd modification of the antenna pattern in the flexible antenna which concerns on embodiment
  • the figure which shows the 3rd modification of the antenna pattern in the flexible antenna which concerns on embodiment The figure which shows the 1st example of the antenna characteristic of the flexible antenna which concerns on embodiment
  • the figure which shows the 1st example of the antenna characteristic of the flexible antenna which concerns on embodiment The figure which shows the 2nd example of the antenna characteristic of the flexible antenna which concerns on embodiment
  • the figure which shows the 2nd example of the antenna characteristic of the flexible antenna which concerns on embodiment The figure which shows the 3rd example of the antenna characteristic of the flexible antenna which concerns on embodiment.
  • the figure which shows the 3rd example of the antenna characteristic of the flexible antenna which concerns on embodiment The figure which shows the 3rd example of the antenna characteristic of the flexible antenna which concerns on embodiment.
  • the figure which shows the 4th example of the antenna characteristic of the flexible antenna which concerns on embodiment The figure which shows the 4th example of the antenna characteristic of the flexible antenna which concerns on embodiment.
  • the figure which shows the 5th example of the antenna characteristic of the flexible antenna which concerns on embodiment The figure which shows the 5th example of the antenna characteristic of the flexible antenna which concerns on embodiment
  • the figure which shows the 4th modification of the antenna pattern in the flexible antenna which concerns on embodiment The figure which shows the installation example to the pillar of the flexible antenna shown in FIG. 42
  • the figure which shows an example of the antenna characteristic of the flexible antenna shown in FIG. 42 The figure which shows an example of the antenna characteristic of the flexible antenna shown in FIG. 42.
  • FIG. 1 is a diagram showing a configuration example of a distributed antenna and a base station according to the embodiment of the present disclosure.
  • the distributed antenna system 300 shown in FIG. 1 includes a base station 10, a distributed antenna 20, and a communication line 30.
  • a base station 10 is connected to the distributed antenna 20 via a communication line 30.
  • the distributed antenna 20 is an antenna for a base station such as 5G.
  • the distributed antenna 20 includes a band-shaped member 1 which is a band-shaped dielectric, and a plurality of antenna elements 2 which are distributed and arranged on the band-shaped member 1. Further, the distributed antenna 20 is a transmission line 3 which is a line for signal transmission arranged on the band-shaped member 1 and connected to the communication line 30 and connecting a plurality of antenna elements 2, and the antenna element 2 and the base station 10. It is provided with a signal processing circuit 4 for processing signals transmitted between them.
  • the transmission line 3 may be composed of, for example, a substrate integrated waveguide, a so-called SIW (Substrate Integrated Waveguide), a strip line on a multilayer board, or the like.
  • the transmission line 3 is provided between the first surface and the second surface of the strip-shaped member 1. Details of the first surface and the second surface of the strip-shaped member 1 will be described later. Further, the transmission line 3 may have a structure (for example, a microstrip line) provided on either the first surface or the second surface.
  • the strip-shaped member 1 is, for example, a flexible substrate having a strip-shaped dielectric as a core material.
  • a flexible substrate is a substrate that has flexibility that allows it to be bent, can be repeatedly deformed with a weak force, and has the property of maintaining its electrical characteristics even when deformed.
  • the flexible substrate is thinner than a general rigid substrate and has excellent workability, so that it is possible to process a complicated shape.
  • the flexible substrate has, for example, a structure in which a conductor foil is bonded to a thin-film dielectric having a thickness of 12 ⁇ m to 500 ⁇ m.
  • As the dielectric a material called solder resist (resist / photoresist) or coverlay (Coverlay), polyimide, polyester or the like is used.
  • the resin that can be contained in the dielectric is, for example, a fluororesin such as a tetrafluoroethylene polymer.
  • a fluororesin such as a tetrafluoroethylene polymer.
  • the material of the conductor foil for example, gold, silver, copper, aluminum, platinum, chromium and the like are used.
  • the strip-shaped member 1 may be formed of a rigid substrate having a strip-shaped dielectric as a core material instead of the flexible substrate. Examples of the rigid substrate include a glass composite substrate, a glass epoxy substrate, an alumina substrate, a composite substrate and the like.
  • the strip-shaped member 1 may have a structure in which a plurality of dielectric layers are stacked.
  • the plurality of antenna elements 2 are electrically connected to the transmission line and are provided between the first surface and the second surface of the strip-shaped member 1. That is, the antenna element 2 may be embedded in the multilayer board. Further, the plurality of antenna elements 2 may be provided on the first surface or the second surface.
  • the antenna element 2 is suitable for transmitting and receiving radio waves in a high frequency band (for example, over 1 GHz to 300 GHz) such as microwaves and millimeter waves.
  • the antenna element 2 can be applied to, for example, a V2X communication system, a 5th generation mobile communication system (so-called 5G), an in-vehicle radar system, and the like, but the applicable system is not limited to these.
  • a V2X communication system for example, ITS (Intelligent Transport Systems) (5.89 GHz), for 5 G (28 GHz band, 3.6 to 6 GHz band, 39 GHz band), Wi-Fi (2.4 GHz, It may be for 5 GHz).
  • FIG. 2 is a diagram showing an arrangement example of a plurality of antenna elements branched and connected to a transmission line.
  • the strip-shaped member 1 shown in FIG. 2 includes a transmission line 3 which is a first transmission line, an antenna element 2 arranged on the transmission line 3 (for example, a tip portion of the transmission line 3), and 1 branching from the transmission line 3.
  • a transmission line 3a which is a plurality of second transmission lines, and an antenna element 2 arranged on the transmission line 3a (for example, the tip of the transmission line 3a) are provided.
  • Providing the antenna element 2 on a plurality of transmission lines 3a branched from one transmission line 3 in this way is referred to as a "branch connection type".
  • the "branch from transmission line 3" includes a simple branch (impedance matched) and a branch by a synthesizer such as a Wilkinson coupler or a distributor.
  • the branch connection type since a plurality of antenna elements 2 can be arranged around the transmission line 3 linearly wired to the band-shaped member 1, the degree of freedom in the arrangement layout of the antenna elements 2 is improved. Therefore, for example, the width of the band-shaped member 1 in the direction orthogonal to the extending direction of the band-shaped member 1 can be widened, and the plurality of antenna elements 2 can be arranged in a plane shape by utilizing the widened portion. Therefore, the branch connection type is particularly effective when expanding the coverage area in a planar manner.
  • FIG. 3 is a diagram showing an arrangement example of the antenna element 2 cascaded to the transmission line.
  • the strip-shaped member 1 shown in FIG. 3 is provided with a transmission line 3 and two antenna elements 2 arranged on the transmission line 3 (for example, a tip portion of the transmission line 3 and a portion other than the tip portion).
  • Providing a plurality of antenna elements 2 on one transmission line 3 in this way is referred to as a "cascade connection type".
  • the structure of the transmission line 3 can be simplified, and the width of the strip-shaped member 1 in the direction orthogonal to the extending direction of the transmission line 3 can be narrowed. Therefore, it is particularly effective when the coverage area is linearly expanded without making the user of the mobile terminal aware of the distributed antenna 20.
  • FIG. 4 is a diagram showing an arrangement example of a signal processing circuit arranged on a transmission line.
  • the band-shaped member 1 shown in FIG. 4 includes a transmission line 3, an antenna element 2 arranged on the transmission line 3 (for example, a tip portion of the transmission line 3), a transmission line 3a branching from the transmission line 3, and for example transmission.
  • one of the two signal processing circuits 4 is provided on the transmission line 3, and the other is provided at a position where the transmission line 3a branches from the transmission line 3.
  • the arrangement position of the signal processing circuit 4 is not limited to the position shown in the illustrated example, and may be, for example, an intermediate portion of the transmission line 3a, the vicinity of the transmission line 3, the vicinity of the transmission line 3a, or the like.
  • the number of signal processing circuits 4 is not limited to two, and can be appropriately changed depending on the application, specifications, and the like of the distributed antenna 20.
  • FIG. 4 illustrates a plurality of antenna elements 2 connected in a branch.
  • a signal processing circuit 4 having, for example, an AMP (Amplifier), a switch, a mixer, a DAC (Digital to Analog Converter), an ADC (Analog to Digital Converter), or the like, a signal processing circuit 4 is provided near these antenna elements 2. It can compensate for millimeter waves with large transmission loss. The same effect can be obtained when the signal processing circuit 4 having any (part) of AMP, switch, mixer, DAC, and ADC is provided near the antenna element 2. Details of the AMP, switch, mixer, DAC, ADC and the like will be described later.
  • FIG. 5 is a diagram showing a configuration example of a strip-shaped member 1 in which a rigid portion 1B is fixed (laminated) to a flexible portion 1A
  • FIG. 6 shows a flexible portion 1A and a rigid portion 1B provided at a position away from the flexible portion 1A. It is a figure which shows the structural example of the band-shaped member 1 connected by the connector 1C and the like.
  • the flexible portion 1A has, for example, a core portion 1b which is a plate-shaped dielectric layer and a conductive portion 1a which is a conductive member (for example, a copper anchor) provided on the upper and lower surfaces of the core portion 1b.
  • one conductive portion 1a is provided on the first surface 1b1 which is one surface of the core portion 1b, and the other conductive portion 1a is opposite to the first surface 1b1 of the core portion 1b. It is provided on the second surface 1b2 on the side.
  • the transmission line 3 is provided on any surface of the first surface 1b1 and the second surface 1b2, or is provided between the first surface 1b1 and the second surface 1b2.
  • the antenna element 2 is electrically connected to the transmission line 3 and is dispersedly arranged on any surface of the first surface 1b1 and the second surface 1b2.
  • the configuration of the flexible portion 1A is not limited to this, and may be, for example, a multilayer structure using two or more dielectric layers and two or more conductive members.
  • strip-shaped members 1 are composed of, for example, a rigid flexible substrate, and the rigid flexible substrate is a substrate that has the advantages of both a rigid substrate and a flexible substrate, such as ease of component mounting and three-dimensional arrangement by bending.
  • the rigid flexible substrate includes, for example, a rigid portion 1B which is a rigid core member on which parts and the like are mounted, and a flexible portion 1A which is a flexible member (flexible core member) having flexibility.
  • the strip-shaped member 1 of FIG. 5 has a structure in which a rigid portion 1B is laminated on a flexible portion 1A.
  • the size of the rigid portion 1B is preferably such that the flexibility of the flexible portion 1A is not impaired.
  • the rigid portion 1B is arranged between two separated flexible portions 1A, and the flexible portion 1A and the rigid portion 1B are electrically connected by using the connector 1C and the jumper wire 1D.
  • the jumper wire 1D may also serve as a part of the flexible portion 1A.
  • FIG. 7 is a diagram for explaining an example in which a plurality of antenna elements are distributed and arranged.
  • FIG. 7 shows a cross section of the building wall 100 and a distributed antenna 20 installed on the surface of the building wall 100.
  • the distributed antenna 20 has the flexible strip-shaped member 1
  • the strip-shaped member 1 can be provided along the surface of the convex portion 201 even if the convex portion 201 is on the surface of the wall 100 of the building.
  • the distributed antenna 20 may be installed at the boundary between the surface (flat surface 202) where the convex portion 201 is not provided and the convex portion 201 on the surface of the wall 100 of the building while minimizing the gap. it can.
  • the distributed antenna 20 may be installed on the wall 100 by hooking the distributed antenna 20 on a hook-shaped member protruding from the wall 100.
  • the distributed antenna 20 can be easily installed, and for example, the distributed antenna 20 is installed on the wall 100 of the building only during the period of the event held irregularly, and the distributed antenna 20 is removed after the event is completed. Can be done. Therefore, it is possible to use the distributed antenna 20 on demand without permanently installing the distributed antenna 20.
  • each antenna when installing a conventional distributed antenna at an event venue, etc., each antenna must be installed individually on a wall, etc., which complicates the installation work and also separates the transmission line connected to the antenna. Need to lay. Therefore, when using millimeter-wave band radio waves, a great deal of man-hours and labor are required to expand the coverage area, and even after the event is over, a lot of work time is required for work such as removing those antennas. I need to spend.
  • the distributed antenna 20 since a plurality of antenna elements 2, transmission lines 3, and the like are installed on the strip-shaped dielectric, the strip-shaped member 1 is attached to the wall 100 of the building and the like. The coverage area can be easily expanded simply by connecting to the base station 10. In addition, since the band-shaped member 1 can be collected simply by removing it, it is easy to restore the current state after the event.
  • FIG. 8 is a diagram showing a configuration example of the signal processing circuit 4.
  • Digital in the figure means a transmission line of a digital signal.
  • DC means, for example, wiring that supplies DC power.
  • the signal processing circuit 4 includes, for example, a DAC 401 that is a converter that converts a digital signal transmitted from a base station 10 into an analog signal and outputs it to a mixer 403, a local transmitter 402 that is a local signal source, and a local transmitter 402. It is provided with a mixer 403 which is an up-converter that up-converts a signal from DAC 401 by a local signal from.
  • the signal processing circuit 4 transmits the power amplifier 404, which is a signal amplifier that amplifies the signal output from the mixer 403 and inputs it to the antenna element 2 via the switch 405 and the directional coupler 406, and the signal processing circuit 4. It is provided with a switch 405 as a means for selecting reception and reception, and a directional coupler 406. Further, the signal processing circuit 4 amplifies the signal received by the antenna element 2 and communicates with the low noise amplifier 407 input to the mixer 409 via the switch 408 with a path for monitoring and feeding back the received / transmitted signal. It is provided with a switch 408 which is a means for selecting reception of a signal.
  • the signal processing circuit 4 is a mixer 409 which is a down converter that down-converts the signal from the low noise amplifier 407, and a converter that converts the analog signal transmitted from the mixer 409 into a digital signal and transmits it to, for example, the base station 10. It is equipped with a certain ADC 410.
  • the signal processing circuit 4 by providing the DAC 401 and the ADC 410, communication by a digital signal is possible between the base station 10 and the signal processing circuit 4, so that signal deterioration is suppressed. Therefore, the communicable distance from the base station 10 to the signal processing circuit 4 can be made relatively long, and a plurality of antenna elements 2 can be distributed and arranged at locations remote from the base station 10.
  • the signal transmitted between the base station 10 and the signal processing circuit 4 can be handled at a low frequency, so that the base station 10 and the signal processing circuit can be handled.
  • the transmission loss between 4 and 4 can be reduced. Therefore, the communicable distance from the base station 10 to the signal processing circuit 4 can be lengthened, and a plurality of antenna elements 2 can be distributed and arranged at locations remote from the base station 10.
  • the distance from the base station 10 to the spectator seats of the stadium is about several tens of meters to several hundred meters.
  • the communication line 30 can be routed to transmit a signal to the distributed antenna 20 laid in the spectator seats of the stadium.
  • wireless communication using, for example, millimeter waves becomes possible between a plurality of mobile terminals existing in the audience seats.
  • wireless communication can be performed even in a wide range by using the signal processing circuit 4. Compensate for the level and enable wireless communication.
  • the signal processing circuit 4 includes a mixer 403, a mixer 409, a DAC 401, an ADC 410, and the like.
  • the signal processing circuit 4 may be configured to include only the mixer 403 and the mixer 409, or may be configured to include only the DAC 401 and the ADC 410. Even in this case, it is possible to increase the communicable distance from the base station 10 to the signal processing circuit 4, and it is possible to obtain the effect that the configuration of the signal processing circuit 4 is simplified and the reliability is improved.
  • FIG. 9 is a diagram showing a connection example of an amplifier module provided with a plurality of signal processing circuits and a plurality of antenna elements connected to the amplifier module.
  • the amplifier module 400 shown in FIG. 9 includes, for example, four signal processing circuits 4, and each of these signal processing circuits 4 is connected to the antenna element 2 via a transmission line 3.
