WO2021090689A1 - フリッカ計測装置及び計測方法 - Google Patents

フリッカ計測装置及び計測方法 Download PDF

Info

Publication number
WO2021090689A1
WO2021090689A1 PCT/JP2020/039597 JP2020039597W WO2021090689A1 WO 2021090689 A1 WO2021090689 A1 WO 2021090689A1 JP 2020039597 W JP2020039597 W JP 2020039597W WO 2021090689 A1 WO2021090689 A1 WO 2021090689A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
flicker
light amount
resolution
measurement
Prior art date
Application number
PCT/JP2020/039597
Other languages
English (en)
French (fr)
Inventor
増田 敏
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US17/774,926 priority Critical patent/US11651747B2/en
Priority to CN202080074485.2A priority patent/CN114616444A/zh
Priority to JP2021554876A priority patent/JP7476904B2/ja
Priority to KR1020227018453A priority patent/KR20220088790A/ko
Publication of WO2021090689A1 publication Critical patent/WO2021090689A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0228Control of working procedures; Failure detection; Spectral bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0238Details making use of sensor-related data, e.g. for identification of sensor or optical parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4413Type
    • G01J2001/4426Type with intensity to frequency or voltage to frequency conversion [IFC or VFC]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/08Arrangements within a display terminal for setting, manually or automatically, display parameters of the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/141Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a flicker measuring device and a measuring method for measuring flicker of a measurement object such as a display.
  • a display of a personal computer or the like updates an image at a cycle of a vertical sync signal (Vsync), so that the screen brightness fluctuates at a cycle of the vertical sync signal.
  • Vsync vertical sync signal
  • the display is a liquid crystal display (LCD)
  • LCD liquid crystal display
  • a display color analyzer for example, CA-410 manufactured by Konica Minolta Co., Ltd.
  • Such a display color analyzer is provided with an optical sensor inside, and can measure not only color and brightness but also optical waveform and flicker.
  • the flicker measurement method is standardized by standards such as JEITA, VESA, and IEC. Each standard is derived by the following processing in order to accurately reflect the frequency response characteristics (TCSF (temporal contrast sensitivity function)) of the human eye.
  • TCSF frequency response characteristics
  • the acquired optical waveform is subjected to intensity decomposition for each frequency component by digital Fourier transform, and the intensity of each frequency component is multiplied by TCSF to convert it into an intensity that reflects the frequency response of the eye, and then each standard.
  • the flicker value is derived using the calculation method according to.
  • Patent Document 1 describes a technique in which a measurement time value is determined by high-speed scanning in an optical measuring device (spectrometer) provided with an array detector, and a time-discontinuous illumination light source can be synchronized. It is disclosed.
  • the frequency spectrum data obtained by the conventional measurement is a set of discrete intensity data with the frequency resolution fres as the basic unit.
  • Patent Document 1 does not have a description about flicker measurement or the above-mentioned problem regarding flicker measurement. Therefore, even if Patent Document 1 is referred to, the above-mentioned problem cannot be solved.
  • the above object is achieved by the following means.
  • a detection means for detecting a candidate for a light amount fluctuation frequency of a measurement object
  • a frequency determining means for determining a light amount fluctuation frequency based on a candidate for a light amount fluctuation frequency detected by the detection means
  • the frequency determining means includes a resolution determining means for determining the frequency resolution of the flicker measurement based on the determined light amount fluctuation frequency and a flicker measuring means for performing the flicker measurement with the frequency resolution determined by the resolution determining means.
  • a flicker measuring device characterized in that a fraction of an integral part of the light amount fluctuation frequency determined by the frequency determining means is determined as a frequency resolution.
  • the detection means acquires waveform data of light amount fluctuation by preliminary measurement before flicker measurement, acquires frequency spectrum data by performing Fourier conversion processing on the waveform data, and has adjacent intensities in the frequency spectrum data.
  • the flicker measuring device according to item 1 above which detects a candidate for a light amount fluctuation frequency based on a frequency that is a singular point larger than the frequency.
  • the frequency determining means includes a selection means capable of selecting one of the candidates of the light amount fluctuation frequency detected by the detecting means, and the frequency determining means selects the candidate selected by the user by the selecting means.
  • the flicker measuring device according to the preceding item 1 or the preceding item 2 which is determined as a fluctuating frequency.
  • the user is provided with an input means capable of inputting a light amount fluctuation frequency, and the frequency determining means is the closest to the light amount fluctuation frequency input by the input means among the candidates for the light amount fluctuation frequency detected by the detection means.
  • the flicker measuring device according to the preceding item 1 or the preceding item 2 for determining a candidate as a light amount fluctuation frequency.
  • Flicker measuring device. The flicker measuring device according to item 1 above, wherein the detecting means acquires waveform data of light amount fluctuation by preliminary measurement before flicker measurement, and detects candidates for light amount fluctuation frequency by an autocorrelation method for the waveform data.
  • a flicker measurement method comprising a measurement step of performing the above, and in the resolution determination step, a fraction of an integral part of the light amount fluctuation frequency determined by the frequency determination step is determined as a frequency resolution.
  • waveform data of light amount fluctuation is acquired by preliminary measurement before flicker measurement, frequency spectrum data is acquired by performing Fourier conversion processing on the waveform data, and in the frequency spectrum data, the intensities are adjacent to each other.
  • the flicker measurement method according to item 10 above wherein a candidate for a light amount fluctuation frequency is detected based on a frequency that is a singular point larger than the frequency.
  • the waveform data of the light amount fluctuation is acquired by the preliminary measurement before the flicker measurement, the frequency spectrum data is acquired by performing the Fourier conversion process on the waveform data, and the frequency spectrum is obtained.
  • the candidate of the light amount fluctuation frequency is detected based on the frequency that becomes a singular point whose intensity is larger than the adjacent frequency, the candidate corresponding to the actual light amount fluctuation frequency of the measurement target can be detected, and the light amount with high accuracy is obtained.
  • the fluctuating frequency can be determined.
  • the candidate for the smallest frequency among the candidates for the light amount fluctuation frequency is determined as the light amount fluctuation frequency, so that the error for harmonics should be minimized. Can be done.
  • the candidate selected by the user from the detected light amount fluctuation frequency candidates is determined as the light amount fluctuation frequency, so that the flicker of the frequency that the user is paying attention to is determined. It can be detected with high accuracy.
  • the candidate closest to the light amount fluctuation frequency input by the user is determined as the light amount fluctuation frequency, so that the user pays attention to it. Flicker near the frequency can be detected with high accuracy.
  • the light amount fluctuation frequency is complemented by using the intensity of the frequency adjacent to the frequency at which the intensity is a singular point larger than the adjacent frequency in the frequency spectrum data. Since the candidates are detected, it is possible to determine the light amount fluctuation frequency with high accuracy.
  • the measurement time at the time of flicker measurement can be shortened.
  • the determined frequency resolution can be recorded and saved in the recording means. Therefore, when the flicker measurement is required again, the detection of the light amount fluctuation frequency candidate and the light amount Each process of determining the fluctuating frequency and determining the frequency resolution can be omitted, and the time required for flicker measurement can be shortened.
  • FIG. 1 is a block diagram showing a functional configuration of the flicker measuring device 1 according to the embodiment of the present invention.
  • the flicker measuring device 1 includes a light receiving unit 11, a data processing unit 12, a candidate detection unit 13, a frequency determination unit 14, a resolution determination unit 15, a flicker measurement unit 16, and a display unit. It has 17 mag.
  • the light receiving unit 11 receives light from the measurement object 100 such as a display, and includes a light receiving sensor.
  • the data processing unit 12 performs a predetermined process such as amplification on the received data received by the light receiving unit 11.
  • the candidate detection unit 13 detects a candidate for the light amount fluctuation frequency based on the received light data processed by the data processing unit 12, and the frequency determination unit 14 determines the light amount fluctuation frequency from the detected candidates. To do.
