WO2021088526A1 - 一种烟气多污染物协同净化工艺及装置 - Google Patents

一种烟气多污染物协同净化工艺及装置 Download PDF

Info

Publication number
WO2021088526A1
WO2021088526A1 PCT/CN2020/115793 CN2020115793W WO2021088526A1 WO 2021088526 A1 WO2021088526 A1 WO 2021088526A1 CN 2020115793 W CN2020115793 W CN 2020115793W WO 2021088526 A1 WO2021088526 A1 WO 2021088526A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
denitration
desulfurization
heat
oxidation treatment
Prior art date
Application number
PCT/CN2020/115793
Other languages
English (en)
French (fr)
Inventor
叶恒棣
魏进超
康建刚
刘昌齐
李俊杰
Original Assignee
中冶长天国际工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶长天国际工程有限责任公司 filed Critical 中冶长天国际工程有限责任公司
Priority to BR112022007442A priority Critical patent/BR112022007442A2/pt
Publication of WO2021088526A1 publication Critical patent/WO2021088526A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D49/00Separating dispersed particles from gases, air or vapours by other methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/08Arrangements of devices for treating smoke or fumes of heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a pollutant processing method and a processing device, in particular to a process and device for synergistic purification of flue gas with multiple pollutants, belonging to the technical field of environmental protection.
  • flue gas desulfurization and denitrification technology is a flue gas purification technology used in the chemical industry to generate multiple nitrogen oxides and sulfur oxides.
  • Nitrogen oxides and sulfur oxides are one of the main sources of air pollution. Flue simultaneous desulfurization and denitrification technology is mostly in research and industrial demonstration stage, but because it can achieve desulfurization and denitration simultaneously in a system, especially as to the NO X control standards continue tightening of, simultaneous desulfurization and denitrification technique is being Increasing attention from various countries.
  • Flue gas desulfurization refers to the removal of sulfur oxides (SO 2 and SO 3 ) from flue gas or other industrial waste gas.
  • the desulfurization methods currently used in industry include dry desulfurization, semi-dry desulfurization or wet desulfurization.
  • the dry flue gas desulfurization process used for power plant flue gas desulfurization began in the early 1980s. Compared with the conventional wet scrubbing process, it has the following advantages: lower investment cost; the desulfurization product is dry and mixed with fly ash; no installation is required. Equipped with demister and reheater; the equipment is not easy to corrode, and it is not easy to cause scaling and blockage.
  • Semi-dry desulfurization mainly uses spray desulfurization and spray dry flue gas desulfurization.
  • the desulfurization process was first jointly developed by the American JOY company and the Danish NiroAtomier company. It was developed in the mid-1970s and was quickly promoted and applied in the power industry.
  • the process uses the atomized lime slurry to contact the flue gas in the spray drying tower, and the lime slurry reacts with SO 2 to form a dry solid reactant, which is finally collected by the dust collector together with the fly ash.
  • Wet desulfurization mainly uses limestone (CaCO 3 ), lime (CaO) or sodium carbonate (Na 2 CO 3 ) slurry as a detergent to wash the flue gas in the reaction tower to remove SO 2 in the flue gas; Its main advantages are high desulfurization efficiency, high synchronous operation rate, rich absorbent resources, absorbable by-products, and high commercial value.
  • Flue gas denitrification refers to reducing the generated NO x to N 2 to remove NO x in the flue gas. According to the treatment process, it can be divided into wet denitrification and dry denitrification.
  • the flue gas denitration technology mainly includes dry method (selective catalytic reduction flue gas denitrification, selective non-catalytic reduction denitrification) and wet method. Compared with the wet flue gas denitrification technology, the main advantages of the dry flue gas denitrification technology are: low capital cost, simple process and equipment, NO X removal efficiency is also high, no waste water and waste treatment, easy to cause Secondary pollution.
  • Selective catalytic reduction SCR denitration is to use ammonia, CO or hydrocarbons as a reducing agent in the presence of a catalyst to reduce NO in the flue gas to N 2 in the presence of oxygen.
  • SNCR is a selective non-catalytic reduction and a mature low-cost denitration technology. This technology uses a furnace or a precalciner in the cement industry as a reactor to inject a reducing agent containing amino groups into the furnace, and the reducing agent reacts with NOx in the flue gas to generate ammonia and water.
  • Iron and steel sintering flue gas contains dust, SO 2 , NOx, CO, dioxins and other pollutants.
  • existing flue gas purification facilities are facing transformation, upgrading or reconstruction.
  • ultra-low emissions of dust, SO 2 , and NOx in the flue gas have been required.
  • the main technical problem is that it is difficult to achieve ultra-low emissions of dust in existing electrical dust removal, and wet electrical dust removal or bag dust removal must be installed; by-products after SO 2 removal It is difficult to treat; the flue gas temperature after desulfurization and dust removal treatment is low, and the NOx efficiency is low when SCR treatment is used. When forced oxidation is used, the by-products are difficult to treat.
  • the existing equipment has low dioxin removal efficiency and untreated CO. The efflux will have a serious impact on the environment.
  • the temperature of dry desulfurization is generally controlled within the range of 100-150°C
  • the temperature of semi-dry desulfurization is generally controlled within the range of 90-110°C
  • the temperature of wet desulfurization is generally controlled within the range of 50-60. °C.
  • the selective catalytic reduction SCR method is used for denitration, and the temperature is generally controlled at about 160-400°C; if the selective non-catalytic reduction SNCR method is used for denitrification, the general temperature is controlled at 800°C to 1100°C.
  • the temperature of the flue gas to be treated is preferentially adjusted to a temperature range suitable for desulfurization, generally the temperature is lower, and then the flue gas after desulfurization is heated to increase its temperature to a temperature range suitable for denitration.
  • a large amount of fuel is consumed for heating the flue gas after desulfurization treatment, resulting in waste of resources and secondary pollution of the environment.
  • the flue gas to be processed is produced by the combustion of fuel, and the sufficient degree of combustion and the fuel cannot be completely burned, the flue gas contains a certain amount of carbon monoxide.
  • the flue gas to be treated is generally discharged directly after desulfurization and denitrification treatment.
  • the carbon monoxide in the flue gas is not targeted for treatment and utilization, resulting in carbon monoxide. Direct emissions.
  • carbon monoxide is a colorless, odorless, and non-irritating gas; it has very low solubility in water and is extremely difficult to dissolve in water; the explosion limit when mixed with air is 12.5%-74.2%; carbon monoxide is easily combined with hemoglobin to form carbon Oxyhemoglobin makes hemoglobin lose its ability to carry oxygen and cause tissue asphyxiation and death in severe cases; carbon monoxide has toxic effects on tissues and cells throughout the body, especially the cerebral cortex. Therefore, the direct emission of carbon monoxide is extremely harmful to the environment.
  • the present invention proposes a flue gas multi-pollutant synergistic purification process and device. After the denitration treatment, an oxidation treatment system is added, and the flue gas after denitration treatment is passed through the oxidation treatment system, so that the carbon monoxide in the flue gas is converted into carbon dioxide. The heat released during this process is directly used to raise the temperature of the flue gas before entering the denitration device, reducing even The process of heating up the flue gas by external fuel heating is saved.
  • the present invention makes full use of the carbon monoxide in the flue gas, utilizes the heat released during the conversion of carbon monoxide to carbon dioxide to achieve the purpose of raising the flue gas temperature for denitration treatment, saves or even eliminates the use of fuel, and at the same time treats the carbon monoxide in the flue gas,
  • the pollution of the flue gas to the environment is reduced, and at the same time, the secondary pollution in the flue gas treatment process is weakened or even avoided.
  • a process for synergistic purification of flue gas with multiple pollutants including the following steps:
  • the desulfurization and denitrification flue gas G 3 is transported to the oxidation treatment system for oxidation treatment.
  • the carbon monoxide in the desulfurization and denitration flue gas G 3 reacts in the oxidation treatment system, and the carbon monoxide is oxidized to carbon dioxide while releasing heat; the desulfurization and denitration flue gas G
  • the dioxins in 3 are removed by the oxidation treatment system for the second time; the ammonia in the desulfurization and denitration flue gas G 3 is oxidized by the oxidation treatment system; the desulfurization and denitration flue gas G 3 is converted to CO removal after the oxidation treatment system Smoke G 4 .
  • the flue gas G 0 to be treated is transported to the air inlet of the dust removal system through the original flue gas delivery pipe.
  • the gas outlet of the dust removal system is transported to the air inlet of the desulfurization system through the first delivery pipe.
  • the exhaust port of the desulfurization system is transported to the intake port of the denitration system through the second delivery pipe.
  • the exhaust port of the denitration system is transported to the intake port of the oxidation treatment system through the third delivery pipe.
  • the exhaust port of the oxidation treatment system is connected with the fourth delivery pipe.
  • the second conveying pipe and the fourth conveying pipe are provided with heat exchangers.
  • the heat exchanger absorbs and removes the heat in the CO flue gas G 4 and transfers it to the flue gas G 2 after desulfurization to increase the temperature of the flue gas before entering the denitration system.
  • the process also includes step 5) lye treatment: passing the CO flue gas G 4 through an lye treatment device to remove carbon dioxide, sulfur trioxide, nitrogen dioxide, and halogen in the CO flue gas G 4 by alkali
  • the alkaline solution in the liquid treatment device absorbs and removes CO flue gas G 4 after passing through the lye treatment device to become net flue gas G 5 .
  • the fourth conveying pipe is connected to the lye treatment device.
  • the alkaline solution is an alkaline solution and/or a strong base and a weak acid salt.
  • the alkaline solution is preferably one or more of sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, and calcium bicarbonate.
  • step 4) further includes: supplementing oxygen-containing gas to the oxidation treatment system, preferably air or oxygen-enriched gas (for example, liquid oxygen).
  • oxygen-containing gas preferably air or oxygen-enriched gas (for example, liquid oxygen).
  • the process also includes: detecting the flow rate of the desulfurization and denitration flue gas G 3 per unit time, marked as U 1 Nm 3 /h; detecting the temperature of the desulfurization and denitration flue gas G 3 , marked as T 1 °C; detecting the desulfurization and denitration flue gas G 3
  • the content of CO in gas G 3 is marked as P 1 g/Nm 3 .
  • Q 1 a*U 1 *P 1 *10.11; where: a is the combustion coefficient, kJ/g; the value is 0.1-1, preferably 0.4-0.95, more preferably 0.7-0.9.
  • C is the average specific heat capacity of the flue gas, kJ/(°C ⁇ g); b is the heat transfer coefficient, g/Nm 3 ; the value is 0.7-1, preferably 0.8-0.98, more preferably 0.9-0.95.
  • the process further includes: detecting the temperature of the flue gas G 2 after desulfurization, which is marked as T 3 °C; according to the process requirements of the denitration system, setting the optimal denitration temperature of the denitration system as T denitration °C.
  • the temperature of the flue gas G 2 after desulfurization before entering the denitration system is T denitration ⁇ t°C.
