WO2021090578A1 - 樹脂組成物、樹脂組成物成形体および電力ケーブル - Google Patents

樹脂組成物、樹脂組成物成形体および電力ケーブル Download PDF

Info

Publication number
WO2021090578A1
WO2021090578A1 PCT/JP2020/034825 JP2020034825W WO2021090578A1 WO 2021090578 A1 WO2021090578 A1 WO 2021090578A1 JP 2020034825 W JP2020034825 W JP 2020034825W WO 2021090578 A1 WO2021090578 A1 WO 2021090578A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
molded product
resin
sample
heat
Prior art date
Application number
PCT/JP2020/034825
Other languages
English (en)
French (fr)
Inventor
智 山▲崎▼
山崎 孝則
文俊 伊與田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2021554832A priority Critical patent/JP7447913B2/ja
Priority to CN202080073185.2A priority patent/CN114599723A/zh
Priority to EP20885122.0A priority patent/EP4056645A4/en
Priority to US17/763,420 priority patent/US20220340743A1/en
Publication of WO2021090578A1 publication Critical patent/WO2021090578A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables

Definitions

  • the present disclosure relates to resin compositions, resin composition molded articles and power cables.
  • This application claims priority based on the Japanese application "Japanese Patent Application No. 2019-203149” filed on November 8, 2019, and incorporates all the contents described in the Japanese application.
  • cross-linked polyethylene Since cross-linked polyethylene has excellent insulating properties, it has been widely used as a resin component constituting an insulating layer in electric power cables and the like (for example, Patent Document 1).
  • the melting point is 140 ° C or higher and 150 ° C or lower.
  • a resin composition having a heat of fusion of 60 J / g or more and 100 J / g or less is provided.
  • the melting point of the molded product is 140 ° C. or higher and 150 ° C. or lower.
  • the heat of fusion of the molded product is 60 J / g or more and 100 J / g or less.
  • an outer sample having a position of 0.5 mm from the surface toward the object and an inner sample having a position of 0.5 mm from the object toward the surface were collected.
  • the absolute value of the difference between the melting point of the inner sample minus the melting point of the outer sample is within 8 ° C.
  • a resin composition molded article is provided in which the absolute value of the difference obtained by subtracting the heat of fusion of the outer sample from the heat of fusion of the inner sample is within 10 J / g.
  • the conductor An insulating layer coated on the outer circumference of the conductor with a thickness of 3 mm or more, With The insulating layer contains propylene and ethylene and contains The melting point of the insulating layer is 140 ° C. or higher and 150 ° C. or lower. The amount of heat of fusion of the insulating layer is 60 J / g or more and 100 J / g or less.
  • the absolute value of the difference between the melting point of the outer sample and the melting point of the inner sample is within 8 ° C.
  • a power cable is provided in which the absolute value of the difference between the heat of fusion of the outer sample and the heat of fusion of the inner sample is within 10 J / g.
  • propylene-based resin a resin containing propylene
  • the propylene resin Even if the propylene resin is non-crosslinked, it can satisfy the insulating properties required for a power cable. That is, both insulation and recyclability can be achieved at the same time. Further, by using a propylene-based resin, handleability, processability, and ease of manufacture can be improved.
  • the inventors have conducted a study using a propylene-based resin as a resin component constituting the insulating layer, and found that it is difficult to secure various cable characteristics especially when the thickness of the insulating layer is 3 mm or more. I found that.
  • An object of the present disclosure is to provide a technique capable of ensuring various cable characteristics in an insulating layer containing propylene and ethylene and having a thickness of 3 mm or more.
  • polypropylene alone is harder than polyethylene.
  • polypropylene alone is inferior in low temperature brittleness to polyethylene and the like.
  • a resin component obtained by adding ethylene propylene rubber (EPR) or the like to polypropylene has been used.
  • EPR ethylene propylene rubber
  • a low crystalline resin such as EPR is used as opposed to a propylene resin. Attempted to add.
  • the "cable characteristics" referred to here mean, for example, flexibility, low temperature brittleness, insulating property, and water tree resistance.
  • the resin component when the amount of low crystalline resin is excessively small, the resin component becomes close to polypropylene alone, and the crystallinity (crystal state: size, shape) and crystallinity (crystallinity) of the resin component are the thickness of the insulating layer. It tends to vary in the vertical direction. Specifically, since the surface side of the insulating layer is in contact with the outside air, the cooling rate after molding becomes high. When the cooling rate is high, spherulites are difficult to grow and the amount of crystals is relatively small. On the other hand, the inside of the insulating layer (conductor side) is not exposed to the outside air, and the cooling rate after molding becomes slow.
  • the amount of low crystallinity resin when the amount of low crystallinity resin is excessively large, the low crystallinity resin enters the propylene resin too much, especially inside the insulating layer where the cooling rate is slow, and the crystal growth of the propylene resin is excessively inhibited. Will be done. Therefore, the amount of crystals inside the insulating layer is very small, as opposed to the case where the low crystalline resin is excessively small. As a result, the insulating property of the insulating layer is lowered.
  • the inventors adjusted a predetermined resin component and controlled the crystal amount thereof. As a result of the diligent examination, various characteristics of the cable should be ensured by keeping the melting point and the heat of fusion of the insulating layer within the predetermined ranges and reducing the variation of the melting point and the heat of melting with respect to the thickness direction of the insulating layer. I found that I could do it.
  • the resin composition according to one aspect of the present disclosure is Contains propylene and ethylene
  • the melting point is 140 ° C or higher and 150 ° C or lower.
  • the amount of heat of fusion is 60 J / g or more and 100 J / g or less. According to this configuration, various characteristics of the cable can be ensured.
  • the resin composition molded product according to one aspect of the present disclosure is A molded product made of a resin composition and coated with a thickness of 3 mm or more with respect to an object. Contains propylene and ethylene
  • the melting point of the molded product is 140 ° C. or higher and 150 ° C. or lower.
  • the heat of fusion of the molded product is 60 J / g or more and 100 J / g or less.
  • an outer sample having a position of 0.5 mm from the surface toward the object and an inner sample having a position of 0.5 mm from the object toward the surface were collected.
  • the absolute value of the difference between the melting point of the inner sample minus the melting point of the outer sample is within 8 ° C.
  • the absolute value of the difference obtained by subtracting the heat of fusion of the outer sample from the heat of fusion of the inner sample is within 10 J / g. According to this configuration, various characteristics of the cable can be ensured.
  • the resin composition molded product according to the above [2] is The residue of the cross-linking agent is less than 300 ppm. According to this configuration, the recyclability of the resin composition molded product can be improved.
  • the resin composition molded product according to the above [2] or [3].
  • the AC breaking electric field at room temperature is 60 kV / mm or more.
  • the resin composition molded product can be suitably used as an insulating layer of a power cable.
  • the power cable according to another aspect of the present disclosure is With the conductor An insulating layer coated on the outer circumference of the conductor with a thickness of 3 mm or more, With The insulating layer contains propylene and ethylene and contains The melting point of the insulating layer is 140 ° C. or higher and 150 ° C. or lower. The amount of heat of fusion of the insulating layer is 60 J / g or more and 100 J / g or less.
  • the absolute value of the difference between the melting point of the outer sample and the melting point of the inner sample is within 8 ° C.
  • the absolute value of the difference between the heat of fusion of the outer sample and the heat of fusion of the inner sample is within 10 J / g. According to this configuration, various characteristics of the cable can be ensured.
  • the resin composition molded body of the present embodiment (hereinafter, also simply referred to as “molded body”) is made of, for example, a resin composition and is coated with a thickness of 3 mm or more with respect to the object. It was done. Specifically, the resin composition molded body constitutes, for example, the insulating layer 130 of the power cable 10 described later.
  • the object of the resin composition molded product is, for example, a long linear conductor 110.
  • the resin composition molded product is extruded so as to cover the outer periphery of the conductor 110, for example. That is, the resin composition molded product has, for example, the same shape in the longitudinal direction of the object.
  • the length of the resin composition molded product in the longitudinal direction of the object is, for example, 30 cm or more, preferably 50 cm or more.
  • the resin composition molded product of the present embodiment contains, for example, at least propylene (propylene unit) and ethylene (ethylene unit) as resin components.
  • resin component as used herein means a resin material that constitutes the main component of the resin composition molded product.
  • main component means the component having the highest content.
  • the resin component constituting the resin composition molded product contains, for example, a propylene-based resin and a low-crystalline resin.
  • a propylene-based resin By adding a low crystalline resin to the propylene resin, the crystal growth of the propylene resin can be inhibited. Further, the crystallinity of the resin component can be controlled by adjusting the content of the low crystalline resin added to the propylene resin.
  • the resin composition molded product of the present embodiment is, for example, non-crosslinked, or even if it is crosslinked, the gel fraction (crosslinking degree) is low.
  • the residue of the cross-linking agent in the resin composition molded product is, for example, less than 300 ppm.
  • the residue is, for example, cumyl alcohol, ⁇ -methylstyrene, or the like.
  • the melting point and the amount of heat of melting of the resin composition molded product can be accurately and easily defined as an index showing the composition and the amount of crystals of the resin component and as an analyzable index. Further, if the variation in the melting point and the heat of fusion with respect to the thickness direction of the resin composition molded product is small, the composition ratio of the resin component (content of low crystalline material) is based on the heat of melting of the resin composition molded product. Can be indirectly grasped.
  • the melting point and the amount of heat of fusion of the resin composition molded product are defined as follows.
  • the melting point of the molded product is 140 ° C. or higher and 150 ° C. or lower.
  • the amount of heat of fusion of the molded product is 60 J / g or more and 100 J / g or less.
  • the "melting point” and "heat of melting” referred to here are measured by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the “differential scanning calorimetry” is performed according to, for example, JIS-K-7121 (1987). Specifically, in the DSC apparatus, the temperature is raised from room temperature (normal temperature, for example, 27 ° C.) to 220 ° C. at 10 ° C./min. Thereby, the DSC curve can be obtained by plotting the amount of heat absorption (heat flow) per unit time with respect to the temperature.
  • the temperature at which the amount of heat absorbed per unit time in the sample reaches the maximum (highest peak) is defined as the "melting point (melting peak temperature)".
  • the value (J) obtained by dividing the endothermic amount (J) of the sample from room temperature to 220 ° C. by the mass (g) of the entire resin component in the sample. / G) is defined as the "heat of fusion”.
  • the crystallinity (%) of the sample can be obtained based on the theoretical value of the heat of fusion of the sample and the heat of fusion of the perfect crystal.
  • the melting point of the molded product is, for example, 140 ° C. or higher and 150 ° C. or lower.
  • the melting point of the sample collected at any position of the molded product is, for example, 140 ° C. or higher and 150 ° C. or lower.
  • the melting point is within the above range, it means that the resin composition molded product contains a propylene random polymer as a crystalline resin component.
  • the melting point of the molded product When the melting point of the molded product is less than 140 ° C., it corresponds to the case where there is too much low crystalline resin. If there is too much low crystallinity resin, the amount of crystals will decrease. Therefore, the insulating property of the resin composition molded product may decrease. On the other hand, when the melting point of the molded product is 140 ° C. or higher, it corresponds to the case where the content of the low crystalline resin is not more than a predetermined amount. In the present embodiment, by setting the content of the low crystalline resin to a predetermined amount or less, a crystal amount of a predetermined value or more can be secured. Thereby, the insulating property of the resin composition molded product can be improved.
  • the melting point of the molded product exceeds 150 ° C., it corresponds to the case where the amount of low crystalline resin is too small. If the amount of low crystalline resin is too small, the amount of crystals will increase. That is, the amount of heat of fusion is out of the specified range. Therefore, as will be described later, it becomes difficult to secure various characteristics of the cable.
  • the melting point of the molded product is 150 ° C. or lower, it corresponds to the case where the content of the low crystalline resin is a predetermined amount or more. In the present embodiment, by setting the content of the low crystallinity resin to a predetermined amount or more, it is possible to suppress an excessive amount of crystals. As a result, various characteristics of the cable can be ensured as described later.
  • the amount of heat of fusion of the molded product is, for example, 60 J / g or more and 100 J / g or less. In other words, the amount of heat of fusion is, for example, 60 J / g or more and 100 J / g or less regardless of the position of the sample collected in the molded product.
  • the heat of fusion of the molded product is less than 60 J / g, it means that the degree of crystallinity of the molded product is low, that is, the amount of crystals is small. In this case, it corresponds to the case where the amount of low crystalline resin is too large. If the amount of heat of fusion of the molded product is less than 60 J / g and the amount of crystals is small, the insulating property of the resin composition molded product may decrease. On the other hand, when the heat of fusion of the outer sample is 60 J / g or more, it means that the crystal amount of the molded product or more is secured at a predetermined value or more.
  • the heat insulating property of the resin composition molded product can be improved by setting the heat of fusion of the molded product to 60 J / g or more and securing the crystal amount of a predetermined value or more.
  • the heat of fusion of the molded product exceeds 100 J / g, it means that the molded product has a high degree of crystallinity, that is, a large amount of crystals. In this case, the amount of low crystalline resin is too small, and the resin component is close to the simple substance of the propylene random polymer. If the amount of heat of fusion of the molded product is more than 100 J / g and the amount of crystals is large, the resin composition molded product becomes hard and may be inferior in low temperature brittleness. Further, as the amount of crystals of the resin composition molded product increases and the spherulite becomes excessively large, the insulating property may decrease due to the microcracks of the spherulite.
  • the amount of heat of fusion of the molded product is 100 J / g or less, it means that the excessive amount of crystals is suppressed in the molded product. In this case, it corresponds to the case where the content of the low crystalline resin is a predetermined amount or more.
  • the resin composition molded product can be made flexible and the low temperature brittleness can be improved.
  • the melting point and the heat of melting of the resin composition molded product in the thickness direction are respectively adjusted.
  • the variation is small.
  • the absolute value of the difference obtained by subtracting the melting point of the outer sample from the melting point of the inner sample is, for example, 8 ° C. or less (within).
  • the difference in melting point is more than 8 ° C, it means, for example, that the spherulite grows coarsely in the inner sample. In this case, the amount of low crystalline resin is too small, and the resin component is close to the simple substance of the propylene random polymer.
  • the difference in melting point is more than 8 ° C and the spherulites grow coarsely in the inner sample, as described above, flexibility, low temperature brittleness, insulation and water tree resistance as cable characteristics are ensured. Becomes difficult.
  • the difference in melting point is 8 ° C. or less, it means that the crystals are distributed in a well-balanced manner over the entire resin composition molded product, for example.
  • the difference in melting point is set to 8 ° C. or less, and the crystals are distributed in a well-balanced manner to ensure flexibility, low-temperature brittleness, insulation, and water tree resistance as cable characteristics as described above. Can be done.
  • the spherulite of the outer sample rarely grows larger than the spherulite of the inner sample. Therefore, the difference between the melting point of the inner sample minus the melting point of the outer sample is unlikely to be negative. However, even if the difference obtained by subtracting the melting point of the outer sample from the melting point of the inner sample becomes negative, the difference in melting point is ⁇ 8 ° C. or more.
  • the absolute value of the difference obtained by subtracting the heat of fusion of the outer sample from the heat of fusion of the inner sample is, for example, 10 J / g or less (within). is there.
  • the difference in the amount of heat of fusion exceeds 10 J / g, it means, for example, that the amount of crystals in the inner sample is relatively large. In this case, the amount of low crystalline resin is too small, and the resin component is close to the simple substance of the propylene random polymer.