  • the resolution determination unit 15 determines the frequency resolution based on the light amount fluctuation frequency determined by the frequency determination unit 14.
  • the flicker measuring unit 16 measures the flicker with the frequency resolution determined by the resolution determining unit 15, and the display unit 17 displays the flicker measurement result and the like.
  • the light receiving unit 11 receives the measurement light from the measurement object 100.
  • the received light is input to the candidate detection unit 13 after being subjected to predetermined data processing such as amplification by the data processing unit 12.
  • the candidate detection unit 13 detects a candidate for the light amount fluctuation frequency of the measurement object 100 (hereinafter, also referred to as a candidate frequency), and the frequency determination unit 14 determines the light amount fluctuation frequency from the detected candidate frequencies.
  • a method of detecting the candidate frequency is used based on the waveform data of the amount of light fluctuation acquired by the preliminary measurement.
  • a frequency equal to or higher than the threshold value may be used as a candidate frequency.
  • step S01 when the process is started in step S01, the light from the measurement object 100 is received by the preliminary measurement (pre-measurement), and the waveform data of the light amount fluctuation is acquired (step S02).
  • step S02 the waveform data of the light amount fluctuation is acquired
  • step S03 the candidate frequency is extracted (detected) (step S03). Specifically, first, the acquired waveform data is spectrally analyzed (step S31). In order to shorten the preliminary measurement time, the frequency resolution may be roughly set in the spectrum analysis in the preliminary measurement.
  • FIG. 3 shows an example of spectrum data which is the result of spectrum analysis.
  • the case where the frequency resolution is set to 2 Hz is illustrated.
  • 14 Hz and 16 Hz, 30 Hz and 32 Hz, 46 Hz and 48 Hz, and 60 Hz and 62 Hz of the spectral data are frequencies having higher intensities than adjacent frequencies, that is, singular points, and are in the vicinity of these singular points. It is considered that there is an actual candidate frequency whose intensity peaks in.
  • the frequency is refined by the complementary process using the intensity of the frequency adjacent to the frequency to be the singular point.
  • the detailing of the frequency by complementation is not limited, but may be performed by, for example, detecting the center of gravity.
  • Candidate frequencies include fundamentals and their harmonics.
  • the light amount fluctuation frequency is determined from the listed light amount fluctuation frequency candidates (step S04).
  • the minimum frequency among the candidates is determined as the light amount fluctuation frequency (step S41), and the detection of the candidate frequency and the determination process of the light amount fluctuation frequency are completed (step S05).
  • the resolution determination unit 15 determines the frequency resolution based on the light amount fluctuation frequency determined in this way.
  • an integral fraction of the determined light amount fluctuation frequency is determined as the frequency resolution.
  • Frequency resolution fres light amount fluctuation frequency / n (where n is an integer) ... Equation 1 Will be.
  • Equation 1 Adjusts the sampling frequency and the number of data (number of samplings) based on the frequency resolution fres obtained in Equation 1. For example, the number of data is fixed at 1024 points and the sampling frequency is adjusted.
  • the frequency resolution fres is also expressed by the following equation 2.
  • the flicker measurement (main measurement) is performed by the flicker measurement unit 16 according to the determined frequency resolution.
  • the flicker measurement may be performed by receiving the light from the measurement object 100 again by the light receiving unit 11, or may be performed by using the light receiving data acquired at the time of preliminary measurement.
  • the flicker measurement result is displayed on the display unit 17.
  • the candidate (candidate frequency) of the light amount fluctuation frequency of the measurement target is detected, the light amount fluctuation frequency is determined from the detected candidate frequencies, and the integer portion of the determined light amount fluctuation frequency is determined. 1 is determined as the frequency resolution. Therefore, as compared with the case where the flicker measurement is performed with the frequency resolution prepared in advance as in the conventional case, the appropriate frequency resolution can be determined based on the actual light amount fluctuation frequency of the measurement object, and the appropriate frequency resolution can be determined. Since the flicker can be measured with, it is possible to perform the flicker measurement with high accuracy without any error. Moreover, since the light amount fluctuation frequency is the actual light amount fluctuation frequency, it is not necessary to set the frequency resolution more finely than necessary, and therefore highly accurate flicker measurement can be performed in a short time.
  • the candidate frequency is detected by complementing the frequency spectrum data with the frequency of the singular point whose intensity is larger than the adjacent frequency and the intensity of the adjacent frequency, it is possible to determine the candidate frequency with high accuracy.
  • the candidate of the smallest frequency from the candidate frequencies is determined as the light amount fluctuation frequency, the error can be minimized even for harmonics.
  • FIG. 4 shows a comparison of measurement accuracy between the case where the flicker measurement is performed with the frequency resolution determined in the above embodiment and the case where the flicker measurement is performed with the frequency resolution prepared in advance as in the conventional case.
  • the upper diagram of FIG. 4 is a conventional example, and is a diagram when measurement is performed with a frequency resolution of 1 Hz prepared in advance.
  • the middle figure is a diagram when the measurement is performed with the frequency resolution obtained in this embodiment.
  • the light amount fluctuation frequency of the object to be measured is 15.36 Hz (fres ⁇ n), and the frequencies of twice, three times, and four times the harmonic components are obtained with high accuracy, respectively, and therefore appropriate frequency decomposition is performed. Therefore, each strength is obtained.
  • two peak values are measured at 15 Hz (f' ⁇ n) and 16 Hz (f' ⁇ n + 1), and two peaks are measured in the frequency domain of the harmonic component, respectively. The value is appearing.
  • the singular point shown in the spectrum data of FIG. 3 obtained as a result of the spectrum analysis in the preliminary measurement may be displayed as a candidate frequency and allowed to be selected by the user.
  • the light amount fluctuation frequency closest to the selected singular point is determined as the light amount fluctuation frequency that is the basis for determining the frequency resolution.
  • the displayed candidate list is a list of candidate frequencies after being refined by complementation, because accurate candidate frequencies can be displayed.
  • the input field 17a is displayed together with a message such as "Please select a frequency", and the design value of the light amount fluctuation frequency is directly input to the user. There may be.
  • the candidate frequency closest to the input frequency is determined as the light amount fluctuation frequency.
  • the flicker near the frequency that the user is paying attention to is detected with high accuracy. There is an effect that can be done.
  • waveform data of light amount fluctuation is acquired by preliminary measurement before flicker measurement
  • frequency spectrum data is acquired by performing Fourier conversion processing on the acquired waveform data, and the frequencies are adjacent in intensity.
  • the fluctuation period (frequency) may be directly obtained by acquiring the waveform data of the light amount fluctuation by the preliminary measurement before the flicker measurement and analyzing the acquired waveform data.
  • An example of this is the autocorrelation method for waveform data.
  • This autocorrelation method is a method of extracting the periodicity of data and detecting a candidate frequency by calculating the correlation coefficient between the waveform data of the amount of light fluctuation and the data whose time is shifted from this waveform data.
  • a periodic extraction method using feature points of waveform data by an image analysis method may be used.
  • Detection of light intensity fluctuation frequency by analysis of waveform data has the effect of shortening the preliminary measurement time, but increases the calculation load.
  • the flicker measuring device may be configured by the personal computer 200.
  • the personal computer 200 may detect the candidate frequency, determine the light amount fluctuation frequency, determine the frequency resolution, and the like by acquiring the light receiving data of the measurement object 100 from the conventional flicker measuring device 300.
  • the flicker measurement step does not have to be performed continuously with the frequency detection step, the frequency determination step, and the resolution determination step.
  • the frequency detection step, the frequency determination step, and the resolution determination step may be performed first to acquire frequency resolution data, and then only flicker measurement may be performed using the acquired frequency resolution.
  • Such a control flow can be suitably used for, for example, Vcom adjustment in which flicker measurement is continuously performed while changing display control conditions in a measurement object 100 such as an LCD.
  • the present invention can be used when measuring flicker of a measurement object such as a display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