  • the number of signal processing circuits 4 included in the amplifier module 400 is not limited to four. Further, when the number of signal processing circuits 4 of the amplifier module 400 is two or more, the signal processing circuits 4 can be realized by arranging the signal processing circuits 4 in parallel as shown in FIG. Further, in FIG. 9, a module including a plurality of signal processing circuits 4 is referred to as an amplifier module 400, but the signal processing circuit 4 itself may be read as an amplifier module 400. Therefore, one signal processing circuit 4 may be referred to as an amplifier module 400.
  • FIG. 10 is a diagram showing an example in the case where the amplifier module is provided on the strip-shaped member.
  • the low noise amplifier 407 and the power amplifier 404 of the signal processing circuit 4 compensate for the signal transmission loss by the transmission line 3. Therefore, the distance from the amplifier module 400 to the plurality of antenna elements 2 can be significantly extended.
  • the amplifier module 400 shown in FIG. 10 may be configured to include, among the functions of the signal processing circuit 4, a low noise amplifier 407, a power amplifier 404, a switch 405, a directional coupler 406, and the like.
  • the amplifier module 400 When the amplifier module 400 is provided in a place other than the strip-shaped member 1, it is necessary to connect the amplifier module 400 to the antenna element 2, but according to the configuration example shown in FIG. 10, the work becomes unnecessary. Since the installation work of the distributed antenna 20 is facilitated and wiring connection mistakes by the operator do not occur, deterioration of communication quality can be suppressed. Further, according to the configuration example shown in FIG. 10, for example, since the low noise amplifier 407 can be placed in the vicinity of the antenna element 2, it is possible to suppress the deterioration of the signal due to the transmission loss from the antenna element 2 to the low noise amplifier 407.
  • the design of the distributed antenna 20 itself is improved, and the design of the building or the like is not impaired, and the distributed antenna 20 can be used. You can increase the number of places.
  • the amplifier module 400 in the band-shaped member 1, the heat generated by the low noise amplifier 407, the power amplifier 404, etc. is transferred to the transmission line 3 and the band-shaped member 1, so that the transmission line 3 and the band-shaped member 1 serve as a radiator. Function. Therefore, it is possible to prevent the amplifier module 400 from failing due to heat. Further, by providing the amplifier module 400 on the strip-shaped member 1, for example, even if the heat-dissipating member (fins or the like) is installed in an inconspicuous place on the wall surface, the transmission line 3 and the strip-shaped member 1 can be connected to the power amplifier 404 or the like. It can be used as a heat conduction path for transferring the generated heat to the heat dissipation member.
  • the strip-shaped member 1 may be provided with power wiring (for example, wiring for supplying DC power) for supplying power for driving the amplifier module 400 or the signal processing circuit 4.
  • power wiring for example, wiring for supplying DC power
  • FIG. 11 is a diagram for explaining a communicable distance when a low noise amplifier is not provided.
  • FIG. 12 is a diagram for explaining a communicable distance when a low noise amplifier is provided.
  • FIG. 13 is a diagram showing a configuration example in which the communicable distance is extended by providing a plurality of low noise amplifiers.
  • the horizontal axis of FIGS. 11, 12 and 13 represents the distance from the mobile terminal, and the vertical axis of FIGS. 11, 12 and 13 represents the electric power output from each device.
  • the dashed line represents the signal level and the solid line represents the noise level.
  • the transmission distance from the antenna element 2 as the receiving system to the mixer 409 is 0.8 m. Only to a certain extent can be secured. The same applies to the transmission system.
  • the low noise amplifier 407 when the low noise amplifier 407 is provided, as shown in FIG. 12, when the signal level is high and the distance from the mobile terminal to the antenna element 2 is 5 m, the antenna element 2 as the receiving system to the mixer 409 A transmission distance of about 1.35 m can be secured. Since the transmission system is the same, the transmission distance from the mixer 403 to the antenna element 2 can be extended. Further, as shown in FIG.
  • the communicable distance can be extended by providing a plurality of low noise amplifiers.
  • the signal processing circuit 4 may include only the low noise amplifier 407, or may include only the low noise amplifier 407 and the power amplifier 404.
  • the communication circuit 30 may be configured to further secure the transmission distance by using a low loss such as an optical fiber via a waveguide or an optical electric converter. When only the low noise amplifier 407 and the power amplifier 404 are provided, it is preferable to use a low-loss communication circuit because the communicable distance can be further extended.
  • FIG. 14 is a diagram schematically showing a branch connection type distributed antenna.
  • the branch-connected distributed antenna 20 has an advantage of high communication efficiency because it can select the optimum antenna element 2 and communicate with a nearby mobile terminal by using the switch function of the signal processing circuit 4. There is. When a synthesizer / distributor such as a Wilkinson coupler is used, the optimum antenna element 2 cannot be selected, but the configuration can be simplified.
  • FIG. 15 is a diagram schematically showing a cascade connection type distributed antenna. Since the cascade-connected distributed antenna 20 can communicate with a nearby mobile terminal without using the function of the switch of the signal processing circuit 4, it has an advantage that the configuration is simplified and the reliability is high.
  • FIG. 16 is an enlarged view of a branch-connected distributed antenna.
  • FIG. 17 is a diagram for explaining an image when a branch connection type distributed antenna is installed on the ceiling surface in the station yard. As shown in FIG. 17, for example, by arranging the branch connection type distributed antenna 20 on the wall surface forming the depression of the ceiling of the station platform, for example, at the tip of the transmission line 3 branched downward from the strip-shaped member 1.
  • the antenna element 2 can be provided.
  • the distance from the mobile terminal owned by the passenger waiting for the train at the platform of the station to the antenna element 2 can be made as close as possible, and the electric field strength is increased, so that the communication quality is improved.
  • FIG. 18 is a diagram for explaining an image when a cascade connection type distributed antenna is installed on the ceiling surface in the station yard.
  • the cascade connection type distributed antenna 20 on the wall surface forming the depression of the ceiling of the station platform, the width of the strip-shaped member 1 in the direction orthogonal to the extending direction of the transmission line 3 is narrowed. Therefore, the coverage area can be expanded without impairing the design of the station.
  • FIG. 19 is a diagram for explaining a modification of the signal processing circuit.
  • FIG. 19 shows an example in which the signal processing circuit 4 is composed of a plurality of circuit boards, and each circuit board is installed on the wall 100 of the building on the transmission line 3 or in the vicinity of the transmission line 3.
  • the number of the plurality of circuit boards is not limited to the illustrated example (3), and may be 2 or more.
  • FIG. 20 is a diagram showing a first modification of the strip-shaped member.
  • FIG. 20 shows, for example, a shield member 40 that covers the entire surface of the strip-shaped member 1 formed of a flexible substrate.
  • FIG. 21 is a diagram showing a second modification of the strip-shaped member.
  • FIG. 21 shows a shield member 40 that covers the entire surface of the strip-shaped member 1 that is a combination of a flexible core member and a rigid core member.
  • the shield member 40 is made of a metal or non-metal material having excellent thermal conductivity, which covers the entire surface of the band-shaped member 1 including the signal processing circuit 4.
  • the material of the shield member 40 is, for example, the high thermosetting resin compound shown in (1) to (4) below, a carbon sheet, solder, an Ag—Cu sintered body, or the like.
  • the material of the shield member 40 is not limited to these.
  • a highly thermally conductive resin compound in which a thermally conductive filler is added to the polymer component is polysiloxane (silicone polymer), polyacrylic, polyolefin or the like.
  • the method for producing the high thermal conductive resin compound is known as published in, for example, Japanese Patent No. 5089908 and Japanese Patent No. 5085050, and thus description thereof will be omitted.
  • a sheet-shaped carbon sheet formed of carbon fiber or a composite material of carbon fiber and carbon In recent years, carbon sheets have tended to be produced in large numbers using carbon fibers. Since the technology for mass production in a short time is being established, it can be classified as one of the materials having a relatively low thermal conductivity and being inexpensive. Further, the carbon sheet has a distributed antenna 20 that does not require a dedicated reflow furnace and does not require a process from heating to cooling even when the material unit price is higher than that of solder, Ag-Cu sintering, or the like. It has the effect of significantly reducing the time required to manufacture the solder.
  • solder lead-free solder, etc.
  • the material cost is low, so when mass-producing the distributed antenna 20, the heat is higher than that of the carbon sheet while suppressing the increase in the manufacturing cost of the distributed antenna 20 alone.
  • the conductivity can be increased.
  • the Ag—Cu sintered body is an expensive material because it contains Ag, but has high thermal conductivity and is suitable for heat dissipation of the signal processing circuit 4.
  • the shield member 40 is fixed to the band-shaped member 1 so as to be in close contact with the surfaces of the signal processing circuit 4 and the band-shaped member 1.
  • the shield member 40 is preferably made of, for example, a material having a thermal conductivity higher than that of the signal processing circuit 4.
  • the shield member 40 By providing the shield member 40, the heat generated in the signal processing circuit 4 is transmitted to the shield member 40 and radiated into the air from the surface of the shield member 40 (the surface opposite to the signal processing circuit 4 side).
  • the shield member 40 By providing the shield member 40 in this way, the heat conduction path generated in the signal processing circuit 4 increases, so that the possibility that the temperature of the signal processing circuit 4 exceeds the permissible temperature can be reduced. Further, since the shield structure covering the signal processing circuit 4 is formed, unnecessary radiation is reduced, the influence of noise on the equipment provided around the distributed antenna 20 can be reduced, and EMC (ElectroMagnetic Compatibility) performance is improved.
  • the shield member 40 covers the conductive portion 1a and the signal processing circuit 4 with the shield member 40, so that it becomes difficult for the conductive portion 1a and the electronic device to be capacitively coupled. , The influence on the antenna characteristics can be reduced.
  • FIG. 22 is a diagram showing a configuration example of the flexible module.
  • the flexible module is a module in which the shield member 40 is combined with the rigid flexible substrate described above.
  • the rigid flexible substrate includes, for example, a rigid core member 1B which is a rigid core member for mounting parts and the like, and a flexible portion 1A which is a bendable flexible core member, and is flexible with the rigid portion 1B.
  • the shield member 40 is provided so as to cover the entire portion 1A.
  • the rigid flexible board may be provided with a power amplifier 404, a switch 405, and the like that form the signal processing circuit 4.
  • the signal processing circuit 4 covers the shield member 40 to improve the EMC performance, and the distributed antenna 20 does not impair the design of the building or the like. You can increase the available locations of.
  • the adhesive portion 60 may be used when the flexible module is permanently installed, or when the flexible module is temporarily installed, a binding band or the like is used. You may use it.
  • FIG. 23 is a diagram showing a configuration example of a distributed antenna for a repeater.
  • the distributed antenna 20 shown in FIG. 23 includes a receiving antenna 51 that receives radio waves transmitted from the transmitting antenna 50 connected to the base station 10.
  • the antenna element 2 installed in a place different from the place where the receiving antenna 51 is arranged on the surface of the wall 100 causes the radio wave received by the receiving antenna 51 to be, for example, the direction of arrival of the radio wave to the receiving antenna 51. It relays (re-radiates) in a different direction from.
  • the distributed antenna according to the present embodiment is connected to the band-shaped member which is a band-shaped dielectric, the transmission line provided in the band-shaped member, and distributed in the band-shaped member. It is provided with a plurality of antenna elements.
  • the band-shaped member which is a band-shaped dielectric
  • the transmission line provided in the band-shaped member and distributed in the band-shaped member.
  • It is provided with a plurality of antenna elements.
  • a plurality of antennas had to be installed on a specific structure in the stadium, for example, a roof existing above the spectators' seats or a pillar supporting the roof, and a plurality of mobile terminals and a plurality of antennas had to be installed.
  • a strip-shaped member can be arranged so as to bridge the upper space of the spectator seats of the stadium, or can be laid on the slope of the spectator seats. The coverage area can be expanded without affecting the.
  • the distributed antenna according to the present embodiment is provided with a signal processing circuit including a power amplifier 404, a low noise amplifier 407, and the like, so that the wireless communication level can be compensated even if the distance from the base station 10 becomes long.
  • FIG. 24 is a diagram showing the arrangement of the antennas 80A and 80B and the pillar 70 in this test.
  • the inventors of the present invention arranged the conventional antenna 80A and the conventional antenna 80B so as to face each other.
  • the inventors of the present invention set the separation distance between the antenna 80A and the antenna 80B to 500 mm.
  • the inventors of the present invention installed a columnar pillar 70 as an example of an obstacle at an intermediate position between the antenna 80A and the antenna 80B. Then, the inventors of the present invention tested the influence of the presence or absence of the pillar 70 and the diameter of the pillar 70 on the propagation characteristics of the radio wave transmitted from the antenna 80A to the antenna 80B.
  • FIG. 25 is a diagram showing the configurations of the antennas 80A and 80B used in this test.
  • 28 GHz band patch antennas were used as the antennas 80A and 80B.
  • the antennas 80A and 80B have a substrate 82 and an antenna element 84.
  • the shape of the substrate 82 was square, and the length of one side of the substrate 82 was 10.0 mm.
  • the shape of the antenna element 84 was square, and the length of one side of the antenna element 84 was 2.6 mm.
  • FIG. 26 is a diagram showing the antenna characteristics (XY surface directivity) of the antennas 80A and 80B used in this test. As shown in FIG. 26, the antennas 80A and 80B have strong directivity in the X-axis direction (perpendicular direction of the surface of the antenna element 84). Further, the antennas 80A and 80B can obtain 5.5 dBi in the X-axis direction as the maximum gain in the 28 GHz band.
  • FIG. 27 is a table showing the measurement results (S21) by this test for each installation condition of the pillar 70.
  • FIG. 28 is a graph showing the measurement results (S21) in this test for each installation condition of the pillar 70.
  • the propagation is propagated from the antenna 80A to the antenna 80B in the case where the pillar 70 is not installed and the case where the diameter of the pillar 70 is 50 mm, 100 mm, and 200 mm, respectively.
  • the transmission coefficient (S21) of the radio wave was measured.
  • the inventors of the present invention have invented the flexible antenna 20A described below for the purpose of allowing radio waves to reach each of a plurality of directions around an obstacle such as a pillar more reliably.
  • the flexible antenna 20A can be installed on a pillar 70 (an example of a "columnar installation object") such as a traffic light, a street light, or a utility pole.
  • the flexible antenna 20A can be used as, for example, a 5G antenna for a base station.
  • FIG. 29 is a plan view of the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A includes a flexible substrate 26 and a plurality of antennas ANT1 to ANT8.
  • the flexible substrate 26 is a flexible sheet-like member.
  • the flexible substrate 26 has a horizontally long rectangular shape in a plan view.
  • the plurality of antennas ANT1 to ANT8 are arranged side by side at equal intervals in the horizontal direction HD on the surface of the flexible substrate 26.
  • Each of the plurality of antennas ANT1 to ANT8 has a vertically polarized wave antenna 22A and a horizontally polarized wave antenna 22B.
  • the vertically polarized antenna 22A has a plurality of (8 in the example shown in FIG. 29) antenna elements 2 arranged side by side in the vertical VD, and a transmission line 3 extending linearly in the vertical VD. ..
  • Each of the plurality of antenna elements 2 included in the vertically polarized wave antenna 22A has a branch path of the transmission line 3 connected at a right angle to the lower side thereof.
  • the horizontally polarized antenna 22B has a plurality of (8 in the example shown in FIG. 29) antenna elements 2 arranged side by side in the vertical VD. It has a transmission line 3 extending linearly in the vertical direction VD. Each of the plurality of antenna elements 2 included in the horizontally polarized wave antenna 22B has a branch path of the transmission line 3 connected at a right angle to the left side thereof.
  • Each of the plurality of vertically polarized wave antennas 22A and the plurality of horizontally polarized wave antennas 22B has independent connection ports at the lower end of the transmission line 3.