  • the difference in the amount of heat of fusion is more than 10 J / g and the amount of crystals in the inner sample is relatively large, as described above, flexibility, low temperature brittleness, insulation and water tree resistance as cable characteristics are ensured. Becomes difficult. Further, when the difference in the amount of heat of fusion is more than 10 J / g, for example, the case where the crystal amount of the inner sample is relatively small may be applicable.
  • the difference in the amount of heat of fusion is more than 10 J / g and the amount of crystals in the inner sample is relatively small, the insulating property of the resin composition molded product may decrease as described above.
  • the difference in the amount of heat of fusion is 10 J / g or less, it means, for example, that the amount of crystals is uniform over the entire resin composition molded product.
  • the difference in the amount of heat of fusion is set to 10 J / g or less and the amount of crystals is made uniform to ensure flexibility, low temperature brittleness, insulation and water tree resistance as various cable characteristics as described above. can do.
  • uniformity includes not only the case of being completely uniform but also the case of being uniform with a predetermined error.
  • the propylene-based resin constituting the resin component of the present embodiment contains propylene and ethylene. That is, the propylene-based resin is made of, for example, a propylene random polymer (random polypropylene).
  • the stereoregularity of the propylene random polymer is, for example, isotactic.
  • the isotactic propylene random polymer is polymerized with a Ziegler-Natta catalyst and is versatile.
  • the melting point of the molded product can be within the above-mentioned specified range.
  • the stereoregularity of the propylene random polymer isotactic it is possible to improve the low temperature brittleness without adding an excessive amount of low crystallinity resin. Thereby, the insulating property can be easily ensured.
  • Syndiotactic propylene random polymer is polymerized with a metallocene catalyst and is relatively expensive. If the stereoregularity of the propylene random polymer is syndiotactic, the melting point of the molded product will be excessively low. Further, when the stereoregularity of the propylene random polymer is syndiotactic, the low temperature embrittlement is inferior. In order to improve the low temperature embrittlement, it is necessary to add an excessive amount of low crystalline resin. Therefore, the deterioration of the insulating property becomes remarkable.
  • the resin component does not crystallize, so that it becomes impossible to secure the predetermined cable characteristics.
  • the ethylene content in the propylene random polymer is, for example, 0.5% by mass or more and 15% by mass or less.
  • the ethylene content in the propylene random polymer is, for example, 0.5% by mass or more and 15% by mass or less.
  • the melting point of the propylene random polymer used in this embodiment as a simple substance is, for example, 140 ° C. or higher and 150 ° C. or lower.
  • the amount of heat of fusion of the propylene random polymer as a simple substance is, for example, 90 J / g or more and 105 J / g or less.
  • the elastic modulus (25 ° C.) of the propylene random polymer as a simple substance is, for example, 1000 MPa.
  • the low crystalline resin (amorphous resin) constituting the resin component of the present embodiment is a resin material that imparts flexibility to the resin composition molded product.
  • the low crystalline resin does not have a melting point, or the low crystalline resin has a melting point of less than 100 ° C.
  • the heat of fusion of the low crystallinity resin is, for example, 50 J / g or less, preferably 30 J / g or less.
  • the low crystallinity resin of the present embodiment is made of, for example, a copolymer obtained by copolymerizing at least any two of ethylene, propylene, butene, hexene and octene.
  • the carbon-carbon double bond in the monomer unit constituting the low crystalline resin is preferably at the ⁇ -position, for example.
  • low crystallinity resin examples include ethylene propylene rubber (EPR: Ethylene Propyrene Rubber) and ultra-low density polyethylene (VLDPE: Very Low Density Polyethylene).
  • EPR Ethylene Propyrene Rubber
  • VLDPE Very Low Density Polyethylene
  • a copolymer containing propylene is preferable from the viewpoint of compatibility with a propylene-based resin.
  • EPR is mentioned as a copolymer containing propylene.
  • the ethylene content of EPR is, for example, 20% by mass or more, preferably 40% by mass or more, and more preferably 55% by mass or more.
  • the compatibility of EPR with the propylene-based resin becomes excessively high. Therefore, even if the content of EPR in the molded product is reduced, the molded product can be made flexible.
  • the effect of inhibiting the crystallization of the propylene resin also referred to as the "crystallization inhibiting effect" is not exhibited, and the insulating property may be lowered due to the microcracks of the spherulite.
  • the present embodiment by setting the ethylene content to 20% by mass or more, it is possible to prevent the EPR from becoming excessively compatible with the propylene resin. As a result, the crystallization inhibitory effect of EPR can be exhibited while obtaining the softening effect of EPR. As a result, it is possible to suppress a decrease in insulating property. Further, by setting the ethylene content to preferably 40% by mass or more, more preferably 55% by mass or more, the crystallization inhibitory effect can be stably exhibited, and the decrease in insulating property can be stably suppressed. Can be done.
  • the low crystallinity resin may be, for example, a propylene-free copolymer.
  • the propylene-free copolymer for example, VLDPE is preferable from the viewpoint of easy availability.
  • VLDPE include PE composed of ethylene and 1-butene, PE composed of ethylene and 1-octene, and the like.
  • the content of the low crystalline resin is, for example, 5 parts by mass or more and 30 parts by mass or less, preferably 5 parts by mass or less, when the total content of the propylene resin and the low crystalline resin is 100 parts by mass. It is 5 parts by mass or more and 25 parts by mass or less.
  • the content of the low crystallinity resin is less than 5 parts by mass, the resin component becomes close to the simple substance of the propylene random polymer, and the crystallinity increases. Therefore, the amount of heat of fusion of the molded product exceeds the above upper limit value. In addition, the amount of crystals of the resin component tends to vary in the thickness direction of the resin composition molded product. Specifically, the above-mentioned differences in melting point and heat of melting do not satisfy the respective regulations. As a result, it becomes difficult to secure flexibility, low temperature brittleness, insulation and water tree resistance as cable characteristics.
  • the content of the low crystallinity resin to 5 parts by mass or more, it is possible to prevent the resin component from becoming close to a simple substance of the propylene random polymer, and the amount of crystals becomes excessive. Can be suppressed.
  • the amount of heat of fusion of the molded product can be set to be equal to or less than the above upper limit value.
  • the insulating property is remarkably lowered particularly in the resin composition molded body extruded to a thickness of 3 mm or more.
  • the low crystallinity resin enters the propylene-based resin too much, and the crystal growth of the propylene-based resin is excessively inhibited, particularly inside the resin composition molded product having a slow cooling rate.
  • crystal inhibition is promoted by the resin flow during extrusion in addition to slow cooling. Therefore, the amount of crystals on the inside of the resin composition molded product is very small. That is, the amount of heat of fusion of the molded product becomes less than the above lower limit value.
  • the amount of crystals tends to decrease due to quenching, or crystal inhibition occurs due to the large content of the low crystalline resin.
  • the composition is rubbed against the metal die during extrusion, so that the molecular chains are oriented and the propylene-based resin is highly crystallized. Therefore, the amount of crystals is unlikely to decrease on the outside of the resin composition molded product.
  • the amount of crystals of the resin component varies in the thickness direction of the resin composition molded product. Specifically, it does not satisfy the above-mentioned regulation of the difference in the amount of heat of fusion. As a result, the insulating property of the resin composition molded product is lowered.
  • the present embodiment by setting the content of the low crystalline resin to 30 parts by mass or less, even when the resin composition molded product is extruded to a thickness of 3 mm or more, it has insulating properties. A significant decrease can be suppressed. This is because even inside the molded product of the resin composition, it is possible to suppress the entry of the low crystalline resin into the propylene-based resin and prevent the crystal growth of the propylene-based resin from being excessively inhibited. .. As a result, a predetermined amount of crystals can be secured inside the molded resin composition.
  • the amount of crystals on the outside of the resin composition molded product can be made to be about the same as that on the inside of the resin composition molded product. That is, it is possible to secure a crystal amount of a predetermined value or more as a whole of the resin composition molded product. As a result, even when the resin composition molded product is extruded to a thickness of 3 mm or more, a significant decrease in insulating property can be suppressed. Further, in the present embodiment, by setting the content of the low crystalline resin to 25 parts by mass or less, the insulating property of the resin composition molded product can be stably improved.
  • the resin composition molded product when the resin composition molded product is extruded to a thickness of less than 3 mm, the thickness is thin, so that the whole is rapidly cooled. Therefore, it is difficult for the low crystallinity resin to enter the propylene resin, and excessive inhibition of crystal growth of the propylene resin is unlikely to occur.
  • the propylene-based resin is highly crystallized due to the resin orientation, and the amount of crystals is unlikely to decrease.
  • the resin composition molded product when the resin composition molded product is press-molded, the whole is slowly cooled. Therefore, even if the amount of the low crystallinity resin is large, the crystal growth is promoted, and the inhibition of the crystal growth of the propylene resin is slight. Therefore, in these cases, even if the content of the low crystalline resin is more than 22 parts by mass, the deterioration of the insulating property is unlikely to occur.
  • the resin composition molded product may contain, for example, an antioxidant, a copper damage inhibitor, a lubricant and a colorant.
  • the resin composition molded product of the present embodiment has a small amount of additives that function as a nucleating agent for producing propylene crystals, for example.
  • the additive functioning as a nucleating agent include inorganic substances such as flame retardants or organic substances.
  • the content of the additive functioning as a nucleating agent may be less than 1 part by mass, for example, when the total content of the propylene resin and the low crystalline resin is 100 parts by mass. preferable. As a result, it is possible to suppress the occurrence of unexpected abnormal crystallization caused by the nucleating agent and easily control the amount of crystallization.
  • FIG. 1 is a cross-sectional view orthogonal to the axial direction of the power cable according to the present embodiment.
  • the power cable 10 of this embodiment is configured as a so-called solid-state insulated power cable. Further, the power cable 10 of the present embodiment is configured to be laid, for example, on land (in a pipeline), underwater, or on the bottom of the water. The power cable 10 is used for alternating current, for example.
  • the power cable 10 has, for example, a conductor 110, an inner semi-conductive layer 120, an insulating layer 130, an outer semi-conductive layer 140, a shielding layer 150, and a sheath 160.
  • the conductor 110 is formed by twisting a plurality of conductor core wires (conductive core wires) including, for example, pure copper, a copper alloy, aluminum, or an aluminum alloy.
  • the internal semi-conductive layer 120 is provided so as to cover the outer periphery of the conductor 110. Further, the internal semi-conductive layer 120 has semi-conductive property and is configured to suppress electric field concentration on the surface side of the conductor 110.
  • the internal semi-conductive layer 120 includes, for example, an ethylene-ethyl acrylate copolymer, an ethylene-methyl acrylate copolymer, an ethylene-butyl acrylate copolymer, an ethylene-based copolymer such as an ethylene-vinyl acetate copolymer, and an olefin. It contains at least one of the above-mentioned low crystalline resins and the above-mentioned elastomer, and conductive carbon black.
  • the insulating layer 130 is provided so as to cover the outer periphery of the inner semi-conductive layer 120, and is configured as the resin composition molded body described above.
  • the insulating layer 130 is extruded with a resin composition, for example, as described above.
  • the outer semi-conductive layer 140 is provided so as to cover the outer periphery of the insulating layer 130. Further, the external semi-conductive layer 140 has semi-conductive property and is configured to suppress electric field concentration between the insulating layer 130 and the shielding layer 150.
  • the outer semi-conductive layer 140 is made of, for example, the same material as the inner semi-conductive layer 120.
  • the shielding layer 150 is provided so as to cover the outer periphery of the outer semi-conductive layer 140.
  • the shielding layer 150 is configured by, for example, winding a copper tape, or is configured as a wire shield in which a plurality of annealed copper wires or the like are wound.
  • a tape made of a rubberized cloth or the like may be wound around the inside or outside of the shielding layer 150.
  • the sheath 160 is provided so as to cover the outer periphery of the shielding layer 150.
  • the sheath 160 is made of, for example, polyvinyl chloride or polyethylene.
  • the power cable 10 of the present embodiment is an underwater cable or a submersible cable, it may have a metal water-shielding layer such as a so-called aluminum cover or iron wire armor on the outside of the shielding layer 150. Good.
  • the power cable 10 of the present embodiment since the power cable 10 of the present embodiment has the above-mentioned water tree suppressing effect, for example, it is not necessary to have a water-shielding layer outside the shielding layer 150. That is, the power cable 10 of the present embodiment may be configured by a non-complete impermeable structure.
  • the specific dimensions of the power cable 10 are not particularly limited, but for example, the diameter of the conductor 110 is 5 mm or more and 60 mm or less, and the thickness of the internal semiconductive layer 120 is 0.5 mm or more and 3 mm or less.
  • the thickness of the insulating layer 130 is 3 mm or more and 35 mm or less, the thickness of the external semi-conductive layer 140 is 0.5 mm or more and 3 mm or less, and the thickness of the shielding layer 150 is 0.1 mm or more and 5 mm or less.
  • the thickness of the sheath 160 is 1 mm or more.
  • the AC voltage applied to the power cable 10 of the present embodiment is, for example, 20 kV or more.
  • the melting point and the amount of heat of fusion of the insulating layer 130 are kept within the predetermined ranges, and the melting point and the amount of heat of melting of the insulating layer 130 with respect to the thickness direction are respectively set.
  • the following cable characteristics are ensured by reducing the variation.
  • the “inner sample” referred to below is a sample collected from a place where the position from the conductor 110 toward the surface of the insulating layer 130 is 0.5 mm, as described above. Since the relative amount of crystals tends to increase or decrease in the inner sample, if the cable characteristics are satisfied in the inner sample, it means that the cable characteristics are satisfied throughout the resin composition molded product. To do.
  • the AC breaking electric field strength of the insulating layer 130 at room temperature is, for example, 60 kV / mm or more. More specifically, at room temperature, an AC voltage of a commercial frequency (for example, 60 Hz) is applied to an inner sample having a thickness of 0.2 mm at 10 kV for 10 minutes, and then boosted every 1 kV for 10 minutes.
  • the AC breaking electric field when applied under repeated conditions is 60 kV / mm or more.
  • the inner sample is not cracked when it is impacted (beaten) by an impact tool at ⁇ 25 ° C.
  • the tensile elastic modulus of the inner sample is, for example, 900 MPa or less, preferably 800 MPa or less.
  • the "tensile elastic modulus” is measured by using DVA-200 manufactured by IT Measurement Control Co., Ltd. and measuring the temperature in the tensile mode at a rate of temperature rise of 10 ° C./min from -50 ° C to 200 ° C. , Means the storage elastic modulus recorded at 30 ° C.
  • the inner sample when the inner sample is bent with a diameter of 500 mm, the inner sample does not whiten.
  • whitening refers to a state in which a haze occurs due to a difference in color between the bent portion and the non-bent portion before and after bending.
  • the resin composition molded product as the insulating layer 130 is immersed in a 1N NaCl aqueous solution at room temperature (27 ° C.), and the resin composition molded product has a commercial frequency (for example, 60 Hz) of 4 kV /.
  • the maximum length of the water tree generated in the resin composition molded product is, for example, less than 150 ⁇ m. Thereby, the dielectric breakdown of the insulating layer 130 caused by the water tree can be stably suppressed.
  • the maximum length of the water tree generated in the resin composition molded product is not limited because the shorter the length, the better. However, in the present embodiment, since a predetermined amount of water tree can be generated by the above-mentioned test, the maximum length of the water tree generated in the resin composition is, for example, 30 ⁇ m or more.
  • the resin composition molded product as the insulating layer 130 is immersed in a 1N NaCl aqueous solution at room temperature (27 ° C.) and has a commercial frequency (for example, 60 Hz) with respect to the resin composition molded product.
  • a commercial frequency for example, 60 Hz
  • the dielectric breakdown of the insulating layer 130 caused by the water tree can be stably suppressed.