  • the process further includes: adjusting the flow rate of the heat exchange medium in the heat exchanger so that the temperature of the flue gas G 2 after desulfurization before entering the denitration system is T denitration ⁇ t°C; specifically:
  • the specific heat capacity of the heat exchange medium in the heat exchanger is C 2 kJ/(°C ⁇ g), calculate the flow rate of the medium in the heat exchanger U 2 Nm 3 /h per unit time:
  • f is the heat transfer coefficient, the value is 0.5-1, preferably 0.6-0.98, more preferably 0.7-0.95; that is to say, the flow rate of U 2 Nm 3 /h in the heat exchanger is required per unit time
  • the heat exchange medium is used to control the temperature of the flue gas before heating into the denitrification system to T denitrification ⁇ t°C.
  • the process further includes: burning fuel through a heating furnace to increase the temperature of the flue gas G 2 after desulfurization before entering the denitration system to reach T denitration ⁇ t°C; specifically:
  • e is the combustion coefficient, with a value of 0.6-1, preferably 0.8-0.99, more preferably 0.8-0.98; that is to say, the supplemental flow to the heating furnace per unit time is U 3 Nm 3 /h, and the combustion heat is
  • the fuel of N kJ/g makes the temperature of flue gas before entering the denitrification system reach T denitrification ⁇ t°C.
  • T denitration is 180-280°C, preferably 200-260°C, more preferably 210-240°C.
  • t is 0-20°C, preferably 2-10°C, more preferably 4-8°C.
  • the supplementing of oxygen-containing gas to the oxidation treatment system is specifically:
  • d is the reaction coefficient, with a value of 0.7-1, preferably 0.8-0.98, more preferably 0.9-0.95.
  • a device for a flue gas multi-pollutant synergistic purification process According to the second embodiment provided by the present invention, there is provided a device for a flue gas multi-pollutant synergistic purification process.
  • the device includes a dust removal system, a desulfurization system, a denitration system, and an oxidation treatment system.
  • the air inlet of the dust removal system is connected with the original flue gas delivery pipeline.
  • the first delivery pipe connects the gas outlet of the dust removal system and the air inlet of the desulfurization system.
  • the second conveying pipeline connects the exhaust port of the desulfurization system and the intake port of the denitration system.
  • the third delivery pipeline connects the exhaust port of the denitration system and the air intake port of the oxidation treatment system.
  • the exhaust port of the oxidation treatment system is connected to the fourth delivery pipe.
  • the second conveying pipe and the fourth conveying pipe are provided with heat exchangers.
  • the device also includes a lye treatment device.
  • the end of the fourth conveying pipe is connected to the lye treatment device.
  • the device further includes: a heating furnace.
  • the heating furnace is arranged on the second conveying pipe.
  • the heating furnace is arranged on the second conveying pipe and located downstream of the connection position of the heat exchanger and the second conveying pipe.
  • an oxygen-containing gas inlet is provided on the oxidation treatment system, and the oxygen-containing gas inlet is connected with an oxygen-containing gas delivery pipeline.
  • the dust removal system is an electric dust removal system or a bag dust removal system.
  • the desulfurization system is an activated carbon desulfurization treatment system.
  • the denitration system is an SCR denitration treatment system.
  • the heat exchanger is a GGH heat exchanger.
  • the first objective of the present invention is to remove carbon monoxide in flue gas.
  • the inventor provided a flue gas purification treatment plan, specifically: flue gas undergoes desulfurization treatment ⁇ carbon monoxide oxidation treatment ⁇ denitration treatment ⁇ clean flue gas.
  • flue gas undergoes desulfurization treatment ⁇ carbon monoxide oxidation treatment ⁇ denitration treatment ⁇ clean flue gas.
  • this technical solution can remove carbon monoxide in the flue gas, it still has the following problems: 1. Because the desulfurization treatment cannot remove 100% of the sulfur oxides in the flue gas, the flue gas after desulfurization treatment There is still a certain amount of SO 2 gas in the gas.
  • the injected ammonia gas is excessive, that is to say, after denitration treatment
  • the flue gas after denitration treatment is directly discharged, resulting in the escape of ammonia, and the smell of ammonia is pungent, and ammonia has a greater corrosive effect on metals, resulting in a working environment Poor, and cause secondary pollution.
  • the inventor of the present invention after research and industrial experimentation, proposes the method of this application, specifically: the original flue gas undergoes dust removal treatment ⁇ desulfurization treatment ⁇ denitration treatment ⁇ oxidation treatment ⁇ removal of CO flue gas G 4 .
  • the technical scheme of the present invention is adopted: in the first step, the dust in the flue gas G 0 to be treated is removed for the first time by the dust removal treatment to obtain the flue gas G 1 after dust removal; in the second step, the desulfurization treatment treats the flue gas G after dust removal.
  • the sulfur oxides in 1 are removed, the dust in the dedusted flue gas G 1 is removed for the second time, and the dioxin in the dedusted flue gas G 1 is removed for the first time to obtain the desulfurized flue gas G 2 ;
  • the third step is the denitration treatment to remove nitrogen oxides in the desulfurized flue gas G 2 to obtain desulfurization and denitration flue gas G 3 ;
  • the fourth step is oxidation treatment to remove the carbon monoxide in the desulfurization and denitration flue gas G 3
  • Desulfurization and denitration flue gas G 3 is removed for the second time, and the ammonia in desulfurization and denitration flue gas G 3 is removed by oxidation;
  • the desulfurization and denitration flue gas G 3 is oxidized After the treatment system, it becomes the removal of CO flue gas G 4 .
  • the SO 2 in the flue gas after desulfurization will not be oxidized to SO 3 due to the oxidation treatment after the denitration treatment, which avoids NH 4 HSO 4 , (NH 4 ) 2 SO in the denitration process
  • the formation of 4 prevents the blockage and poisoning of the SCR catalyst caused by NH 4 HSO 4 and (NH 4 ) 2 SO 4, thereby ensuring the denitration efficiency.
  • the excessive ammonia gas (unreacted ammonia gas) sprayed in the denitration treatment process is oxidized through the subsequent oxidation treatment process, eliminating the ammonia component in the exhausted flue gas, thereby avoiding the ammonia gas Escape.
  • the process also includes step 5) lye treatment: passing the CO flue gas G 4 through an lye treatment device to remove carbon dioxide, sulfur trioxide, nitrogen dioxide, and halogen in the CO flue gas G 4 by alkali
  • the alkaline solution in the liquid treatment device absorbs and removes CO flue gas G 4 after passing through the lye treatment device to become net flue gas G 5 .
  • the flue gas after oxidation treatment is treated with lye.
  • the carbon dioxide, sulfur trioxide, nitrogen dioxide, and halogens in the original flue gas formed in the oxidation treatment process are absorbed by the alkaline gas in the lye treatment device , So as to achieve the complete removal of pollutants.
  • sulfur oxides are removed twice through the desulfurization treatment process and the lye treatment process; nitrogen oxides are removed twice through the denitration treatment process and the lye treatment process; the dust undergoes the dust removal process and denitration treatment
  • the process is removed twice; the dioxin is removed through the desulfurization treatment process and the oxidation treatment process twice; the carbon monoxide in the original flue gas is treated by the oxidation process, and the heat released in the process is used; the excess in the denitration process
  • the ammonia gas is oxidized through the oxidation treatment process, avoiding the escape of ammonia gas.
  • the second purpose of the present invention is to use the heat generated by removing carbon monoxide in the flue gas to increase the temperature of the flue gas before entering the denitration system.
  • the carbon monoxide in the desulfurized flue gas is converted into carbon dioxide, specifically:
  • the use of carbon monoxide in the flue gas itself, the use of carbon monoxide and oxygen to react to produce carbon dioxide is an exothermic reaction.
  • the carbon monoxide in the flue gas is converted into carbon dioxide through the carbon monoxide treatment system.
  • the heat released by this reaction is used by the heat exchanger.
  • the flue gas is heated before entering the denitration system, thereby achieving the effect of flue gas heating; at the same time, the carbon monoxide in the flue gas is removed, and the environmental pollution of the carbon monoxide in the flue gas is avoided.
  • the flue gas to be treated also known as the original flue gas
  • the desulfurization and denitrification treatment process is as follows: 1After the original flue gas is desulfurized, the temperature of the exhaust flue gas after the dry desulfurization is 100-150°C, and the temperature of the exhaust flue gas after the semi-dry desulfurization is 90-110°C, and the wet method is adopted.
  • the temperature of the flue gas discharged after desulfurization is 50-60°C; 2The desulfurized flue gas is heated up, and the desulfurized flue gas is heated by an external heat source (including direct heat exchange method and indirect heat exchange method), so that it enters the denitration system The flue gas temperature rises; 3The heated flue gas is sent to the denitration system for denitration treatment, if SCR selective denitration treatment is used to control the temperature of the flue gas entering the SCR denitration system to 160-400°C, if SNCR non-selective
  • the denitration system processes and controls the temperature of the flue gas entering the SNCR denitration system to be 800°C ⁇ 1100°C. That is to say, in the prior art, the flue gas after desulfurization is heated by an external heat source to increase the temperature, and then the denitration treatment is performed.
  • the designer of the present invention proposes to use the carbon monoxide component present in the desulfurization and denitration flue gas G 3 to convert carbon monoxide into carbon dioxide.
  • the reaction releases heat, and the released heat is passed through a heat exchanger to remove the heat.
  • Passed to the flue gas G 2 after desulfurization the temperature of the flue gas G 2 after desulfurization is increased after heat exchange with the heat exchanger, and then enters the denitration system, so as to achieve the purpose of heating the flue gas entering the denitration system; at the same time, The pollutant carbon monoxide in the flue gas is treated.
  • the desulfurization and denitration flue gas G 3 is sent to the oxidation treatment system.
  • the carbon monoxide in the desulfurization and denitration flue gas G 3 undergoes a conversion reaction (that is, the reaction of carbon monoxide combustion to generate carbon dioxide), and the emitted
  • the heat is transferred to the flue gas G 2 after desulfurization through the heat exchanger, so as to achieve the effect of heating.
  • the smoke flow rate of gas G 3 of the desulfurization, desulfurization smoke gas G content and the like of carbon monoxide 3 parameter index can be obtained desulfurization unit time smoke gas G 3 by calculating
  • the heat released by the combustion of carbon monoxide is further calculated through the oxidation of carbon monoxide, the temperature that the flue gas can reach after the oxidation treatment system, and the maximum heat that can be released by the removal of CO flue gas G 4 after passing through the heat exchanger can be further calculated .
  • the heat released by the conversion of carbon monoxide in the desulfurization and denitration flue gas G 3 is sufficient to raise the temperature of the flue gas entering the denitration treatment system to the optimum denitration temperature of the denitration system, the carbon monoxide contained in the flue gas itself can be completely oxidized.
  • the heat released during the oxidation of carbon monoxide is used to heat the flue gas before the denitration system, so that the temperature of the flue gas G 2 before entering the denitration system is T denitrification ⁇ t°C.
  • the carbon monoxide conversion in the desulfurization and denitration flue gas G 3 is preferentially used after the heat is released, it is adjusted by external heat such as a heating furnace to increase the temperature of the flue gas G 2 after desulfurization before entering the denitration system to T denitration ⁇ t°C.