  • the signal processing circuit 4 connected to the flexible antenna 20A independently transmits radio waves to each of the plurality of vertically polarized antennas 22A and the plurality of horizontally polarized antennas 22B via the plurality of connection ports. Can be used for radiation.
  • the straight portion extending in the vertical direction VD of the transmission line 3 has a shape in which the band width gradually narrows toward the tip.
  • the vertically polarized wave antenna 22A and the horizontally polarized wave antenna 22B equalize the energy supplied from the connection port of the transmission line 3 to each of the plurality of antenna elements 2 connected to the transmission line 3. Can be distributed to.
  • FIG. 30 is a diagram showing an example of a cross-sectional configuration of the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A has a flexible substrate 26, an antenna element 24, a transmission line 25, and a ground layer 27.
  • the flexible substrate 26 is a flexible, resin-made, thin film-like member.
  • the thickness of the flexible substrate 26 is 1 ⁇ m to 300 ⁇ m.
  • the flexible substrate 26 includes fluorine, COP (CycloOlefin Polymer), PET (Polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, Peak (polyetheretherketone), LCP (Liquid Crystal Polymer), and other composite materials. And other resin materials are used.
  • the antenna element 24 and the transmission line 25 are formed in a thin film on the upper surface of the flexible substrate 26.
  • the thickness of the antenna element 24 and the transmission line 25 is 1 nm to 32 ⁇ m.
  • the antenna element 24 and the transmission line 25 are formed by using a conductive material such as copper.
  • the ground layer 27 is formed in a thin film on the lower surface of the flexible substrate 26.
  • the thickness of the ground layer 27 is 1 nm to 32 ⁇ m.
  • the ground layer 27 is formed by using a conductive material such as copper.
  • FIG. 31 is a diagram showing another example of the cross-sectional configuration of the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A has a first flexible substrate 26A and a second flexible substrate 26B which are overlapped with each other instead of the flexible substrate 26 shown in FIG.
  • the antenna element 24 is formed on the upper surface of the first flexible substrate 26A. Further, in the example shown in FIG. 31, the transmission line 25 is formed between the first flexible substrate 26A and the second flexible substrate 26B. Further, in the example shown in FIG. 31, the ground layer 27 is formed on the lower surface of the second flexible substrate 26B.
  • FIG. 32 is a diagram showing an example of installation of the flexible antenna 20A according to the embodiment on the pillar 70.
  • FIG. 33 is a cross-sectional view taken along the line XY of the flexible antenna 20A and the pillar 70 shown in FIG.
  • the flexible antenna 20A since the flexible antenna 20A has flexibility, it can be installed by being wound around the outer peripheral surface 70A of the pillar 70. As a result, the flexible antenna 20A is vertically polarized and horizontally polarized in each of the plurality of directions (8 directions in the case of the configuration shown in FIG. 29) centered on the pillar 70 by each of the plurality of antennas ANT1 to ANT8. Can radiate each of them.
  • the plurality of antennas ANT1 to ANT8 are arranged on the outer peripheral surface 70A of the pillar 70 at intervals of 45 °. Therefore, the flexible antenna 20A can radiate vertically polarized waves and horizontally polarized waves in each of the eight directions at 45 ° intervals centered on the pillar 70 by each of the plurality of antennas ANT1 to ANT8. it can.
  • the radio waves can be more reliably reached in each of the plurality of directions around the pillar 70.
  • each of the plurality of antennas ANT1 to ANT8 has an independent connection port. Therefore, the flexible antenna 20A according to the embodiment radiates radio waves only in a necessary direction by driving (powering) a part of a plurality of antennas ANT1 to ANT8 according to the purpose of use, installation location, and the like. Can be done.
  • the flexible antenna 20A according to the embodiment is in the form of a thin sheet having flexibility, and can be flexibly deformed along the installation surface. Therefore, the flexible antenna 20A according to the embodiment is not limited to columnar columns, but is applied to various other columnar installation objects (for example, prisms, wall surfaces bent at right angles, wall surfaces having an uneven shape, etc.). , It is possible to install the structure so that it does not protrude from the installation surface of the structure.
  • the flexible antenna 20A is fixed to the outer peripheral surface 70A of the pillar 70 by an arbitrary fixing method (for example, adhesive, double-sided tape, etc.). Further, the flexible antenna 20A may be fixed to the outer peripheral surface 70A of the pillar 70 by closing one end and the other end to form an annular shape.
  • an arbitrary fixing method for example, adhesive, double-sided tape, etc.
  • the surface of the flexible antenna 20A is protected from rainwater, ultraviolet rays, etc. by a protective film, a protective cover, etc. before it is installed on the outer peripheral surface 70A of the pillar 70 or after it is installed on the outer peripheral surface 70A of the pillar 70. May be done.
  • the width of the flexible antenna 20A has a length corresponding to the circumferential length of the outer peripheral surface of the pillar 70.
  • the flexible antenna 20A when the flexible antenna 20A is installed on the pillar 70, one end and the other end of the flexible antenna 20A in the horizontal direction may overlap each other or may be slightly separated from each other.
  • a plurality of antennas are arranged at a predetermined angle (360 ° ⁇ number of antennas) intervals about the pillar 70.
  • FIG. 34 is a diagram showing a first modification of the antenna pattern in the flexible antenna 20A according to the embodiment.
  • FIG. 35 is a diagram showing a second modification of the antenna pattern in the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A has four antennas arranged side by side at equal intervals in the horizontal direction HD on the surface of the flexible substrate 26.
  • Each of the four antennas has three antenna elements 2 arranged side by side in the vertical VD.
  • the three antenna elements 2 are connected in series by a transmission line 3 extending linearly in the vertical VD.
  • each of the four antennas makes one direction with respect to each of the four directions centered on the pillar 70.
  • Vertically polarized light can be radiated by three antenna elements 2 per unit.
  • the flexible antenna 20A shown in FIGS. 34 and 35 is installed on the outer peripheral surface 70A of a pillar 70 having a predetermined diameter, four antennas may be arranged at 90 ° intervals with respect to the outer peripheral surface 70A. it can.
  • the flexible antenna 20A shown in FIGS. 34 and 35 can radiate vertically polarized light in each of the four directions at 90 ° intervals centered on the pillar 70 by each of the four antennas.
  • each of the four antennas has an independent connection port. Therefore, the flexible antenna 20A shown in FIG. 35 can drive each of the four antennas individually, that is, can radiate radio waves only in a specific direction, if necessary. Further, the flexible antenna 20A shown in FIG. 35 can transmit a plurality of different types of signals simultaneously or with a time lag by the four antennas. For example, the flexible antenna 20A shown in FIG. 35 can also be used for MIMO (multiple-input and multiple-output), beamforming, and the like.
  • MIMO multiple-input and multiple-output
  • the flexible antenna 20A shown in FIGS. 34 and 35 is vertical by adjusting the interval between the vertical VDs of the antenna elements 2 arranged side by side in the vertical direction VD and adjusting the phase in which the antenna element 2 is fed.
  • the direction of the beam in the direction VD (elevation / depression angle direction) can be controlled.
  • the antenna elements 2 are arranged so that the vertical VD intervals of the antenna elements 2 are approximately one wavelength in the electrical length of the transmission line 3, that is, they are in phase with each other, the antenna elements 2 are arranged at 0 ° in the elevation / depression angle direction.
  • the direction of the beam can be controlled.
  • the beam direction is elevated. It can be controlled (up-tilted) in the direction.
  • the beam direction is depressed. It can be controlled in the direction (down tilt).
  • the vertical VD interval is 0.96 wavelength or more and 1.04 wavelength or less in terms of the electrical length of the transmission line 3.
  • the vertical VD interval is 1.05 wavelength or more and 1.50 wavelength or less in terms of the electrical length of the transmission line 3.
  • the vertical VD interval is 0.50 wavelength or more and 0.95 wavelength or less in terms of the electrical length of the transmission line 3.
  • the flexible antenna 20A shown in FIG. 34 has one connection port connected to each of the four antennas. Therefore, the flexible antenna 20A shown in FIG. 34 can drive each of the four antennas at the same time by supplying a drive signal from the signal processing circuit 4 to one connection port, that is, in four directions. Radio waves can be emitted to each at the same time.
  • FIG. 36 is a diagram showing a third modification of the antenna pattern in the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A has four antenna elements 2 arranged side by side in the vertical direction VD at each of the four positions in the horizontal direction HD on the surface of the flexible substrate 26. That is, the flexible antenna 20A shown in FIG. 36 has 16 antenna elements 2 arranged in a 4 ⁇ 4 matrix on the surface of the flexible substrate 26. Further, in the flexible antenna 20A shown in FIG. 36, an independent transmission line 3 is provided for each of the 16 antenna elements 2. Each of the 16 antenna elements 2 is connected to the left side or the right side at a right angle to the end of the transmission line 3 bent at a right angle to the horizontal HD.
  • the flexible antenna 20A shown in FIG. 36 when the flexible antenna 20A shown in FIG. 36 is installed on the outer peripheral surface 70A of a pillar 70 having a predetermined diameter, four antenna elements 2 are arranged at 90 ° intervals with respect to the outer peripheral surface 70A. Can be done.
  • the flexible antenna 20A shown in FIG. 36 is horizontally polarized using a part or all of the four antenna elements 2 in each direction with respect to each of the four directions at 90 ° intervals centered on the pillar 70. Can be radiated.
  • each of the 16 antenna elements 2 has an independent connection port. Therefore, the flexible antenna 20A shown in FIG. 36 can individually drive each of the 16 antenna elements 2 as needed. Thereby, for example, in the flexible antenna 20A shown in FIG. 36, the beamforming direction can be freely controlled in each of the vertical direction and the horizontal direction by an arbitrary plurality of antenna elements 2. Further, for example, the flexible antenna 20A shown in FIG. 36 can transmit a plurality of different types of signals simultaneously or with a time lag by an arbitrary plurality of antenna elements 2.
  • FIG. 37 is a diagram showing a first example of antenna characteristics of the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A (length 100 mm, width 430 mm) according to the embodiment is installed on the outer peripheral surface 70A of the pillar 70 (diameter 140 mm), and the flexible antenna 20A is provided with eight antennas at intervals of 45 °. It represents the antenna characteristics of each of the eight antennas on the XY plane in the 28 GHz band.
  • FIG. 37A shows the antenna characteristics of the vertically polarized wave antenna 22A.
  • FIG. 37B shows the antenna characteristics of the horizontally polarized wave antenna 22B.
  • the eight antennas provide a sufficient gain (maximum gain of 12.5 dBi) in each of the eight directions having a 45 ° interval around the pillar 70. Can radiate vertically polarized light with.
  • the eight antennas provide a sufficient gain (maximum gain 10.) In each of the eight directions having a 45 ° interval around the pillar 70. It can emit horizontally polarized waves with 4 dBi).
  • FIG. 38 is a diagram showing a second example of the antenna characteristics of the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A (length 100 mm, width 430 mm) according to the embodiment is installed on the outer peripheral surface 70A of the pillar 70 (diameter 140 mm), and the flexible antenna 20A is provided with six antennas at intervals of 60 °. It represents the antenna characteristics of each of the six antennas on the XY plane in the 28 GHz band.
  • FIG. 38A shows the antenna characteristics of the vertically polarized wave antenna 22A.
  • FIG. 38B shows the antenna characteristics of the horizontally polarized wave antenna 22B.
  • the six antennas provide a sufficient gain (maximum gain of 12.5 dBi) in each of the six directions having a 60 ° interval around the pillar 70. Can radiate vertically polarized light with.
  • the six antennas provide a sufficient gain (maximum gain 10.) In each of the six directions having a 60 ° interval around the pillar 70. It can emit horizontally polarized waves with 4 dBi).
  • FIG. 39 is a diagram showing a third example of the antenna characteristics of the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A (length 100 mm, width 430 mm) according to the embodiment is installed on the outer peripheral surface 70A of the pillar 70 (diameter 140 mm), and the flexible antenna 20A is provided with four antennas at 90 ° intervals.
  • the antenna characteristics in the 28 GHz band of each of the four antennas on the XY plane are represented.
  • FIG. 39A shows the antenna characteristics of the vertically polarized wave antenna 22A.
  • FIG. 39B shows the antenna characteristics of the horizontally polarized wave antenna 22B.
  • the four antennas provide a sufficient gain (maximum gain of 12.5 dBi) in each of the four directions having a 90 ° interval around the pillar 70. Can radiate vertically polarized light with.
  • the four antennas provide a sufficient gain (maximum gain 10.) In each of the four directions having a 90 ° interval around the pillar 70. It can emit horizontally polarized waves with 4 dBi).
  • FIG. 40 is a diagram showing a fourth example of antenna characteristics of the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A (length 100 mm, width 430 mm) according to the embodiment is installed on the outer peripheral surface 70A of the pillar 70 (diameter 140 mm), and the flexible antenna 20A is provided with three antennas at 120 ° intervals. In this case, it represents the antenna characteristics in the 28 GHz band of each of the three antennas on the XY plane.
  • FIG. 40A shows the antenna characteristics of the vertically polarized wave antenna 22A.
  • FIG. 40B shows the antenna characteristics of the horizontally polarized wave antenna 22B.
  • the three antennas provide a sufficient gain (maximum gain of 12.5 dBi) in each of the three directions having a 120 ° interval around the pillar 70. Can radiate vertically polarized light with.
  • the three antennas provide a sufficient gain (maximum gain 10.) In each of the three directions having a 120 ° interval around the pillar 70. It can emit horizontally polarized waves with 4 dBi).
  • FIG. 41 is a diagram showing a fifth example of antenna characteristics of the flexible antenna 20A according to the embodiment.
  • the flexible antenna 20A (length 100 mm, width 430 mm) according to the embodiment is installed on the outer peripheral surface 70A of the pillar 70 (diameter 140 mm), and the flexible antenna 20A is provided with two antennas at 180 ° intervals. In this case, it represents the antenna characteristics of each of the two antennas on the XY plane in the 28 GHz band.
  • FIG. 41A shows the antenna characteristics of the vertically polarized wave antenna 22A.
  • FIG. 41B shows the antenna characteristics of the horizontally polarized wave antenna 22B.
  • the two antennas provide a sufficient gain (maximum gain of 12.5 dBi) in each of the two directions having a 180 ° interval around the pillar 70. Can radiate vertically polarized light with.
  • the two antennas provide a sufficient gain (maximum gain 10. It can emit horizontally polarized waves with 4 dBi).
  • the flexible antenna 20A preferably has at least two antennas and has three or more antennas in order to cover all directions around the pillar 70. Is more preferable.
  • FIG. 42 is a diagram showing a fourth modification of the antenna pattern in the flexible antenna 20A according to the embodiment.
  • FIG. 43 is a diagram showing an example of installation of the flexible antenna 20A shown in FIG. 42 on the pillar 70.
  • the flexible antenna 20A has one antenna ANT1 extending in the horizontal direction HD on the surface of the flexible substrate 26.
  • the antenna ANT1 has eight antenna elements 2 arranged side by side in the horizontal direction HD.
  • the eight antenna elements 2 are connected in series by a transmission line 3 extending linearly in the horizontal direction HD.
  • each of the eight antenna elements 2 causes the pillar 70 to be the center 8 Horizontally polarized waves can be emitted in each of the two directions.
  • the flexible antenna 20A shown in FIGS. 42 and 43 has one connection port connected to each of the eight antenna elements 2. Therefore, the flexible antenna 20A shown in FIGS. 42 and 43 can drive each of the eight antenna elements 2 at the same time by supplying a drive signal from the signal processing circuit 4 to one connection port, that is, , Can emit horizontally polarized light in each of the eight directions at the same time.
  • FIG. 44 is a diagram showing an example of antenna characteristics of the flexible antenna 20A shown in FIG. 42.
  • FIG. 44A shows the antenna characteristics of the flexible antenna 20A (length 15 mm, width 60 mm) shown in FIG. 42 in the 28 GHz band of the antenna ANT1 on the YX plane.
  • FIG. 44B shows the antenna characteristics of the antenna ANT1 on the YX surface in the 28 GHz band when the flexible antenna 20A (length 15 mm, width 60 mm) shown in FIG. 42 is installed on the outer peripheral surface 70A of the pillar 70 (diameter 25 mm). There is.
  • the antenna ANT1 having the eight antenna elements 2 has a sufficient gain (maximum gain 1 dBi) in each of the eight directions centered on the pillar 70. Can radiate horizontally polarized waves with.
  • the configuration shown in the above-described embodiment shows an example of the contents of the present disclosure, can be combined with another known technique, and is one of the configurations as long as it does not deviate from the gist of the present disclosure. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