計測対象物(100)の光量変動周波数の候補を検出する検出手段(13)と、検出された光量変動周波数の候補に基づいて光量変動周波数を決定する周波数決定手段(14)と、決定された光量変動周波数に基づいてフリッカ計測の周波数分解能を決定する分解能決定手段(15)と、決定された周波数分解能でフリッカ計測を行うフリッカ計測手段(16)を備えている。分解能決定手段(15)は、周波数決定手段(14)により決定された光量変動周波数の整数分の1を周波数分解能として決定する。

Description

フリッカ計測装置及び計測方法
 この発明は、ディスプレイ等の計測対象物のフリッカを計測するフリッカ計測装置及び計測方法に関する。
 一般に、パーソナルコンピュータ等のティスプレイは垂直同期信号(Vsync)の周期で画像を更新するため、垂直同期信号の周期の画面の輝度変動を有している。また、ディスプレイが液晶表示装置(LCD)である場合は、奇数フレームと偶数フレームで極性を入れ替える反転駆動を採用しているため、画面の輝度変動周期はさらに2倍の低周波となる。
 このような画面の輝度変動は、人間にはちらつき(フリッカ)として認識される。
 ディスプレイの基本性能を計測する光計測器として、例えば、ディスプレイカラーアナライザー(一例としてコニカミノルタ株式会社製のCA-410)が知られている。このようなディスプレイカラーアナライザーは、内部に光センサを備え、色や輝度だけでなく、光波形やフリッカを計測することができる。
 フリッカ計測法は、JEITA、VESA、IEC等の規格により標準化されている。各規格は、人間の目の周波数応答特性(TCSF(temporal contrast sensitivity function))を正確に反映させるため、以下の処理により導出している。
 即ち、取得した光波形をデジタル・フーリエ変換により周波数成分毎に強度分解し、各周波数成分の強度に対してTCSFを乗算することで目の周波数応答を反映した強度に変換し、その後、各規格に沿った演算方法を用い、フリッカ値を導出している。
 ディスプレイの場合、発光周期に特徴があることから、計測対象となる光量変動周波数は、概ね下記に限定される。
・垂直同期信号Vsyncの周波数(fv)と、その高調波(fv*n)
・LCDの場合、1/2*Vsync周波数(fv/2)と、その高調波(fv/2*n)
・バックライト変調を有するディスプレイの場合、その変調周波数(fmo)と、その高調波(fmo*n)
 なお、特許文献1には、アレイ検出器を備える光計測装置(分光器)において、高速スキャンすることにより計測時間値を決定し、時間的に不連続な照明光源の同期を可能とする技術が開示されている。
米国特許公開第2005-0103979号公報
 従来のフリッカ計測装置では、例えば1Hz等の予め用意された周波数分解能(fres)でフリッカ計測を行っていた。従って、従来の計測で得られる周波数スペクトルデータは、周波数分解能fresを基本単位とした離散的な強度データの集合となる。
 しかし、計測できる周波数が離散的であるため、フリッカを計測したい周波数が周波数分解能の整数倍でない場合(整合しない場合)は、計測対象周波数を挟む2点の周波数に強度分散してしまい、計測誤差が生じるという問題があった。特に、垂直同期信号の周波数はディスプレイ毎に個体バラツキを持つため、予め用意された周波数分解能での計測では、不十分であった。
 本誤差を抑制する方法として、周波数分解能を細かくした条件でフリッカ計測を行うことは可能であるが、周波数分解能は、後述するように計測時間の逆数に相当するため、本対応では計測時間が長くなってしまう。
 なお、特許文献1にはフリッカ計測についての記述や、フリッカ計測に関する上記課題についての記述はなく、従って特許文献1を参照しても、上記課題を解決することはできない。
 この発明は、このような技術的背景に鑑みてなされたものであって、ディスプレイ等の計測対象物のフリッカの計測を、短時間で高精度に行うことができるフリッカ計測装置及び計測方法の提供を目的とする。
 上記目的は以下の手段によって達成される。
(1)計測対象物の光量変動周波数の候補を検出する検出手段と、前記検出手段で検出された光量変動周波数の候補に基づいて光量変動周波数を決定する周波数決定手段と、前記周波数決定手段により決定された光量変動周波数に基づいてフリッカ計測の周波数分解能を決定する分解能決定手段と、前記分解能決定手段により決定された周波数分解能でフリッカ計測を行うフリッカ計測手段と、を備え、前記分解能決定手段は、前記周波数決定手段により決定された光量変動周波数の整数分の1を周波数分解能として決定することを特徴とするフリッカ計測装置。
(2)前記検出手段は、フリッカ計測前の予備測定により光量変動の波形データを取得し、前記波形データをフーリエ変換処理することにより周波数スペクトルデータを取得し、前記周波数スペクトルデータにおいて、強度が隣接周波数よりも大きい特異点となる周波数を基に光量変動周波数の候補を検出する前項1に記載のフリッカ計測装置。
(3)前記周波数決定手段は、光量変動周波数の候補の中から最小の周波数の候補を光量変動周波数として決定する前項1または前項2に記載のフリッカ計測装置。
(4)前記検出手段により検出された光量変動周波数の候補の中からいずれかの候補をユーザーが選択可能な選択手段を備え、前記周波数決定手段は、前記選択手段によりユーザーが選択した候補を光量変動周波数として決定する前項1または前項2に記載のフリッカ計測装置。
(5)ユーザーが光量変動周波数を入力可能な入力手段を備え、前記周波数決定手段は、検出手段により検出された光量変動周波数の候補のうち、前記入力手段により入力された光量変動周波数に最も近い候補を光量変動周波数として決定する前項1または前項2に記載のフリッカ計測装置。
(6)前記検出手段は、前記周波数スペクトルデータにおいて強度が隣接周波数よりも大きい特異点となる周波数と隣接する周波数の強度を用いた補完により、光量変動周波数の候補を検出する前項2に記載のフリッカ計測装置。
(7)前記検出手段は、フリッカ計測前の予備測定により光量変動の波形データを取得し、前記波形データに対する自己相関法により光量変動周波数の候補を検出する前項1に記載のフリッカ計測装置。