  • a resin component containing a propylene resin and a low crystallinity resin and other additives (antioxidants, etc.) are mixed (kneaded) with a mixer to form a mixed material.
  • the mixer include an open roll, a Banbury mixer, a pressurized kneader, a single-screw mixer, a multi-screw mixer and the like.
  • the content of the low crystallinity resin is, for example, 5 parts by mass or more and 30 parts by mass or less when the total content of the propylene resin and the low crystallinity resin is 100 parts by mass.
  • the mixed material After forming the mixed material, the mixed material is granulated by an extruder. As a result, a pellet-shaped resin composition that constitutes the insulating layer 130 is formed.
  • a twin-screw extruder having a high kneading action may be used to collectively perform the steps from mixing to granulation.
  • the insulating layer 130 is formed by using the above-mentioned resin composition so as to cover the outer periphery of the conductor 110 with a thickness of 3 mm or more.
  • the melting point of the molded product is 140 ° C. or higher and 150 ° C. or lower, and the heat of fusion of the molded product is 60 J / g or more.
  • the insulating layer 130 is formed so that the temperature is 100 J / g or less, the difference in melting point is 8 ° C. or less, and the difference in the amount of heat of fusion is 10 J / g or less.
  • the internal semi-conductive layer 120, the insulating layer 130, and the outer semi-conductive layer 140 are simultaneously formed by using a three-layer simultaneous extruder.
  • the composition for the internal semi-conductive layer is put into the extruder A that forms the internal semi-conductive layer 120.
  • the pellet-shaped resin composition described above is put into the extruder B that forms the insulating layer 130.
  • the set temperature of the extruder B is set to a temperature higher than the desired melting point by a temperature of 10 ° C. or higher and 50 ° C. or lower. It is preferable to adjust the set temperature appropriately based on the linear velocity and the extrusion pressure.
  • composition for the outer semi-conductive layer containing the same material as the resin composition for the inner semi-conductive layer put into the extruder A is put into the extruder C for forming the outer semi-conductive layer 140.
  • each extruded product from the extruders A to C is guided to the common head, and the inner semi-conductive layer 120, the insulating layer 130, and the outer semi-conductive layer 140 are simultaneously formed on the outer periphery of the conductor 110 from the inside to the outside. Extrude. As a result, an extruded material to be a cable core is formed.
  • the extruded material is cooled with, for example, water.
  • a cable core composed of the conductor 110, the inner semiconductive layer 120, the insulating layer 130, and the outer semiconductive layer 140 is formed.
  • the shielding layer 150 is formed on the outside of the outer semi-conductive layer 140 by, for example, winding a copper tape.
  • the power cable 10 as a solid-state insulated power cable is manufactured.
  • the melting point is 140 ° C. or higher and 150 ° C. or lower
  • the heat of fusion is 60 J / g or higher and 100 J / g or lower. That is, the resin composition constituting the molded product contains a propylene random polymer as a crystalline resin component. Further, the resin composition contains a low crystallinity resin at a predetermined content such that the heat of fusion of the molded product is within the above-mentioned specified range.
  • the crystals can be distributed in a well-balanced manner over the entire resin composition molded product, and the amount of crystals can be made uniform.
  • the absolute value of the difference between the melting point of the inner sample minus the melting point of the outer sample is 8 ° C. or less
  • the absolute value of the difference between the heat of fusion of the inner sample minus the heat of fusion of the outer sample is 10 J / g or less.
  • the melting point of the outer sample is 140 ° C. or higher and 150 ° C. or lower
  • the resin composition molded product contains a propylene random polymer as a propylene-based resin.
  • the propylene random polymer as the propylene resin, the crystallinity at the time of extrusion molding can be easily controlled as compared with the case where the propylene homopolymer is contained. Specifically, it is possible to widen the respective setting ranges such as the extrusion temperature and the cooling rate for obtaining a desired crystal amount.
  • the residue of the cross-linking agent in the resin composition molded product is less than 300 ppm.
  • the present embodiment it is suppressed that the crystal size becomes too small or too large as a whole of the resin composition molded product. Further, not only the amount of crystals is uniform but also the size of crystals is uniform throughout the resin composition molded product. Thereby, the insulating property of the resin composition molded product can be improved. Specifically, the AC breakdown electric field of the resin composition molded product at room temperature can be 60 kV / mm or more. As a result, the resin composition molded product of the present embodiment can be suitably used as an insulating layer of a power cable.
  • the content of the additive functioning as a nucleating agent for producing propylene crystals is, for example, 100, which is the total content of the propylene-based resin and the low-crystalline resin. In terms of parts by mass, it is preferably less than 1 part by mass.
  • the crystal content of the resin component can be made uniform in the resin composition molded product due to the nucleating agent.
  • the resin composition contains the above-mentioned additive, the insulating property of the resin composition molded product may be lowered due to the additive.
  • the nuclear agent may cause unexpected abnormal crystallization. In this case, microcracks may occur in the abnormal crystal growth portion and the insulating property may be deteriorated.
  • the addition of a predetermined amount of the low crystalline resin suppresses the excessive crystallinity of the resin component. Therefore, the variation in the crystallinity of the resin component with respect to the thickness direction of the resin composition molded product is suppressed. Further, by reducing the number of additives that function as nucleating agents in the resin composition molded product, it is possible to suppress a decrease in the insulating property of the resin composition molded product due to the additives.
  • the power cable 10 may have a simple water-impervious layer because it has the above-mentioned remarkable water tree suppressing effect.
  • the simple impermeable layer is made of, for example, a metal laminate tape.
  • the metal laminating tape has, for example, a metal layer made of aluminum, copper, or the like, and an adhesive layer provided on one side or both sides of the metal layer.
  • the metal laminated tape is wound by vertical attachment so as to surround the outer circumference of the cable core (outer circumference than the outer semi-conductive layer), for example.
  • the water-impervious layer may be provided outside the shielding layer, or may also serve as a shielding layer. With such a configuration, the cost of the power cable 10 can be reduced.
  • the power cable 10 may be configured as a so-called overhead electric wire (overhead insulated electric wire).
  • three layers are simultaneously extruded in the cable core forming step S300, but one layer may be extruded one by one.
  • each extrusion from the extruders A to C was guided to a common head, and the inner semiconductive layer, the insulating layer and the outer semiconductive layer were simultaneously extruded on the outer periphery of the conductor from the inside to the outside.
  • the thicknesses of the inner semi-conductive layer, the insulating layer, and the outer semi-conductive layer were set to 0.5 mm, 3.5 mm, 7 mm, and 0.5 mm, respectively.
  • the extruded material was water-cooled.
  • power cables of samples A1 to A6, B1 and B3 to B5 having a conductor, an inner semi-conductive layer, an insulating layer and an outer semi-conductive layer were manufactured from the center to the outer circumference.
  • the resin composition was not coated on the conductor, and the resin composition molded product was press-molded.
  • Sample B1 It was prepared in the same manner as Sample A1 except that the thickness of the insulating layer was 1 mm and the content of the low crystalline resin was 35 parts by mass.
  • Example B2 (Molding method) Press molding Preheating at 180 ° C. for 2 minutes, pressurization at 180 ° C. for 1 minute, and then water cooling. Insulation layer thickness: 3.5 mm (composition) It was the same as Sample A1 except that the content of the low crystalline resin was 35 parts by mass.
  • Samples B3 to B5 It was prepared in the same manner as Sample A1 except that the content of the low crystalline resin was 35, 3, and 0 parts by mass, respectively.
  • DSC measurements were performed on the outer and inner samples. DSC measurement was performed in accordance with JIS-K-7121 (1987). Specifically, as the DSC device, a DSC8500 (input compensation type) manufactured by PerkinElmer Co., Ltd. was used. The reference sample was, for example, ⁇ -alumina. The mass of the sample was 8 to 10 mg. In the DSC apparatus, the temperature was raised from room temperature (27 ° C.) to 220 ° C. at 10 ° C./min. As a result, a DSC curve was obtained by plotting the amount of heat absorbed (heat flow) per unit time with respect to temperature.
  • the temperature at which the amount of heat absorbed per unit time in each sample became the maximum (highest peak) was defined as the "melting point”.
  • the "heat of fusion” was determined by determining the area of the region surrounded by the melting peak and the baseline in the DSC curve.
  • the following range is referred to as the "specified range”.
  • Melting point 140 ° C or more and 150 ° C or less
  • Calorific value of melting 60 J / g or more and 100 J / g or less
  • From the calorific value of melting of the inner sample Absolute value of the difference obtained by subtracting the heat of fusion of the outer sample (difference in heat of fusion): 10 J / g or less
  • AC destruction test For the AC fracture test, a 0.5 mm thick inner sample was cut out to a 0.2 mm thickness. Then, at room temperature (27 ° C.), an AC voltage of a commercial frequency (for example, 60 Hz) is applied to an inner sample having a thickness of 0.2 mm at 10 kV for 10 minutes, and then boosted every 1 kV for 10 minutes. It was applied under repeated conditions. The electric field strength when the inner sample was dielectric breakdown was measured. As a result, the case where the AC fracture strength was 60 kV / mm or more was evaluated as good.
  • a commercial frequency for example, 60 Hz
  • the insulating layer was stripped off to prepare two sheets having a thickness of 1 mm. After producing the sheet, the predetermined semi-conductive sheet was sandwiched between the two sheets to form a laminated sheet. After forming the laminated sheet, wiring was formed for the semi-conductive sheet.
  • the laminated sheet After applying a predetermined AC electric field, the laminated sheet was dried, and the laminated sheet was boiled and dyed with an aqueous methylene blue solution. After dyeing the laminated sheet, the laminated sheet was sliced along the laminating direction (that is, the direction orthogonal to the main surface of the laminated sheet) to a thickness of 30 ⁇ m to form an observation slice piece. Then, by observing the observation slice piece with an optical microscope, the water tree generated in the creeping direction of the semiconductive sheet or in the direction orthogonal to the main surface of the semiconductive sheet was observed in the sheet of the observation slice piece.
  • the laminating direction that is, the direction orthogonal to the main surface of the laminated sheet
  • the maximum length of the water tree generated in the sheet was measured.
  • the concentration of the number of generated water trees generated in the sheet and having a length of 30 ⁇ m or more was measured.
  • the “maximum length of the water tree” is obtained by rounding off the length of the water tree that was the longest among the 10 randomly selected observation slices, and also "water tree”.
  • the “concentration of the number of occurrences of water trees” was obtained by rounding off the average value of the concentration of the number of occurrences of the water tree in 10 randomly selected observation slice pieces.
  • a power cable having an insulating layer made of a predetermined resin composition was produced, and the power cable was immersed in water to evaluate the water tree.
  • a shielding layer and a sheath were provided on the outside of the insulating layer of the power cable. Therefore, the insulating layer did not come into direct contact with water.
  • the laminated sheet was directly immersed in a predetermined aqueous solution to evaluate the water tree. Therefore, the sheet was brought into direct contact with the aqueous solution. Therefore, the evaluation of the water tree resistance in this example was performed under stricter conditions as compared with the evaluation using the conventional power cable.
  • sample B1 and B2 As shown in Table 1, in sample B1 in which an insulating layer having a thickness of 1 mm was extruded, the content of the low crystalline resin was more than 30 parts by mass, but the melting point of the outer sample and the heat of fusion of the outer sample were specified, respectively. It was within range. Further, in the sample B2 obtained by press-molding a 3.5 mm thick resin composition molded product, the content of the low crystalline resin was more than 30 parts by mass, but the melting point, heat of fusion, difference in melting point and heat of fusion The differences were within the specified range. As a result, all of the cable characteristics were good in the samples B1 and B2.
  • the thin-walled extrusion sample B1 Since the thin-walled extrusion sample B1 was thin, the whole was rapidly cooled. Therefore, excessive inhibition of crystal growth of the propylene-based resin did not occur. In addition, the propylene-based resin was highly crystallized due to the resin orientation, and it was difficult for the amount of crystals to decrease. Further, in the press-molded sample B2, the whole was slowly cooled. Therefore, the inhibition of crystal growth was slight. As a result, it is considered that the insulating properties of the samples B1 and B2 did not decrease even if the content of the low crystalline resin was more than 22 parts by mass.
  • sample B3 In sample B3 in which an insulating layer having a thickness of 3.5 mm was extruded and the content of the low crystalline resin was more than 30 parts by mass, the difference between the heat of fusion and the heat of fusion of the inner sample was out of the specified range. Therefore, the AC fracture strength was less than 60 kV / mm.
  • sample B4 and B5 In the samples B4 and B5 in which a 3.5 mm thick insulating layer was extruded and the content of the low crystalline resin was less than 5 parts by mass, the difference in the amount of heat of fusion, the difference in melting point and the amount of heat of fusion between the outer sample and the inner sample were different. Each was out of the specified range. As a result, the AC fracture strength, the low temperature embrittlement test result, the tensile elastic modulus, the maximum water tree length, and the concentration of the number of water trees generated were poor. In sample B5 in which the content of the low crystalline resin was 0 parts by mass, the bending test result was also poor.
  • the samples A1 to A6 by setting the content of the low crystallinity resin to 5 parts by mass or more, it is possible to prevent the resin component from becoming close to a simple substance of the propylene random polymer, and the amount of crystals becomes excessive. I was able to suppress it. In addition, it was possible to suppress variations in the amount of crystals of the resin component in the thickness direction of the resin composition molded product. As a result, it was confirmed that flexibility, low temperature brittleness, insulation and water tree resistance as various cable characteristics could be ensured. Further, by setting the content of the low crystalline resin to 30 parts by mass or less, it was possible to secure a crystal content of a predetermined value or more as a whole of the resin composition molded product. As a result, it was confirmed that the insulating property of the resin composition molded product could be improved.
  • (Appendix 1) Contains propylene and ethylene The melting point is 140 ° C or higher and 150 ° C or lower.
  • (Appendix 2) A molded product made of a resin composition and coated with a thickness of 3 mm or more with respect to an object. Contains propylene and ethylene
  • the melting point of the molded product is 140 ° C. or higher and 150 ° C. or lower.
  • the heat of fusion of the molded product is 60 J / g or more and 100 J / g or less.
  • an outer sample having a position of 0.5 mm from the surface toward the object and an inner sample having a position of 0.5 mm from the object toward the surface were collected.
  • the absolute value of the difference between the melting point of the inner sample minus the melting point of the outer sample is within 8 ° C.
  • a resin composition molded article in which the absolute value of the difference obtained by subtracting the heat of fusion of the outer sample from the heat of fusion of the inner sample is within 10 J / g.
  • Appendix 4 The resin composition molded product according to Appendix 2 or Appendix 3, wherein the AC fracture electric field at room temperature is 60 kV / mm or more.
  • Appendix 5 Propylene-based resin containing only propylene and The resin composition molded product according to any one of Appendix 2 to Appendix 4, which comprises a low crystalline resin composed of a copolymer obtained by copolymerizing at least any two of ethylene, propylene, butene, hexene and octene. ..
  • the content of the low crystalline resin is 5 parts by mass or more and 30 parts by mass or less when the total content of the propylene resin and the low crystalline resin is 100 parts by mass.
  • Resin composition molded product The content of the low crystalline resin is 5 parts by mass or more and 30 parts by mass or less when the total content of the propylene resin and the low crystalline resin is 100 parts by mass.
  • the content of the additive functioning as a nucleating agent for producing propylene crystals is less than 1 part by mass when the total content of the propylene resin and the low crystalline resin is 100 parts by mass.
  • the resin composition molded product according to any one of 2 to 6.
  • the absolute value of the difference between the melting point of the outer sample and the melting point of the inner sample is within 8 ° C.
  • a method for manufacturing a power cable for forming the insulating layer so that the absolute value of the difference between the heat of fusion of the outer sample and the heat of fusion of the inner sample is within 10 J / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂組成物は、プロピレンおよびエチレンを含み、融点は、140℃以上150℃以下であり、融解熱量は、60J/g以上100J/g以下である。