分散アンテナ20は、板状の誘電体と誘電体の一方の面である第1面と第1面とは反対側の第2面とを有し、帯状に伸びる帯状部材1と、第1面と第2面との何れかの面に設けられ、又は前記第1面と前記第2面との間に設けられる伝送線路3と、伝送線路3に電気的に接続されると共に第1面と第2面との何れかの面に分散配置され、又は前記伝送線路に電気的に接続されると共に前記第1面と前記第2面との間に分散配置される複数のアンテナ素子2とを備える。

Description

分散アンテナ及び分散アンテナシステム
 本開示は分散アンテナ及び分散アンテナシステムに関する。
 5G無線基地局などのアンテナに利用されるミリ波帯は電波の直進性が高いため、アンテナを一か所に集中的に設置した場合、安定的な通信が難しくなる。また装置重量、装置寸法などによっては無線基地局の設置に制限が生じるため、カバレッジエリアを広げるために無線基地局の設置数を増やすことが困難な場合がある。
 特許文献1の分散アンテナシステムによれば、高周波信号を生成するベースバンド部と、当該ベースバンド部と分離して電波不感地帯などに配置される複数のアンテナとを備えることにより、ビル構内、地下街、工場内などの電波不感地帯における安定的な無線通信を実現しながら、無線基地局の設置に制限されることなくカバレッジエリアを広げることができる。
特開2018-067855号公報
 しかしながら従来技術では、例えば建物の壁などに複数のアンテナを設置する際、個々のアンテナを壁などに1つずつ取り付けるなどの作業が発生する。さらに、これらのアンテナに接続される伝送線路なども壁などに這わせて固定するなどの作業も必要になる。従って、アンテナの設置に伴う作業が繁雑になるという課題があった。
 本開示は、上記に鑑みてなされたものであって、設置が容易な分散アンテナを得ることを目的とする。
 上述した課題を解決し、目的を達成するため、本開示に係る分散アンテナは、板状の誘電体と前記誘電体の一方の面である第1面と前記第1面とは反対側の第2面とを有し、帯状に伸びる帯状部材と、前記第1面と前記第2面との何れかの面に設けられ、又は前記第1面と前記第2面との間に設けられる伝送線路と、前記伝送線路に電気的に接続されると共に前記第1面と前記第2面との何れかの面に分散配置され、又は前記伝送線路に電気的に接続されると共に前記第1面と前記第2面との間に分散配置される複数のアンテナ素子とを備える。
 本開示の分散アンテナによれば、設置が容易な分散アンテナを得ることができるという効果を奏する。
本開示の実施の形態に係る分散アンテナと基地局の構成例を示す図 伝送線路にブランチ接続された複数のアンテナ素子の配置例を示す図 伝送線路にカスケード接続されたアンテナ素子2の配置例を示す図 伝送線路上に配置された信号処理回路の配置例を示す図 フレキシブル部1Aにリジット部1Bを固定(積層)した帯状部材1の構成例を示す図 フレキシブル部1Aとフレキシブル部1Aから離れた位置に設けられるリジット部1Bとをコネクタ1Cなどで接続した帯状部材1の構成例を示す図 複数のアンテナ素子を分散配置する例を説明するための図 信号処理回路の構成例を示す図 信号処理回路を複数備えたアンプモジュールと、アンプモジュールに接続される複数のアンテナ素子との接続例を示す図 帯状部材にアンプモジュールを設けた場合の例を示す図 ローノイズアンプを設けていない場合の通信可能距離を説明するための図 ローノイズアンプを設けている場合の通信可能距離を説明するための図 複数のローノイズアンプを設けることにより通信可能距離を伸ばす構成例を示す図 ブランチ接続形の分散アンテナを模式的に示す図 カスケード接続形の分散アンテナを模式的に示す図 ブランチ接続形の分散アンテナの拡大図 ブランチ接続形の分散アンテナを駅構内の天井面に設置した場合のイメージを説明するための図 カスケード接続形の分散アンテナを駅構内の天井面に設置した場合のイメージを説明するための図 信号処理回路の変形例を説明するための図 帯状部材の第1変形例を示す図 帯状部材の第2変形例を示す図 フレキシブルモジュールの構成例を示す図 リピータ用の分散アンテナの構成例を示す図 本試験におけるアンテナおよび柱の配置を示す図 本試験に用いたアンテナの構成を示す図 本試験に用いたアンテナのアンテナ特性を示す図 本試験による測定結果(S21)を柱の設置条件毎に示す表 本試験による測定結果(S21)を柱の設置条件毎に示すグラフ 実施形態に係るフレキシブルアンテナの平面図 実施形態に係るフレキシブルアンテナの断面構成の一例を示す図 実施形態に係るフレキシブルアンテナの断面構成の他の一例を示す図 実施形態に係るフレキシブルアンテナの柱への設置例を示す図 図32に示すフレキシブルアンテナおよびのXY面による断面図 実施形態に係るフレキシブルアンテナにおけるアンテナパターンの第1変形例を示す図 実施形態に係るフレキシブルアンテナにおけるアンテナパターンの第2変形例を示す図 実施形態に係るフレキシブルアンテナにおけるアンテナパターンの第3変形例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第1例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第1例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第2例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第2例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第3例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第3例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第4例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第4例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第5例を示す図 実施形態に係るフレキシブルアンテナのアンテナ特性の第5例を示す図 実施形態に係るフレキシブルアンテナにおけるアンテナパターンの第4変形例を示す図 図42に示すフレキシブルアンテナの柱への設置例を示す図 図42に示すフレキシブルアンテナのアンテナ特性の一例を示す図 図42に示すフレキシブルアンテナのアンテナ特性の一例を示す図
 以下に、本開示の実施の形態に係る分散アンテナを図面に基づいて詳細に説明する。以下、図面を参照して、本開示に係る実施形態について説明する。
 図1は本開示の実施の形態に係る分散アンテナと基地局の構成例を示す図である。図1に示す分散アンテナシステム300は、基地局10、分散アンテナ20及び通信回線30を備える。分散アンテナ20には、通信回線30を介して、例えば基地局10が接続される。分散アンテナ20は例えば5Gなどの基地局用のアンテナである。
 分散アンテナ20は、帯状の誘電体である帯状部材1と、帯状部材1上に分散配置される複数のアンテナ素子2とを備える。また、分散アンテナ20は、帯状部材1に配置され通信回線30に接続されると共に複数のアンテナ素子2を結合する信号伝送用の線路である伝送線路3と、アンテナ素子2と基地局10との間で伝送される信号を処理するための信号処理回路4とを備える。伝送線路3は、例えば基板集積型導波管いわゆるSIW(Substrate Integrated Waveguide)、多層基板におけるストリップラインなどで構成してもよい。この場合、伝送線路3は、帯状部材1の第1面と第2面との間に設けられる。帯状部材1の第1面と第2面の詳細は後述する。また、伝送線路3は、第1面と第2面のどちらかに設けられる構造(例えばマイクロストリップライン)としてもよい。
 帯状部材1は、例えば、帯状の誘電体をコア材として有するフレキシブル基板である。フレキシブル基板は、曲げることが可能な柔軟性を有し、弱い力で繰り返し変形させることが可能であり、変形した場合にもその電気的特性を維持する特性をもつ基板である。フレキシブル基板は、一般的なリジット基板と比較して薄く、加工性に優れるため、複雑な形状加工が可能である。フレキシブル基板は、例えば、厚みが12μmから500μmの薄膜状の誘電体に導体箔が張り合わされた構造である。誘電体には、ソルダーレジスト(レジスト/フォトレジスト)、カバーレイ(Coverlay)と呼ばれる材料で、ポリイミド、ポリエステルなどが使用される。また、誘電体が樹脂層を含む場合(つまり、誘電体の一部又は全部が樹脂層である場合)、その樹脂層が含有可能な樹脂として、例えば、テトラフルオロエチレン系ポリマー等のフッ素樹脂などがある。導体箔の材料には、例えば、金、銀、銅、アルミニウム、白金、クロムなどが用いられる。なお、帯状部材1は、フレキシブル基板に代えて、帯状の誘電体をコア材として有するリジット基板で構成してもよい。リジット基板としては、例えば、ガラスコンポジット基板、ガラスエポキシ基板、アルミナ基板、コンポジット基板などが挙げられる。帯状部材1は複数の誘電体層を積み重ねた構造のものでもよい。このとき、複数のアンテナ素子2は、伝送線路に電気的に接続されると共に、帯状部材1の第1面と第2面との間に設けられる。すなわち、多層基板の中にアンテナ素子2を埋め込む形で設けてもよい。また複数のアンテナ素子2は、第1面又は第2面に設けられてもよい。
 アンテナ素子2は、マイクロ波やミリ波等の高周波帯(例えば、1GHz超~300GHz)の電波の送受に好適である。アンテナ素子2は、例えば、V2X通信システム、第5世代移動通信システム(いわゆる、5G)、車載レーダーシステムなどに適用可能であるが、適用可能なシステムはこれらに限られない。周波数域としては、例えばITS(Intelligent Transport Systems:高度道路交通システム)(5.89GHz)用や、5G(28GHz帯、3.6から6GHz帯、39GHz帯)用、Wi-Fi(2.4GHz、5GHz)用であってよい。
 次に図2から図4を参照して、帯状部材1へのアンテナ素子2などの配置例について説明する。
 図2は伝送線路にブランチ接続された複数のアンテナ素子の配置例を示す図である。図2に示す帯状部材1には、第1伝送線路である伝送線路3と、伝送線路3上(例えば伝送線路3の先端部分)に配置されるアンテナ素子2と、伝送線路3から分岐する1又は複数の第2伝送線路である伝送線路3aと、伝送線路3a上(例えば伝送線路3aの先端)に配置されるアンテナ素子2とが設けられている。このように、1つの伝送線路3から枝分かれした複数の伝送線路3aにアンテナ素子2を設けることを、「ブランチ接続形」と称する。「伝送線路3から分岐」には、(インピーダンス整合された)単純な分岐、ウィルキンソンカプラなどの合成器や分配器などによる分岐を含む。
 ブランチ接続形によれば、帯状部材1に直線状に配線される伝送線路3の周囲に複数のアンテナ素子2を配置できるため、アンテナ素子2の配置レイアウトの自由度が向上する。そのため、例えば、帯状部材1の延伸方向と直交する方向における帯状部材1の幅を広げて、複数のアンテナ素子2を、その広げた部分を利用して面状に配置できる。従って、ブランチ接続形は、カバレッジエリアを面状に広げる場合に特に有効である。
 図3は伝送線路にカスケード接続されたアンテナ素子2の配置例を示す図である。図3に示す帯状部材1には、伝送線路3と、伝送線路3上(例えば伝送線路3の先端部分と先端部分以外の部分)に配置される2つのアンテナ素子2とが設けられている。このように、1つの伝送線路3上に複数のアンテナ素子2を設けることを、「カスケード接続形」と称する。
 カスケード接続形によれば、伝送線路3の構造が簡素化されると共に、伝送線路3の延伸方向と直交する方向における帯状部材1の幅を狭くできる。従って、分散アンテナ20を携帯端末のユーザなどに意識させることなく、カバレッジエリアを線状に広げる場合に特に有効である。
 図4は伝送線路上に配置された信号処理回路の配置例を示す図である。図4に示す帯状部材1には、伝送線路3と、伝送線路3上(例えば伝送線路3の先端部分)に配置されるアンテナ素子2と、伝送線路3から分岐する伝送線路3aと、例えば伝送線路3a上(伝送線路3aの先端など)に配置されるアンテナ素子2と、例えば伝送線路3上に設けられる信号処理回路4とが設けられている。
 図4では、2つの信号処理回路4の内、一方が伝送線路3上に設けられ、他方が伝送線路3から伝送線路3aが分岐する箇所に設けられている。なお、信号処理回路4の配置位置は、図示例の位置に限定されず、例えば伝送線路3aの中間部分、伝送線路3の近傍、伝送線路3aの近傍などでもよい。また、信号処理回路4の数は、2つに限定されず、分散アンテナ20の用途、仕様などにより適宜変更可能である。
 図4には、ブランチ接続された複数のアンテナ素子2が例示される。そして、これらのアンテナ素子2の近くに、例えばAMP(Amplifier)、スイッチ、ミキサ、DAC(Digital to Analog Converter)、ADC(Analog to Digital Converter)などを有する信号処理回路4を設けることにより、信号の伝達ロスが大きいミリ波などを補償できる。なお、AMP、スイッチ、ミキサ、DAC、ADCの何れか(一部)を有する信号処理回路4を、アンテナ素子2の近くに設けた場合にも、同様の効果が得られる。AMP、スイッチ、ミキサ、DAC、ADCなどの詳細については後述する。
 次に図5及び図6を参照して、フレキシブルなコア部材とリジットなコア部材とを組み合わせた帯状部材1の構成例について説明する。
 図5はフレキシブル部1Aにリジット部1Bを固定(積層)した帯状部材1の構成例を示す図であり、図6はフレキシブル部1Aとフレキシブル部1Aから離れた位置に設けられるリジット部1Bとをコネクタ1Cなどで接続した帯状部材1の構成例を示す図である。フレキシブル部1Aは、例えば板状の誘電体層であるコア部1bと、コア部1bの上下面に設けられる導電性部材(例えば銅泊)である導電部1aとを有する。2つの導電部1aの内、一方の導電部1aは、コア部1bの一方の面である第1面1b1に設けられ、他方の導電部1aは、コア部1bの第1面1b1とは反対側の第2面1b2に設けられる。伝送線路3は、第1面1b1と第2面1b2との何れかの面に設けられ、又は第1面1b1と第2面1b2との間に設けられる。また、アンテナ素子2は、伝送線路3に電気的に接続されると共に第1面1b1と第2面1b2との何れかの面に分散配置される。なお、フレキシブル部1Aの構成はこれに限定されず、例えば誘電体層と導電性部材をそれぞれ2以上用いて多層化したものでもよい。
 これらの帯状部材1は例えばリジットフレキシブル基板により構成され、リジットフレキシブル基板は、部品実装のし易さと曲げることによる立体配置など、リジット基板とフレキシブル基板の双方の利点を併せ持つ基板である。リジットフレキシブル基板は、例えば部品などを実装するリジットなコア部材であるリジット部1Bと、可撓性を有するフレキシブル部材(フレキシブルなコア部材)であるフレキシブル部1Aとを備える。
 図5の帯状部材1は、フレキシブル部1Aにリジット部1Bが積層された構造を有する。この場合、リジット部1Bの寸法は、フレキシブル部1Aの柔軟性を阻害しない程度の大きさであることが好ましい。
 図6の帯状部材1は、例えば分離された2つのフレキシブル部1Aの間にリジット部1Bが配置され、コネクタ1Cとジャンパ線1Dを利用して、フレキシブル部1Aとリジット部1Bが電気的に接続された構造を有する。なお、ジャンパ線1Dはフレキシブル部1Aの一部が兼ねてもよい。
 次に図7を参照して、複数のアンテナ素子2を分散配置する例について説明する。図7は複数のアンテナ素子を分散配置する例を説明するための図である。図7には、建物の壁100の断面と、建物の壁100の表面に設置された分散アンテナ20が示される。分散アンテナ20が柔軟性のある帯状部材1を有する場合、建物の壁100の表面に凸部201がある場合でも、帯状部材1を凸部201の表面に沿って設けることができる。また、建物の壁100の表面の内、凸部201が設けられていない面(平坦面202)と、凸部201との境界部に、隙間を最小限にしながら分散アンテナ20を設置することもできる。