  • the heat released by the conversion of carbon monoxide in the desulfurization and denitration flue gas G 3 is preferentially used.
  • the heat released by the conversion of carbon monoxide in the desulfurization and denitration flue gas G 3 is sufficient to raise the temperature of the flue gas entering the denitration treatment system to the optimum denitration temperature of the denitration system, by controlling the flow rate of the heat exchange medium in the heat exchanger (Or flow), adjust and control the heat exchange efficiency of the heat exchanger, so that after the heat exchange of the heat exchanger, the temperature of the flue gas entering the denitration treatment system is maintained within the optimal denitration temperature range of the denitration treatment system, so as to ensure the denitration effect.
  • the flow rate of the medium in the heat exchanger per unit time can be calculated.
  • the external adjustment is specifically: by adding fuel to the heating furnace , The flue gas before entering the denitration treatment system is directly heated by the combustion of fuel, so that the flue gas reaches the most suitable denitration temperature before entering the denitration system.
  • the temperature of the flue gas before entering the denitration system reaches T denitration ⁇ t°C; 1to avoid the waste of fuel, 2to avoid the high temperature of the flue gas entering the denitration treatment system , Resulting in a decrease in denitrification efficiency.
  • DETAILED precise control of the flow rate of supplemental fuel for heating furnace the detector through the heat exchanger, transferring heat released in the CO oxidation system to a flue gas desulfurization after G 2, G desulfurized flue gas through the heat exchanger 2
  • the temperature of the fuel, the combustion heat of the fuel, and the combustion coefficient are accurately calculated per unit time to supplement the flow of fuel to the heating furnace.
  • the carbon monoxide treatment system in order to ensure that the carbon monoxide in the desulfurization and denitrification flue gas G 3 is fully burned and emits as much heat as possible, the carbon monoxide treatment system can also be supplemented with oxygen-containing gas, preferably air or oxygen-enriched gas; this measure is further.
  • oxygen-containing gas preferably air or oxygen-enriched gas
  • the oxygen content in the desulfurization and denitrification flue gas G 3 is detected. If the oxygen content is insufficient, oxygen can be supplemented in time to ensure the carbon monoxide conversion rate and increase the heat The utilization rate and the removal rate of pollutants. Specifically: G 3 gas flow rate of smoke release according to desulfurization, desulfurization and CO content of the smoke gas G 3, the conversion can be calculated smoke gas desulfurization G oxygen required CO 3.
  • the amount of oxygen required for the conversion of CO in the desulfurization and denitration flue gas G 3 is less than or equal to the content of O 2 in the sulfur denitration flue gas G 3 , there is no need to add oxygen-containing gas to the oxidation treatment system.
  • the amount of oxygen required for the conversion of CO in the desulfurization and denitration flue gas G 3 is greater than the content of O 2 in the sulfur denitration flue gas G 3 , it is necessary to supplement the oxygen-containing gas to the oxidation treatment system.
  • the flow rate of oxygen-containing gas supplemented to the oxidation treatment system per unit time can be accurately controlled.
  • the smoke desulfurization temperature of the gas G 3 smoke gas desulfurization G 3 CO content of the smoke can be drawn gas desulfurization unit time G 3
  • the combustion coefficient a is because it is difficult to achieve 100% conversion of carbon monoxide, which can be selected according to engineering experience, and the value is 0.1-1, preferably 0.4-0.95, and more preferably 0.7-0.9.
  • U 1 is the flow rate of the desulfurization and denitration flue gas G 3 per unit time
  • P 1 is the CO content in the desulfurization and denitration flue gas G 3. That is to say, through the technical solution of the present invention, the energy of Q 1 can be obtained by using carbon monoxide in the flue gas.
  • G 3 off smoke gas temperature T 1 °C by detecting the desulfurization the instrument can be obtained by detecting the smoke gas desulfurization and G is the average specific heat capacity of C 3, kJ / (°C .g).
  • the heat transfer coefficient b is because it is difficult for 100% of the heat released from the conversion of carbon monoxide to carbon dioxide to be absorbed by the flue gas after desulfurization. It can be valued according to engineering experience. The value is 0.7-1, preferably 0.8-0.98, and more preferably 0.9- 0.95. That is to say, through the technical solution of the present invention, the temperature of the flue gas after denitration can be increased from T 1 °C to T 2 °C by using carbon monoxide in the flue gas.
  • the best (or most suitable) denitration temperature T denitration °C of the selected denitration system is known, that is, the best delivery to The temperature of the flue gas of the denitration system is T denitration °C.
  • the temperature at which the desulfurized flue gas G 2 enters the denitration system is ensured, so as to ensure the denitration efficiency of the desulfurized flue gas G 2 in the denitration system, and remove the waste gas in the flue gas as efficiently as possible.
  • Nitrogen oxides reduce the content of pollutants in the exhausted flue gas, thereby reducing environmental pollution.
  • the present invention if Q 2 ⁇ Q 3 , that is to say, by using the heat released by the conversion of carbon monoxide in the flue gas, it is sufficient to raise the flue gas G 2 after desulfurization before entering the denitration system to reach T denitration °C, and the heat is still Remaining.
  • the present invention makes full use of the heat released from the conversion of carbon monoxide in the flue gas to increase the desulfurized flue gas G 2 before entering the denitration system to be higher than T denitration °C. At this time, the flow rate of the heat exchange medium in the heat exchanger can be adjusted.
  • the flue gas G 2 after desulfurization entering the denitration system is controlled within the range of T denitration ⁇ t°C.
  • f is the heat transfer coefficient, because the medium heat transfer has a heat transfer ratio, it is difficult to achieve 100% theoretical heat transfer.
  • the value can be selected according to engineering experience, and the value is 0.7-1, preferably 0.8-0.98, more preferably 0.9 -0.95. That is to say, a heat exchange medium with a flow rate of U 2 Nm 3 /h needs to pass through the heat exchanger per unit time to control the temperature of the flue gas before heating into the denitrification system to be T denitrification ⁇ t°C.
  • the heat of combustion N kJ/g of the fuel can be known.
  • the flow rate of supplementary fuel is U 3 kg/h:
  • e is the combustion coefficient, because the fuel is difficult to achieve 100% combustion, and it is difficult to release 100% of the theoretical heat.
  • the value can be selected according to engineering experience.
  • the value is 0.6-1, preferably 0.8-0.99, and more preferably 0.8- 0.98. That is to say, the input fuel is slightly excessive, so as to ensure that the temperature of the flue gas before entering the denitration system reaches the range of T denitration ⁇ t°C.
  • the amount of oxygen-containing gas supplemented to the oxidation treatment system can also be controlled.
  • the flow rate of O 2 in the flue gas G 1 after desulfurization per unit time can be obtained.
  • the oxygen flow rate U 4 Nm 3 /h Among them: P 2 is the content of O 2 in the desulfurization and denitration flue gas G 3 ; d is the reaction coefficient, because it is difficult for oxygen to react 100% completely. It can be selected according to engineering experience.
  • the value is 0.7-1, preferably 0.8-0.98 , More preferably 0.9-0.95. That is to say, the oxygen input to the oxidation treatment system is slightly excessive, so as to ensure that the carbon monoxide in the flue gas is reacted as completely as possible, and the utilization rate is improved.
  • the technical scheme of the present invention is suitable for any flue gas desulfurization and denitrification process, as well as any flue gas.
  • the oxidation treatment system of the present invention can adopt any treatment system that catalyzes the conversion of carbon monoxide in the prior art.
  • a dust removal system, a desulfurization system, an optional heat exchanger, an optional heating furnace, a denitrification system, an oxidation treatment system, and an optional lye treatment system are arranged in order from upstream to downstream according to the flow direction of the flue gas.
  • the upstream and downstream position limits are set according to the direction of the flue gas, the position that flows through first is the upstream, and the position that flows later is the downstream.
  • the oxidation treatment system is a box structure, a tower structure or a tube structure.
  • the carbon monoxide treatment system includes a catalyst layer, a flue gas inlet and a flue gas outlet.
  • the height of the oxidation treatment system is 1-50m, preferably 2-45m, more preferably 3-40m.
  • the height of the catalyst layer in the oxidation treatment system accounts for 5-90% of the height of the oxidation treatment system, preferably 8-80%, more preferably 10-60%.
  • the technical scheme of the present invention first undergoes denitration treatment and then oxidation treatment. After desulfurization, SO 2 in the flue gas will not be oxidized to SO 3 , and the formation of (NH 4 ) 2 SO 4 in the denitration process is avoided. Therefore, the blocking and poisoning of the SCR catalyst caused by (NH 4 ) 2 SO 4 is avoided, thereby ensuring the denitration efficiency;
  • the excessive ammonia gas (unreacted ammonia gas) sprayed in the denitration treatment process is oxidized through the subsequent oxidation treatment process, eliminating the ammonia gas in the exhausted flue gas Composition, thereby avoiding the escape of ammonia;
  • the present invention is by using the smoke gas desulfurization and carbon monoxide in G 3, the smoke gas desulfurization conversion of carbon monoxide to carbon dioxide in G 3, the process heat released through the heat exchanger for the flue gas desulfurization 2 G warmed, reduced It even saves the process of heating up the flue gas by external fuel heating;
  • the present invention makes full use of the carbon monoxide in the flue gas, and uses the heat released during the conversion of carbon monoxide to carbon dioxide to achieve the purpose of raising the flue gas temperature for denitration treatment, saving the use of fuel, and at the same time treating the carbon monoxide in the flue gas and reducing This reduces the pollution of the flue gas to the environment, and at the same time reduces or even avoids the secondary pollution in the flue gas treatment process.
  • Figure 1 is a flow chart of a process for synergistic purification of multiple pollutants in flue gas according to the present invention
  • Fig. 2 is a flow chart of the utilization of waste heat in a process for synergistic purification of multiple pollutants in flue gas according to the present invention
  • Figure 3 is a flow chart of lye treatment in a process for synergistic purification of flue gas with multiple pollutants
  • Figure 4 is a schematic structural diagram of a multi-pollutant synergistic purification device for flue gas according to the present invention
  • Fig. 5 is a schematic structural diagram of a heat exchanger included in a flue gas multi-pollutant synergistic purification device of the present invention
  • FIG. 6 is a schematic diagram of the structure of a lye treatment device included in a flue gas multi-pollutant synergistic purification device of the present invention
  • Fig. 7 is a schematic diagram of a structure including a heating furnace in a flue gas multi-pollutant synergistic purification device of the present invention.
  • a process for synergistic purification of flue gas with multiple pollutants including the following steps:
  • the desulfurization and denitration flue gas G 3 is transported to the oxidation treatment system 4 for oxidation treatment.
  • the carbon monoxide in the desulfurization and denitration flue gas G 3 reacts in the oxidation treatment system 4, and the carbon monoxide is oxidized to carbon dioxide, and heat is released at the same time; desulfurization and denitration flue gas 3 G dioxin gas after oxidation treatment are removed the second system 4; smoke gas desulfurization G 3 through ammonia oxidation system is oxidized to 4; smoke gas desulfurization G 3 after oxidation processing system It becomes G 4 to remove CO flue gas.