Description

樹脂組成物、樹脂組成物成形体および電力ケーブル
 本開示は、樹脂組成物、樹脂組成物成形体および電力ケーブルに関する。
 本出願は、2019年11月8日出願の日本国出願「特願2019-203149」に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 架橋ポリエチレンは絶縁性に優れることから、電力ケーブルなどにおいて、絶縁層を構成する樹脂成分として広く用いられてきた(例えば、特許文献1)。
特開昭57-69611号公報
 本開示の一態様によれば、
 プロピレンおよびエチレンを含み、
 融点は、140℃以上150℃以下であり、
 融解熱量は、60J/g以上100J/g以下である
樹脂組成物が提供される。
 本開示の他の態様によれば、
 樹脂組成物からなり、対象物に対して3mm以上の厚さで被覆される成形体であって、
 プロピレンおよびエチレンを含み、
 前記成形体の融点は、140℃以上150℃以下であり、
 前記成形体の融解熱量は、60J/g以上100J/g以下であり、
 表面から前記対象物に向けた位置が0.5mmである外側試料と、前記対象物から前記表面に向けた位置が0.5mmである内側試料と、を採取したときに、
 前記内側試料の融点から前記外側試料の融点を引いた差の絶対値は、8℃以内であり、
 前記内側試料の融解熱量から前記外側試料の融解熱量を引いた差の絶対値は、10J/g以内である
樹脂組成物成形体が提供される。
 本開示の他の態様によれば、
 導体と、
 前記導体の外周に3mm以上の厚さで被覆された絶縁層と、
 を備え、
 前記絶縁層は、プロピレンおよびエチレンを含み、
 前記絶縁層の融点は、140℃以上150℃以下であり、
 前記絶縁層の融解熱量は、60J/g以上100J/g以下であり、
 前記絶縁層の表面から前記導体に向けた位置が0.5mmである外側試料と、前記導体から前記表面に向けた位置が0.5mmである内側試料と、を採取したときに、
 前記外側試料の融点と前記内側試料の融点との差の絶対値は、8℃以内であり、
 前記外側試料の融解熱量と前記内側試料の融解熱量との差の絶対値は、10J/g以内である
電力ケーブルが提供される。
本開示の一実施形態に係る電力ケーブルの軸方向に直交する模式的断面図である。
[本開示が解決しようとする課題]
 経年劣化した架橋ポリエチレンは、リサイクルできず、焼却するしかなかった。このため、環境への影響が懸念されていた。
 そこで、近年では、絶縁層を構成する樹脂成分として、プロピレンを含む樹脂(以下、「プロピレン系樹脂」ともいう)が注目されている。プロピレン系樹脂は非架橋であっても、電力ケーブルとして求められる絶縁性を満たすことができる。すなわち、絶縁性とリサイクル性とを両立することができる。さらに、プロピレン系樹脂を用いることで、取り扱い性、加工性、および製造容易性を向上させることができる。
 発明者等は、絶縁層を構成する樹脂成分としてプロピレン系樹脂を用いた検討を行ったところ、特に絶縁層の厚さを3mm以上とした場合に、ケーブル諸特性を確保することが困難となることを見出した。
 本開示の目的は、プロピレンおよびエチレンを含み3mm以上の厚さを有する絶縁層において、ケーブル諸特性を確保することができる技術を提供することである。
[本開示の効果]
 本開示によれば、プロピレンおよびエチレンを含み3mm以上の厚さを有する絶縁層において、ケーブル諸特性を確保することができる。
[本開示の実施形態の説明]
<発明者等の得た知見>
 まず、発明者等の得た知見について概略を説明する。
 一般に、ポリプロピレンの単体は、ポリエチレンなどと比べて硬い。また、ポリプロピレンの単体は、ポリエチレンなどと比べて、耐低温脆性に劣っている。
 上述したポリプロピレンの特性を改善するため、従来では、自動車のバンパなどの技術分野において、ポリプロピレンに対してエチレンプロピレンゴム(EPR)などを添加した樹脂成分が用いられている。ポリプロピレンに対してEPRなどを添加することで、樹脂成分を柔軟化し、低温脆性を改善させることができる。
 そこで、発明者等は、電力ケーブルの技術分野において、絶縁層の柔軟性および耐低温脆性を向上させるため、絶縁層を構成する樹脂成分として、プロピレン系樹脂に対してEPRなどの低結晶性樹脂を添加することを試みた。
 しかしながら、発明者等は、プロピレン系樹脂に対して低結晶性樹脂を添加する検討を行ったところ、特に絶縁層の厚さを3mm以上とした場合に、ケーブル諸特性を確保することが困難となることを見出した。なお、ここでいう「ケーブル諸特性」とは、例えば、柔軟性、耐低温脆性、絶縁性、および水トリー耐性のことを意味する。
 例えば、低結晶性樹脂が過剰に少ない場合には、樹脂成分がポリプロピレン単体に近くなり、樹脂成分の結晶性(結晶状態:大きさ、形状)および結晶量(結晶化度)が絶縁層の厚さ方向にばらつき易い。具体的には、絶縁層の表面側は、外気に触れているため、成形後の冷却速度が速くなる。冷却速度が速いと、球晶が成長し難く、結晶量が相対的に少なくなる。一方で、絶縁層の内側(導体側)は、外気に触れておらず、成形後の冷却速度が遅くなる。冷却速度が遅いと、球晶が粗大に成長し、結晶量が相対的に多くなる。これらの結果、絶縁層の内側は、硬くなり、耐低温脆性に劣るものとなる。また、絶縁層の内側では、球晶のマイクロクラックが発生し、絶縁性が低下する。さらに、粗大な球晶の成長により非晶部が少なくなることから、球晶界面に水が集中しやすくなる。このため、水トリー耐性が低下する。
 一方で、例えば、低結晶性樹脂が過剰に多い場合には、特に冷却速度が遅い絶縁層の内側において、低結晶性樹脂がプロピレン系樹脂に入り込みすぎ、プロピレン系樹脂の結晶成長が過剰に阻害される。このため、低結晶性樹脂が過剰に少ない場合とは反対に、絶縁層の内側において、結晶量が非常に少なくなる。これらの結果、絶縁層の絶縁性が低下する。
 そこで、発明者等は、所定の樹脂成分を調整し、その結晶量を制御した。その鋭意検討の結果、絶縁層の融点および融解熱量をそれぞれ所定の範囲内としつつ、絶縁層の厚さ方向に対する融点および融解熱量のそれぞれのばらつきを小さくすることで、ケーブル諸特性を確保することができることを見出した。
 本開示は、発明者等が見出した上述の知見に基づくものである。
<本開示の実施態様>
 次に、本開示の実施態様を列記して説明する。
[1]本開示の一態様に係る樹脂組成物は、
 プロピレンおよびエチレンを含み、
 融点は、140℃以上150℃以下であり、
 融解熱量は、60J/g以上100J/g以下である。
 この構成によれば、ケーブル諸特性を確保することができる。
[2]本開示の一態様に係る樹脂組成物成形体は、
 樹脂組成物からなり、対象物に対して3mm以上の厚さで被覆される成形体であって、
 プロピレンおよびエチレンを含み、
 前記成形体の融点は、140℃以上150℃以下であり、
 前記成形体の融解熱量は、60J/g以上100J/g以下であり、
 表面から前記対象物に向けた位置が0.5mmである外側試料と、前記対象物から前記表面に向けた位置が0.5mmである内側試料と、を採取したときに、
 前記内側試料の融点から前記外側試料の融点を引いた差の絶対値は、8℃以内であり、
 前記内側試料の融解熱量から前記外側試料の融解熱量を引いた差の絶対値は、10J/g以内である。
 この構成によれば、ケーブル諸特性を確保することができる。
[3]上記[2]に記載の樹脂組成物成形体は、
 架橋剤の残渣は、300ppm未満である。
 この構成によれば、樹脂組成物成形体のリサイクル性を向上させることができる。
[4]上記[2]又は[3]に記載の樹脂組成物成形体において、
 常温における交流破壊電界は、60kV/mm以上である。
 この構成によれば、樹脂組成物成形体を電力ケーブルの絶縁層として好適に使用することができる。
[5]本開示の他の態様に係る電力ケーブルは、
 導体と、
 前記導体の外周に3mm以上の厚さで被覆された絶縁層と、
 を備え、
 前記絶縁層は、プロピレンおよびエチレンを含み、
 前記絶縁層の融点は、140℃以上150℃以下であり、
 前記絶縁層の融解熱量は、60J/g以上100J/g以下であり、
 前記絶縁層の表面から前記導体に向けた位置が0.5mmである外側試料と、前記導体から前記表面に向けた位置が0.5mmである内側試料と、を採取したときに、
 前記外側試料の融点と前記内側試料の融点との差の絶対値は、8℃以内であり、
 前記外側試料の融解熱量と前記内側試料の融解熱量との差の絶対値は、10J/g以内である。
 この構成によれば、ケーブル諸特性を確保することができる。
[本開示の実施形態の詳細]
 次に、本開示の一実施形態を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<本開示の一実施形態>
(1)樹脂組成物成形体
 本実施形態の樹脂組成物成形体(以下、単に「成形体」ともいう)は、例えば、樹脂組成物からなり、対象物に対して3mm以上の厚さで被覆されたものである。具体的には、樹脂組成物成形体は、例えば、後述する電力ケーブル10の絶縁層130を構成している。樹脂組成物成形体の対象物は、例えば、長尺な線状の導体110である。樹脂組成物成形体は、例えば、導体110の外周を覆うように押出成形されている。すなわち、樹脂組成物成形体は、例えば、対象物の長手方向に同一の形状を有している。また、対象物の長手方向の樹脂組成物成形体の長さは、例えば、30cm以上、好ましくは50cm以上である。
 本実施形態の樹脂組成物成形体は、例えば、樹脂成分として、少なくともプロピレン(プロピレン単位)およびエチレン(エチレン単位)を含んでいる。ここでいう「樹脂成分」とは、樹脂組成物成形体の主成分を構成する樹脂材料のことを意味する。「主成分」とは、最も含有量が多い成分のことを意味する。
 より具体的には、樹脂組成物成形体を構成する樹脂成分は、例えば、プロピレン系樹脂と、低結晶性樹脂と、を含んでいる。プロピレン系樹脂に対して低結晶性樹脂を添加することで、プロピレン系樹脂の結晶成長を阻害することができる。また、プロピレン系樹脂に対して添加する低結晶性樹脂の含有量を調整することで、樹脂成分の結晶性を制御することができる。
 また、本実施形態の樹脂組成物成形体は、例えば、非架橋であるか、或いは、架橋していたとしても、ゲル分率(架橋度)は低い。具体的には、樹脂組成物成形体における架橋剤の残渣は、例えば、300ppm未満である。なお、架橋剤としてジクミルパーオキサイドを使用した場合には、残渣は、例えば、クミルアルコール、α-メチルスチレンなどである。上述のように成形体を非架橋か或いは架橋度を低くすることで、樹脂組成物成形体のリサイクル性を向上させることができる。
(融点および融解熱量)
 ここで、本実施形態の樹脂組成物成形体を構成するモノマー単位の組成を核磁気共鳴(NMR:Nuclear Magnetic Resonance)装置により分析したとしても、プロピレン単位およびエチレン単位などのモノマー単位が、プロピレン系樹脂に由来しているのか、或いは、低結晶性樹脂に由来しているのかを正確に把握することは困難である。
 これに対し、樹脂組成物成形体の融点および融解熱量は、樹脂成分の組成および結晶量を示す指標であって、且つ、分析可能な指標として、正確かつ容易に規定することが可能である。また、樹脂組成物成形体の厚さ方向に対する融点および融解熱量のそれぞれのばらつきが小さければ、樹脂組成物成形体の融解熱量に基づいて、樹脂成分の組成比率(低結晶性材料の含有量)を間接的に把握することが可能となる。
 本実施形態では、樹脂組成物成形体の融点および融解熱量がそれぞれ以下のように規定される。
 具体的には、本実施形態の樹脂組成物成形体において、
 成形体の融点は、140℃以上150℃以下であり、
 成形体の融解熱量は、60J/g以上100J/g以下であり、
 表面から対象物に向けた位置が0.5mmである外側試料と、対象物から表面に向けた位置が0.5mmである内側試料と、を採取したときに、
 内側試料の融点から外側試料の融点を引いた差の絶対値は、8℃以内であり、
 内側試料の融解熱量から外側試料の融解熱量を引いた差の絶対値は、10J/g以内である。
 なお、ここでいう「融点」および「融解熱量」は、示差走査熱量測定(DSC:Differential Scanning Calorimetry)により測定される。「示差走査熱量測定」は、例えば、JIS-K-7121(1987年)に準拠して行われる。具体的には、DSC装置において、室温(常温、例えば27℃)から220℃まで10℃/分で昇温させる。これにより、温度に対する、単位時間当たりの吸熱量(熱流)をプロットすることで、DSC曲線が得られる。
 このとき、試料における単位時間当たりの吸熱量が極大(最も高いピーク)になる温度を「融点(融解ピーク温度)」とする。また、このとき、試料の吸熱が全て樹脂成分によって行われると仮定し、室温から220℃までの試料の吸熱量(J)を試料中の樹脂成分全体の質量(g)で除した値(J/g)を「融解熱量」とする。なお、試料の融解熱量と完全結晶体の融解熱量の理論値とに基づいて、試料の結晶化度(%)を求めることができる。
 以下、成形体の融点、成形体の融解熱量、内側試料の融点から外側試料の融点を引いた差の絶対値、内側試料の融解熱量から外側試料の融解熱量を引いた差の絶対値、のそれぞれの規定について、詳細を説明する。
 本実施形態では、成形体の融点は、例えば、140℃以上150℃以下である。言い換えれば、成形体のいずれの位置で採取した試料であっても、融点は、例えば、140℃以上150℃以下である。融点が上記範囲内であることは、樹脂組成物成形体が、結晶性の樹脂成分としてプロピレンランダム重合体を含むことを意味している。
 成形体の融点が140℃未満である場合は、低結晶性樹脂が多すぎる場合に相当する。低結晶性樹脂が多すぎると、結晶量が少なくなる。このため、樹脂組成物成形体の絶縁性が低下する可能性がある。これに対し、成形体の融点が140℃以上である場合は、低結晶性樹脂の含有量が所定量以下である場合に相当する。本実施形態では、低結晶性樹脂の含有量を所定量以下とすることで、所定値以上の結晶量を確保することができる。これにより、樹脂組成物成形体の絶縁性を向上させることができる。
 一方で、成形体の融点が150℃超である場合は、低結晶性樹脂が少なすぎる場合に相当する。低結晶性樹脂が少なすぎると、結晶量が多くなる。すなわち、融解熱量が規定範囲外となる。このため、後述のように、ケーブル諸特性を確保することが困難となる。これに対し、成形体の融点が150℃以下である場合は、低結晶性樹脂の含有量が所定量以上である場合に相当する。本実施形態では、低結晶性樹脂の含有量を所定量以上とすることで、結晶量が過多となることを抑制することができる。これにより、後述のように、ケーブル諸特性を確保することができる。
 また、本実施形態の樹脂組成物成形体は、樹脂成分として低結晶性樹脂を含んでいることで、樹脂成分の結晶量がプロピレン系樹脂単体としての結晶量よりも少なくなっている。具体的には、成形体の融解熱量は、例えば、60J/g以上100J/g以下である。言い換えれば、成形体のいずれの位置で採取した試料であっても、融解熱量は、例えば、60J/g以上100J/g以下である。
 成形体の融解熱量が60J/g未満である場合は、成形体において、結晶化度が低く、すなわち、結晶量が少ない場合を意味する。この場合は、低結晶性樹脂が多すぎる場合に相当する。成形体の融解熱量が60J/g未満であり、結晶量が少ないと、樹脂組成物成形体の絶縁性が低下する可能性がある。これに対し、外側試料の融解熱量が60J/g以上である場合は、成形体において、所定値以上の結晶量が確保されている場合を意味する。この場合は、低結晶性樹脂の含有量が所定量以下である場合に相当する。本実施形態では、成形体の融解熱量を60J/g以上とし、所定値以上の結晶量を確保することで、樹脂組成物成形体の絶縁性を向上させることができる。
 一方で、成形体の融解熱量が100J/g超である場合は、成形体において、結晶化度が高く、すなわち、結晶量が多い場合を意味する。この場合は、低結晶性樹脂が少なすぎ、樹脂成分がプロピレンランダム重合体の単体に近い場合に相当する。成形体の融解熱量が100J/g超であり、結晶量が多いと、樹脂組成物成形体が硬くなり、耐低温脆性に劣る可能性がある。また、樹脂組成物成形体の結晶量が多くなるとともに、球晶が過剰に大きくなるため、球晶のマイクロクラックに起因して絶縁性が低下する可能性がある。さらに、粗大な球晶の成長により非晶部が少なくなることから、球晶界面に水が集中しやすくなる。このため、水トリー耐性が低下する可能性がある。これに対し、成形体の融解熱量が100J/g以下である場合は、成形体において、結晶量が過多となることが抑制されている場合を意味する。この場合は、低結晶性樹脂の含有量が所定量以上である場合に相当する。本実施形態では、成形体の融解熱量を100J/g以下とし、結晶量が過多となることを抑制することで、樹脂組成物成形体を柔軟化し、低温脆性を改善することができる。また、樹脂組成物成形体の球晶のマイクロクラックに起因した絶縁性の低下を抑制することができる。また、粗大な球晶の成長を抑制し、非晶質部を確保することで、球晶界面の水の集中を抑制することができる。これにより、樹脂組成物成形体の水トリー耐性を向上させることができる。
 また、本実施形態では、成形体の融解熱量が上記規定範囲内となるよう低結晶性樹脂の含有量を調整することで、樹脂組成物成形体の厚さ方向に対する融点および融解熱量のそれぞれのばらつきが小さくなっている。具体的には、内側試料の融点から外側試料の融点を引いた差の絶対値(以下、単に「融点の差」ともいう)は、例えば、8℃以下(以内)である。
 融点の差が8℃超である場合は、例えば、内側試料において球晶が粗大に成長している場合を意味する。この場合は、低結晶性樹脂が少なすぎ、樹脂成分がプロピレンランダム重合体の単体に近い場合に相当する。融点の差が8℃超であり、内側試料において球晶が粗大に成長していると、上述のように、ケーブル諸特性としての柔軟性、耐低温脆性、絶縁性および水トリー耐性を確保することが困難となる。これに対し、融点の差が8℃以下である場合は、例えば、樹脂組成物成形体の全体に亘って、結晶がバランスよく分布している場合を意味する。この場合は、低結晶性樹脂の含有量が所定量以上である場合に相当する。本実施形態では、融点の差を8℃以下とし、結晶をバランスよく分布させることで、上述のように、ケーブル諸特性としての柔軟性、耐低温脆性、絶縁性および水トリー耐性を確保することができる。