 なお、壁100への分散アンテナ20の固定には、例えば、接着材を利用してもよいし、ボルト、ナットなどの締結部材を利用してもよい。また、壁100から突出するフック状の部材に分散アンテナ20を引っかけることで、壁100への分散アンテナ20を設置してもよい。これにより、分散アンテナ20を容易に設置できると共に、例えば、不定期に実施されるイベントの開催期間中のみ、建物の壁100に分散アンテナ20を設置して、イベント終了後に分散アンテナ20を取り外すことができる。従って、恒常的に分散アンテナ20を設置しなくとも、オンデマンド式に分散アンテナ20を利用することも可能である。なお、従来の分散アンテナは、イベント会場などに設置する際に、個々のアンテナを壁などに個別に設置しなければならず、取り付け作業が煩雑であり、またアンテナに接続される伝送線路も別に敷設する必要がある。従って、ミリ波帯の電波を利用する場合、カバレッジエリアを広げるためには非常に多くの工数と労力が必要になり、またイベント終了後にもそれらのアンテナを取り外すなどの作業に多くの作業時間を費やす必要がある。これに対して本実施の形態に係る分散アンテナ20によれば、帯状の誘電体に複数のアンテナ素子2、伝送線路3などが設置されているため、帯状部材1を建物の壁100などへ取り付けて基地局10へ接続するだけで、カバレッジエリアを容易に広げることができる。また、帯状部材1を取り外すだけで回収することもできるため、イベント終了後の現状復旧作業も容易になる。
 次に、図8及び図9を参照して信号処理回路4の構成例について説明する。図8は信号処理回路4の構成例を示す図である。図中の「Digital」はディジタル信号の伝送線路を意味する。「DC」は例えば直流電力を供給する配線を意味する。信号処理回路4は、例えば基地局10から送信されるディジタル信号をアナログ信号に変換してミキサ403に出力する変換器であるDAC401と、ローカル信号源である局部発信器402と、局部発信器402からのローカル信号によって、DAC401からの信号をアップコンバートするアップコンバータであるミキサ403とを備える。また信号処理回路4は、ミキサ403から出力される信号を増幅してスイッチ405及び方向性結合器406を介してアンテナ素子2に入力する信号増幅器であるパワーアンプ404と、信号処理回路4の送信と受信を選択する手段であるスイッチ405と、方向性結合器406とを備える。また信号処理回路4は、アンテナ素子2で受信された信号を増幅して、スイッチ408を介して、ミキサ409へ入力するローノイズアンプ407と、受信・送信信号を監視しフィードバックするための経路と通信信号の受信とを選択する手段であるスイッチ408とを備える。また信号処理回路4は、ローノイズアンプ407からの信号をダウンコンバートするダウンコンバータであるミキサ409と、ミキサ409から送信されるアナログ信号をディジタル信号に変換して例えば基地局10に送信する変換器であるADC410とを備える。
 信号処理回路4によれば、DAC401及びADC410を備えることにより、基地局10と信号処理回路4との間でディジタル信号による通信が可能になるため、信号の劣化が抑制される。従って、基地局10から信号処理回路4までの通信可能な距離を相対的に長くすることができ、基地局10から遠隔の場所に複数のアンテナ素子2を分散配置できる。
 また信号処理回路4によれば、例えばミキサ403及びミキサ409を備えることにより、基地局10と信号処理回路4との間に伝送される信号を低周波で扱えるため、基地局10と信号処理回路4との間の伝送損失を低減できる。従って、基地局10から信号処理回路4までの通信可能距離を長くすることができ、基地局10から遠隔の場所に複数のアンテナ素子2を分散配置できる。
 このように、DAC401及びADC410にミキサ403及びミキサ409を組み合わせることにより、例えば、基地局10をスタジアムなどの機器室に設置した状態で、そこからスタジアムの観客席まで数十m~数百メートル程度、通信回線30を引き回して、スタジアムの観客席に敷設された分散アンテナ20へ信号を伝送できる。その結果、観客席に存在する複数の携帯端末との間で、例えばミリ波による無線通信が可能になる。また、スタジアムなどの観客席において、例えば数十mの範囲に複数の携帯端末が分散して存在する場合でも、信号処理回路4を利用することで、それらの広い範囲に対しても、無線通信レベルを補償して、無線通信が可能になる。
 なお、信号処理回路4は、ミキサ403、ミキサ409、DAC401、ADC410などを備えるが、これらの内、ミキサ403及びミキサ409のみ備える構成としてもよいし、DAC401及びADC410のみ備える構成としてもよい。この場合でも、基地局10から信号処理回路4までの通信可能な距離を長くできると共に、信号処理回路4の構成が簡素化されて信頼性が向上するという効果が得られる。
 次に図9、図10などを参照して、1つの帯状部材1に対して複数の信号処理回路4を設ける例について説明する。
 図9は信号処理回路を複数備えたアンプモジュールと、アンプモジュールに接続される複数のアンテナ素子との接続例を示す図である。図9に示すアンプモジュール400は、例えば4つの信号処理回路4を備え、これらの信号処理回路4のそれぞれは、伝送線路3を介して、アンテナ素子2に接続される。なおアンプモジュール400が備える信号処理回路4の数は4つに限定されるものではない。また、アンプモジュール400の信号処理回路4の数が2つ以上の場合、図9のように、信号処理回路4を並列に配置することにより、信号処理回路4を実現できる。また図9では、複数の信号処理回路4を備えたモジュールをアンプモジュール400と称しているが、信号処理回路4そのものをアンプモジュール400と読み替えてもよい。従って、1つの信号処理回路4をアンプモジュール400と称してもよい。
 図10は帯状部材にアンプモジュールを設けた場合の例を示す図である。アンプモジュール400を帯状部材1に設けることによって、信号処理回路4のローノイズアンプ407及びパワーアンプ404が、伝送線路3による信号の伝送損失を補償する。従って、アンプモジュール400から、複数のアンテナ素子2までの距離を大幅に伸ばすことができる。なお、図10に示すアンプモジュール400は、信号処理回路4の機能の内、特にローノイズアンプ407、パワーアンプ404、スイッチ405、方向性結合器406など備えるように構成してもよい。
 なお、帯状部材1以外の場所にアンプモジュール400を設けた場合、アンテナ素子2へのアンプモジュール400の接続作業が必要になるが、図10に示す構成例によれば、その作業が不要になり、分散アンテナ20の設置作業が容易になると共に、作業者による配線接続ミスなどが生じないため、通信品質の低下を抑制できる。また、図10に示す構成例によれば、例えば、アンテナ素子2の近傍にローノイズアンプ407を置くことができるため、アンテナ素子2からローノイズアンプ407までの伝送損失による信号の劣化を抑制できる。
 また、帯状部材1以外の場所にアンプモジュール400を設けた場合に比べて、分散アンテナ20自体の意匠性が向上し、さらに建築物などの意匠性を損なうことがなく、分散アンテナ20の利用可能な場所を増やすことができる。
 また、帯状部材1にアンプモジュール400を設けることにより、ローノイズアンプ407、パワーアンプ404などで発生した熱が、伝送線路3と帯状部材1に伝わるため、伝送線路3と帯状部材1が放熱器として機能する。従って、熱によるアンプモジュール400の故障を防止できる。また、帯状部材1にアンプモジュール400を設けることにより、例えば壁面の目立たないところに放熱用部材(フィンなど)が設置されている場合でも、伝送線路3及び帯状部材1は、パワーアンプ404などで発生した熱を当該放熱用部材へ伝える熱伝導経路として、使用できる。
 なお、帯状部材1には、アンプモジュール400又は信号処理回路4に、これらの駆動用の電力を供給する電力配線(例えば直流電力を供給する配線)を敷設してもよい。これにより、帯状部材1とは別に電力配線を敷設する必要がなくなり、分散アンテナ20の見栄えの低下を抑制しながら、分散アンテナ20を広い範囲に設置する場合でも、作業時間を大幅に軽減できる。
 図11はローノイズアンプを設けていない場合の通信可能距離を説明するための図である。図12はローノイズアンプを設けている場合の通信可能距離を説明するための図である。図13は複数のローノイズアンプを設けることにより通信可能距離を伸ばす構成例を示す図である。図11、図12及び図13の横軸は、携帯端末からの距離を表し、図11、図12及び図13の縦軸は、各装置から出力する電力を表す。破線は信号のレベルを表し、実線はノイズのレベルを表す。これらのデータを取得した条件は以下の通りである。(条件)
 図11及び図12のLNA:Gain=15dB/NF=4dB
 図13の初段のLNA:Gain=45dB/NF=6dB
 図13の二段目以降のLNA:Gain=30dB/NF=5dB
 Mobile Power:20dBm
 Antenna Gain:12dBi
 Distance to Tx:5m
 Feeder loss:30dB/m
 Mixer:Gain=10dB/NF =15dB
 SN ratio after Mixer:10dB
 図11より、ローノイズアンプ407を設けていない場合、信号レベルが低く、携帯端末からアンテナ素子2までの距離が5mの場合、受信系としてのアンテナ素子2からミキサ409までの伝送距離を0.8m程度確保できるにとどまる。送信系も同様である。これに対してローノイズアンプ407を設けている場合、図12に示すように、信号レベルが高くなり、携帯端末からアンテナ素子2までの距離が5mの場合、受信系としてのアンテナ素子2からミキサ409までの伝送距離を1.35m程度確保できる。送信系も同様のため、ミキサ403からアンテナ素子2までの伝送距離を伸ばすことができる。また図13に示すように、複数のローノイズアンプを設けることにより通信可能距離を伸ばすことができる。なお、信号処理回路4は、ローノイズアンプ407のみ備えるものでもよいし、ローノイズアンプ407及びパワーアンプ404のみ備えるものでもよい。なお、通信回路30として導波管や光電気変換器を介した光ファイバなどの低損失を用いることで伝送距離をさらに確保する構成としてもよい。ローノイズアンプ407及びパワーアンプ404のみ備えるものの場合、通信回路として低損失なものを用いることで通信可能距離をさらに伸ばすことができ、好ましい。
 次に図14から図18を参照して、ブランチ接続形とカスケード接続形のそれぞれのアンテナ素子の配置例について説明する。
 図14はブランチ接続形の分散アンテナを模式的に示す図である。ブランチ接続形の分散アンテナ20は、信号処理回路4のスイッチの機能を利用することで、最適なアンテナ素子2を選択して近傍の携帯端末との通信が可能なため、通信効率がよいという利点がある。なお、ウィルキンソン結合器などの合成器・分配器を利用した場合、最適なアンテナ素子2を選択することはできないが構成を簡素化できる。
 図15はカスケード接続形の分散アンテナを模式的に示す図である。カスケード接続形の分散アンテナ20は、信号処理回路4のスイッチの機能を利用せずに近傍の携帯端末との通信が可能なため、構成が簡素化され信頼性が高いという利点がある。
 図16はブランチ接続形の分散アンテナの拡大図である。図17はブランチ接続形の分散アンテナを駅構内の天井面に設置した場合のイメージを説明するための図である。図17に示すように、例えば駅ホームの天井の窪みを形作る壁面に、ブランチ接続形の分散アンテナ20を配置することにより、例えば、帯状部材1から下側に枝分かれした伝送線路3の先端部にアンテナ素子2を設けることができる。これにより、駅のホームで列車待ちをしている旅客が保有する携帯端末からアンテナ素子2までの距離を極力近づけることができ、電界強度が高くなることで、通信品質が向上する。
 図18はカスケード接続形の分散アンテナを駅構内の天井面に設置した場合のイメージを説明するための図である。図18に示すように、例えば駅ホームの天井の窪みを形作る壁面に、カスケード接続形の分散アンテナ20を配置することにより、伝送線路3の延伸方向と直交する方向における帯状部材1の幅を狭くできるため、駅の意匠性を損なうことなくカバレッジエリアを広げることができる。
 次に図19を参照して信号処理回路の変形例について説明する。図19は信号処理回路の変形例を説明するための図である。図19には、信号処理回路4を複数の回路基板で構成し、それぞれの回路基板を、伝送線路3上あるいは伝送線路3の近傍において、建物の壁100に設置した例を示す。複数の回路基板の数は、図示例(3つ)に限定されず、2以上であればよい。このように、複数の回路基板で信号処理回路4を構成することにより、分散アンテナ20を設置する箇所の形状に合わせて、信号処理回路4を設置できるため、建築物などの意匠性を損なうことがなく、分散アンテナ20の利用可能な場所を増やすことができる。
 次に図20及び図21を参照して分散アンテナ20の信号処理回路4、帯状部材1などの表面を覆うシールド部材について説明する。図20は帯状部材の第1変形例を示す図である。図20には、例えばフレキシブル基板で形成された帯状部材1の表面全体を覆うシールド部材40が示される。図21は帯状部材の第2変形例を示す図である。図21には、フレキシブルなコア部材とリジットなコア部材とを組み合わせた帯状部材1の表面全体を覆うシールド部材40が示される。シールド部材40は、信号処理回路4を含む帯状部材1の表面全体を覆う、熱伝導性が優れた金属製又は非金属製の材料で構成される。シールド部材40の材料は、例えば、下記(1)~(4)に示す高熱伝導性樹脂コンパウンド、カーボンシート、はんだ、Ag-Cu焼結体などである。なお、シールド部材40の材料は、これらに限定されるものではない。
 (1)ポリマー成分に熱伝導性フィラーが添加された高熱伝導性樹脂コンパウンド。ポリマー成分は、ポリシロキサン(シリコーンポリマー),ポリアクリル、ポリオレフィンなどである。なお、高熱伝導性樹脂コンパウンドの製造方法については、例えば特許5089908号公報、特許5085050号公報などに公開される通り公知であるため、説明を省略する。
 (2)炭素繊維、あるいは、炭素繊維と炭素との複合材料等によって形成されたシート状のカーボンシート。カーボンシートは、近年、炭素繊維を利用した製品が多く生産される傾向にあることを背景として。短時間で大量に生産する技術が確立されつつあるため、比較的熱伝導率が低く、かつ、安価な材料の一つとして分類することもできる。またカーボンシートは、はんだ、Ag-Cu焼結などに比べて、材料単価が高い場合でも、専用のリフロー炉を準備する必要がなく、加熱から冷却までの工程が不要になるなど、分散アンテナ20の製造に要する時間を大幅に短縮できるという効果を奏する。
 (3)はんだ(鉛フリーはんだなど)。はんだは、リフロー炉などを利用する必要があるものの、材料コストが安いため、分散アンテナ20を大量生産する場合には分散アンテナ20の単体の製造コストの上昇を抑制しながら、カーボンシートよりも熱伝導率を高めることができる。
 (4)Ag-Cu焼結体(Cuを含有するAg-Cu合金)。Ag-Cu焼結体は、Agを含むため高価な材料であるが熱伝導率が高く、信号処理回路4の放熱に好適である。
 シールド部材40は、信号処理回路4及び帯状部材1の表面に密着するように、帯状部材1へ固定される。なお、シールド部材40は、例えば信号処理回路4の熱伝導率よりも高い熱伝導率を有する材料で構成することが望ましい。