  • the flue gas G 0 to be treated is transported to the air inlet of the dust removal system 1 through the original flue gas transport pipe L0.
  • the gas outlet of the dust removal system 1 is delivered to the air inlet of the desulfurization system 2 through the first delivery pipe L1.
  • the exhaust port of the desulfurization system 2 is transported to the intake port of the denitration system 3 through the second transport pipe L2.
  • the exhaust port of the denitration system 3 is delivered to the air inlet of the oxidation treatment system 4 through the third delivery pipe L3.
  • the exhaust port of the oxidation treatment system 4 is connected to the fourth delivery pipe L4.
  • the second conveying pipe L2 and the fourth conveying pipe L4 are provided with a heat exchanger 5.
  • the heat exchanger 5 absorbs and removes the heat in the CO flue gas G 4 , and transfers it to the flue gas G 2 after desulfurization to increase the temperature of the flue gas before entering the denitration system 3.
  • the process also includes step 5) lye treatment: passing the CO flue gas G 4 through the lye treatment device 6 to remove carbon dioxide, sulfur trioxide, nitrogen dioxide, and halogen in the CO flue gas G 4
  • the alkaline solution in the lye treatment device 6 is absorbed, and the CO flue gas G 4 is removed after passing through the lye treatment device 6 into a net flue gas G 5 .
  • the fourth conveying pipe L4 is connected to the lye treatment device 6.
  • the alkaline solution is an alkaline solution and/or a strong base and a weak acid salt.
  • the alkaline solution is preferably one or more of sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, and calcium bicarbonate.
  • step 4) further includes: adding oxygen-containing gas to the oxidation treatment system 4, preferably air or oxygen-enriched gas (for example, liquid oxygen).
  • oxygen-containing gas preferably air or oxygen-enriched gas (for example, liquid oxygen).
  • the process also includes: detecting the flow rate of the desulfurization and denitration flue gas G 3 per unit time, marked as U 1 Nm 3 /h; detecting the temperature of the desulfurization and denitration flue gas G 3 , marked as T 1 °C; detecting the desulfurization and denitration flue gas G 3
  • the content of CO in gas G 3 is marked as P 1 g/Nm 3 .
  • Q 1 a*U 1 *P 1 *10.11; where: a is the combustion coefficient, kJ/g; the value is 0.1-1, preferably 0.4-0.95, more preferably 0.7-0.9.
  • C is the average specific heat capacity of the flue gas, kJ/(°C ⁇ g); b is the heat transfer coefficient, g/Nm 3 ; the value is 0.7-1, preferably 0.8-0.98, more preferably 0.9-0.95.
  • the process further includes: detecting the temperature of the flue gas G 2 after desulfurization, which is marked as T 3 °C; according to the process requirements of the denitration system 3, setting the optimal denitration temperature of the denitration system 3 as T denitration °C.
  • the process further includes: adjusting the flow rate of the heat exchange medium in the heat exchanger 5 so that the temperature of the flue gas G 2 after desulfurization before entering the denitration system 3 is T denitration ⁇ t°C; specifically:
  • the specific heat capacity of the heat exchange medium in the heat exchanger 5 is C 2 kJ/(°C ⁇ g), calculate the flow rate of the medium in the heat exchanger 5 per unit time U 2 Nm 3 /h:
  • f is the heat transfer coefficient, with a value of 0.5-1, preferably 0.6-0.98, more preferably 0.7-0.95; that is to say, the required flow rate in the heat exchanger 5 per unit time is U 2 Nm 3 /h
  • the heat exchange medium used to control the temperature of the flue gas before heating into the denitrification system 3 is T denitrification ⁇ t°C.
  • the process further includes: burning fuel through the heating furnace 7 to increase the temperature of the flue gas G 2 after desulfurization before entering the denitration system 3 to reach T denitration ⁇ t°C; specifically:
  • To deliver fuel set the fuel's combustion heat to N kJ/g, and calculate the mass flow rate U 3 kg/h of supplementary fuel:
  • e is the combustion coefficient, with a value of 0.6-1, preferably 0.8-0.99, more preferably 0.8-0.98; that is to say, the supplementary flow rate to the heating furnace 7 per unit time is U 3 Nm 3 /h, the heat of combustion
  • the fuel is N kJ/g, so that the temperature of the flue gas before entering the denitration system 3 reaches T denitration ⁇ t°C.
  • T denitration is 180-280°C, preferably 200-260°C, more preferably 210-240°C.
  • t is 0-20°C, preferably 2-10°C, more preferably 4-8°C.
  • the supplementing of oxygen-containing gas to the oxidation treatment system 4 is specifically:
  • d is the reaction coefficient, with a value of 0.7-1, preferably 0.8-0.98, more preferably 0.9-0.95.
  • a device used in the flue gas multi-pollutant synergistic purification process described in the first embodiment includes a dust removal system 1, a desulfurization system 2, a denitration system 3, and an oxidation treatment system 4.
  • the air inlet of the dust removal system 1 is connected with the original flue gas conveying pipe L0.
  • the first delivery pipe L1 connects the gas outlet of the dust removal system 1 and the air inlet of the desulfurization system 2.
  • the second delivery pipe L2 connects the exhaust port of the desulfurization system 2 and the intake port of the denitration system 3.
  • the third delivery pipe L3 connects the exhaust port of the denitration system 3 and the intake port of the oxidation treatment system 4.
  • the exhaust port of the oxidation treatment system 4 is connected to the fourth delivery pipe L4.
  • the embodiment 1 is repeated, except that the second conveying pipe L2 and the fourth conveying pipe L4 are provided with a heat exchanger 5.
  • Example 2 is repeated, and the device further includes a lye treatment device 6.
  • the end of the fourth delivery pipe L4 is connected to the lye treatment device 6.
  • the device further includes a heating furnace 7.
  • the heating furnace 7 is arranged on the second conveying pipe L2, and is located downstream of the connection position of the heat exchanger 5 and the second conveying pipe L2.
  • the oxidation treatment system 4 is provided with an oxygen-containing gas inlet, and the oxygen-containing gas inlet is connected to an oxygen-containing gas delivery pipeline L5.
  • the dust removal system 1 is an electric dust removal system or a bag dust removal system
  • the desulfurization system 2 is an activated carbon desulfurization treatment system
  • the denitration system 3 is an SCR denitration treatment system
  • the heat exchanger 5 is a GGH Heat Exchanger.
  • a process for synergistic purification of flue gas with multiple pollutants includes the following steps:
  • the desulfurization and denitration flue gas G 3 is transported to the oxidation treatment system 4 for oxidation treatment.
  • the carbon monoxide in the desulfurization and denitration flue gas G 3 reacts in the oxidation treatment system 4, and the carbon monoxide is oxidized to carbon dioxide, and heat is released at the same time; desulfurization and denitration flue gas 3 G dioxin gas after oxidation treatment are removed the second system 4; smoke gas desulfurization G 3 through ammonia oxidation system is oxidized to 4; smoke gas desulfurization G 3 after oxidation processing system It becomes G 4 to remove CO flue gas.
  • Example 6 is repeated, except that the flue gas G 0 to be processed is transported to the air inlet of the dust removal system 1 through the original flue gas transport pipe L0.
  • the gas outlet of the dust removal system 1 is delivered to the air inlet of the desulfurization system 2 through the first delivery pipe L1.
  • the exhaust port of the desulfurization system 2 is transported to the intake port of the denitration system 3 through the second transport pipe L2.
  • the exhaust port of the denitration system 3 is delivered to the air inlet of the oxidation treatment system 4 through the third delivery pipe L3.
  • the exhaust port of the oxidation treatment system 4 is connected to the fourth delivery pipe L4.
  • the second conveying pipe L2 and the fourth conveying pipe L4 are provided with a heat exchanger 5.
  • the heat exchanger 5 absorbs and removes the heat in the CO flue gas G 4 , and transfers it to the flue gas G 2 after desulfurization to increase the temperature of the flue gas before entering the denitration system 3.
  • Example 7 is repeated, except that the process also includes step 5) lye treatment: the CO flue gas G 4 is passed through the lye treatment device 6 to remove the carbon dioxide and carbon dioxide in the CO flue gas G 4 Sulfur oxide, nitrogen dioxide, and halogen are absorbed by the alkaline solution in the lye treatment device 6, and the CO flue gas G 4 is removed through the lye treatment device 6 and then becomes the net flue gas G 5 .
  • the fourth delivery pipe L4 is connected to the alkaline solution processing device 6, and the alkaline solution is sodium hydroxide.
  • Example 7 is repeated, except that step 4) also includes: replenishing air to the oxidation treatment system 4.
  • step 4 also includes: adding liquid oxygen to the oxidation treatment system 4.
  • Example 9 Repeat Example 9 except that the alkaline solution is calcium bicarbonate solution.
  • Example 9 except that the process also includes: detecting the flow rate of the desulfurization and denitration flue gas G 3 per unit time, marked as U 1 Nm 3 /h; detecting the temperature of the desulfurization and denitration flue gas G 3 , marked as T 1 °C; The content of CO in desulfurization and denitration flue gas G 3 is marked as P 1 g/Nm 3 .
  • Q 1 a*U 1 *P 1 *10.11; where: a is the combustion coefficient, kJ/g; the value is 0.8.
  • C is the average specific heat capacity of the flue gas, kJ/(°C ⁇ g); b is the heat transfer coefficient, g/Nm 3 ; the value is 0.9.
  • Example 12 was repeated, except that the present process further comprising: a temperature of the flue gas G after detecting desulfurization 2, labeled T 3 deg.] C; according to process needs denitration system 3 is set denitration system best denitration 3 temperature T denitration °C.
  • Example 13 except that this process also includes: if Q 2 ⁇ Q 3 , the flow rate of the heat exchange medium in the heat exchanger 5 is adjusted so that the temperature of the flue gas G 2 after desulfurization before entering the denitration system 3 is T Denitration ⁇ t°C; specifically:
  • the specific heat capacity of the heat exchange medium in the heat exchanger 5 is C 2 kJ/(°C ⁇ g), calculate the flow rate of the medium in the heat exchanger 5 per unit time U 2 Nm 3 /h:
  • f is the heat transfer coefficient, and the value is 0.8; that is to say, the heat exchange medium with a flow of U 2 Nm 3 /h needs to pass through the heat exchanger 5 in a unit time to control the heating before entering the denitration system 3
  • the temperature of the gas is T denitration ⁇ t°C.
  • Example 13 except that the process also includes: if Q 2 ⁇ Q 3 , the fuel is burned through the heating furnace 7 to increase the temperature of the flue gas G 2 after desulfurization before entering the denitration system 3 to T denitration ⁇ t°C; for:
  • To deliver fuel set the fuel's combustion heat to N kJ/g, and calculate the mass flow rate U 3 kg/h of supplementary fuel:
  • e is the combustion coefficient, and the value is 0.9; that is to say , the fuel with a flow rate of U 3 Nm 3 /h and a combustion heat of N kJ/g is added to the heating furnace 7 per unit time, so that it enters the denitration system 3 before smoke The temperature of the gas reaches T denitration ⁇ t°C.