 なお、樹脂組成物成形体の表面側では冷却速度が速くなることから、外側試料の球晶が内側試料の球晶よりも大きく成長することは少ない。このため、内側試料の融点から外側試料の融点を引いた差が負となることは少ない。ただし、たとえ内側試料の融点から外側試料の融点を引いた差が負となったとしても、融点の差は、-8℃以上である。
 また、本実施形態では、内側試料の融解熱量から外側試料の融解熱量を引いた差の絶対値(以下、単に「融解熱量の差」ともいう)は、例えば、10J/g以下(以内)である。
 融解熱量の差が10J/g超である場合は、例えば、内側試料の結晶量が相対的に多くなっている場合を意味する。この場合は、低結晶性樹脂が少なすぎ、樹脂成分がプロピレンランダム重合体の単体に近い場合に相当する。融解熱量の差が10J/g超であり、内側試料の結晶量が相対的に多いと、上述のように、ケーブル諸特性としての柔軟性、耐低温脆性、絶縁性および水トリー耐性を確保することが困難となる。また、融解熱量の差が10J/g超である場合は、例えば、内側試料の結晶量が相対的に少なくなっている場合も該当しうる。この場合は、低結晶性樹脂が多すぎる場合に相当する。融解熱量の差が10J/g超であり、内側試料の結晶量が相対的に少なくなっていると、上述のように、樹脂組成物成形体の絶縁性が低下する可能性がある。これに対し、融解熱量の差が10J/g以下である場合は、例えば、樹脂組成物成形体の全体に亘って、結晶量が均一である場合を意味する。本実施形態では、融解熱量の差を10J/g以下とし、結晶量を均一にすることで、上述のように、ケーブル諸特性としての柔軟性、耐低温脆性、絶縁性および水トリー耐性を確保することができる。
 なお、上述した「均一」とは、完全に均一である場合だけでなく、所定の誤差を有して均一である場合も含んでいる。
 本実施形態では、融解熱量の差が上記規定範囲内であることから、結晶量だけでなく、後述する低結晶性樹脂の含有量も、樹脂組成物成形体の厚さ方向に均一である。
(プロピレン系樹脂)
 本実施形態の樹脂成分を構成するプロピレン系樹脂は、上述のように、プロピレンおよびエチレンを含んでいる。すなわち、プロピレン系樹脂は、例えば、プロピレンランダム重合体(ランダムポリプロピレン)からなっている。
 本実施形態では、プロピレンランダム重合体の立体規則性は、例えば、アイソタクチックである。アイソタクチックプロピレンランダム重合体は、チーグラーナッタ触媒で重合されたものであり、汎用的である。プロピレンランダム重合体の立体規則性をアイソタクチックとすることで、成形体の融点を上述の規定範囲内とすることができる。また、プロピレンランダム重合体の立体規則性をアイソタクチックとすることで、低結晶性樹脂を過剰に添加することなく、耐低温脆性を向上させることができる。これにより、絶縁性を容易に確保することができる。
 なお、参考までに、他の立体規則性として、シンジオタクチック、アタクチックがあるが、いずれも、本実施形態のプロピレンランダム重合体の立体規則性としては好ましくない。
 シンジオタクチックプロピレンランダム重合体は、メタロセン触媒で重合されたものであり、比較的高価である。プロピレンランダム重合体の立体規則性がシンジオタクチックであると、成形体の融点が過剰に低くなる。また、プロピレンランダム重合体の立体規則性がシンジオタクチックであると、低温脆化性が劣る。低温脆化性の改善には、低結晶性樹脂を過剰に添加する必要がある。このため、絶縁性の低下が顕著となる。
 また、立体規則性がアタクチックであると、樹脂成分が結晶化しないため、所定のケーブル諸特性を確保することができなくなる。
 プロピレンランダム重合体におけるエチレン含有量は、例えば、0.5質量%以上15質量%以下である。エチレン含有量を0.5質量%以下とすることで、球晶成長を抑制する効果を付与することができる。一方で、エチレン含有量を15質量%以下とすることで、融点の低下を抑制し、非架橋または微架橋での使用を安定的に実現することができる。
 本実施形態に用いられるプロピレンランダム重合体の単体としての融点は、例えば、140℃以上150℃以下である。また、プロピレンランダム重合体の単体としての融解熱量は、例えば、90J/g以上105J/g以下である。プロピレンランダム重合体の単体としての弾性率(25℃)は、例えば、1000MPaである。
(低結晶性樹脂)
 本実施形態の樹脂成分を構成する低結晶性樹脂(非晶性樹脂)は、樹脂組成物成形体に柔軟性を付与する樹脂材料である。例えば、低結晶性樹脂は融点を有しないか、或いは、低結晶性樹脂の融点は100℃未満である。また、低結晶性樹脂の融解熱量は、例えば、50J/g以下、好ましくは30J/g以下である。
 本実施形態の低結晶性樹脂は、例えば、エチレン、プロピレン、ブテン、ヘキセンおよびオクテンのうち少なくともいずれか2つを共重合した共重合体からなっている。
 なお、低結晶性樹脂を構成するモノマー単位における炭素-炭素二重結合は、例えば、α位にあることが好ましい。
 低結晶性樹脂としては、例えば、エチレンプロピレンゴム(EPR:Ethylene Propylene Rubber)、超低密度ポリエチレン(VLDPE:Very Low Density Polyethylene)などが挙げられる。
 低結晶性樹脂は、例えば、プロピレン系樹脂との相溶性の観点から、プロピレンを含む共重合体が好ましい。プロピレンを含む共重合体としては、上記の中で、EPRが挙げられる。
 EPRのエチレン含有量は、例えば、20質量%以上、好ましくは40質量%以上、より好ましくは55質量%以上であることが好ましい。エチレン含有量が20質量%未満であると、プロピレン系樹脂に対するEPRの相溶性が過剰に高くなる。このため、成形体中のEPRの含有量を少なくしても、成形体を柔軟化することができる。しかしながら、プロピレン系樹脂の結晶化を阻害する効果(「結晶化阻害効果」ともいう)が発現せず、球晶のマイクロクラックに起因して絶縁性が低下する可能性がある。これに対し、本実施形態では、エチレン含有量を20質量%以上とすることで、プロピレン系樹脂に対するEPRの相溶性が過剰に高くなることを抑制することができる。これにより、EPRによる柔軟化効果を得つつ、EPRによる結晶化阻害効果を発現させることができる。その結果、絶縁性の低下を抑制することができる。さらに、エチレン含有量を好ましくは40質量%以上、より好ましくは55質量%以上とすることで、結晶化阻害効果を安定的に発現させることができ、絶縁性の低下を安定的に抑制することができる。
 一方で、低結晶性樹脂は、例えば、プロピレンを含まない共重合体であってもよい。プロピレンを含まない共重合体としては、例えば、容易入手性の観点から、VLDPEが好ましい。VLDPEとしては、例えば、エチレンおよび1-ブテンにより構成されるPE、エチレンおよび1-オクテンにより構成されるPEなどが挙げられる。このように低結晶性樹脂としてプロピレンを含まない共重合体を添加することで、プロピレン系樹脂に対して低結晶性樹脂を所定量混合させつつ、完全相溶を抑制することができる。このようなプロピレンを含まない共重合体の含有量を所定量以上とすることで、結晶化阻害効果を発現させることができる。
 本実施形態では、低結晶性樹脂の含有量は、プロピレン系樹脂と低結晶性樹脂との合計の含有量を100質量部としたときに、例えば、5質量部以上30質量部以下、好ましくは5質量部以上25質量部以下である。
 低結晶性樹脂の含有量が5質量部未満であると、樹脂成分がプロピレンランダム重合体の単体に近くなり、結晶量が多くなる。このため、成形体の融解熱量が上記上限値を超えてしまう。また、樹脂成分の結晶量が樹脂組成物成形体の厚さ方向にばらつき易い。具体的には、上述した融点の差および融解熱量の差のそれぞれの規定を満たさなくなる。これらの結果、ケーブル諸特性としての柔軟性、耐低温脆性、絶縁性および水トリー耐性を確保することが困難となる。
 これに対し、本実施形態では、低結晶性樹脂の含有量を5質量部以上とすることで、樹脂成分がプロピレンランダム重合体の単体に近くなることを抑制し、結晶量が過多となることを抑制することができる。これにより、成形体の融解熱量を上記上限値以下とすることができる。また、樹脂組成物成形体の厚さ方向に対する樹脂成分の結晶量のばらつきを抑制することができる。具体的には、上述した融点の差および融解熱量の差のそれぞれの規定を満たすことができる。これらの結果、ケーブル諸特性としての柔軟性、耐低温脆性、絶縁性および水トリー耐性を確保することができる。
 一方で、低結晶性樹脂の含有量が30質量部超であると、特に3mm以上の厚さで押出成形した樹脂組成物成形体において、絶縁性が顕著に低下する。というのも、特に冷却速度が遅い樹脂組成物成形体の内側において、低結晶性樹脂がプロピレン系樹脂に入り込みすぎ、プロピレン系樹脂の結晶成長が過剰に阻害される。また、樹脂組成物成形体の内側では、徐冷に加え、押出時の樹脂流動により結晶阻害が促進される。このため、樹脂組成物成形体の内側において、結晶量が非常に少なくなる。すなわち、成形体の融解熱量が上記下限値未満となってしまう。なお、樹脂組成物成形体の外側では、急冷に起因して結晶量が減少する傾向にあったり、低結晶性樹脂の含有量が多いことに起因して結晶阻害が生じたりすると考えられる。しかしながら、実際には、樹脂成形体の外側では、押出時に金属ダイスに組成物が擦られることで、分子鎖が配向し、プロピレン系樹脂が高結晶化する。このため、樹脂組成物成形体の外側では、結晶量の減少が生じにくい。このようにして、樹脂成分の結晶量が樹脂組成物成形体の厚さ方向にばらつく。具体的には、上述した融解熱量の差の規定を満たさなくなる。これらの結果、樹脂組成物成形体の絶縁性が低下する。
 これに対し、本実施形態では、低結晶性樹脂の含有量を30質量部以下とすることで、樹脂組成物成形体を3mm以上の厚さで押出成形した場合であっても、絶縁性の顕著な低下を抑制することができる。というのも、樹脂組成物成形体の内側であっても、プロピレン系樹脂への低結晶性樹脂の入り込みを抑制し、プロピレン系樹脂の結晶成長が過剰に阻害されることを抑制することができる。これにより、樹脂組成物成形体の内側において、結晶量を所定量確保することができる。一方で、樹脂組成物成形体の外側では、上述のように、急冷に起因して結晶量が減少する傾向にあるが、分子鎖の配向によりプロピレン系樹脂を高結晶化させ、結晶量の減少を抑制することができる。これにより、樹脂組成物成形体の外側における結晶量を、樹脂組成物成形体の内側のそれと同程度とすることができる。すなわち、樹脂組成物成形体の全体として、所定値以上の結晶量を確保することができる。これらの結果、樹脂組成物成形体を3mm以上の厚さで押出成形した場合であっても、絶縁性の顕著な低下を抑制することができる。さらに、本実施形態では、低結晶性樹脂の含有量を25質量部以下とすることで、樹脂組成物成形体の絶縁性を安定的に向上させることができる。
 なお、参考までに、樹脂組成物成形体を3mm未満の厚さで押出成形した場合では、厚さが薄いため、全体が急冷となる。このため、プロピレン系樹脂への低結晶性樹脂の入り込みが生じにくく、プロピレン系樹脂の結晶成長の過剰阻害は起こりにくい。また、樹脂配向によりプロピレン系樹脂が高結晶化し、結晶量の減少が生じにくい。また、参考までに、樹脂組成物成形体をプレス成形した場合では、全体が徐冷となる。このため、低結晶性樹脂が多くても、結晶成長が促進され、プロピレン系樹脂の結晶成長の阻害は軽微となる。したがって、これらの場合では、低結晶性樹脂の含有量が22質量部超であったとしても、絶縁性の低下は生じにくい。
(その他の添加剤)
 樹脂組成物成形体は、上述の樹脂成分のほかに、例えば、酸化防止剤、銅害防止剤、滑剤および着色剤を含んでいてもよい。
 ただし、本実施形態の樹脂組成物成形体は、例えば、プロピレンの結晶を生成する核剤として機能する添加剤が少ないことが好ましい。核剤として機能する添加剤としては、難燃剤などの無機物または有機物などが挙げられる。具体的には、核剤として機能する添加剤の含有量は、例えば、プロピレン系樹脂と低結晶性樹脂との合計の含有量を100質量部としたときに、1質量部未満であることが好ましい。これにより、核剤を起因とした想定外の異常な結晶化の発生を抑制し、結晶量を容易に制御することができる。
(2)電力ケーブル
 次に、図1を用い、本実施形態の電力ケーブルについて説明する。図1は、本実施形態に係る電力ケーブルの軸方向に直交する断面図である。
 本実施形態の電力ケーブル10は、いわゆる固体絶縁電力ケーブルとして構成されている。また、本実施形態の電力ケーブル10は、例えば、陸上(管路内)、水中または水底に布設されるよう構成されている。なお、電力ケーブル10は、例えば、交流に用いられる。
 具体的には、電力ケーブル10は、例えば、導体110と、内部半導電層120と、絶縁層130と、外部半導電層140と、遮蔽層150と、シース160と、を有している。
(導体(導電部))
 導体110は、例えば、純銅、銅合金、アルミニウム、またはアルミニウム合金等を含む複数の導体芯線(導電芯線)を撚り合わせることにより構成されている。
(内部半導電層)
 内部半導電層120は、導体110の外周を覆うように設けられている。また、内部半導電層120は、半導電性を有し、導体110の表面側における電界集中を抑制するよう構成されている。内部半導電層120は、例えば、エチレン-エチルアクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、およびエチレン-酢酸ビニル共重合体等のエチレン系共重合体、オレフィン系エラストマ、上述の低結晶性樹脂などのうち少なくともいずれかと、導電性のカーボンブラックと、を含んでいる。
(絶縁層)
 絶縁層130は、内部半導電層120の外周を覆うように設けられ、上述した樹脂組成物成形体として構成されている。絶縁層130は、例えば、上述のように、樹脂組成物により押出成形されている。
(外部半導電層)
 外部半導電層140は、絶縁層130の外周を覆うように設けられている。また、外部半導電層140は、半導電性を有し、絶縁層130と遮蔽層150との間における電界集中を抑制するよう構成されている。外部半導電層140は、例えば、内部半導電層120と同様の材料により構成されている。
(遮蔽層)
 遮蔽層150は、外部半導電層140の外周を覆うように設けられている。遮蔽層150は、例えば、銅テープを巻回することにより構成されるか、或いは、複数の軟銅線等を巻回したワイヤシールドとして構成されている。なお、遮蔽層150の内側や外側に、ゴム引き布等を素材としたテープが巻回されていてもよい。
(シース)
 シース160は、遮蔽層150の外周を覆うように設けられている。シース160は、例えば、ポリ塩化ビニルまたはポリエチレンにより構成されている。
 なお、本実施形態の電力ケーブル10は、水中ケーブルまたは水底ケーブルであれば、遮蔽層150よりも外側に、いわゆるアルミ被などの金属製の遮水層や、鉄線鎧装を有していてもよい。
 一方で、本実施形態の電力ケーブル10は、上述の水トリー抑制効果を有していることで、例えば、遮蔽層150よりも外側に遮水層を有していなくてもよい。つまり、本実施形態の電力ケーブル10は、非完全遮水構造により構成されていてもよい。
(具体的寸法等)
 電力ケーブル10における具体的な各寸法としては、特に限定されるものではないが、例えば、導体110の直径は5mm以上60mm以下であり、内部半導電層120の厚さは0.5mm以上3mm以下であり、絶縁層130の厚さは3mm以上35mm以下であり、外部半導電層140の厚さは0.5mm以上3mm以下であり、遮蔽層150の厚さは0.1mm以上5mm以下であり、シース160の厚さは1mm以上である。本実施形態の電力ケーブル10に適用される交流電圧は、例えば20kV以上である。
(3)ケーブル諸特性
 本実施形態では、絶縁層130(樹脂組成物成形体)の融点および融解熱量をそれぞれ所定の範囲内としつつ、絶縁層130の厚さ方向に対する融点および融解熱量のそれぞれのばらつきを小さくすることで、以下のケーブル諸特性が確保されている。
 なお、以下でいう「内側試料」とは、上述のように、導体110から絶縁層130の表面に向けた位置が0.5mmである場所から採取した試料のことである。内側試料では相対的な結晶量が多くなったり少なくなったりしやすいことから、内側試料でケーブル諸特性が満たされれば、樹脂組成物成形体の全体に亘ってケーブル諸特性が満たされることを意味する。
(絶縁性)
 本実施形態では、常温(例えば27℃)における絶縁層130の交流破壊電界強度は、例えば、60kV/mm以上である。より具体的には、常温において、0.2mm厚の内側試料に対して商用周波数(例えば60Hz)の交流電圧を10kVで10分課電した後、1kVごとに昇圧し10分課電することを繰り返す条件下で印加したときの、交流破壊電界は、60kV/mm以上である。
(耐低温脆性)
 本実施形態では、例えば、JISK7216に準拠して、内側試料を-25℃で衝撃具により衝撃を与えた(殴打した)したときに割れを生じない。
(柔軟性)
 本実施形態では、内側試料の引張弾性率は、例えば、900MPa以下、好ましくは800MPa以下である。なお、「引張弾性率」とは、IT計測制御社製のDVA-200を用い、引張モードにて10℃/分の昇温速度で昇温する測定を、-50℃から200℃まで実施し、30℃で記録した貯蔵弾性率のことを意味する。
 また、本実施形態では、例えば、内側試料を500mmの直径で曲げたときに、内側試料が白化しない。なお、ここでいう「白化」とは、曲げ前後にて折り曲げ部と非折り曲げ部との間に色目の差が生じ、ヘイズが発生した状態のことをいう。
(水トリー耐性)
 本実施形態では、絶縁層130としての樹脂組成物成形体を、常温(27℃)の1規定NaCl水溶液中に浸漬した状態で、樹脂組成物成形体に対して商用周波数(例えば60Hz)4kV/mmの交流電界を1000時間印加したときに、樹脂組成物成形体中に発生する水トリーの最大長さは、例えば、150μm未満である。これにより、水トリーに起因した絶縁層130の絶縁破壊を安定的に抑制することができる。