(8)前記周波数分解能が1Hz以上である前項1乃至前項7のいずれかに記載のフリッカ計測装置。
(9)前記分解能決定手段により決定された周波数分解能を記録する記録手段を備えている前項1乃至前項8のいずれかに記載のフリッカ計測装置。
(10)計測対象物の光量変動周波数の候補を検出手段が検出する検出ステップと、前記検出ステップで検出された光量変動周波数の候補に基づいて光量変動周波数を周波数決定手段が決定する周波数決定ステップと、前記周波数決定ステップにより決定された光量変動周波数に基づいてフリッカ計測の周波数分解能を分解能決定手段が決定する分解能決定ステップと、前記分解能決定ステップにより決定された周波数分解能でフリッカ計測手段がフリッカ計測を行う計測ステップと、を備え、前記分解能決定ステップでは、前記周波数決定ステップにより決定された光量変動周波数の整数分の1を周波数分解能として決定することを特徴とするフリッカ計測方法。
(11)前記検出ステップでは、フリッカ計測前の予備測定により光量変動の波形データを取得し、前記波形データをフーリエ変換処理することにより周波数スペクトルデータを取得し、前記周波数スペクトルデータにおいて、強度が隣接周波数よりも大きい特異点となる周波数を基に光量変動周波数の候補を検出する前項10に記載のフリッカ計測方法。
(12)前記周波数決定ステップでは、光量変動周波数の候補の中から最小の周波数の候補を光量変動周波数として決定する前項10または前項11に記載のフリッカ計測方法。
(13)前記周波数決定ステップでは、前記検出ステップにより検出された光量変動周波数の候補の中から、ユーザーが選択手段により選択した候補を光量変動周波数として決定する前項10または前項11に記載のフリッカ計測方法。
(14)前記周波数決定ステップでは、検出ステップにより検出された光量変動周波数の候補のうち、ユーザーが入力手段により入力した光量変動周波数に最も近い候補を光量変動周波数として決定する前項10または前項11に記載のフリッカ計測方法。
(15)前記検出ステップでは、前記周波数スペクトルデータにおいて強度が隣接周波数よりも大きい特異点となる周波数と隣接する周波数の強度を用いた補完により、光量変動周波数の候補を検出する前項11に記載のフリッカ計測方法。
(16)前記検出ステップでは、フリッカ計測前の予備測定により光量変動の波形データを取得し、前記波形データに対する自己相関法により光量変動周波数の候補を検出する前項10に記載のフリッカ計測方法。
(17)前記周波数分解能が1Hz以上である前項10乃至前項16のいずれかに記載のフリッカ計測方法。
(18)前記分解能決定ステップにより決定された周波数分解能を記録手段に記録保存するステップを備えている前項10乃至前項17のいずれかに記載のフリッカ計測方法。
 前項(1)及び(10)に記載の発明によれば、計測対象物の光量変動周波数の候補を検出するとともに、検出した候補に基づいて光量変動周波数を決定し、決定した光量変動周波数の整数分の1を周波数分解能として決定する。従って、計測対象物の実際の光量変動周波数に基づいて適正な周波数分解能を決定することができる。そして、決定した適正な周波数分解能でフリッカ計測を行うから、誤差がなく精度の高いフリッカ計測を行うことができる。しかも、光量変動周波数は実際の光量変動周波数であるから、周波数分解能を必要以上に細かく設定する必要は無く、このため精度の高いフリッカ計測を短時間で行うことができる。
 前項(2)及び(11)に記載の発明によれば、フリッカ計測前の予備測定により光量変動の波形データを取得し、波形データをフーリエ変換処理することにより周波数スペクトルデータを取得し、周波数スペクトルデータにおいて、強度が隣接周波数よりも大きい特異点となる周波数を基に光量変動周波数の候補を検出するから、計測対象物の実際の光量変動周波数に対応する候補を検出でき、ひいては精度の高い光量変動周波数を決定することができる。
 前項(3)及び(12)に記載の発明によれば、光量変動周波数の候補の中から最小の周波数の候補を光量変動周波数として決定するから、高調波に対しても誤差を最小化することができる。
 前項(4)及び(13)に記載の発明によれば、検出した光量変動周波数の候補の中からユーザーが選択した候補を光量変動周波数として決定するから、ユーザーが着目している周波数のフリッカを高精度で検出することができる。
 前項(5)及び(14)に記載の発明によれば、検出した光量変動周波数の候補のうち、ユーザーが入力した光量変動周波数に最も近い候補を光量変動周波数として決定するから、ユーザーが着目している周波数付近のフリッカを高精度で検出することができる。
 前項(6)及び(15)に記載の発明によれば、周波数スペクトルデータにおいて強度が隣接周波数よりも大きい特異点となる周波数と隣接する周波数の強度を用いて補完することにより、光量変動周波数の候補を検出するから、精度の高い光量変動周波数を決定することができる。
 前項(7)及び(16)に記載の発明によれば、フリッカ計測前の予備測定により光量変動の波形データを取得し、この波形データに対する自己相関法により光量変動周波数の候補を検出するから、予備測定時間を短縮することができる。
 前項(8)及び(17)に記載の発明によれば、フリッカ計測時の計測時間を短縮することができる。
 前項(9)及び(18)に記載の発明によれば、決定された周波数分解能を記録手段に記録保存できるから、再度フリッカ計測が必要となったときに、光量変動周波数の候補の検出、光量変動周波数の決定、周波数分解能の決定の各処理を省略でき、フリッカ計測に要する時間を短縮できる。
この発明の一実施形態に係るフリッカ計測装置の機能構成を示すブロック図である。 光量変動周波数の候補の検出及び光量変動周波数の決定処理を示すフローチャートである。 取得した波形データのスペクトル解析結果であるスペクトルデータの一例を示す図である。 実施形態において決定した周波数分解能でフリッカ計測を行った場合と、従来のように予め用意された周波数分解能でフリッカ計測を行った場合とで、測定精度を比較した様子を示す図である。 表示部に光量変動周波数の候補リストを表示して、ユーザーに選択させる場合の表示画面を示す図である。 光量変動周波数の設計値をユーザーに入力させる場合の表示画面を示す図である。 この発明の他の実施形態を示す構成図である。