 シールド部材40を設けることにより、信号処理回路4で発生した熱が、シールド部材40に伝わり、シールド部材40の表面(信号処理回路4側とは逆の面)から空気中に放射される。このように、シールド部材40を設けることにより、信号処理回路4で発生した熱の伝導経路が増えるため、信号処理回路4の温度が許容温度を超過する可能性を低減し得る。また信号処理回路4を覆うシールド構造が形成されるため、不要放射が小さくなり、分散アンテナ20の周囲に設けられる機器へ与えるノイズの影響を小さくでき、EMC(ElectroMagnetic Compatibility)性能が向上する。分散アンテナ20の近くに電子機器が存在する場合でも、シールド部材40によって、導電部1aと信号処理回路4がシールド部材40に覆われるため、導電部1aと当該電子機器とが容量結合し難くなり、アンテナ特性への影響を軽減できる。
 次に図22を参照してフレキシブルモジュールの構成例を説明する。図22はフレキシブルモジュールの構成例を示す図である。図22はフレキシブルモジュールは、前述したリジットフレキシブル基板にシールド部材40を組み合わせたモジュールである。図22に示すように、リジットフレキシブル基板は、例えば部品などを実装するリジットなコア部材であるリジット部1Bと、湾曲可能なフレキシブルなコア部材であるフレキシブル部1Aとを備え、リジット部1Bとフレキシブル部1Aの全体を覆うようにシールド部材40が設けられる。リジットフレキシブル基板には、信号処理回路4を構成するパワーアンプ404、スイッチ405などを設けることができる。このようなフレキシブルモジュールを建物の壁100などに設けることによって、信号処理回路4がシールド部材40を覆われてEMC性能が向上すると共に、建築物などの意匠性を損なうことがなく、分散アンテナ20の利用可能な場所を増やすことができる。なお、建物の壁100などへのフレキシブルモジュールの固定には、フレキシブルモジュールを恒久的に設置する場合、接着部60を用いてもよいし、フレキシブルモジュールを一時的に設置する場合、結束帯などを利用してもよい。
 次に図23を参照して、分散アンテナ20をリピータ用アンテナとして利用する構成例を説明する。図23はリピータ用の分散アンテナの構成例を示す図である。図23に示す分散アンテナ20は、基地局10に接続される送信用アンテナ50から送信される電波を受信する受信アンテナ51を備える。壁100の表面の内、受信アンテナ51が配置される場所とは異なるに場所に設置されるアンテナ素子2は、受信アンテナ51で受信された電波を、例えば、受信アンテナ51への電波の到来方向とは異なる方向へ中継(再放射)する。この構成により、基地局10から分散アンテナ20までの距離が遠い場合でも、基地局10から分散アンテナ20までのエントランス回線の構築に要する費用を大幅に削減できる。なお、これは、当然に送信と受信とを入れ替えたうえで同様のことが成立する。なお、エントランス回線として5Gの電波を使う方法は、IAB(Integrated Access and Backhaul)として標準化されている。
 以上に説明したように、本実施の形態に係る分散アンテナは、帯状の誘電体である帯状部材と、帯状部材に設けられる伝送線路と、伝送線路に接続されると共に帯状部材に分散配置される複数のアンテナ素子とを備える。例えば、スタジアムなどの観客席に存在する複数の携帯端末で良好な無線通信を行うためには、無線基地局に接続される複数のアンテナから携帯端末までの距離を短くすることが望ましい。ところが、従来では、スタジアム内の特定の構造物、例えば観客席の上部に存在する屋根や、この屋根を支える柱などに、複数のアンテナを設置しなければならず、複数の携帯端末と複数のアンテナとのそれぞれの間の距離を均等にすることが困難である。従って、無線通信品質が安定しないなどの課題があった。また、アンテナへの伝送線路の接合の確実性が低下するおそれがあるという課題があった。本実施の形態に係る分散アンテナによれば、例えばスタジアムの観客席の上部空間に、帯状部材を橋渡しするように配置し、あるいは観客席のスロープに這わせることができるため、建物の構造、作りに影響を与えることなく、カバレッジエリアを広げることができる。また、本実施の形態に係る分散アンテナは、パワーアンプ404、ローノイズアンプ407などを備える信号処理回路を備えることにより、基地局10からの距離が長くなっても、無線通信レベルを補償できる。
 (障害物による電波の伝搬特性への影響)
 次に、図24~図28を参照して、障害物による電波の伝搬特性への影響について説明する。本発明の発明者らは、以下に説明するとおり、従来のアンテナ80A,80Bを用いて、障害物による電波の伝搬特性への影響を調べるための試験を実施した。
 図24は、本試験におけるアンテナ80A,80Bおよび柱70の配置を示す図である。図24に示すように、本発明の発明者らは、従来のアンテナ80Aと、従来のアンテナ80Bとを互いに対向させて配置した。ここで、本発明の発明者らは、アンテナ80Aとアンテナ80Bとの離間距離を、500mmとした。また、本発明の発明者らは、アンテナ80Aとアンテナ80Bとの間の中間位置に、障害物の一例として円柱状の柱70を設置した。そして、本発明の発明者らは、柱70の有無および柱70の直径による、アンテナ80Aからアンテナ80Bに搬送される電波の伝搬特性への影響について試験を行った。
 図25は、本試験に用いたアンテナ80A,80Bの構成を示す図である。本試験では、アンテナ80A,80Bとして、28GHz帯のパッチアンテナを用いた。図25に示すように、アンテナ80A,80Bは、基板82およびアンテナ素子84を有する。図25に示すように、本試験では、基板82の形状を正方形状とし、基板82の一辺の長さを10.0mmとした。また、図25に示すように、本試験では、アンテナ素子84の形状を正方形状とし、アンテナ素子84の一辺の長さを2.6mmとした。
 図26は、本試験に用いたアンテナ80A,80Bのアンテナ特性(XY面指向性)を示す図である。図26に示すように、アンテナ80A,80Bは、X軸方向(アンテナ素子84の表面の垂線方向)に強い指向性を有する。また、アンテナ80A,80Bは、28GHz帯における最大利得として、X軸方向に5.5dBiを得ることができる。
 図27は、本試験による測定結果(S21)を柱70の設置条件毎に示す表である。図28は、本試験による測定結果(S21)を柱70の設置条件毎に示すグラフである。図27および図28に示すように、本試験では、柱70を設置しない場合と、柱70の直径を50mm,100mm,200mmの各々とした場合との各々について、アンテナ80Aからアンテナ80Bに伝搬される電波の透過係数(S21)を測定した。
 図27および図28に示すように、本試験により、柱70が存在する場合、28GHz帯の電波の透過係数(S21)として、「-39.6dB」が得られた。一方、直径50mmの柱70が存在する場合、28GHz帯の電波の透過係数(S21)として、「-44.4dB」が得られた。また、直径100mmの柱70が存在する場合、28GHz帯の電波の透過係数(S21)として、「-52.8dB」が得られた。さらに、直径200mmの柱70が存在する場合、28GHz帯の電波の透過係数(S21)として、「-73.7dB」が得られた。これらの測定結果から、本試験により、柱70が存在することにより、S21の値が小さくなる(すなわち、電波が届き難くなる)ことが判明した。また、本試験により、柱70の直径が大きくなるにつれて、S21の値が小さくなる(すなわち、電波が届き難くなる)ことが判明した。
 すなわち、本試験により、アンテナから放射された電波の伝搬経路上に、柱等の障害物が存在する場合、障害物の裏側(死角)となる領域に電波が届き難くなることが判明した。特に、5G等で使用されるミリ波帯の電波は、障害物に対する回り込み性が低いため、障害物の死角となる領域に届き難い。そこで、本発明の発明者らは、柱等の障害物の周囲の複数の方向の各々に対して、電波をより確実に到達させることを目的として、以下に説明するフレキシブルアンテナ20Aを発明した。
 (フレキシブルアンテナ20A)
 次に、図29~図44を参照して、分散アンテナ20の他の一例として、フレキシブルアンテナ20Aについて説明する。フレキシブルアンテナ20Aは、信号機、街灯、電柱等の柱70(「柱状の設置対象物」の一例)に設置可能である。フレキシブルアンテナ20Aは、例えば、基地局用の5Gアンテナとして利用可能である。
 図29は、実施形態に係るフレキシブルアンテナ20Aの平面図である。図29に示すように、フレキシブルアンテナ20Aは、フレキシブル基板26と、複数のアンテナANT1~ANT8とを備える。
 フレキシブル基板26は、可撓性を有するシート状の部材である。フレキシブル基板26は、平面視において、横長の長方形状を有する。複数のアンテナANT1~ANT8は、フレキシブル基板26の表面において、水平方向HDに等間隔に並べて配置されている。複数のアンテナANT1~ANT8の各々は、垂直偏波用アンテナ22Aおよび水平偏波用アンテナ22Bを有する。
 垂直偏波用アンテナ22Aは、垂直方向VDに並べて配置された複数(図29に示す例では、8つ)のアンテナ素子2と、垂直方向VDに直線状に延在する伝送線路3とを有する。垂直偏波用アンテナ22Aが有する複数のアンテナ素子2の各々は、その下辺に対し、伝送線路3の分岐路が直角に接続されている。
 水平偏波用アンテナ22Bは、垂直方向VDに並べて配置された複数(図29に示す例では、8つ)のアンテナ素子2を有する。垂直方向VDに直線状に延在する伝送線路3とを有する。水平偏波用アンテナ22Bが有する複数のアンテナ素子2の各々は、その左辺に対し、伝送線路3の分岐路が直角に接続されている。
 なお、複数の垂直偏波用アンテナ22Aおよび複数の水平偏波用アンテナ22Bの各々は、いずれも伝送線路3の下端部に、独立した接続ポートを有する。これにより、フレキシブルアンテナ20Aに接続される信号処理回路4は、複数の接続ポートを介して、複数の垂直偏波用アンテナ22Aおよび複数の水平偏波用アンテナ22Bの各々を、独立して電波の放射に使用できる。
 また、垂直偏波用アンテナ22Aおよび水平偏波用アンテナ22Bにおいて、伝送線路3の垂直方向VDに延びる直線部分は、先端に向って徐々に帯幅が細くなる形状を有する。これにより、垂直偏波用アンテナ22Aおよび水平偏波用アンテナ22Bは、伝送線路3に接続された複数のアンテナ素子2の各々に対して、伝送線路3の接続ポートから供給されたエネルギーを、均等に分配することができる。
 図30は、実施形態に係るフレキシブルアンテナ20Aの断面構成の一例を示す図である。図30に示す例では、フレキシブルアンテナ20Aは、フレキシブル基板26、アンテナ素子24、伝送線路25、およびグラウンド層27を有する。
 フレキシブル基板26は、可撓性を有する、樹脂製且つ薄いフィルム状の部材である。例えば、フレキシブル基板26の厚さは、1μm~300μmである。また、例えば、フレキシブル基板26は、フッ素、COP(Cyclo Olefin Polymer)、PET(Polyethylene terephthalate)、PEN(polyethylene naphthalate)、ポリイミド、Peek(polyether ether ketone)、LCP(Liquid Crystal Polymer)、その他の複合材等の樹脂素材が用いられる。
 アンテナ素子24および伝送線路25は、フレキシブル基板26の上面に、薄膜状に形成されている。例えば、アンテナ素子24および伝送線路25の厚さは、1nm~32μmである。また、例えば、アンテナ素子24および伝送線路25は、銅等の導電性素材が用いられて形成される。
 グラウンド層27は、フレキシブル基板26の下面に、薄膜状に形成されている。例えば、グラウンド層27の厚さは、1nm~32μmである。また、例えば、グラウンド層27は、銅等の導電性素材が用いられて形成される。
 図31は、実施形態に係るフレキシブルアンテナ20Aの断面構成の他の一例を示す図である。図31に示す例では、フレキシブルアンテナ20Aは、図30に示すフレキシブル基板26の代わりに、互いに重なり合った、第1のフレキシブル基板26Aおよび第2のフレキシブル基板26Bを有する。
 図31に示す例では、アンテナ素子24は、第1のフレキシブル基板26Aの上面に形成されている。また、図31に示す例では、伝送線路25は、第1のフレキシブル基板26Aと第2のフレキシブル基板26Bとの間に形成されている。また、図31に示す例では、グラウンド層27は、第2のフレキシブル基板26Bの下面に形成されている。
 図32は、実施形態に係るフレキシブルアンテナ20Aの柱70への設置例を示す図である。図33は、図32に示すフレキシブルアンテナ20Aおよび柱70のXY面による断面図である。
 図32および図33に示すように、フレキシブルアンテナ20Aは、可撓性を有するため、柱70の外周面70Aに巻き付けて設置することができる。これにより、フレキシブルアンテナ20Aは、複数のアンテナANT1~ANT8の各々によって、柱70を中心とする複数の方向(図29に示す構成の場合、8方向)の各々に、垂直偏波および水平偏波の各々を放射することができる。
 特に、図32および図33に示す例では、複数のアンテナANT1~ANT8は、柱70の外周面70Aに45°間隔で配置されている。このため、フレキシブルアンテナ20Aは、複数のアンテナANT1~ANT8の各々によって、柱70を中心とする45°間隔での8方向の各々に対し、垂直偏波および水平偏波の各々を放射することができる。
 これにより、実施形態に係るフレキシブルアンテナ20Aによれば、柱70の周囲の複数の方向の各々に対して、電波をより確実に到達させることができる。
 また、実施形態に係るフレキシブルアンテナ20Aは、複数のアンテナANT1~ANT8の各々が、独立した接続ポートを有する。このため、実施形態に係るフレキシブルアンテナ20Aは、利用目的や設置場所等に応じて、複数のアンテナANT1~ANT8の一部を駆動(給電)することにより、必要な方向にのみ電波を放射することができる。
 さらに、実施形態に係るフレキシブルアンテナ20Aは、可撓性を有する薄いシート状であり、設置面に沿って柔軟に変形可能である。このため、実施形態に係るフレキシブルアンテナ20Aは、円柱状の柱に限らず、その他の様々な柱状の設置対象物(例えば、角柱、直角に折れ曲がった壁面、凹凸形状を有する壁面等)に対して、当該構造物の設置面から突出しないように設置することが可能である。
 なお、フレキシブルアンテナ20Aは、任意の固定方法(例えば、接着剤、両面テープ等)により、柱70の外周面70Aに固定される。また、フレキシブルアンテナ20Aは、一端部と他端部とが閉じられて環状となることにより、柱70の外周面70Aに固定されてもよい。
 また、フレキシブルアンテナ20Aは、柱70の外周面70Aに設置される前、または、柱70の外周面70Aに設置された後、表面が保護フィルム等、保護カバー等によって、雨水、紫外線等から保護されてもよい。
 また、フレキシブルアンテナ20Aの設置対象とする柱70の直径が決定されている場合、フレキシブルアンテナ20Aの横幅は、柱70の外周面の円周長に応じた長さを有することが好ましい。この場合、フレキシブルアンテナ20Aを柱70に設置した際に、フレキシブルアンテナ20Aの水平方向における一端部と他端部とが、互いに重なり合ってもよく、互いに僅かに離間してもよい。さらに、フレキシブルアンテナ20Aは、所定の直径を有する柱70に設置された場合に、複数のアンテナが、柱70を中心とする所定角度(360°÷アンテナ数)間隔で配置されることが好ましい。
 図34は、実施形態に係るフレキシブルアンテナ20Aにおけるアンテナパターンの第1変形例を示す図である。図35は、実施形態に係るフレキシブルアンテナ20Aにおけるアンテナパターンの第2変形例を示す図である。
 図34および図35に示す例では、フレキシブルアンテナ20Aは、フレキシブル基板26の表面において、水平方向HDに等間隔で並べて配置された4つのアンテナを有する。4つのアンテナの各々は、垂直方向VDに並べて配置された3つのアンテナ素子2を有する。4つのアンテナの各々において、3つのアンテナ素子2は、垂直方向VDに直線状に延在する伝送線路3によって、直列に接続されている。