  • Example 13 the oxygen-containing gas is added to the oxidation treatment system 4, specifically:
  • d is the reaction coefficient, and the value is 0.92.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明提出一种烟气多污染物协同净化工艺及装置,在脱硝处理后增加氧化处理系统,将经过脱硝处理后的烟气通过氧化处理系统,使得烟气中一氧化碳转化为二氧化碳,此过程放出的热量直接用于升温进入脱硝装置前的烟气温度,减少甚至节省了通过外部燃料加热升温该烟气的过程。本发明充分利用了烟气中的一氧化碳,利用一氧化碳转化为二氧化碳过程中放出的热量达到升温烟气温度用于脱硝处理的目的,节约甚至省去了燃料的使用,同时处理了烟气中一氧化碳,减少了烟气对环境的污染,同时减弱甚至避免了烟气处理过程中的二次污染。

Description

一种烟气多污染物协同净化工艺及装置
本申请要求于2019年11月05日提交中国专利局、申请号为201911069846.X、发明名称为“一种烟气多污染物协同净化工艺及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种污染物处理方法和处理装置,具体涉及一种烟气多污染物协同净化工艺及装置,属于环境保护技术领域。
背景技术
对于工业烟气、尤其钢铁工业的烧结机烟气而言,烟气脱硫脱硝技术是应用于多氮氧化物、硫氧化物生成化工工业的一项烟气净化技术。氮氧化物、硫氧化物是空气污染的主要来源之一。烟气同时脱硫脱硝技术目前大多处于研究和工业示范阶段,但由于其在一套系统中能同时实现脱硫和脱硝,特别是随着对NO X控制标准的不断严格化,同时脱硫脱硝技术正受到各国的日益重视。
烟气脱硫指从烟道气或其他工业废气中除去硫氧化物(SO 2和SO 3)。目前工业采用的脱硫方法包括干法脱硫、半干法脱硫或湿法脱硫。干式烟气脱硫工艺用于电厂烟气脱硫始于80年代初,与常规的湿式洗涤工艺相比有以下优点:投资费用较低;脱硫产物呈干态,并和飞灰相混;无需装设除雾器及再热器;设备不易腐蚀,不易发生结垢及堵塞。半干法脱硫主要采用喷雾脱硫,喷雾干式烟气脱硫,最先由美国JOY公司和丹麦NiroAtomier公司共同开发的脱硫工艺,70年代中期得到发展,并在电力工业迅速推广应用。该工艺用雾化的石灰浆液在喷雾干燥塔中与烟气接触,石灰浆液与SO 2反应后生成一种干燥的固体反应物,最后连同飞灰一起被除尘器收集。湿法脱硫主要是使用石灰石(CaCO 3)、石灰(CaO)或碳酸钠(Na 2CO 3)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO 2;其主要优点是脱硫效率高,同步运行率高,且其吸收剂的资源丰富,副产品可吸收,商业价值高。
烟气脱硝,是指把已生成的NO X还原为N 2,从而脱除烟气中的NO X,按治理工艺可分为湿法脱硝和干法脱硝。烟气脱硝技术主要有干法(选择性催化 还原烟气脱硝、选择性非催化还原法脱硝)和湿法两种。与湿法烟气脱硝技术相比,干法烟气脱硝技术的主要优点是:基本投资低,设备及工艺过程简单,脱除NO X的效率也较高,无废水和废弃物处理,不易造成二次污染。选择性催化还原SCR法脱硝是在催化剂存在的条件下,采用氨、CO或碳氢化合物等作为还原剂,在氧气存在的条件下将烟气中的NO还原为N 2。SNCR是选择性非催化还原,是一种成熟的低成本脱硝技术。该技术以炉膛或者水泥行业的预分解炉为反应器,将含有氨基的还原剂喷入炉膛,还原剂与烟气中的NOx反应,生成氨和水。
钢铁烧结烟气中含有粉尘、SO 2、NOx、CO、二噁英等污染物,随着环保要求的日益严格,现有烟气净化设施面临着改造、升级或重建。目前烟气中粉尘、SO 2、NOx已要求超低排放,技术方面主要问题在于已有电除尘难以实现粉尘超低排放,必须加设湿电除尘或布袋除尘;SO 2脱除后的副产物难以处理;经过脱硫和除尘处理后的烟气温度低,采用SCR处理时NOx效率低,当采用强制氧化时,副产物难处理。同时现有装置二噁英脱除效率低、CO未得到处理,外排对环境会造成严重影响。
现有技术中针对烟气脱硫脱硝的处理绝大多数是采用脱硫和脱硝分开工艺,由于脱硝工艺需要喷入氨气等还原性气体,如果先对烟气进行脱硝,然后再进行脱硫,氨气等还原性气体将会优先与硫氧化物反应生成硫铵,影响脱硝过程;所以,一般针对烟气的脱硫脱硝工艺均是先对烟气进行脱硫处理,经过脱硫处理后的烟气再进行脱硝处理。现有技术中,采用干法脱硫的温度一般控制在100-150℃范围内,采用半干法脱硫的温度一般控制在90-110℃范围内,采用湿法脱硫的温度一般控制在50-60℃。再进入脱硝工艺中,采用选择性催化还原SCR法脱硝,一般温度控制在160-400℃左右;如果采用选择性非催化还原SNCR法脱硝,一般温度控制在800℃~1100℃较为适宜。现有技术中优先将待处理烟气的温度调节到适合脱硫处理的温度范围,一般温度较低,然后将经过脱硫后的烟气进行升温,将其温度升高到适合脱硝的温度范围。此工艺过程,由于一般待处理烟气量大,因此需消耗大量的燃料用于加热经过脱硫处理后的烟气,造成资源的浪费和环境的二次污染。
此外,由于待处理烟气均是由于燃料的燃烧产生,由于燃烧的充分程度和 燃料不可能完全充分燃烧,因此,烟气中均含有一定量的一氧化碳。现有技术中,国家目前对于一氧化碳的排放标准没有明确规定,因此,对于待处理烟气一般只经过脱硫和脱硝处理后直接排放,烟气中的一氧化碳没有针对性的进行处理和利用,造成一氧化碳的直接排放。同时,一氧化碳为无色、无臭、无刺激性的气体;在水中的溶解度甚低,极难溶于水;与空气混合爆炸极限为12.5%~74.2%;一氧化碳极易与血红蛋白结合,形成碳氧血红蛋白,使血红蛋白丧失携氧的能力和作用,造成组织窒息,严重时死亡;一氧化碳对全身的组织细胞均有毒性作用,尤其对大脑皮质的影响最为严重。因此,一氧化碳的直接排放对环境污染极大。
发明内容
针对现有技术烟气中CO污染物未得到处理、脱硫后的低温烟气需要采用加热炉升温后才能脱硝处理等技术缺陷,本发明提出一种烟气多污染物协同净化工艺及装置,在脱硝处理后增加氧化处理系统,将经过脱硝处理后的烟气通过氧化处理系统,使得烟气中一氧化碳转化为二氧化碳,此过程放出的热量直接用于升温进入脱硝装置前的烟气温度,减少甚至节省了通过外部燃料加热升温该烟气的过程。本发明充分利用了烟气中的一氧化碳,利用一氧化碳转化为二氧化碳过程中放出的热量达到升温烟气温度用于脱硝处理的目的,节约甚至省去了燃料的使用,同时处理了烟气中一氧化碳,减少了烟气对环境的污染,同时减弱甚至避免了烟气处理过程中的二次污染。
根据本发明提供的第一种实施方案,提供一种烟气多污染物协同净化工艺。
一种烟气多污染物协同净化工艺,该工艺包括以下步骤:
1)将待处理烟气G 0输送至除尘系统进行除尘处理,待处理烟气G 0中的粉尘经过除尘系统被第一次脱除,获得除尘后的烟气G 1
2)将除尘后的烟气G 1输送至脱硫系统进行脱硫处理,除尘后的烟气G 1中的硫氧化物经过脱硫系统后被脱除、除尘后的烟气G 1中的粉尘经过脱硫系统被第二次脱除、除尘后的烟气G 1中的二噁英经过脱硫系统被第一次脱除,获得脱硫后的烟气G 2
3)将脱硫后的烟气G 2经过脱硝系统进行脱硝处理,脱硫后的烟气G 2中的氮氧化物经过脱硝系统后被脱除,经过脱硝系统后的烟气为脱硫脱硝烟气G 3
4)将脱硫脱硝烟气G 3输送至氧化处理系统进行氧化处理,脱硫脱硝烟气G 3中的一氧化碳在氧化处理系统中发生反应,一氧化碳被氧化为二氧化碳,同时放出热量;脱硫脱硝烟气G 3中的二噁英经过氧化处理系统被第二次脱除;脱硫脱硝烟气G 3中的氨气经过氧化处理系统被氧化;脱硫脱硝烟气G 3经过氧化处理系统后变为脱除CO烟气G 4
作为优选,待处理烟气G 0经过原烟气输送管道输送至除尘系统的进气口。除尘系统的气体出口通过第一输送管道输送至脱硫系统的进气口。脱硫系统的排气口通过第二输送管道输送至脱硝系统的进气口。脱硝系统的排气口通过第三输送管道输送至氧化处理系统的进气口。氧化处理系统的排气口与第四输送管道连接。第二输送管道与第四输送管道上设有换热器。换热器吸收脱除CO烟气G 4中的热量,传递给脱硫后的烟气G 2,提升进入脱硝系统前烟气的温度。
作为优选,该工艺还包括步骤5)碱液处理:将脱除CO烟气G 4经过碱液处理装置,脱除CO烟气G 4中的二氧化碳、三氧化硫、二氧化氮、卤素被碱液处理装置中的碱性溶液吸收,脱除CO烟气G 4经过碱液处理装置后变为净烟气G 5
作为优选,第四输送管道连接至碱液处理装置。
作为优选,所述碱性溶液为碱溶液和/或强碱弱酸盐。
作为优选,所述碱性溶液优选为氢氧化钠、氢氧化钾、氢氧化钙、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、碳酸氢钙中的一种或多种。
作为优选,步骤4)中还包括:向氧化处理系统中补充含氧气体,优选为空气或富氧气体(例如液氧)。
作为优选,本工艺还包括:检测单位时间内脱硫脱硝烟气G 3的流量,标记为U 1Nm 3/h;检测脱硫脱硝烟气G 3的温度,标记为T 1℃;检测脱硫脱硝烟气G 3中CO的含量,标记为P 1g/Nm 3
计算:单位时间内脱硫脱硝烟气G 3中一氧化碳的质量流量为U 1*P 1g/h;单位时间内脱硫脱硝烟气G 3中一氧化碳燃烧放出的热量Q 1kJ/h:
Q 1=a*U 1*P 1*10.11;其中:a为燃烧系数,kJ/g;取值为0.1-1,优选为0.4-0.95,更优选为0.7-0.9。
计算单位时间内脱硫脱硝烟气G 3中的一氧化碳在氧化处理系统转化为二氧化碳后,脱除CO烟气G 4的温度T 2℃:
Figure PCTCN2020115793-appb-000001
其中:C为烟气的平均比热容,kJ/(℃·g);b为热传递系数,g/Nm 3;取值为0.7-1,优选为0.8-0.98,更优选为0.9-0.95。
作为优选,本工艺还包括:检测脱硫后的烟气G 2的温度,标记为T 3℃;根据脱硝系统的工艺需要,设定脱硝系统的最佳脱硝温度为T 脱硝℃。
计算通过换热器,脱除CO烟气G 4能够释放的最大热量为Q 2,kJ/h;
Figure PCTCN2020115793-appb-000002
计算脱硫后的烟气G 2进入脱硝系统需要吸收的热量Q 3,kJ/h;
Q 3=C*U 1*(T 脱硝-T 3)。
若Q 2≥Q 3,通过调节换热器内换热介质的流速,使得进入脱硝系统前脱硫后的烟气G 2的温度为T 脱硝±t℃。
若Q 2<Q 3,通过在第二输送管道增设加热炉,通过加热炉燃烧燃料,提升进入脱硝系统前脱硫后的烟气G 2的温度达到T 脱硝±t℃。
作为优选,本工艺还包括:所述通过调节换热器内换热介质的流速,使得进入脱硝系统前脱硫后的烟气G 2的温度为T 脱硝±t℃;具体为:
换热器内换热介质的比热容为C 2kJ/(℃·g),计算单位时间内换热器内介质的流量U 2Nm 3/h:
Figure PCTCN2020115793-appb-000003
其中:f为换热系数,取值为0.5-1,优选为0.6-0.98,更优选为0.7-0.95;也就是说单位时间内,换热器内需要通过流量为U 2Nm 3/h的换热介质,用于控制加热进入脱硝系统前烟气的温度为T 脱硝±t℃。
作为优选,本工艺还包括:所述通过加热炉燃烧燃料,提升进入脱硝系统 前脱硫后的烟气G 2的温度达到T 脱硝±t℃;具体为:
先通过换热器将CO在氧化处理系统中释放的热量传递给脱硫后的烟气G 2;检测脱硫后的烟气G 2经过换热后的温度T 4℃;向加热炉内输送燃料,设定燃料的燃烧热为N kJ/g,计算需要补充燃料的质量流量U 3kg/h:
Figure PCTCN2020115793-appb-000004
其中:e为燃烧系数,取值为0.6-1,优选为0.8-0.99,更优选为0.8-0.98;也就是说单位时间内,向加热炉补充流量为U 3Nm 3/h、燃烧热为N kJ/g的燃料,使得进入脱硝系统前烟气的温度达到T 脱硝±t℃。
在本发明中,T 脱硝为180-280℃,优选为200-260℃,更优选为210-240℃。
在本发明中,t为0-20℃,优选为2-10℃,更优选为4-8℃。
在本发明中,所述向氧化处理系统中补充含氧气体,具体为:
检测脱硫脱硝烟气G 3中O 2的含量,标记为P 2g/Nm 3;计算:单位时间内脱硫后的烟气G 1中O 2的流量为P 2*U 1g/h,燃烧流量为U 1的脱硫脱硝烟气G 3中、含量为P 1的CO所需的氧气流量U 4Nm 3/h:
Figure PCTCN2020115793-appb-000005
其中:d为反应系数,取值为0.7-1,优选为0.8-0.98,更优选为0.9-0.95。
若U 4≤P 2*U 1,则不需要向氧化处理系统中补充含氧气体。
若U 4>P 2*U 1,则需要向氧化处理系统中补充含氧气体。
作为优选,若U 4>P 2*U 1,单位时间内向氧化处理系统中补充含氧气体的流量使得含氧气体中氧气的流量为U 5Nm 3/h:U 5=U 4-P 2*U 1
根据本发明提供的第二种实施方案,提供一种烟气多污染物协同净化工艺的装置。
一种用于第一种实施方案中所述烟气多污染物协同净化工艺的装置,该装置包括除尘系统、脱硫系统、脱硝系统、氧化处理系统。除尘系统的进气口与原烟气输送管道连接。第一输送管道连接除尘系统的气体出口与脱硫系统的进气口。第二输送管道连接脱硫系统的排气口与脱硝系统的进气口。第三输送管道连接脱硝系统的排气口与氧化处理系统的进气口。氧化处理系统的排气口与 第四输送管道连接。
作为优选,第二输送管道与第四输送管道上设有换热器。
作为优选,该装置还包括碱液处理装置。第四输送管道的末端连接至碱液处理装置。
作为优选,该装置还包括:加热炉。加热炉设置在第二输送管道上。
作为优选,加热炉设置在第二输送管道上并且位于换热器与第二输送管道连接位置的下游。
作为优选,氧化处理系统上设有含氧气体入口,含氧气体入口与含氧气体输送管道连接。
作为优选,所述除尘系统为电除尘系统或布袋除尘系统。
作为优选,所述脱硫系统为活性炭脱硫处理系统。
作为优选,所述脱硝系统为SCR脱硝处理系统。
作为优选,所述换热器为GGH换热器。
本发明的第一个目的是脱除烟气中一氧化碳。本申请之前发明人提供了一种烟气净化处理方案,具体为:烟气经过脱硫处理→一氧化碳氧化处理→脱硝处理→净烟气。经过试验和工艺应用发现,该技术方案虽然能够除去烟气中的一氧化碳,但是依然存在以下问题:一、由于脱硫处理并不能100%脱除烟气中的硫氧化物,经过脱硫处理后的烟气中依然存在一定含量的SO 2气体,将脱硫后的烟气经过一氧化碳氧化处理工序时,SO 2也会被氧化成SO 3;而SO 3存在于烟气中,随着烟气进入脱硝处理工序,脱硝处理需要往烟气中喷入氨气,SO 3容易与氨气发生反应生成NH 4HSO 4、(NH 4) 2SO 4,而NH 4HSO 4和(NH 4) 2SO 4容易造成SCR催化剂堵塞与中毒,导致脱硝效率降低,提高了脱硝处理工序中催化剂的使用成本。二、该工艺经过脱硝处理后的烟气为净烟气,直接排放,而脱硝处理过程中,为了保证对烟气的脱硝效果,喷入的氨气是过量的,也就是说经过脱硝处理后的烟气中依然存在一定量的氨气,将脱硝处理后的烟气直接排放,导致氨气的逃逸,而氨气的味道刺鼻,并且氨气对金属的腐蚀作用较大,造成工作环境较差,并且造成二次污染。
本发明的发明人经过研究和工业试验,提出本申请的方法,具体为:原烟气经过除尘处理→脱硫处理→脱硝处理→氧化处理→脱除CO烟气G 4
采用本发明的技术方案:第一步,除尘处理对待处理烟气G 0中的粉尘第一次脱除,获得除尘后的烟气G 1;第二步,脱硫处理对除尘后的烟气G 1中的硫氧化物进行脱除、除尘后的烟气G 1中的粉尘第二次脱除、除尘后的烟气G 1中的二噁英第一次脱除,获得脱硫后的烟气G 2;第三步,脱硝处理对脱硫后的烟气G 2中的氮氧化物进行脱除,获得脱硫脱硝烟气G 3;第四步,氧化处理对脱硫脱硝烟气G 3中的一氧化碳进行脱除(同时放出热量)、脱硫脱硝烟气G 3中的二噁英第二次脱除、脱硫脱硝烟气G 3中的氨气、被氧化脱除;脱硫脱硝烟气G 3经过氧化处理系统后变为脱除CO烟气G 4
采用本申请的技术方案,由于经过脱硝处理后再经过氧化处理,脱硫后烟气中的SO 2不会被氧化成SO 3,避免了在脱硝过程中NH 4HSO 4、(NH 4) 2SO 4的形成,从而避免了NH 4HSO 4和(NH 4) 2SO 4造成SCR催化剂堵塞与中毒的情况发生,从而保证了脱硝效率。此外脱硝处理工序中喷入的过量的氨气(未反应完的氨气),通过后续的氧化处理工序,氨气被氧化,消除了排出净烟气中的氨气成分,从而避免了氨气的逃逸。
作为优选,该工艺还包括步骤5)碱液处理:将脱除CO烟气G 4经过碱液处理装置,脱除CO烟气G 4中的二氧化碳、三氧化硫、二氧化氮、卤素被碱液处理装置中的碱性溶液吸收,脱除CO烟气G 4经过碱液处理装置后变为净烟气G 5。将经过氧化处理后的烟气经过碱液处理,在氧化处理工序中形成的二氧化碳、三氧化硫、二氧化氮,原烟气中的卤素等污染物被碱液处理装置中的碱性气体吸收,从而实现污染物的全脱除。
采用本申请的技术方案,硫氧化物经过脱硫处理工序、碱液处理工序两次脱除处理;氮氧化物经过脱硝处理工序、碱液处理工序两次脱除处理;粉尘经过除尘工序、脱硝处理工序两次脱除处理;二噁英经过脱硫处理工序、氧化处理工序两次脱除处理;原烟气中的一氧化碳经过氧化工序处理,并利用该过程中放出的热量;脱硝处理过程中过剩的氨气经过氧化处理工序被氧化,避免了氨气的逃逸。采用本申请的技术方案,实现了原烟气中污染物更彻底的脱除。
本发明的第二个目的是利用脱除烟气中一氧化碳产生的热量,用于提升进入脱硝系统前烟气的温度。
在本发明的技术方案中,通过将脱硫后的烟气经过一氧化碳处理系统,将 脱硫后烟气中的一氧化碳转化为二氧化碳,具体为:
2CO+O 2====2CO 2
利用烟气中本身存在(或含有)的一氧化碳成分,利用一氧化碳与氧气反应生成二氧化碳是一个放热反应,通过一氧化碳处理系统将烟气中的一氧化碳转化为二氧化碳,该反应放出的热量通过换热器用于升温进入脱硝系统前的烟气,从而实现了烟气升温的效果;同时,除去了烟气中的一氧化碳,避免了烟气中一氧化碳对环境的污染。
在现有技术中,待处理烟气(也称为原烟气)中含有大量的硫氧化物和氮氧化物,必须经过脱硫脱硝处理后才能排放。脱硫脱硝处理工艺为:①将原烟气经过脱硫处理,采用干法脱硫后排出烟气的温度为100-150℃,半干法脱硫后排出烟气的温度为90-110℃,采用湿法脱硫后排出烟气的温度为50-60℃;②将脱硫后的烟气进行升温处理,通过外部热源加热脱硫后的烟气(包括直接换热法和间接换热法),使得进入脱硝系统的烟气温度升高;③将升温后的烟气输送至脱硝系统进行脱硝处理,如果采用SCR选择性脱硝处理控制进入SCR脱硝系统的烟气温度为160-400℃,如果采用SNCR非选择性脱硝系统处理控制进入SNCR脱硝系统的烟气温度为800℃~1100℃。也就是说,现有技术中,均是将脱硫后的烟气经过外部热源加热,使其温度升高,然后再进行脱硝处理。