 以下、この発明の実施形態を図面に基づいて説明する。
 図1は、この発明の一実施形態に係るフリッカ計測装置1の機能構成を示すブロック図である。
 図1に示すように、フリッカ計測装置1は、受光部11と、データ処理部12と、候補検出部13と、周波数決定部14と、分解能決定部15と、フリッカ計測部16と、表示部17等を備えている。
 受光部11はディスプレイ等の計測対象物100からの光を受光するものであり受光センサを備えている。データ処理部12は受光部11での受光データに増幅等の所定の処理を施す。候補検出部13は、データ処理部12で処理された受光データに基づいて、光量変動周波数の候補を検出するものであり、周波数決定部14は、検出された候補の中から光量変動周波数を決定する。
 分解能決定部15は、周波数決定部14で決定された光量変動周波数を基に周波数分解能を決定する。フリッカ計測部16は、分解能決定部15で決定された周波数分解能でフリッカを計測し、表示部17はフリッカ計測結果等を表示する。
 次に、フリッカ計測装置1の動作を説明する。
 ユーザーがフリッカ計測装置1を計測位置にセットして、表示部17に表示された計測開始ボタンの押下等により計測開始を指示すると、受光部11は計測対象物100からの測定光を受光する。受光された光はデータ処理部12で増幅等の所定のデータ処理を施された後、候補検出部13に入力される。
 候補検出部13は、計測対象物100の光量変動周波数の候補(以下、候補周波数ともいう)を検出し、検出された候補周波数の中から、周波数決定部14が光量変動周波数を決定する。
 候補周波数の検出及び光量変動周波数の決定処理の一例を図2のフローチャートに示す。この実施形態では、候補周波数の検出方法の一例として、予備測定により取得した光量変動の波形データに基づいて、候補周波数を検出する方法を用いている。閾値以上の周波数を候補周波数としても良い。
 図2のフローチャートにおいて、ステップS01で処理を開始すると、計測対象物100からの光を予備測定(プレ測定)により受光し、光量変動の波形データを取得する(ステップS02)。次に、候補周波数を抽出(検出)する(ステップS03)。具体的には、まず取得した波形データをスペクトル解析する(ステップS31)。予備測定時間を短縮するため、予備測定におけるスペクトル解析では周波数分解能は粗く設定しても良い。
 図3にスペクトル解析結果であるスペクトルデータの一例を示す。図3の例では周波数分解能を2Hzに設定した場合を例示している。また、図2の例では、スペクトルデータの14Hzと16Hz、30Hzと32Hz、46Hzと48Hz、60Hzと62Hzが、強度が隣接周波数よりも大きい周波数つまり特異点となっており、これらの特異点の近傍に強度がピークとなる実際の候補周波数が存在していると考えられる。
 図2のフローチャートに戻り、図3のスペクトルデータに示されるような特異点を抽出した後(ステップS32)、特異点となる周波数と隣接する周波数の強度を用いた補完処理により、周波数を詳細化する(ステップS33)。補完による周波数の詳細化については限定されないが、例えば重心検知などによって行えば良い。
 周波数の詳細化により実際に強度がピークとなる周波数を求め、求めた周波数を候補周波数としリスト化する。候補周波数には基本波とその高調波が含まれる。
 次に、リスト化した光量変動周波数の候補の中から、光量変動周波数を決定する(ステップS04)。具体的な決定方法の一例として、候補の中の最小周波数を光量変動周波数として決定し(ステップS41)、候補周波数の検出及び光量変動周波数の決定処理を終了する(ステップS05)。
 こうして決定した光量変動周波数を基に、分解能決定部15は周波数分解能を決定する。この実施形態では、決定された光量変動周波数の整数分の1を周波数分解能として決定する。つまり、式で示すと、
    周波数分解能fres=光量変動周波数/n (ただしnは整数)・・・式1
となる。
 式1で得た周波数分解能fresを基に、サンプリング周波数とデータ数(サンプリングする回数)を調整する。例えば、データ数は1024点に固定とし、サンプリング周波数を調整する。周波数分解能fresは次式2によっても表される。
  周波数分解能fres=サンプリング周波数/データ数=1/測定時間 ・・・式2
 式2より、周波数分解能を細かくしすぎると、測定時間が長くなることがわかる。このため、測定時間を短縮するために、フリッカ計測時の周波数分解能は1Hz以上とするのが好ましい。
 周波数分解能の決定後、決定された周波数分解能によりフリッカ計測部16によるフリッカ計測(本測定)が行われる。フリッカ計測は、受光部11により計測対象物100からの光を再度受光して行っても良いし、予備測定時に取得した受光データを利用して行っても良い。フリッカ計測結果は表示部17に表示される。
 このように、この実施形態では、計測対象物の光量変動周波数の候補(候補周波数)を検出するとともに、検出した候補周波数の中から光量変動周波数を決定し、決定した光量変動周波数の整数分の1を周波数分解能として決定する。従って、従来のように、予め用意された周波数分解能でフリッカ計測を行う場合に較べて、計測対象物の実際の光量変動周波数に基づいて適正な周波数分解能を決定することができ、適正な周波数分解能でフリッカ計測を行うことができるから、誤差がなく精度の高いフリッカ計測を行うことができる。しかも、光量変動周波数は実際の光量変動周波数であるから、周波数分解能を必要以上に細かく設定する必要は無く、このため精度の高いフリッカ計測を短時間で行うことができる。
 さらにこの実施形態では、フリッカ計測前の予備測定により光量変動の波形データを取得し、波形データをフーリエ変換処理することにより周波数スペクトルデータを取得し、周波数スペクトルデータにおいて、強度が隣接周波数よりも大きい特異点となる周波数を基に候補周波数を検出するから、計測対象物の実際の光量変動周波数に対応する候補周波数を検出でき、ひいては精度の高い光量変動周波数を決定することができる。
 さらには、周波数スペクトルデータにおいて強度が隣接周波数よりも大きい特異点となる周波数と隣接する周波数の強度を用いて補完することにより、候補周波数を検出するから、精度の高い候補周波数を決定することができ、また、候補周波数の中から最小の周波数の候補を光量変動周波数として決定するから、高調波に対しても誤差を最小化することができる。