 これにより、図34および図35に示すフレキシブルアンテナ20Aは、柱70の外周面70Aに設置された場合、4つのアンテナの各々によって、柱70を中心とする4つの方向の各々に対し、一方向につき3つのアンテナ素子2によって、垂直偏波を放射することができる。特に、図34および図35に示すフレキシブルアンテナ20Aは、所定の直径を有する柱70の外周面70Aに設置された場合、当該外周面70Aに対し、4つのアンテナを90°間隔で配置することができる。この場合、図34および図35に示すフレキシブルアンテナ20Aは、4つのアンテナの各々によって、柱70を中心とする90°間隔での4方向の各々に対し、垂直偏波を放射することができる。
 なお、図35に示すフレキシブルアンテナ20Aは、4つのアンテナの各々が、独立した接続ポートを有する。このため、図35に示すフレキシブルアンテナ20Aは、必要に応じて、4つのアンテナの各々を個別に駆動することができ、すなわち、特定の方向にのみ電波を放射することができる。また、図35に示すフレキシブルアンテナ20Aは、4つのアンテナにより、互いに異なる複数種類の信号を、同時または時間差を持たせて送信することができる。例えば、図35に示すフレキシブルアンテナ20Aは、MIMO(multiple-input and multiple-output)、ビームフォーミング等にも利用可能である。
 また、図34および図35に示すフレキシブルアンテナ20Aは、垂直方向VDに並べて配置されたアンテナ素子2の垂直方向VDの間隔を調整し、アンテナ素子2に給電される位相を調整することにより、垂直方向VD(仰俯角方向)におけるビームの方向を制御することができる。
 例えば、アンテナ素子2の垂直方向VDの間隔を、伝送線路3における電気長で約1波長となる間隔、つまりは同位相となるようにアンテナ素子2を配置することで、仰俯角方向における0°へビームの方向を制御することができる。
 また、例えば、アンテナ素子2の垂直方向VDの間隔を、伝送線路3における電気長で1波長より長くなる間隔、つまりは位相が遅れるようにアンテナ素子2を配置することで、ビームの方向を仰角方向へ制御(アップチルト)することができる。
 また、例えば、アンテナ素子2の垂直方向VDの間隔を、伝送線路3における電気長で1波長より短くなる間隔、つまりは位相が進むようにアンテナ素子2を配置することで、ビームの方向を俯角方向へ制御(ダウンチルト)することができる。
 これは、図29および図32に示すフレキシブルアンテナ22A,22Bにおいても同様であり、アンテナ素子2の各々に給電される位相を調整することで、垂直方向VDのビーム方向を制御することができる。
 なお、ビームの方向を仰俯角方向における0°へ制御する場合は、垂直方向VDの間隔を伝送線路3における電気長で0.96波長以上1.04波長以下にすることが好ましい。
 また、ビームの方向を仰角方向へ制御(アップチルト)する場合は、垂直方向VDの間隔を伝送線路3における電気長で1.05波長以上1.50波長以下にすることが好ましい。
 また、ビームの方向を俯角方向へ制御(ダウンチルト)する場合は、垂直方向VDの間隔を伝送線路3における電気長で0.50波長以上0.95波長以下にすることが好ましい。
 一方、図34に示すフレキシブルアンテナ20Aは、4つのアンテナの各々に接続された1つの接続ポートを有する。このため、図34に示すフレキシブルアンテナ20Aは、信号処理回路4から、1つの接続ポートに駆動信号を供給することにより、4つのアンテナの各々を同時に駆動することができ、すなわち、4つの方向の各々に同時に電波を放射することができる。
 図36は、実施形態に係るフレキシブルアンテナ20Aにおけるアンテナパターンの第3変形例を示す図である。
 図36に示す例では、フレキシブルアンテナ20Aは、フレキシブル基板26の表面において、水平方向HDにおける4つの位置の各々に、垂直方向VDに並べて配置された4つのアンテナ素子2を有する。すなわち、図36に示すフレキシブルアンテナ20Aは、フレキシブル基板26の表面に、4×4のマトリクス状に配置された16個のアンテナ素子2を有する。また、図36に示すフレキシブルアンテナ20Aは、16個のアンテナ素子2の各々に対し、独立した伝送線路3が設けられている。16個のアンテナ素子2の各々は、その左辺又は右辺に対し、水平方向HDに直角に折れ曲がった伝送線路3の端部が直角に接続されている。
 これにより、図36に示すフレキシブルアンテナ20Aは、柱70の外周面70Aに設置された場合、柱70を中心とする4つの方向の各々に対し、一方向につき4つのアンテナ素子2の一部または全部によって、水平偏波を放射することができる。
 特に、図36に示すフレキシブルアンテナ20Aは、所定の直径を有する柱70の外周面70Aに設置された場合、当該外周面70Aに対し、90°間隔で、アンテナ素子2を4つずつ配置することができる。この場合、図36に示すフレキシブルアンテナ20Aは、柱70を中心とする90°間隔での4方向の各々に対し、一方向につき4つのアンテナ素子2の一部または全部を用いて、水平偏波を放射することができる。
 なお、図36に示すフレキシブルアンテナ20Aは、16個のアンテナ素子2の各々が、独立した接続ポートを有する。このため、図36に示すフレキシブルアンテナ20Aは、必要に応じて、16個のアンテナ素子2の各々を個別に駆動することができる。これにより、例えば、図36に示すフレキシブルアンテナ20Aは、任意の複数のアンテナ素子2により、垂直方向および水平方向の各々に、ビームフォーミングの方向を自在に制御することができる。また、例えば、図36に示すフレキシブルアンテナ20Aは、任意の複数のアンテナ素子2により、互いに異なる複数種類の信号を、同時または時間差を持たせて送信することができる。
 図37は、実施形態に係るフレキシブルアンテナ20Aのアンテナ特性の第1例を示す図である。図37は、実施形態に係るフレキシブルアンテナ20A(縦幅100mm、横幅430mm)を柱70(直径140mm)の外周面70Aに設置し、且つ、フレキシブルアンテナ20Aに45°間隔で8つのアンテナを設けた場合の、XY面における8つのアンテナの各々の28GHz帯におけるアンテナ特性を表している。なお、図37Aは、垂直偏波用アンテナ22Aのアンテナ特性を表している。また、図37Bは、水平偏波用アンテナ22Bのアンテナ特性を表している。
 図37Aに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、8つのアンテナにより、柱70を中心として45°間隔を有する8方向の各々に対し、十分な利得(最大利得12.5dBi)を有する垂直偏波を放射することができる。
 また、図37Bに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、8つのアンテナにより、柱70を中心として45°間隔を有する8方向の各々に対し、十分な利得(最大利得10.4dBi)を有する水平偏波を放射することができる。
 図38は、実施形態に係るフレキシブルアンテナ20Aのアンテナ特性の第2例を示す図である。図38は、実施形態に係るフレキシブルアンテナ20A(縦幅100mm、横幅430mm)を柱70(直径140mm)の外周面70Aに設置し、且つ、フレキシブルアンテナ20Aに60°間隔で6つのアンテナを設けた場合の、XY面における6つのアンテナの各々の28GHz帯におけるアンテナ特性を表している。なお、図38Aは、垂直偏波用アンテナ22Aのアンテナ特性を表している。また、図38Bは、水平偏波用アンテナ22Bのアンテナ特性を表している。
 図38Aに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、6つのアンテナにより、柱70を中心として60°間隔を有する6方向の各々に対し、十分な利得(最大利得12.5dBi)を有する垂直偏波を放射することができる。
 また、図38Bに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、6つのアンテナにより、柱70を中心として60°間隔を有する6方向の各々に対し、十分な利得(最大利得10.4dBi)を有する水平偏波を放射することができる。
 図39は、実施形態に係るフレキシブルアンテナ20Aのアンテナ特性の第3例を示す図である。図39は、実施形態に係るフレキシブルアンテナ20A(縦幅100mm、横幅430mm)を柱70(直径140mm)の外周面70Aに設置し、且つ、フレキシブルアンテナ20Aに90°間隔で4つのアンテナを設けた場合の、XY面における4つのアンテナの各々の28GHz帯におけるアンテナ特性を表している。なお、図39Aは、垂直偏波用アンテナ22Aのアンテナ特性を表している。また、図39Bは、水平偏波用アンテナ22Bのアンテナ特性を表している。
 図39Aに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、4つのアンテナにより、柱70を中心として90°間隔を有する4方向の各々に対し、十分な利得(最大利得12.5dBi)を有する垂直偏波を放射することができる。
 また、図39Bに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、4つのアンテナにより、柱70を中心として90°間隔を有する4方向の各々に対し、十分な利得(最大利得10.4dBi)を有する水平偏波を放射することができる。
 図40は、実施形態に係るフレキシブルアンテナ20Aのアンテナ特性の第4例を示す図である。図40は、実施形態に係るフレキシブルアンテナ20A(縦幅100mm、横幅430mm)を柱70(直径140mm)の外周面70Aに設置し、且つ、フレキシブルアンテナ20Aに120°間隔で3つのアンテナを設けた場合の、XY面における3つのアンテナの各々の28GHz帯におけるアンテナ特性を表している。なお、図40Aは、垂直偏波用アンテナ22Aのアンテナ特性を表している。また、図40Bは、水平偏波用アンテナ22Bのアンテナ特性を表している。
 図40Aに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、3つのアンテナにより、柱70を中心として120°間隔を有する3方向の各々に対し、十分な利得(最大利得12.5dBi)を有する垂直偏波を放射することができる。
 また、図40Bに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、3つのアンテナにより、柱70を中心として120°間隔を有する3方向の各々に対し、十分な利得(最大利得10.4dBi)を有する水平偏波を放射することができる。
 図41は、実施形態に係るフレキシブルアンテナ20Aのアンテナ特性の第5例を示す図である。図41は、実施形態に係るフレキシブルアンテナ20A(縦幅100mm、横幅430mm)を柱70(直径140mm)の外周面70Aに設置し、且つ、フレキシブルアンテナ20Aに180°間隔で2つのアンテナを設けた場合の、XY面における2つのアンテナの各々の28GHz帯におけるアンテナ特性を表している。なお、図41Aは、垂直偏波用アンテナ22Aのアンテナ特性を表している。また、図41Bは、水平偏波用アンテナ22Bのアンテナ特性を表している。
 図41Aに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、2つのアンテナにより、柱70を中心として180°間隔を有する2方向の各々に対し、十分な利得(最大利得12.5dBi)を有する垂直偏波を放射することができる。
 また、図41Bに示すように、実施形態に係るフレキシブルアンテナ20Aによれば、2つのアンテナにより、柱70を中心として180°間隔を有する2方向の各々に対し、十分な利得(最大利得10.4dBi)を有する水平偏波を放射することができる。
 図37~図41に示すアンテナ特性により、実施形態に係るフレキシブルアンテナ20Aは、柱70の周囲の全方向をカバーするために、少なくとも2つのアンテナを有することが好ましく、3つ以上のアンテナを有する方がより好ましい。
 図42は、実施形態に係るフレキシブルアンテナ20Aにおけるアンテナパターンの第4変形例を示す図である。図43は、図42に示すフレキシブルアンテナ20Aの柱70への設置例を示す図である。
 図42および図43に示す例では、フレキシブルアンテナ20Aは、フレキシブル基板26の表面において、水平方向HDに延在する1つのアンテナANT1を有する。アンテナANT1は、水平方向HDに並べて配置された8つのアンテナ素子2を有する。アンテナANT1において、8つのアンテナ素子2は、水平方向HDに直線状に延在する伝送線路3によって、直列に接続されている。
 これにより、図42および図43に示すフレキシブルアンテナ20Aは、図43に示すように、柱70の外周面70Aに設置された場合、8つのアンテナ素子2の各々によって、柱70を中心とする8つの方向の各々に対し、水平偏波を放射することができる。
 特に、図42および図43に示すフレキシブルアンテナ20Aは、8つのアンテナ素子2の各々に接続された1つの接続ポートを有する。このため、図42および図43に示すフレキシブルアンテナ20Aは、信号処理回路4から、1つの接続ポートに駆動信号を供給することにより、8つのアンテナ素子2の各々を同時に駆動することができ、すなわち、8つの方向の各々に同時に水平偏波を放射することができる。
 図44は、図42に示すフレキシブルアンテナ20Aのアンテナ特性の一例を示す図である。図44Aは、図42に示すフレキシブルアンテナ20A(縦幅15mm、横幅60mm)の単体の、YX面におけるアンテナANT1の28GHz帯におけるアンテナ特性を表している。図44Bは、図42に示すフレキシブルアンテナ20A(縦幅15mm、横幅60mm)を柱70(直径25mm)の外周面70Aに設置した場合の、YX面におけるアンテナANT1の28GHz帯におけるアンテナ特性を表している。
 図44Bに示すように、図42に示すフレキシブルアンテナ20Aによれば、8つのアンテナ素子2を有するアンテナANT1により、柱70を中心とする8方向の各々に対し、十分な利得(最大利得1dBi)を有する水平偏波を放射することができる。
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 本国際出願は、2019年11月6日に出願した日本国特許出願第2019-201844号、2019年12月13日に出願した日本国特許出願第2019-225319号、および2020年1月22日に出願した日本国特許出願第2020-007983号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
1   :帯状部材
1b1   :第1面
1b2   :第2面
1A  :フレキシブル部
1B  :リジット部
1a  :導電部
1b  :コア部
2   :アンテナ素子
3,3a  :伝送線路
4   :信号処理回路
10  :基地局
11  :フィンベース
20  :分散アンテナ
30  :通信回線
40  :シールド部材
50  :送信用アンテナ
51  :受信アンテナ
60  :接着部
100 :壁
201 :凸部
202 :平坦面
300 :分散アンテナシステム
400 :アンプモジュール
402 :局部発信器
403 :ミキサ
404 :パワーアンプ
405 :スイッチ
406 :方向性結合器
407 :ローノイズアンプ
408 :スイッチ
409 :ミキサ
20A :フレキシブルアンテナ
ANT1~ANT8 :アンテナ
22A :垂直偏波用アンテナ
22B :水平偏波用アンテナ
24 :アンテナ素子
25 :伝送線路
26 :フレキシブル基板
26A :第1のフレキシブル基板
26B :第2のフレキシブル基板
27 :グラウンド層
70 :柱
70A :外周面
80A,80B :アンテナ
82 :基板
84 :アンテナ素子