 なお、樹脂組成物成形体中に発生する水トリーの最大長さは、短ければ短いほどよいため、限定されるものではない。しかしながら、本実施形態では、上述の試験によって所定量の水トリーが発生しうることから、樹脂組成物中に発生する水トリーの最大長さは、例えば、30μm以上となる。
 また、本実施形態では、絶縁層130としての樹脂組成物成形体を、常温(27℃)の1規定NaCl水溶液中に浸漬した状態で、樹脂組成物成形体に対して商用周波数(例えば60Hz)4kV/mmの交流電界を1000時間印加したときに、樹脂組成物成形体中に発生し30μm以上の長さを有する水トリーの発生個数濃度は、例えば、150個/cm未満である。これにより、水トリーに起因した絶縁層130の絶縁破壊を安定的に抑制することができる。
(4)電力ケーブルの製造方法
 次に、本実施形態の電力ケーブルの製造方法について説明する。以下、ステップを「S」と略す。
(S100:樹脂組成物準備工程)
 まず、プロピレンおよびエチレンを含む樹脂組成物を準備する。
 本実施形態では、プロピレン系樹脂および低結晶性樹脂を含む樹脂成分と、その他の添加剤(酸化防止剤等)と、を混合機により混合(混練)し、混合材を形成する。混合機としては、例えばオープンロール、バンバリーミキサ、加圧ニーダ、単軸混合機、多軸混合機等が挙げられる。
 このとき、低結晶性樹脂の含有量を、例えば、プロピレン系樹脂と低結晶性樹脂との合計の含有量を100質量部としたときに、5質量部以上30質量部以下とする。
 混合材を形成したら、当該混合材を押出機により造粒する。これにより、絶縁層130を構成することとなるペレット状の樹脂組成物が形成される。なお、混練作用の高い2軸型の押出機を用いて、混合から造粒までの工程を一括して行ってもよい。
(S200:導体準備工程)
 一方で、複数の導体芯線を撚り合わせることにより形成された導体110を準備する。
(S300:ケーブルコア形成工程(押出工程、絶縁層形成工程))
 樹脂組成物準備工程S100および導体準備工程S200が完了したら、上述の樹脂組成物を用い、導体110の外周を3mm以上の厚さで被覆するように絶縁層130を形成する。
 このとき、本実施形態では、上述の低結晶性樹脂の含有量を有する樹脂組成物を用いることで、成形体の融点が140℃以上150℃以下となり、成形体の融解熱量が60J/g以上100J/g以下となり、融点の差が8℃以下となり、かつ、融解熱量の差が10J/g以下となるように、絶縁層130を形成する。
 また、このとき、本実施形態では、例えば、3層同時押出機を用いて、内部半導電層120、絶縁層130および外部半導電層140を同時に形成する。
 具体的には、3層同時押出機のうち、内部半導電層120を形成する押出機Aに、例えば、内部半導電層用組成物を投入する。
 絶縁層130を形成する押出機Bに、上記したペレット状の樹脂組成物を投入する。なお、押出機Bの設定温度は、所望の融点よりも10℃以上50℃以下の温度だけ高い温度に設定する。線速および押出圧力に基づいて、設定温度を適宜調節することが好ましい。
 外部半導電層140を形成する押出機Cに、押出機Aに投入した内部半導電層用樹脂組成物と同様の材料を含む外部半導電層用組成物を投入する。
 次に、押出機A~Cからのそれぞれの押出物をコモンヘッドに導き、導体110の外周に、内側から外側に向けて、内部半導電層120、絶縁層130および外部半導電層140を同時に押出す。これにより、ケーブルコアとなる押出材が形成される。
 その後、押出材を、例えば、水により冷却する。
 以上のケーブルコア形成工程S300により、導体110、内部半導電層120、絶縁層130および外部半導電層140により構成されるケーブルコアが形成される。
(S400:遮蔽層形成工程)
 ケーブルコアを形成したら、外部半導電層140の外側に、例えば銅テープを巻回することにより遮蔽層150を形成する。
(S500:シース形成工程)
 遮蔽層150を形成したら、押出機に塩化ビニルを投入して押出すことにより、遮蔽層150の外周に、シース160を形成する。
 以上により、固体絶縁電力ケーブルとしての電力ケーブル10が製造される。
(5)本実施形態に係る効果
 本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
(a)本実施形態の樹脂組成物成形体では、融点は140℃以上150℃以下であり、融解熱量は60J/g以上100J/g以下である。すなわち、成形体を構成する樹脂組成物は、結晶性の樹脂成分としてプロピレンランダム重合体を含んでいる。また、樹脂組成物は、成形体の融解熱量が上記規定範囲内となるような所定の含有量で、低結晶性樹脂を含んでいる。このような樹脂組成物を用いて成形体を押出成形することで、成形体における樹脂成分の結晶量を適正な範囲内としつつ、厚さ方向での結晶量のばらつきを少なくすることができる。つまり、樹脂組成物成形体の全体に亘って、結晶をバランスよく分布させ、結晶量を均一にすることができる。具体的には、内側試料の融点から外側試料の融点を引いた差の絶対値を8℃以下とし、内側試料の融解熱量から外側試料の融解熱量を引いた差の絶対値を10J/g以下とすることができる。このように成形体の厚さ方向でのばらつきを少なくすることで、樹脂成分としてプロピレン系樹脂を使用しながらも、樹脂組成物成形体を柔軟化し、低温脆性を改善することができる。また、過少な結晶量に起因した絶縁性の低下を抑制するとともに、粗大な球晶のマイクロクラックに起因した絶縁性の低下を抑制することができる。また、粗大な球晶の成長を抑制し、非晶質部を確保することで、球晶界面の水の集中を抑制することができる。これにより、樹脂組成物成形体の水トリー耐性を向上させることができる。このように、本実施形態では、ケーブル諸特性を確保することが可能となる。
(b)上述のように、外側試料の融点は140℃以上150℃以下であり、樹脂組成物成形体がプロピレン系樹脂としてプロピレンランダム重合体を含んでいる。プロピレン系樹脂としてプロピレンランダム重合体を含むことで、プロピレン単独重合体を含む場合よりも、押出成形時の結晶性を容易に制御することができる。具体的には、所望の結晶量を得るための押出温度および冷却速度などのそれぞれの設定範囲を広くすることができる。
(c)本実施形態では、樹脂組成物成形体における架橋剤の残渣は、300ppm未満である。これにより、樹脂組成物成形体のリサイクル性を向上させることができる。その結果、環境への影響を抑制することができる。
(d)本実施形態によれば、樹脂組成物成形体の全体として、結晶の大きさが過小または過大となることが抑制されている。また、樹脂組成物成形体の全体に亘って、結晶量が均一であるだけでなく、結晶の大きさも均一となっている。これにより、樹脂組成物成形体の絶縁性を向上させることができる。具体的には、常温における樹脂組成物成形体の交流破壊電界を60kV/mm以上とすることができる。その結果、本実施形態の樹脂組成物成形体を電力ケーブルの絶縁層として好適に使用することができる。
(e)本実施形態の樹脂組成物成形体は、プロピレンの結晶を生成する核剤として機能する添加剤の含有量は、例えば、プロピレン系樹脂と低結晶性樹脂との合計の含有量を100質量部としたときに、1質量部未満であることが好ましい。
 ここで、樹脂組成物成形体が核剤として機能する添加剤を含んでいると、核剤によって、樹脂成分の結晶量が樹脂組成物成形体中で均一となりうる。しかしながら、樹脂組成物が上記添加剤を含んでいるため、添加剤を起因として樹脂組成物成形体の絶縁性が低下する可能性がある。一方で、核剤によって想定外の異常な結晶化が発生する可能性がある。この場合、異常結晶成長部においてマイクロクラックが発生し、絶縁性が低下する可能性がある。
 これに対し、本実施形態では、樹脂組成物成形体において核剤として機能する添加剤が少なくても、低結晶性樹脂の所定量の添加により、樹脂成分の結晶量が過多となることが抑制され、樹脂組成物成形体の厚さ方向に対する樹脂成分の結晶量のばらつきが抑制されている。また、樹脂組成物成形体において核剤として機能する添加剤を少なくすることで、添加剤を起因とした樹脂組成物成形体の絶縁性の低下を抑制することができる。また、樹脂組成物成形体において核剤として機能する添加剤を少なくすることで、核剤を起因とした想定外の異常な結晶化の発生を抑制し、結晶量を容易に制御することができる。これにより、樹脂組成物成形体の絶縁性の低下を抑制することができる。
<本開示の他の実施形態>
 以上、本開示の実施形態について具体的に説明したが、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能である。
 上述の実施形態では、絶縁層としての樹脂組成物成形体は、メカニカル的に混合され押出成形されたものである場合について説明したが、樹脂組成物成形体は、重合され押出成形されたものであってもよい。
 上述の実施形態では、電力ケーブル10が遮水層を有していなくてもよい場合について説明したが、本開示はこの場合に限られない。電力ケーブル10は、上述の顕著な水トリー抑制効果を有していることで、簡易的な遮水層を有していてもよい。具体的には、簡易的な遮水層は、例えば、金属ラミネートテープからなる。金属ラミネートテープは、例えば、アルミまたは銅等からなる金属層と、金属層の片面または両面に設けられる接着層と、を有している。金属ラミネートテープは、例えば、ケーブルコアの外周(外部半導電層よりも外周)を囲むように縦添えにより巻き付けられる。なお、当該遮水層は、遮蔽層よりも外側に設けられていてもよいし、遮蔽層を兼ねていてもよい。このような構成により、電力ケーブル10のコストを削減することができる。
 上述の実施形態では、電力ケーブル10が陸上、水中または水底に布設されるよう構成される場合について説明したが、本開示はこの場合に限られない。例えば、電力ケーブル10は、いわゆる架空電線(架空絶縁電線)として構成されていてもよい。
 上述の実施形態では、ケーブルコア形成工程S300において3層同時押出を行ったが、1層ずつ押出てもよい。
 次に、本開示に係る実施例を説明する。これらの実施例は本開示の一例であって、本開示はこれらの実施例により限定されない。
(1)電力ケーブルの作製
 まず、所定の樹脂組成物をバンバリーミキサによって混合し、押出機によりペレット状に造粒した。次に、断面積が100mmの導体を準備した。導体を準備したら、エチレン-エチルアクリレート共重合体を含む内部半導電層用樹脂組成物と、上述の樹脂組成物と、内部半導電層用樹脂組成物と同様の材料からなる外部半導電層樹脂組成物と、をそれぞれ押出機A~Cに投入した。押出機A~Cからのそれぞれの押出物をコモンヘッドに導き、導体の外周に、内側から外側に向けて、内部半導電層、絶縁層および外部半導電層を同時に押出した。このとき、内部半導電層、絶縁層および外部半導電層の厚さを、それぞれ、0.5mm、3.5mmまたは7mm、0.5mmとした。押出後、押出材を水冷した。その結果、中心から外周に向けて、導体、内部半導電層、絶縁層および外部半導電層を有する、試料A1~A6、B1、B3~B5のそれぞれの電力ケーブルを製造した。なお、試料B2については、樹脂組成物を導体に被覆させず、樹脂組成物成形体をプレス成形した。
[試料A1~A6]
(成形方法)
 押出成形
 押出温度:170℃
 絶縁層の厚さ:3.5mm、7mm
(プロピレン系樹脂)
 プロピレンランダム重合体(ランダムPP)
 立体規則性:アイソタクチック
 メルトフローレート:1.3g/10min
 密度:0.9g/ml
 融点:145℃
 融解熱量:100J/g
(低結晶性樹脂)
 含有量:5~30質量部
 材料:
・エチレンプロピレンゴム(EPR)
 エチレン含有量:52質量%
 ムーニー粘度ML(1+4)100℃:40
 融解熱量:なし
・超低密度ポリエチレン(表記:VLDPE1)
 エチレンおよび1-ブテンの共重合体
 1-ブテン含有量:40質量%
 融点:95℃
 融解熱量:10J/g
 密度:0.88g/ml
 ショアA硬度:66
・超低密度ポリエチレン(表記:VLDPE2)
 エチレンおよび1-オクテンの共重合体
 1-オクテン含有量:10質量%
 融点:55℃
 融解熱量:24J/g
 密度:0.87g/ml
 ショアA硬度:70
[試料B1]
 絶縁層の厚さが1mmである点と、低結晶性樹脂の含有量が35質量部である点を除いて、試料A1と同様に作製した。
[試料B2]
(成形方法)
 プレス成形
 180℃で2分の予熱と180℃で1分の加圧を行い、その後水冷した。
 絶縁層の厚さ:3.5mm
(組成)
 低結晶性樹脂の含有量が35質量部である点を除いて、試料A1と同様とした。
[試料B3~B5]
 低結晶性樹脂の含有量がそれぞれ35、3、0質量部である点を除いて、試料A1と同様に作製した。
(2)評価
(試料採取)
 試料A1~A6、B1、B3~B5のそれぞれの電力ケーブルの絶縁層を桂剥きし、絶縁層の表面から導体に向けた位置が0.5mmである外側試料と、導体から絶縁層の表面に向けた位置が0.5mmである内側試料と、を採取した。外側試料および内側試料のそれぞれの厚さは、0.5mmとした。なお、試料B1については、外側試料のみを採取した。また、試料B2については、一方の面を表面とし他方の面を導体側の面と想定して、外側試料と内側試料とを採取した。後述の水トリー耐性の評価については、別途、シートを作製した。
(融点および融解熱量)
 外側試料および内側試料のDSC測定を行った。DSC測定は、JIS-K-7121(1987年)に準拠して行った。具体的には、DSC装置としては、パーキンエルマー社製DSC8500(入力補償型)を用いた。基準試料は例えばα-アルミナとした。試料の質量は、8~10mgとした。DSC装置において、室温(27℃)から220℃まで10℃/分で昇温させた。これにより、温度に対する、単位時間当たりの吸熱量(熱流)をプロットすることで、DSC曲線を得た。
 このとき、各試料における単位時間当たりの吸熱量が極大(最も高いピーク)になる温度を「融点」とした。また、このとき、DSC曲線において、融解ピークとベースラインとで囲まれた領域の面積を求めることにより、「融解熱量」を求めた。
 後述の結果では、以下の範囲を「規定範囲」と呼ぶ。
 融点:140℃以上150℃以下
 融解熱量:60J/g以上100J/g以下
 内側試料の融点から外側試料の融点を引いた差の絶対値(融点の差):8℃以下
 内側試料の融解熱量から外側試料の融解熱量を引いた差の絶対値(融解熱量の差):10J/g以下
(交流破壊試験)
 交流破壊試験のため、0.5mm厚の内側試料を0.2mm厚に切り出した。その後、常温(27℃)において、0.2mm厚の内側試料に対して商用周波数(例えば60Hz)の交流電圧を10kVで10分課電した後、1kVごとに昇圧し10分課電することを繰り返す条件下で印加した。内側試料が絶縁破壊したときの電界強度を測定した。その結果、交流破壊強度が60kV/mm以上である場合を、良好として評価した。
(低温脆化試験)
 JISK7216に準拠して、内側試料を-25℃で衝撃具により衝撃を与えた(殴打した)。このときに割れの有無を目視で確認した。その結果、割れが無かった場合を「A(良好)」とし、割れが有った場合を「B(不良)」とした。
(引張試験)
 IT計測制御社製のDVA-200を用い、引張モードにて10℃/分の昇温速度で昇温する測定を、-50℃から200℃まで実施し、30℃で貯蔵弾性率した。その結果、引張弾性率が900MPa以下である場合を、良好として評価した。
(曲げ試験)
 内側試料を500mmの直径で折り曲げ、内側試料の白化を目視で確認した。その結果、白化していなかった場合を「A(良好)」とし、白化していた場合を「B(不良)」とした。
(水トリー耐性試験)
 絶縁層を桂剥きし、1mmの厚さを有するシートを2枚作製した。シートを作製したら、所定の半導電シートを2枚のシートで挟み、積層シートを形成した。積層シートを形成したら、半導電シートに対して配線を形成した。
 次に、積層シートを常温(27℃)の1規定NaCl水溶液中に浸漬した状態で、半導電シートと水溶液との間のシートに対して60Hz4kV/mmの交流電界を1000時間印加した。
 所定の交流電界の印加後、積層シートを乾燥させ、メチレンブルー水溶液で積層シートを煮沸染色した。積層シートを染色したら、積層シートを積層方向(すなわち積層シートの主面直交方向)に沿って30μmの厚さでスライスし、観察用スライス片を形成した。その後、観察用スライス片を光学顕微鏡により観察することで、観察用スライス片のシートにおいて、半導電シートの沿面方向または半導電シートの主面直交方向に発生した水トリーを観察した。
 このとき、シート中に発生した水トリーの最大長さを計測した。また、シート中に発生し30μm以上の長さを有する水トリーの発生個数濃度を計測した。なお、後述の表1では、「水トリーの最大長さ」は、無作為に抽出した10個の観察用スライス片において最も長かった水トリーの長さを四捨五入して求め、また、「水トリーの発生個数濃度」は、無作為に抽出した10個の観察用スライス片における水トリーの発生個数濃度の平均値を四捨五入して求めた。
 その結果、水トリーの最大長さが150μm未満である場合を、良好として評価した。
また、30μm以上の長さを有する水トリーの発生個数濃度が150個/cm未満である場合を、良好として評価した。
 なお、参考までに、従来の水トリー耐性の評価では、所定の樹脂組成物からなる絶縁層を有する電力ケーブルを作製し、電力ケーブルを水に浸漬させて、水トリーの評価を行っていた。このとき、電力ケーブルの絶縁層の外側には遮蔽層およびシースを設けていた。このため、絶縁層は直接水に接することがなかった。これに対し、本実施例では、上述のように、積層シートを所定の水溶液に直接浸漬させて、水トリーの評価を行った。このため、シートを水溶液に直接接触させた。したがって、本実施例における水トリー耐性の評価は、従来の電力ケーブルを用いた評価と比べて、厳しい条件で行ったことになる。
(3)結果
 以下の表1を用い、各試料の評価を行った結果を説明する。
Figure JPOXMLDOC01-appb-T000001
 