本发明设计者经过多年研究和工程实践,提出了利用脱硫脱硝烟气G 3中本身存在的一氧化碳成分,使一氧化碳转化为二氧化碳,该反应放出热量,利用放出的热量通过换热器,将该热量传递给脱硫后的烟气G 2,脱硫后的烟气G 2经过与换热器换热后,温度升高,再进入脱硝系统,从而达到使进入脱硝系统的烟气升温的目的;同时,处理了烟气中的污染物一氧化碳。
在本发明中,将脱硫脱硝烟气G 3输送至氧化处理系统,在氧化处理系统中,脱硫脱硝烟气G 3中的一氧化碳进行转化反应(也就是一氧化碳燃烧,生成二氧化碳的反应),放出的热量,通过换热器,该热量传递给脱硫后的烟气G 2,从而达到升温的效果。
作为优选方案,根据脱硫脱硝烟气G 3的温度、脱硫脱硝烟气G 3的流量、脱硫脱硝烟气G 3中一氧化碳的含量等参数指标,通过计算可以得到单位时间 内脱硫脱硝烟气G 3中一氧化碳燃烧放出的热量,进一步计算出通过一氧化碳的氧化,经过氧化处理系统后烟气可以达到的温度,再进一步可以计算出通过换热器后,脱除CO烟气G 4能够释放的最大热量。
进一步的,计算出为了达到最佳脱硝温度,脱硫后的烟气G 2进入脱硝系统需要吸收的热量。比较脱除CO烟气G 4能够释放的最大热量与进入脱硝系统前烟气需要吸收的热量:
如果脱硫脱硝烟气G 3中的一氧化碳转化放出的热量足以使得进入脱硝处理系统的烟气的温度升高至脱硝系统的最适宜脱硝温度,则在完全可以通过氧化烟气中本身含有的一氧化碳,利用一氧化碳氧化过程中释放出的热量用来加热脱硝系统前烟气,使得进入脱硝系统前烟气G 2的温度为T 脱硝±t℃。
如果脱硫脱硝烟气G 3中的一氧化碳转化放出的热量不足以使得进入脱硝处理系统的烟气的温度升高至脱硝系统的最适宜脱硝温度,则优先利用脱硫脱硝烟气G 3中的一氧化碳转化放出的热量后,再通过加热炉等外部热量进行调节,提升进入脱硝系统前脱硫后的烟气G 2的温度达到T 脱硝±t℃。在本发明的技术方案中,优先利用脱硫脱硝烟气G 3中的一氧化碳转化放出的热量。
作为优选,如果脱硫脱硝烟气G 3中的一氧化碳转化放出的热量足以使得进入脱硝处理系统的烟气的温度升高至脱硝系统的最适宜脱硝温度,通过控制换热器内换热介质的流速(或流量),调节控制换热器的换热效率,使得经过换热器换热后,进入脱硝处理系统的烟气温度维持在脱硝处理系统的最佳脱硝温度范围内,从而保证脱硝效果。具体为:根据进入脱硝处理系统前的烟气需要吸收的热量、换热介质的比热容,可以计算出单位时间内换热器内介质的流量。
如果脱硫脱硝烟气G 3中的一氧化碳转化放出的热量不足以使得进入脱硝处理系统的烟气的温度升高至脱硝系统的最适宜脱硝温度,通过外部调节具体为:通过向加热炉中补充燃料,通过燃料的燃烧直接加热进入脱硝处理系统前的烟气,使该烟气在进入脱硝系统前达到最适宜脱硝温度。作为优选,通过精确控制向加热炉补充燃料的流量,使得进入脱硝系统前烟气的温度达到T 脱硝±t℃;①避免了燃料的浪费,②避免了进入脱硝处理系统的烟气温度过高,导致脱硝效率的下降。
精确控制向加热炉补充燃料的流量具体为:检测经过换热器,将CO在氧化处理系统中释放的热量传递给脱硫后的烟气G 2后,脱硫后的烟气G 2经过换热后的温度,燃料的燃烧热、燃烧系数,精确计算出单位时间内,向加热炉补充燃料的流量。
在本发明中,为了保证脱硫脱硝烟气G 3中的一氧化碳充分燃烧,尽最大可能的放出最多热量,还可以向一氧化碳处理系统中补充含氧气体,优选为空气或富氧气体;该措施进一步提高了脱硫脱硝烟气G 3中的一氧化碳的脱除率,实现资源最大化利用,污染物(一氧化碳)最大程度被处理。
作为优选,通过精确计算氧化处理系统中,一氧化碳转化需要的氧气,检测脱硫脱硝烟气G 3中本身的氧含量,如果氧含量不够,及时补充的氧气,从而保证了一氧化碳转化率,提高了热量的利用率和污染物的脱除率。具体为:根据脱硫脱硝烟气G 3的流量、脱硫脱硝烟气G 3中的CO含量,可以计算出转化脱硫脱硝烟气G 3中CO需要的氧气。检测脱硫脱硝烟气G 3中O 2的含量,比较转化脱硫脱硝烟气G 3中CO需要的氧气量与硫脱硝烟气G 3中O 2的含量:
如果转化脱硫脱硝烟气G 3中CO需要的氧气量小于或等于硫脱硝烟气G 3中O 2的含量,则不需要向氧化处理系统中补充含氧气体。
如果转化脱硫脱硝烟气G 3中CO需要的氧气量大于硫脱硝烟气G 3中O 2的含量,则需要向氧化处理系统中补充含氧气体。作为优选,通过计算,可以精准控制单位时间内向氧化处理系统中补充含氧气体的流量。
在本发明中,通过检测脱硫脱硝烟气G 3的流量、脱硫脱硝烟气G 3的温度、脱硫脱硝烟气G 3中CO的含量,就可以得出单位时间内脱硫脱硝烟气G 3中一氧化碳的质量流量。通过换算,可以计算出单位时间内,脱硫脱硝烟气G 3中一氧化碳燃烧放出的热量Q 1=a*U 1*P 1*10.11。其中:燃烧系数a是因为一氧化碳很难实现100%转化,可以根据工程经验取值,取值为0.1-1,优选为0.4-0.95,更优选为0.7-0.9。U 1为单位时间内脱硫脱硝烟气G 3的流量,P 1为脱硫脱硝烟气G 3中CO的含量。也就是说,通过本发明的技术方案,利用烟气中的一氧化碳,可以获取Q 1的能量。
进一步,根据计算出的利用烟气中一氧化碳转化获取的能量为Q 1kJ/h,可以计算出利用该能量可以提高经过一氧化碳处理系统后得到的烟气的温度 提升至T 2℃。
Figure PCTCN2020115793-appb-000006
其中:通过检测脱硫脱硝烟气G 3的温度T 1℃,通过仪器检测可以得出为脱硫脱硝烟气G 3的平均比热容C,kJ/(℃﹒g)。热传递系数b是因为一氧化碳转化为二氧化碳放出的热量很难100%被脱硫后的烟气吸收,可以根据工程经验取值,取值为0.7-1,优选为0.8-0.98,更优选为0.9-0.95。也就是说,通过本发明的技术方案,利用烟气中的一氧化碳,可以将脱硝后烟气的温度从T 1℃提升到T 2℃。
在本发明中,根据具体的脱硝系统的特点、根据脱硝工艺的选择、脱硝催化剂等情况,知道选择的脱硝系统的最佳(或最适宜)脱硝温度T 脱硝℃,也就是知道最佳输送至脱硝系统的烟气的温度为T 脱硝℃。
通过计算可以得出,利用一氧化碳的氧化放出的热量,通过换热器,与进入脱硝处理系统前的烟气进行换热,可以得出脱除CO烟气G 4能够释放的最大热量为Q 2,kJ/h;
Figure PCTCN2020115793-appb-000007
再计算脱硫后的烟气G 2进入脱硝系统需要吸收的热量Q 3,kJ/h;
Q 3=C*U 1*(T 脱硝-T 3)。
通过比较Q 2和Q 3,保证脱硫后的烟气G 2进入脱硝系统时的温度,从而保证了脱硫后的烟气G 2在脱硝系统中的脱硝效率,尽最大效率脱除烟气中的氮氧化物,减少外排净烟气中污染物的含量,从而减少对环境的污染。
若Q 2≥Q 3,也就是说,通过利用烟气中一氧化碳转化放出的热量,足以可以使得进入脱硝系统的含硝烟气G 2达到T 脱硝℃,那么将该烟气直接在脱硝系统进行脱硝处理。
若Q 2<Q 3,也就是说,虽然通过利用烟气中一氧化碳转化放出的热量,还不足以使得进入脱硝系统的脱硫后的烟气G 2达到T 脱硝℃,那么可以通过额外的调节手段对脱硝系统前的脱硫后的烟气G 2达到T 脱硝℃,然后再输送至脱 硝系统。
在本发明中,若Q 2≥Q 3,也就是说,通过利用烟气中一氧化碳转化放出的热量,足以提升进入脱硝系统前的脱硫后的烟气G 2达到T 脱硝℃,而且热量还有剩余。本发明充分利用烟气中的一氧化碳转化放出的热量用于提升进入脱硝系统前的脱硫后的烟气G 2高于T 脱硝℃,此时,可以通过调节换热器内换热介质的流速,使得进入脱硝系统的脱硫后的烟气G 2控制在T 脱硝±t℃范围内。
根据换热器内换热介质的比热容为C 2kJ/(℃·g),计算单位时间内换热器内介质的流量U 2Nm 3/h:
Figure PCTCN2020115793-appb-000008
其中:f为换热系数,因为介质换热存在换热比例,很难实现100%理论换热,可以根据工程经验取值,取值为0.7-1,优选为0.8-0.98,更优选为0.9-0.95。也就是说单位时间内,换热器内需要通过流量为U 2Nm 3/h的换热介质,用于控制加热进入脱硝系统前烟气的温度为T 脱硝±t℃。
在本发明中,若Q 2<Q 3,也就是说,虽然通过利用烟气中一氧化碳转化放出的热量,还不足以使得进入脱硝系统的脱硫后的烟气G 2达到T 脱硝℃,可以通过精确计算向第二输送管道上的加热炉中补充燃料的量。实现以下目的:利用完烟气中一氧化碳转化放出的热量,补充适当的燃料使得进入脱硝系统的脱硫后的烟气G 2达到T 脱硝±t℃范围内。
根据选择的燃料,可以知道该燃料的燃烧热N kJ/g,通过计算,可以得出需要补充燃料的流量为U 3kg/h:
Figure PCTCN2020115793-appb-000009
其中:e为燃烧系数,因为燃料很难实现100%燃烧,很难放出理论的100%热量,可以根据工程经验取值,取值为0.6-1,优选为0.8-0.99,更优选为0.8-0.98。也就是说输入的燃料稍微过量,从而保证进入脱硝系统前烟气的温度达到T 脱硝±t℃范围内。
在本发明中,通过精确计算,还可以控制向氧化处理系统中补充含氧气体的量。通过检测脱硫脱硝烟气G 3中O 2的含量,可以得到单位时间内脱硫后的 烟气G 1中O 2的流量,通过一氧化碳与氧气反应的特点,可以得出利用烟气中一氧化碳所需的氧气流量U 4Nm 3/h:
Figure PCTCN2020115793-appb-000010