 上記実施形態で決定した周波数分解能でフリッカ計測を行った場合と、従来のように予め用意された周波数分解能でフリッカ計測を行った場合とで、測定精度を比較した様子を図4に示す。
 図4の上段の図は従来例であり、予め用意された1Hzの周波数分解能で測定を行った場合の図である。中段の図は本実施形態で求めた周波数分解能で測定を行った場合の図である。本実施形態では、計測対象物の光量変動周波数15.36Hz(fres×n)、高調波成分であるその2倍、3倍、4倍の周波数が、それぞれ精度良く求められ、従って適正な周波数分解ので各強度が得られている。これに対し、上段の従来例では、15Hz(f’×n)と16Hz(f’×n+1)に2つのピーク値が測定されており、高調波成分の周波数領域においてもそれぞれ2つのピーク値が出現している。
 これら2つの図を合体させた様子を図4の下段に示す。下段の図において、黒丸は本実施形態の値、□は従来例の値である。この図から理解されるように、従来では誤差が生じているのに対し、本実施形態では誤差が抑制され計測精度が高いことがわかる。
 上記の実施形態では、複数の候補周波数の中から、最小の周波数の候補を光量変動周波数として決定する例を示したが、光量変動周波数の決定方法はこれに限定されることはない。特に、ディスプレイの設計者等のユーザーが確認のためにフリッカ計測を行うような場合には、ユーザーは光量変動周波数を認識していると思われる。
 このため図5に示すように、「周波数を選択して下さい」等のメッセージとともに検出した候補周波数のリストを表示部17に表示し、ユーザーに所望の候補を選択させても良い。図5の例では、4個の候補周波数が表示され、チェックが付されている15.36Hzの候補周波数が選択されたことを示している。いずれかの候補周波数が選択されると、選択された候補周波数が光量変動周波数として決定され、その整数分の1が周波数分解能として決定される。
 このように、ユーザーに候補を選択させるとともに、ユーザーが選択した候補周波数を光量変動周波数として決定することにより、ユーザーが着目している周波数のフリッカを高精度で検出することができる。
 なお、予備測定におけるスペクトル解析の結果得られた図3のスペクトルデータに示される特異点を候補周波数として表示し、ユーザーに選択させても良い。この場合は、選択された特異点に最も近い光量変動周波数が、周波数分解能の決定の基礎となる光量変動周波数として決定される。しかし、表示される候補リストは、補完による詳細化後の候補周波数のリストである方が、正確な候補周波数を表示できる点で望ましい。
 また、候補周波数のリスト表示ではなく、図6に示すように、「周波数を選択して下さい」等のメッセージとともに入力欄17aを表示し、光量変動周波数の設計値を直接ユーザーに入力させる構成であっても良い。この場合は、候補周波数の中から、入力された周波数に最も近い候補周波数が光量変動周波数として決定される。このように、ユーザーに光量変動周波数を入力させるとともに、入力した光量変動周波数に最も近い候補周波数を光量変動周波数として決定する場合も、ユーザーが着目している周波数付近のフリッカを高精度で検出することができる効果がある。
 また、上記の実施形態では、フリッカ計測前の予備測定により光量変動の波形データを取得し、取得した波形データをフーリエ変換処理することにより周波数スペクトルデータを取得し、周波数スペクトルデータにおいて、強度が隣接周波数よりも大きい特異点となる周波数を基に候補周波数を検出する例を説明したが、候補周波数の検出は他の方法であっても良い。
 例えば、フリッカ計測前の予備測定により光量変動の波形データを取得し、取得した波形データを解析することにより、変動周期(周波数)を直接求めても良い。その一例として、波形データに対する自己相関法を挙げることができる。この自己相関法は、光量変動の波形データとこの波形データから時間をずらしたデータとの相関係数を計算することにより、データの周期性を抽出し、候補周波数を検出する方法である。他の方法として、画像解析手法による波形データの特徴点を用いた周期抽出法などを用いても良い。
 波形データの解析による光量変動周波数の検出は、予備測定時間が短くなる効果があるが、演算負荷は大きくなる。
 以上、本発明の一実施形態を説明したが、本発明は上記実施形態に限定されることはない。例えば、候補検出部13は、光量変動の波形データをフーリエ変換処理することにより周波数スペクトルデータを取得する従来のフリッカ計測装置の機能を利用して構成されても良いし、候補検出用の専用回路を別途設けることにより構成されても良い。
 また、図7に示すように、フリッカ計測装置をパーソナルコンピュータ200により構成しても良い。この場合、パーソナルコンピュータ200は、従来のフリッカ計測装置300から計測対象物100の受光データを取得することにより、候補周波数の検出、光量変動周波数の決定、周波数分解能の決定等を行えば良い。
 また、フリッカ計測ステップは、周波数検出ステップ、周波数決定ステップ、分解能決定ステップと連続して行う必要はない。例えば、周波数検出ステップ、周波数決定ステップ、分解能決定ステップを先に行って周波数分解能のデータを取得しておき、その後、取得した周波数分解能を用いてフリッカ計測のみを実施しても良い。このような制御フローは、例えば、LCD等の計測対象物100において、ディスプレイの制御条件を変更しながらフリッカ計測を連続的に行うVcom調整等に好適に利用できる。
 また、決定された周波数分解能は、フリッカ計測装置またはフリッカ計測装置に接続された外部の記録装置(例えばパーソナルコンピュータ等)に記録保存されるようにしても良い。周波数分解能が記録保存されることで、再度フリッカ計測が必要となったときに、光量変動周波数の候補の検出、光量変動周波数の決定、周波数分解能の決定の各処理を省略でき、フリッカ計測に要する時間を短縮できる。
 本発明は、ディスプレイ等の計測対象物のフリッカを計測する際に利用可能である。
 1  フリッカ計測装置
 11 受光部
 13 候補検出部
 14 周波数決定部
 15 分解能決定部
 16 フリッカ計測部
 17 表示部
 100 計測対象物
 200 パーソナルコンピュータ