(試料B1およびB2)
 表1に示すように、1mm厚の絶縁層を押出成形した試料B1では、低結晶性樹脂の含有量が30質量部超であったが、外側試料の融点および外側試料の融解熱量がそれぞれ規定範囲内であった。また、3.5mm厚の樹脂組成物成形体をプレス成形した試料B2においても、低結晶性樹脂の含有量が30質量部超であったが、融点、融解熱量、融点の差および融解熱量の差がそれぞれ規定範囲内であった。これらの結果、試料B1およびB2では、ケーブル諸特性の全てが良好であった。
 薄肉押出の試料B1では、厚さが薄いため、全体が急冷となっていた。このため、プロピレン系樹脂の結晶成長の過剰阻害は生じなかった。また、樹脂配向によりプロピレン系樹脂が高結晶化し、結晶量の減少が生じにくかった。また、プレス成形の試料B2では、全体が徐冷となっていた。このため、結晶成長の阻害は軽微となっていた。これらの結果、試料B1およびB2では、低結晶性樹脂の含有量が22質量部超であったとしても、絶縁性の低下は生じなかったと考えられる。
(試料B3)
 3.5mm厚の絶縁層を押出成形し、低結晶性樹脂の含有量を30質量部超とした試料B3では、内側試料の融解熱量および融解熱量の差がそれぞれ規定範囲外であった。このため、交流破壊強度が60kV/mm未満であった。
 試料B3では、低結晶性樹脂の含有量を30質量部超としたため、特に押出成形後の冷却速度が遅い内側試料において、低結晶性樹脂がプロピレン系樹脂に入り込みすぎ、プロピレン系樹脂の結晶成長が過剰に阻害された。このため、内側試料の結晶量が少なくなった。その結果、樹脂組成物成形体の絶縁性が低下したと考えられる。
(試料B4およびB5)
 3.5mm厚の絶縁層を押出成形し、低結晶性樹脂の含有量を5質量部未満とした試料B4およびB5では、外側試料および内側試料の融解熱量、融点の差および融解熱量の差がそれぞれ規定範囲外であった。その結果、交流破壊強度、低温脆化試験結果、引張弾性率、最大水トリー長、および水トリー発生個数濃度がそれぞれ不良であった。低結晶性樹脂の含有量を0質量部とした試料B5では、さらに曲げ試験結果も不良であった。
 試料B4およびB5では、低結晶性樹脂の含有量を5質量部未満としたため、結晶量が多くなるとともに、樹脂成分の結晶量が厚さ方向にばらついていた。これらの結果、ケーブル諸特性としての柔軟性、耐低温脆性、絶縁性および水トリー耐性を確保することができなかったと考えられる。
(試料A1~A6)
 3mm以上の厚さを有する絶縁層を押出成形し、低結晶性樹脂の含有量を5質量部以上30質量部以下とした試料A1~A6では、融点、融解熱量、融点の差および融解熱量の差がそれぞれ規定範囲内であった。その結果、交流破壊強度、低温脆化試験結果、引張弾性率、曲げ試験結果、最大水トリー長、および水トリー発生個数濃度がそれぞれ良好であった。
 試料A1~A6によれば、低結晶性樹脂の含有量を5質量部以上としたことで、樹脂成分がプロピレンランダム重合体の単体に近くなることを抑制し、結晶量が過多となることを抑制することができた。また、樹脂組成物成形体の厚さ方向に対する樹脂成分の結晶量のばらつきを抑制することができた。これらの結果、ケーブル諸特性としての柔軟性、耐低温脆性、絶縁性および水トリー耐性を確保することができたことを確認した。また、低結晶性樹脂の含有量を30質量部以下としたことで、樹脂組成物成形体の全体として、所定値以上の結晶量を確保することができた。これらの結果、樹脂組成物成形体の絶縁性を向上させることができたことを確認した。
 また、異なる低結晶性樹脂を用いた試料A2、A5およびA6を比較すると、いずれの試料も、ケーブル諸特性が良好であり、且つ、互いに同等であった。
 試料A2、A5およびA6の結果から、エチレン、プロピレン、ブテン、ヘキセンおよびオクテンのうち少なくともいずれか2つを共重合した共重合体を低結晶性樹脂として用いることで、ケーブル諸特性を確保することができたことを確認した。
 また、異なる厚さとした試料A2およびA3を比較すると、いずれの試料も、ケーブル諸特性が良好であり、且つ、互いに同等であった。
 試料A2およびA3の結果から、外側試料の融点、外側試料の融解熱量、融点の差および融解熱量の差をそれぞれ規定範囲内とすることで、厚さを3mm以上の範囲で異ならせたとしても、ケーブル諸特性を確保することができたことを確認した。
<本開示の好ましい態様>
 以下、本開示の好ましい態様を付記する。
(付記1)
 プロピレンおよびエチレンを含み、
 融点は、140℃以上150℃以下であり、
 融解熱量は、60J/g以上100J/g以下である
樹脂組成物。
(付記2)
 樹脂組成物からなり、対象物に対して3mm以上の厚さで被覆される成形体であって、
 プロピレンおよびエチレンを含み、
 前記成形体の融点は、140℃以上150℃以下であり、
 前記成形体の融解熱量は、60J/g以上100J/g以下であり、
 表面から前記対象物に向けた位置が0.5mmである外側試料と、前記対象物から前記表面に向けた位置が0.5mmである内側試料と、を採取したときに、
 前記内側試料の融点から前記外側試料の融点を引いた差の絶対値は、8℃以内であり、
 前記内側試料の融解熱量から前記外側試料の融解熱量を引いた差の絶対値は、10J/g以内である
樹脂組成物成形体。
(付記3)
 架橋剤の残渣は、300ppm未満である
付記2に記載の樹脂組成物成形体。
(付記4)
 常温における交流破壊電界は、60kV/mm以上である
付記2又は付記3に記載の樹脂組成物成形体。
(付記5)
 プロピレンのみを含むプロピレン系樹脂と、
 エチレン、プロピレン、ブテン、ヘキセンおよびオクテンのうち少なくともいずれか2つを共重合した共重合体からなる低結晶性樹脂と
 を含む
付記2から付記4のいずれか1つに記載の樹脂組成物成形体。
(付記6)
 前記低結晶性樹脂の含有量は、前記プロピレン系樹脂と前記低結晶性樹脂との合計の含有量を100質量部としたときに、5質量部以上30質量部以下である
付記5に記載の樹脂組成物成形体。
(付記7)
 プロピレンの結晶を生成する核剤として機能する添加剤の含有量は、前記プロピレン系樹脂と前記低結晶性樹脂との合計の含有量を100質量部としたときに、1質量部未満である
付記2から付記6のいずれか1つに記載の樹脂組成物成形体。
(付記8)
 前記内側試料を-25℃で殴打したときに割れを生じない
付記2から付記7のいずれか1つに記載の樹脂組成物成形体。
(付記9)
 前記内側試料の引張弾性率は、900MPa以下である
付記2から付記8のいずれか1つに記載の樹脂組成物成形体。
(付記10)
 前記内側試料を500mmの直径で曲げたときに、前記内側試料が白化しない
付記2から付記9のいずれか1つに記載の樹脂組成物成形体。
(付記11)
 前記樹脂組成物成形体を、常温の1規定NaCl水溶液中に浸漬した状態で、前記樹脂組成物成形体に対して商用周波数4kV/mmの交流電界を1000時間印加したときに、
 前記樹脂組成物成形体中に発生する水トリーの最大長さは、150μm未満である
付記2から付記10のいずれか1つに記載の樹脂組成物成形体。
(付記12)
 前記樹脂組成物成形体を、常温の1規定NaCl水溶液中に浸漬した状態で、前記樹脂組成物成形体に対して商用周波数4kV/mmの交流電界を1000時間印加したときに、
 前記樹脂組成物成形体中に発生し30μm以上の長さを有する水トリーの発生個数濃度は、150個/cm未満である
付記2から付記11のいずれか1つに記載の樹脂組成物成形体。
(付記13)
 導体と、
 前記導体の外周に3mm以上の厚さで被覆された絶縁層と、
 を備え、
 前記絶縁層は、プロピレンおよびエチレンを含み、
 前記絶縁層の融点は、140℃以上150℃以下であり、
 前記絶縁層の融解熱量は、60J/g以上100J/g以下であり、
 前記絶縁層の表面から前記導体に向けた位置が0.5mmである外側試料と、前記導体から前記表面に向けた位置が0.5mmである内側試料と、を採取したときに、
 前記外側試料の融点と前記内側試料の融点との差の絶対値は、8℃以内であり、
 前記外側試料の融解熱量と前記内側試料の融解熱量との差の絶対値は、10J/g以内である
電力ケーブル。
(付記14)
 プロピレンおよびエチレンを含む樹脂組成物を準備する工程と、
 前記樹脂組成物を用い、導体の外周を3mm以上の厚さで被覆するように絶縁層を形成する工程と、
 を備え、
 前記絶縁層を形成する工程では、
 前記絶縁層の融点が140℃以上150℃以下となり、前記絶縁層の融解熱量が60J/g以上100J/g以下となり、前記絶縁層の表面から前記導体に向けた位置が0.5mmである外側試料と、前記導体から前記表面に向けた位置が0.5mmである内側試料と、を採取したときに、前記外側試料の融点と前記内側試料の融点との差の絶対値が8℃以内となり、かつ、前記外側試料の融解熱量と前記内側試料の融解熱量との差の絶対値が10J/g以内となるように、前記絶縁層を形成する
電力ケーブルの製造方法。
10   電力ケーブル
110  導体
120  内部半導電層
130  絶縁層
140  外部半導電層
150  遮蔽層
160  シース