Claims (25)

  1.  板状の誘電体と前記誘電体の一方の面である第1面と前記第1面とは反対側の第2面とを有し、帯状に伸びる帯状部材と、
     前記第1面と前記第2面との何れかの面に設けられ、又は前記第1面と前記第2面との間に設けられる伝送線路と、
     前記伝送線路に電気的に接続されると共に前記第1面と前記第2面との何れかの面に分散配置され、又は前記伝送線路に電気的に接続されると共に前記第1面と前記第2面との間に分散配置される複数のアンテナ素子と、
     を備える分散アンテナ。
  2.  前記伝送線路は、
     第1伝送線路と、前記第1伝送線路から分岐する第2伝送線路とを備え、
     前記アンテナ素子は、前記第2伝送線路に接続される請求項1に記載の分散アンテナ。
  3.  前記アンテナ素子は、前記伝送線路上に設けられる請求項1に記載の分散アンテナ。
  4.  前記帯状部材は、可撓性を有するフレキシブル部材である請求項1から請求項3の何れか一項に記載の分散アンテナ。
  5.  前記帯状部材は、可撓性を有するフレキシブル部材と、リジットなコア部材とを有する請求項1から請求項3の何れか一項に記載の分散アンテナ。
  6.  前記リジットなコア部材および/または前記フレキシブル部材に、前記伝送線路に伝送される信号を処理する信号処理回路が設けられる請求項5に記載の分散アンテナ。
  7.  前記帯状部材に設けられ、前記伝送線路に伝送される信号を増幅するアンプを有する信号処理回路を備える請求項1から請求項6の何れか一項に記載の分散アンテナ。
  8.  前記帯状部材に設けられ、前記伝送線路に伝送される信号をアップコンバート又はダウンコンバートするミキサを有する信号処理回路を備える請求項1から請求項7の何れか一項に記載の分散アンテナ。
  9.  前記帯状部材に設けられ、基地局から送信されるディジタル信号をアナログ信号に変換してミキサに送信する変換器であるDACと、ミキサから送信されるアナログ信号をディジタル信号に変換して基地局に送信する変換器であるADCとを有する信号処理回路を備える請求項1から請求項8の何れか一項に記載の分散アンテナ。
  10.  前記帯状部材に設けられ、ミキサ用のローカル信号源である局部発信器を有する信号処理回路を備える請求項1から請求項9の何れか一項に記載の分散アンテナ。
  11.  前記帯状部材に設けられ、前記伝送線路に伝送される信号を処理する信号処理回路と、
     前記帯状部材に設けられ、前記信号処理回路の駆動用の電力を供給する電力配線と、
     を備える請求項1から請求項10の何れか一項に記載の分散アンテナ。
  12.  前記帯状部材に設けられ、前記伝送線路に伝送される信号を処理する信号処理回路と、
     前記信号処理回路を少なくとも覆う部材と、
     を備える請求項1から請求項11の何れか一項に記載の分散アンテナ。
  13.  前記帯状部材に設けられ、前記伝送線路に伝送される信号を処理する2以上の機能を有する信号処理回路を備え、
     前記信号処理回路は、2以上の機能のそれぞれを有する複数の回路基板で構成される請求項1から請求項12の何れか一項に記載の分散アンテナ。
  14.  基地局から送信される電波を受信する受信アンテナを備え、
     前記アンテナ素子は、前記受信アンテナで受信された電波を、前記受信アンテナの配置場所とは異なる場所に中継する請求項1から請求項13の何れか一項に記載の分散アンテナ。
  15.  前記伝送線路を覆う部材を備える請求項1から請求項14の何れか一項に記載の分散アンテナ。
  16.  前記帯状部材の表面において水平方向に並べて配置された複数のアンテナを備え、
     前記複数のアンテナの各々は、1または複数の前記アンテナ素子を有する、
     ことを特徴とする請求項4に記載の分散アンテナ。
  17.  柱状の設置対象物の外周面に巻き付けて設置されることにより、前記複数のアンテナの各々によって、前記設置対象物の周囲の複数の方向の各々に対して電波を放射できる
     ことを特徴とする請求項16に記載の分散アンテナ。
  18.  前記帯状部材の表面における水平方向の複数の位置の各々に、
     垂直偏波用アンテナと、
     水平偏波用アンテナと
     を備えることを特徴とする請求項16または17に記載の分散アンテナ。
  19.  前記複数のアンテナの各々は、
     垂直方向に並べて配置された複数の前記アンテナ素子を有する
     ことを特徴とする請求項16から18のいずれか一項に記載の分散アンテナ。
  20.  前記伝送線路は、前記複数のアンテナの各々に接続された一の伝送線路である
     ことを特徴とする請求項16から19のいずれか一項に記載の分散アンテナ。
  21.  前記伝送線路は、前記複数のアンテナの各々に対してアンテナ毎に設けられた複数の伝送線路である
     ことを特徴とする請求項16から19のいずれか一項に記載の分散アンテナ。
  22.  前記複数のアンテナが前記水平方向に等間隔で並べて配置されている
     ことを特徴とする請求項16から21のいずれか一項に記載の分散アンテナ。
  23.  前記複数のアンテナ素子は、前記帯状部材の表面において水平方向に並べて設けられ、
     前記伝送線路は、前記複数のアンテナ素子の各々に接続された一の伝送線路である
     を備えることを特徴とする請求項4に記載の分散アンテナ。
  24.  前記複数のアンテナ素子が前記水平方向に等間隔で並べて配置されている
     ことを特徴とする請求項23に記載の分散アンテナ。
  25.  前記複数のアンテナ素子は、前記帯状部材の表面において、水平方向および垂直方向の各々に並んでマトリクス状に配置されており、
     前記伝送線路は、前記複数のアンテナ素子の各々に対してアンテナ素子毎に設けられた複数の伝送線路である、
     を備えることを特徴とする請求項4に記載の分散アンテナ。
PCT/JP2020/040507 2019-11-06 2020-10-28 分散アンテナ及び分散アンテナシステム WO2021090747A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080075207.9A CN114600316B (zh) 2019-11-06 2020-10-28 分散天线以及分散天线系统
EP20883728.6A EP4057446A4 (en) 2019-11-06 2020-10-28 DISTRIBUTED ANTENNA AND DISTRIBUTED ANTENNA SYSTEM
JP2021554909A JPWO2021090747A1 (ja) 2019-11-06 2020-10-28
US17/730,481 US11949160B2 (en) 2019-11-06 2022-04-27 Distributed antenna and distributed antenna system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-201844 2019-11-06
JP2019201844 2019-11-06
JP2019-225319 2019-12-13
JP2019225319 2019-12-13
JP2020007983 2020-01-22
JP2020-007983 2020-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/730,481 Continuation US11949160B2 (en) 2019-11-06 2022-04-27 Distributed antenna and distributed antenna system

Publications (1)

Publication Number Publication Date
WO2021090747A1 true WO2021090747A1 (ja) 2021-05-14

Family

ID=75849931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040507 WO2021090747A1 (ja) 2019-11-06 2020-10-28 分散アンテナ及び分散アンテナシステム

Country Status (6)

Country Link
US (1) US11949160B2 (ja)
EP (1) EP4057446A4 (ja)
JP (1) JPWO2021090747A1 (ja)
CN (1) CN114600316B (ja)
TW (1) TW202127820A (ja)
WO (1) WO2021090747A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074866A (ja) * 2010-09-28 2012-04-12 Hitachi Ltd 無線通信システム、および無線通信装置
JP5085050B2 (ja) 2006-04-06 2012-11-28 株式会社マイクロン 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP5089908B2 (ja) 2006-04-06 2012-12-05 株式会社マイクロン 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP2014503149A (ja) * 2011-01-05 2014-02-06 アルカテル−ルーセント コンフォーマル・アンテナ・アレイ
JP2018067855A (ja) 2016-10-21 2018-04-26 日本電気株式会社 分散アンテナシステム、無線通信システム、無線通信方法及びその制御装置
JP2019149612A (ja) * 2018-02-26 2019-09-05 矢崎総業株式会社 統合アンテナモジュール、及び、車載システム
JP2019201844A (ja) 2018-05-23 2019-11-28 株式会社三共 遊技機
JP2020007983A (ja) 2018-07-10 2020-01-16 株式会社酉島製作所 ポンプ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633260B2 (en) * 2001-10-05 2003-10-14 Ball Aerospace & Technologies Corp. Electromechanical switching for circuits constructed with flexible materials
KR20070040847A (ko) * 2003-05-12 2007-04-17 가부시키가이샤 고베 세이코쇼 무선 통신 rf 신호 전송 장치
JP4154362B2 (ja) * 2003-05-12 2008-09-24 株式会社神戸製鋼所 無線lanアンテナ、無線lanアンテナの制御方法、無線lan基地局用アンテナ、無線lan移動局端末アンテナ、端末用無線lanカードおよび無線lanシステム
US7167129B1 (en) * 2004-10-12 2007-01-23 Sandia Corporation Reproducible, high performance patch antenna array apparatus and method of fabrication
EP2214261A1 (en) * 2009-01-30 2010-08-04 Alcatel Lucent Beam forming antenna system on flexible plastic foil
CN103457023A (zh) * 2013-09-06 2013-12-18 南京理工大学 Uhf频段紧凑型共形pifa阵列天线
CN206180068U (zh) * 2014-04-24 2017-05-17 株式会社村田制作所 高频前端用柔性电缆、高频前端构件以及电子设备
US9548543B2 (en) * 2015-01-07 2017-01-17 Omega Optics, Inc. Method for fabricating and packaging an M×N phased-array antenna
US10264669B2 (en) * 2015-05-01 2019-04-16 Research Triangle Institute Flexible electronic assemblies with embedded electronic devices and methods for their fabrication
US9809720B2 (en) * 2015-07-06 2017-11-07 University Of Massachusetts Ferroelectric nanocomposite based dielectric inks for reconfigurable RF and microwave applications
CN107275752A (zh) * 2017-06-13 2017-10-20 南京理工大学 基于人工电磁结构的圆柱共形微带阵列天线
US11605883B2 (en) * 2017-07-28 2023-03-14 Samsung Electro-Mechanics Co., Ltd. Antenna module including a flexible substrate
JP6921441B2 (ja) * 2018-01-31 2021-08-18 日本電業工作株式会社 アンテナ複合体、アンテナ構造体及び通信システム
US10790589B2 (en) * 2018-03-08 2020-09-29 Sharp Kabushiki Kaisha Microwave device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085050B2 (ja) 2006-04-06 2012-11-28 株式会社マイクロン 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP5089908B2 (ja) 2006-04-06 2012-12-05 株式会社マイクロン 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP2012074866A (ja) * 2010-09-28 2012-04-12 Hitachi Ltd 無線通信システム、および無線通信装置
JP2014503149A (ja) * 2011-01-05 2014-02-06 アルカテル−ルーセント コンフォーマル・アンテナ・アレイ
JP2018067855A (ja) 2016-10-21 2018-04-26 日本電気株式会社 分散アンテナシステム、無線通信システム、無線通信方法及びその制御装置
JP2019149612A (ja) * 2018-02-26 2019-09-05 矢崎総業株式会社 統合アンテナモジュール、及び、車載システム
JP2019201844A (ja) 2018-05-23 2019-11-28 株式会社三共 遊技機
JP2020007983A (ja) 2018-07-10 2020-01-16 株式会社酉島製作所 ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4057446A4

Also Published As

Publication number Publication date
US11949160B2 (en) 2024-04-02
JPWO2021090747A1 (ja) 2021-05-14
CN114600316B (zh) 2024-08-02
US20220255234A1 (en) 2022-08-11
CN114600316A (zh) 2022-06-07
EP4057446A1 (en) 2022-09-14
TW202127820A (zh) 2021-07-16
EP4057446A4 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
US10476148B2 (en) Antenna integrated printed wiring board (AiPWB)
US10541461B2 (en) Tile for an active electronically scanned array (AESA)
US7345632B2 (en) Multibeam planar antenna structure and method of fabrication
KR100755245B1 (ko) 안테나 구조체와 그 설비
KR101295926B1 (ko) 링 및/또는 오프셋 캐비티들에 집적 개구-결합 패치 안테나(들)을 갖는 무선 주파수 집적회로 패키지들
US20130093638A1 (en) Multi-channel cabling for rf signal distribution
US20140218258A1 (en) Active antenna ceiling tile
CN102027638A (zh) 双波束双选极化天线
JP2009141961A (ja) ビームステアリング及び/又はフォーミングアンテナを有するデータ処理装置
US20130088407A1 (en) Hybrid cabling system and network for in-building wireless applications
US9917375B2 (en) Broadband omni-directional dual-polarized antenna apparatus and methods of manufacturing and use
WO2018207500A1 (ja) 無線中継装置
WO2019187758A1 (ja) アレイアンテナ
US20210210855A1 (en) Dual-polarized corner-truncated stacked patch antenna with enhanced suppression of cross-polarization and scan performance for wide scan angles
JP2001156544A (ja) アンテナ装置
WO2021090747A1 (ja) 分散アンテナ及び分散アンテナシステム
US20190103666A1 (en) Mountable Antenna Fabrication and Integration Methods
WO2021157492A1 (ja) アンテナ装置
KR20200101814A (ko) 연성인쇄회로기판을 포함하는 안테나 모듈 및 상기 안테나 모듈을 포함하는 전자 장치
JP4154362B2 (ja) 無線lanアンテナ、無線lanアンテナの制御方法、無線lan基地局用アンテナ、無線lan移動局端末アンテナ、端末用無線lanカードおよび無線lanシステム
CN113273033B (zh) 具有固定馈电天线的相控阵列天线系统
JP4227589B2 (ja) アクティブアレイアンテナ
JP2004165707A (ja) 高周波マイクロストリップ線路
JPH03182103A (ja) フェーズドアレイアンテナ
JPH07288424A (ja) 漏洩アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020883728

Country of ref document: EP

Effective date: 20220607