Claims (18)

  1.  計測対象物の光量変動周波数の候補を検出する検出手段と、
     前記検出手段で検出された光量変動周波数の候補に基づいて光量変動周波数を決定する周波数決定手段と、
     前記周波数決定手段により決定された光量変動周波数に基づいてフリッカ計測の周波数分解能を決定する分解能決定手段と、
     前記分解能決定手段により決定された周波数分解能でフリッカ計測を行うフリッカ計測手段と、
     を備え、
     前記分解能決定手段は、前記周波数決定手段により決定された光量変動周波数の整数分の1を周波数分解能として決定するフリッカ計測装置。
  2.  前記検出手段は、
     フリッカ計測前の予備測定により光量変動の波形データを取得し、
     前記波形データをフーリエ変換処理することにより周波数スペクトルデータを取得し、
     前記周波数スペクトルデータにおいて、強度が隣接周波数よりも大きい特異点となる周波数を基に光量変動周波数の候補を検出する請求項1に記載のフリッカ計測装置。
  3.  前記周波数決定手段は、光量変動周波数の候補の中から最小の周波数の候補を光量変動周波数として決定する請求項1または請求項2に記載のフリッカ計測装置。
  4.  前記検出手段により検出された光量変動周波数の候補の中からいずれかの候補をユーザーが選択可能な選択手段を備え、
     前記周波数決定手段は、前記選択手段によりユーザーが選択した候補を光量変動周波数として決定する請求項1または請求項2に記載のフリッカ計測装置。
  5.  ユーザーが光量変動周波数を入力可能な入力手段を備え、
     前記周波数決定手段は、検出手段により検出された光量変動周波数の候補のうち、前記入力手段により入力された光量変動周波数に最も近い候補を光量変動周波数として決定する請求項1または請求項2に記載のフリッカ計測装置。
  6.  前記検出手段は、前記周波数スペクトルデータにおいて強度が隣接周波数よりも大きい特異点となる周波数と隣接する周波数の強度を用いた補完により、光量変動周波数の候補を検出する請求項2に記載のフリッカ計測装置。
  7.  前記検出手段は、
     フリッカ計測前の予備測定により光量変動の波形データを取得し、
     前記波形データに対する自己相関法により光量変動周波数の候補を検出する請求項1に記載のフリッカ計測装置。
  8.  前記周波数分解能が1Hz以上である請求項1乃至請求項7のいずれかに記載のフリッカ計測装置。
  9.  前記分解能決定手段により決定された周波数分解能を記録する記録手段を備えている請求項1乃至請求項8のいずれかに記載のフリッカ計測装置。
  10.  計測対象物の光量変動周波数の候補を検出手段が検出する検出ステップと、
     前記検出ステップで検出された光量変動周波数の候補に基づいて光量変動周波数を周波数決定手段が決定する周波数決定ステップと、
     前記周波数決定ステップにより決定された光量変動周波数に基づいてフリッカ計測の周波数分解能を分解能決定手段が決定する分解能決定ステップと、
     前記分解能決定ステップにより決定された周波数分解能でフリッカ計測手段がフリッカ計測を行う計測ステップと、
     を備え、
     前記分解能決定ステップでは、前記周波数決定ステップにより決定された光量変動周波数の整数分の1を周波数分解能として決定するフリッカ計測方法。
  11.  前記検出ステップでは、
     フリッカ計測前の予備測定により光量変動の波形データを取得し、
     前記波形データをフーリエ変換処理することにより周波数スペクトルデータを取得し、
     前記周波数スペクトルデータにおいて、強度が隣接周波数よりも大きい特異点となる周波数を基に光量変動周波数の候補を検出する請求項10に記載のフリッカ計測方法。
  12.  前記周波数決定ステップでは、光量変動周波数の候補の中から最小の周波数の候補を光量変動周波数として決定する請求項10または請求項11に記載のフリッカ計測方法。
  13.  前記周波数決定ステップでは、前記検出ステップにより検出された光量変動周波数の候補の中から、ユーザーが選択手段により選択した候補を光量変動周波数として決定する請求項10または請求項11に記載のフリッカ計測方法。
  14.  前記周波数決定ステップでは、検出ステップにより検出された光量変動周波数の候補のうち、ユーザーが入力手段により入力した光量変動周波数に最も近い候補を光量変動周波数として決定する請求項10または請求項11に記載のフリッカ計測方法。
  15.  前記検出ステップでは、前記周波数スペクトルデータにおいて強度が隣接周波数よりも大きい特異点となる周波数と隣接する周波数の強度を用いた補完により、光量変動周波数の候補を検出する請求項11に記載のフリッカ計測方法。
  16.  前記検出ステップでは、
     フリッカ計測前の予備測定により光量変動の波形データを取得し、
     前記波形データに対する自己相関法により光量変動周波数の候補を検出する請求項10に記載のフリッカ計測方法。
  17.  前記周波数分解能が1Hz以上である請求項10乃至請求項16のいずれかに記載のフリッカ計測方法。
  18.  前記分解能決定ステップにより決定された周波数分解能を記録手段に記録保存するステップを備えている請求項10乃至請求項17のいずれかに記載のフリッカ計測方法。
PCT/JP2020/039597 2019-11-07 2020-10-21 フリッカ計測装置及び計測方法 WO2021090689A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/774,926 US11651747B2 (en) 2019-11-07 2020-10-21 Flicker measurement device and measurement method
CN202080074485.2A CN114616444A (zh) 2019-11-07 2020-10-21 闪烁计测装置以及计测方法
JP2021554876A JP7476904B2 (ja) 2019-11-07 2020-10-21 フリッカ計測装置及び計測方法
KR1020227018453A KR20220088790A (ko) 2019-11-07 2020-10-21 플리커 계측 장치 및 계측 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-202214 2019-11-07
JP2019202214 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021090689A1 true WO2021090689A1 (ja) 2021-05-14