Claims (5)

  1.  プロピレンおよびエチレンを含み、
     融点は、140℃以上150℃以下であり、
     融解熱量は、60J/g以上100J/g以下である
    樹脂組成物。
  2.  樹脂組成物からなり、対象物に対して3mm以上の厚さで被覆される成形体であって、
     プロピレンおよびエチレンを含み、
     前記成形体の融点は、140℃以上150℃以下であり、
     前記成形体の融解熱量は、60J/g以上100J/g以下であり、
     表面から前記対象物に向けた位置が0.5mmである外側試料と、前記対象物から前記表面に向けた位置が0.5mmである内側試料と、を採取したときに、
     前記内側試料の融点から前記外側試料の融点を引いた差の絶対値は、8℃以内であり、
     前記内側試料の融解熱量から前記外側試料の融解熱量を引いた差の絶対値は、10J/g以内である
    樹脂組成物成形体。
  3.  架橋剤の残渣は、300ppm未満である
    請求項2に記載の樹脂組成物成形体。
  4.  常温における交流破壊電界は、60kV/mm以上である
    請求項2又は請求項3に記載の樹脂組成物成形体。
  5.  導体と、
     前記導体の外周に3mm以上の厚さで被覆された絶縁層と、
     を備え、
     前記絶縁層は、プロピレンおよびエチレンを含み、
     前記絶縁層の融点は、140℃以上150℃以下であり、
     前記絶縁層の融解熱量は、60J/g以上100J/g以下であり、
     前記絶縁層の表面から前記導体に向けた位置が0.5mmである外側試料と、前記導体から前記表面に向けた位置が0.5mmである内側試料と、を採取したときに、
     前記外側試料の融点と前記内側試料の融点との差の絶対値は、8℃以内であり、
     前記外側試料の融解熱量と前記内側試料の融解熱量との差の絶対値は、10J/g以内である
    電力ケーブル。
PCT/JP2020/034825 2019-11-08 2020-09-15 樹脂組成物、樹脂組成物成形体および電力ケーブル WO2021090578A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021554832A JP7447913B2 (ja) 2019-11-08 2020-09-15 樹脂組成物および電力ケーブル
CN202080073185.2A CN114599723A (zh) 2019-11-08 2020-09-15 树脂组合物、树脂组合物成型体以及电力电缆
EP20885122.0A EP4056645A4 (en) 2019-11-08 2020-09-15 RESIN COMPOSITION, RESIN COMPOSITION MOLDING AND POWER CORD
US17/763,420 US20220340743A1 (en) 2019-11-08 2020-09-15 Resin composition, resin composition molded body, and power cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-203149 2019-11-08
JP2019203149 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021090578A1 true WO2021090578A1 (ja) 2021-05-14

Family

ID=75849872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034825 WO2021090578A1 (ja) 2019-11-08 2020-09-15 樹脂組成物、樹脂組成物成形体および電力ケーブル

Country Status (5)

Country Link
US (1) US20220340743A1 (ja)
EP (1) EP4056645A4 (ja)
JP (1) JP7447913B2 (ja)
CN (1) CN114599723A (ja)
WO (1) WO2021090578A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244292A1 (ja) * 2021-05-19 2022-11-24 住友電気工業株式会社 半導電性樹脂組成物、電力ケーブル、および電力ケーブルの製造方法
WO2023233697A1 (ja) * 2022-06-03 2023-12-07 住友電気工業株式会社 樹脂組成物および電力ケーブル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115249554A (zh) * 2022-08-29 2022-10-28 安徽鑫海高导新材料有限公司 一种镀锡软圆铜绞线的制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769611A (en) 1980-10-16 1982-04-28 Showa Electric Wire & Cable Co Insulating compositon for power cable
JPH09204818A (ja) * 1996-01-26 1997-08-05 Mitsubishi Cable Ind Ltd 電気絶縁部材、電力ケーブルおよび電力ケーブル用接続部材
JP2006502455A (ja) * 2002-10-07 2006-01-19 ダウ グローバル テクノロジーズ インコーポレイティド 光学ケーブル構成部品類
JP2006505685A (ja) * 2002-11-05 2006-02-16 ダウ グローバル テクノロジーズ インコーポレイティド 熱可塑性エラストマー組成物
JP2014084389A (ja) * 2012-10-23 2014-05-12 Toyo Seikan Kaisha Ltd ポリプロピレン系樹脂組成物及びそれを用いた包装容器
JP2019104895A (ja) * 2017-12-12 2019-06-27 ハンファ トータル ペトロケミカル カンパニー リミテッド 異種ゴム成分を含む電線用ポリオレフィン樹脂組成物
JP2019203149A (ja) 2018-05-21 2019-11-28 国立研究開発法人産業技術総合研究所 硬質材料およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629416B2 (en) * 2002-08-12 2009-12-08 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US7935761B2 (en) * 2006-06-08 2011-05-03 Exxonmobil Chemical Patents Inc. Process for preparing articles
EP2637178A4 (en) * 2010-11-05 2017-11-01 LS Cable Ltd. Insulating composition and electric cable comprising same
FR3045920B1 (fr) * 2015-12-18 2018-01-19 Nexans Cable electrique a moyenne ou haute tension

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769611A (en) 1980-10-16 1982-04-28 Showa Electric Wire & Cable Co Insulating compositon for power cable
JPH09204818A (ja) * 1996-01-26 1997-08-05 Mitsubishi Cable Ind Ltd 電気絶縁部材、電力ケーブルおよび電力ケーブル用接続部材
JP2006502455A (ja) * 2002-10-07 2006-01-19 ダウ グローバル テクノロジーズ インコーポレイティド 光学ケーブル構成部品類
JP2006505685A (ja) * 2002-11-05 2006-02-16 ダウ グローバル テクノロジーズ インコーポレイティド 熱可塑性エラストマー組成物
JP2014084389A (ja) * 2012-10-23 2014-05-12 Toyo Seikan Kaisha Ltd ポリプロピレン系樹脂組成物及びそれを用いた包装容器
JP2019104895A (ja) * 2017-12-12 2019-06-27 ハンファ トータル ペトロケミカル カンパニー リミテッド 異種ゴム成分を含む電線用ポリオレフィン樹脂組成物
JP2019203149A (ja) 2018-05-21 2019-11-28 国立研究開発法人産業技術総合研究所 硬質材料およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4056645A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244292A1 (ja) * 2021-05-19 2022-11-24 住友電気工業株式会社 半導電性樹脂組成物、電力ケーブル、および電力ケーブルの製造方法
WO2023233697A1 (ja) * 2022-06-03 2023-12-07 住友電気工業株式会社 樹脂組成物および電力ケーブル
JP7405311B1 (ja) * 2022-06-03 2023-12-26 住友電気工業株式会社 樹脂組成物および電力ケーブル

Also Published As

Publication number Publication date
JP7447913B2 (ja) 2024-03-12
JPWO2021090578A1 (ja) 2021-05-14
EP4056645A4 (en) 2022-12-07
EP4056645A1 (en) 2022-09-14
CN114599723A (zh) 2022-06-07
US20220340743A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
WO2021090578A1 (ja) 樹脂組成物、樹脂組成物成形体および電力ケーブル
EP2160739B1 (en) Energy cable
KR101447778B1 (ko) 가교 폴리에틸렌 조성물
JP7342634B2 (ja) 樹脂組成物成形体および電力ケーブル
EP2622012B1 (en) Recyclable thermoplastic insulation with improved breakdown strength
EP2637178A2 (en) Insulating composition and electric cable comprising same
KR102003567B1 (ko) 전력 케이블
KR102035883B1 (ko) 열가소성 절연체용 폴리프로필렌 블렌드의 제조 방법
JP6232309B2 (ja) ケーブル接続部用高誘電性組成物、およびこれを用いたケーブル接続部
KR20200004061A (ko) 전력 케이블
EP3544026B1 (en) Power cable
WO2021090579A1 (ja) 樹脂組成物、樹脂組成物成形体および電力ケーブル
JP7363389B2 (ja) 樹脂組成物成形体および電力ケーブル
KR20190098000A (ko) 전력 케이블
KR102234147B1 (ko) 케이블 시스용 수지 조성물 및 이를 포함하는 전선
WO2022244292A1 (ja) 半導電性樹脂組成物、電力ケーブル、および電力ケーブルの製造方法
KR102020068B1 (ko) 전력 케이블
KR102339371B1 (ko) 반도전성 조성물 및 이로부터 형성된 반도전층을 갖는 전력 케이블
JP7435829B2 (ja) 樹脂組成物成形体、電力ケーブル、および電力ケーブルの製造方法
WO2024209600A1 (ja) 樹脂組成物および電力ケーブル
WO2024042775A1 (ja) 樹脂組成物および電力ケーブル
KR101949643B1 (ko) 반도전성 조성물 및 이로부터 형성된 반도전층을 갖는 전력 케이블
JP2024149339A (ja) 電力ケーブルの製造方法
JP2023178080A (ja) 半導電性テープおよび電力ケーブル
KR20200004270A (ko) 전력 케이블

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885122

Country of ref document: EP

Effective date: 20220608