Family

ID=75848184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039597 WO2021090689A1 (ja) 2019-11-07 2020-10-21 フリッカ計測装置及び計測方法

Country Status (5)

Country Link
US (1) US11651747B2 (ja)
JP (1) JP7476904B2 (ja)
KR (1) KR20220088790A (ja)
CN (1) CN114616444A (ja)
WO (1) WO2021090689A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136102A1 (ja) * 2022-01-11 2023-07-20 コニカミノルタ株式会社 光計測方法、光計測装置、データ処理装置及びプログラム
WO2023189479A1 (ja) * 2022-03-30 2023-10-05 コニカミノルタ株式会社 ディスプレイ光計測装置及び光計測方法、データ処理装置並びにプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257575A (ja) * 1996-03-21 1997-10-03 Toshiba Corp 光周波数同期型検出装置
JP2003069895A (ja) * 2001-08-24 2003-03-07 Minolta Co Ltd 画像処理装置
JP2003106898A (ja) * 2001-09-28 2003-04-09 Nohmi Bosai Ltd 炎検出装置
US20100045819A1 (en) * 2008-08-20 2010-02-25 Pillman Bruce H Detecting illuminant flicker
US20120236175A1 (en) * 2011-03-18 2012-09-20 Uri Kinrot Methods and Systems for Flicker Correction
JP2014165800A (ja) * 2013-02-27 2014-09-08 Canon Inc フリッカ検出装置、フリッカ補正装置、その制御方法、および制御プログラム
WO2016098155A1 (ja) * 2014-12-15 2016-06-23 オリンパス株式会社 画像処理装置および画像処理方法
WO2017038675A1 (ja) * 2015-09-02 2017-03-09 コニカミノルタ株式会社 二次元測色装置及び二次元測色方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10311617A1 (de) 2003-03-14 2004-09-23 Basf Ag Verwendung von Polyacrylsäuren als Mahlhilfsmittel für Calciumcarbonat
US20050103979A1 (en) 2003-11-13 2005-05-19 Photo Research, Inc. Temporal source analysis using array detectors
JP4957696B2 (ja) * 2008-10-02 2012-06-20 ソニー株式会社 半導体集積回路、自発光表示パネルモジュール、電子機器及び電源線駆動方法
US20140111558A1 (en) * 2012-10-23 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Display device and program
JP6462281B2 (ja) * 2014-09-08 2019-01-30 日本放送協会 フリッカー低減装置
JP6682896B2 (ja) * 2016-02-15 2020-04-15 コニカミノルタ株式会社 測光または測色のための装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257575A (ja) * 1996-03-21 1997-10-03 Toshiba Corp 光周波数同期型検出装置
JP2003069895A (ja) * 2001-08-24 2003-03-07 Minolta Co Ltd 画像処理装置
JP2003106898A (ja) * 2001-09-28 2003-04-09 Nohmi Bosai Ltd 炎検出装置
US20100045819A1 (en) * 2008-08-20 2010-02-25 Pillman Bruce H Detecting illuminant flicker
US20120236175A1 (en) * 2011-03-18 2012-09-20 Uri Kinrot Methods and Systems for Flicker Correction
JP2014165800A (ja) * 2013-02-27 2014-09-08 Canon Inc フリッカ検出装置、フリッカ補正装置、その制御方法、および制御プログラム
WO2016098155A1 (ja) * 2014-12-15 2016-06-23 オリンパス株式会社 画像処理装置および画像処理方法
WO2017038675A1 (ja) * 2015-09-02 2017-03-09 コニカミノルタ株式会社 二次元測色装置及び二次元測色方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136102A1 (ja) * 2022-01-11 2023-07-20 コニカミノルタ株式会社 光計測方法、光計測装置、データ処理装置及びプログラム
WO2023189479A1 (ja) * 2022-03-30 2023-10-05 コニカミノルタ株式会社 ディスプレイ光計測装置及び光計測方法、データ処理装置並びにプログラム

Also Published As

Publication number Publication date
US20220406270A1 (en) 2022-12-22
US11651747B2 (en) 2023-05-16
JP7476904B2 (ja) 2024-05-01
JPWO2021090689A1 (ja) 2021-05-14
KR20220088790A (ko) 2022-06-28
CN114616444A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2021246125A1 (ja) 光波形計測装置及び計測方法
US7768510B2 (en) Measurement device for measuring gray-to-gray response time
WO2021090689A1 (ja) フリッカ計測装置及び計測方法
US9370299B2 (en) Display accessibility for color vision impairment
KR100810813B1 (ko) 메이크업 카운셀링 장치
JP6052027B2 (ja) 脈波検出装置、脈波検出プログラムおよび脈波検出方法
US9990874B2 (en) Method, apparatus and computer program product for testing video playback quality
WO2016121518A1 (ja) 情報処理装置、情報処理方法、およびプログラム
US20090096778A1 (en) Method and apparatus of detecting image-sticking of display device
US11272121B2 (en) Two-dimensional flicker measurement device, two-dimensional flicker measurement system, two-dimensional flicker measurement method, and two-dimensional flicker measurement program
CN103970406A (zh) 自动调整显示器的放大率和偏移量以观看所选特征的方法
KR20190036656A (ko) 전자 장치 및 그 제어 방법
JP2001042845A (ja) ディスプレイの動特性測定用データ取得装置および動特性測定装置
WO2020149068A1 (ja) フリッカ測定装置、フリッカ測定方法及びフリッカ測定プログラム
JP2021183079A (ja) 脈波測定装置、およびプログラム
Watson et al. 64.3: flicker visibility: a perceptual metric for display flicker
US20060184331A1 (en) Controller for generating video signal, simulation system comprising the same, and method of generating video signal
CN101212704A (zh) 快速建立显示器的灰阶值-亮度曲线的方法及其装置
KR100961167B1 (ko) 영상출력기기 인터페이스 테스트 시스템 및 그 방법
CN116067623A (zh) 投影光机的质量检测方法、设备及介质
JP7247844B2 (ja) 光学分析装置及び方法
WO2023136102A1 (ja) 光計測方法、光計測装置、データ処理装置及びプログラム
CN117877399A (zh) 一种显示设备色深测试系统及测试方法
Tang et al. 35.4: Research of Evaluation Method of Display Temporal Characteristics
JPH09101816A (ja) 評価装置及び評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554876

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227018453

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886039

Country of ref document: EP

Kind code of ref document: A1