其中:P 2为脱硫脱硝烟气G 3中O 2的含量;d为反应系数,因为氧气很难100%反应完全,可以根据工程经验取值,取值为0.7-1,优选为0.8-0.98,更优选为0.9-0.95。也就是说输入至氧化处理系统的氧气稍微过量,从而保证烟气中的一氧化碳尽可能的完全反应,提高利用率。
若U 4≤P 2*U 1,也就是说脱硫脱硝烟气G 3中O 2的含量大于或等于利用烟气中一氧化碳所需的氧气流量U 4,则不需要向氧化处理系统中补充含氧气体。
若U 4>P 2*U 1,也就是说脱硫脱硝烟气G 3中O 2的含量小于利用烟气中一氧化碳转化所需的氧气流量U 4,则需要向氧化处理系统中补充一定量的含氧气体,从而保证烟气中的一氧化碳充分利用。
根据计算,单位时间内向氧化处理系统中补充含氧气体的流量使得含氧气体中氧气的流量为U 5Nm 3/h:U 5=U 4-P 2*U 1
本发明的技术方案,适用于任何烟气脱硫脱硝工艺,也适用于任何烟气。本发明中氧化处理系统可以采用现有技术中任何催化一氧化碳转化的处理系统。
在本发明中,根据烟气的流向,从上游到下游依次设置除尘系统、脱硫系统、任选地换热器、任选地加热炉、脱硝系统、氧化处理系统、任选地碱液处理系统。上游、下游的位置限定是根据烟气的走向设定的,先流经的位置为上游,后流经的位置为下游。
在本发明中,氧化处理系统为箱式结构、塔式结构或管式结构。一氧化碳处理系统包括催化剂层、烟气入口和烟气出口。
作为优选,氧化处理系统的高度为1-50m,优选为2-45m,更优选为3-40m。
作为优选,氧化处理系统中催化剂层的高度占氧化处理系统的高度的5-90%,优选为8-80%,更优选为10-60%。
与现有技术相比较,本发明的技术方案具有以下有益技术效果:
1、本发明的技术方案,先经过脱硝处理后再经过氧化处理,脱硫后烟气中的SO 2不会被氧化成SO 3,避免了在脱硝过程中(NH 4) 2SO 4的形成,从而避免了(NH 4) 2SO 4造成SCR催化剂堵塞与中毒的情况发生,从而保证了脱硝效率;
2、本发明的技术方案,脱硝处理工序中喷入的过量的氨气(未反应完的氨气),通过后续的氧化处理工序,氨气被氧化,消除了排出净烟气中的氨气成分,从而避免了氨气的逃逸;
3、本发明通过利用脱硫脱硝烟气G 3中的一氧化碳,将脱硫脱硝烟气G 3中的一氧化碳转化为二氧化碳,此过程放出的热量通过换热器用于升温脱硫后的烟气G 2,减少甚至节省了通过外部燃料加热升温该烟气的过程;
4、本发明充分利用了烟气中的一氧化碳,利用一氧化碳转化为二氧化碳过程中放出的热量达到升温烟气温度用于脱硝处理的目的,节约了燃料的使用,同时处理了烟气中一氧化碳,减少了烟气对环境的污染,同时减弱甚至避免了烟气处理过程中的二次污染。
附图说明
图1为本发明一种烟气多污染物协同净化工艺的流程图;
图2为本发明一种烟气多污染物协同净化工艺中包括余热利用的流程图;
图3为本发明一种烟气多污染物协同净化工艺中碱液处理的流程图;
图4为本发明一种烟气多污染物协同净化装置的结构示意图;
图5为本发明一种烟气多污染物协同净化装置中包括换热器的结构示意图;
图6为本发明一种烟气多污染物协同净化装置中包括碱液处理装置的结构示意图;
图7为本发明一种烟气多污染物协同净化装置中包括加热炉的结构示意图。
附图标记:
1:除尘系统;2:脱硫系统;3:脱硝系统;4:氧化处理系统;5:换热器;6:碱液处理装置;7:加热炉;L0:原烟气输送管道;L1:第一输送管道;L2:第二输送管道;L3:第三输送管道;L4:第四输送管道;L5:含氧 气体输送管道。
具体实施方式
下面对本发明的技术方案进行举例说明,本发明请求保护的范围包括但不限于以下实施例。
根据本发明提供的第一种实施方案,提供一种烟气多污染物协同净化工艺。
一种烟气多污染物协同净化工艺,该工艺包括以下步骤:
1)将待处理烟气G 0输送至除尘系统1进行除尘处理,待处理烟气G 0中的粉尘经过除尘系统1被第一次脱除,获得除尘后的烟气G 1
2)将除尘后的烟气G 1输送至脱硫系统2进行脱硫处理,除尘后的烟气G 1中的硫氧化物经过脱硫系统2后被脱除、除尘后的烟气G 1中的粉尘经过脱硫系统2被第二次脱除、除尘后的烟气G 1中的二噁英经过脱硫系统2被第一次脱除,获得脱硫后的烟气G 2
3)将脱硫后的烟气G 2经过脱硝系统3进行脱硝处理,脱硫后的烟气G 2中的氮氧化物经过脱硝系统3后被脱除,经过脱硝系统3后的烟气为脱硫脱硝烟气G 3
4)将脱硫脱硝烟气G 3输送至氧化处理系统4进行氧化处理,脱硫脱硝烟气G 3中的一氧化碳在氧化处理系统4中发生反应,一氧化碳被氧化为二氧化碳,同时放出热量;脱硫脱硝烟气G 3中的二噁英经过氧化处理系统4被第二次脱除;脱硫脱硝烟气G 3中的氨气经过氧化处理系统4被氧化;脱硫脱硝烟气G 3经过氧化处理系统4后变为脱除CO烟气G 4
作为优选,待处理烟气G 0经过原烟气输送管道L0输送至除尘系统1的进气口。除尘系统1的气体出口通过第一输送管道L1输送至脱硫系统2的进气口。脱硫系统2的排气口通过第二输送管道L2输送至脱硝系统3的进气口。脱硝系统3的排气口通过第三输送管道L3输送至氧化处理系统4的进气口。氧化处理系统4的排气口与第四输送管道L4连接。第二输送管道L2与第四输送管道L4上设有换热器5。换热器5吸收脱除CO烟气G 4中的热量,传递给脱硫后的烟气G 2,提升进入脱硝系统3前烟气的温度。
作为优选,该工艺还包括步骤5)碱液处理:将脱除CO烟气G 4经过碱液处理装置6,脱除CO烟气G 4中的二氧化碳、三氧化硫、二氧化氮、卤素被碱液处理装置6中的碱性溶液吸收,脱除CO烟气G 4经过碱液处理装置6后变为净烟气G 5
作为优选,第四输送管道L4连接至碱液处理装置6。
作为优选,所述碱性溶液为碱溶液和/或强碱弱酸盐。
作为优选,所述碱性溶液优选为氢氧化钠、氢氧化钾、氢氧化钙、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、碳酸氢钙中的一种或多种。
作为优选,步骤4)中还包括:向氧化处理系统4中补充含氧气体,优选为空气或富氧气体(例如液氧)。
作为优选,本工艺还包括:检测单位时间内脱硫脱硝烟气G 3的流量,标记为U 1Nm 3/h;检测脱硫脱硝烟气G 3的温度,标记为T 1℃;检测脱硫脱硝烟气G 3中CO的含量,标记为P 1g/Nm 3
计算:单位时间内脱硫脱硝烟气G 3中一氧化碳的质量流量为U 1*P 1g/h;单位时间内脱硫脱硝烟气G 3中一氧化碳燃烧放出的热量Q 1kJ/h:
Q 1=a*U 1*P 1*10.11;其中:a为燃烧系数,kJ/g;取值为0.1-1,优选为0.4-0.95,更优选为0.7-0.9。
计算单位时间内脱硫脱硝烟气G 3中的一氧化碳在氧化处理系统4转化为二氧化碳后,脱除CO烟气G 4的温度T 2℃:
Figure PCTCN2020115793-appb-000011
其中:C为烟气的平均比热容,kJ/(℃·g);b为热传递系数,g/Nm 3;取值为0.7-1,优选为0.8-0.98,更优选为0.9-0.95。
作为优选,本工艺还包括:检测脱硫后的烟气G 2的温度,标记为T 3℃;根据脱硝系统3的工艺需要,设定脱硝系统3的最佳脱硝温度为T 脱硝℃。
计算通过换热器5,脱除CO烟气G 4能够释放的最大热量为Q 2,kJ/h;
Figure PCTCN2020115793-appb-000012
计算脱硫后的烟气G 2进入脱硝系统3需要吸收的热量Q 3,kJ/h;
Q 3=C*U 1*(T 脱硝-T 3)。
若Q 2≥Q 3,通过调节换热器5内换热介质的流速,使得进入脱硝系统3前脱硫后的烟气G 2的温度为T 脱硝±t℃。
若Q 2<Q 3,通过在第二输送管道L2增设加热炉7,通过加热炉7燃烧燃料,提升进入脱硝系统3前脱硫后的烟气G 2的温度达到T 脱硝±t℃。
作为优选,本工艺还包括:所述通过调节换热器5内换热介质的流速,使得进入脱硝系统3前脱硫后的烟气G 2的温度为T 脱硝±t℃;具体为:
换热器5内换热介质的比热容为C 2kJ/(℃·g),计算单位时间内换热器5内介质的流量U 2Nm 3/h:
Figure PCTCN2020115793-appb-000013
其中:f为换热系数,取值为0.5-1,优选为0.6-0.98,更优选为0.7-0.95;也就是说单位时间内,换热器5内需要通过流量为U 2Nm 3/h的换热介质,用于控制加热进入脱硝系统3前烟气的温度为T 脱硝±t℃。
作为优选,本工艺还包括:所述通过加热炉7燃烧燃料,提升进入脱硝系统3前脱硫后的烟气G 2的温度达到T 脱硝±t℃;具体为:
先通过换热器5将CO在氧化处理系统4中释放的热量传递给脱硫后的烟气G 2;检测脱硫后的烟气G 2经过换热后的温度T 4℃;向加热炉7内输送燃料,设定燃料的燃烧热为N kJ/g,计算需要补充燃料的质量流量U 3kg/h:
Figure PCTCN2020115793-appb-000014
其中:e为燃烧系数,取值为0.6-1,优选为0.8-0.99,更优选为0.8-0.98;也就是说单位时间内,向加热炉7补充流量为U 3Nm 3/h、燃烧热为N kJ/g的燃料,使得进入脱硝系统3前烟气的温度达到T 脱硝±t℃。
在本发明中,T 脱硝为180-280℃,优选为200-260℃,更优选为210-240℃。
在本发明中,t为0-20℃,优选为2-10℃,更优选为4-8℃。
在本发明中,所述向氧化处理系统4中补充含氧气体,具体为:
检测脱硫脱硝烟气G 3中O 2的含量,标记为P 2g/Nm 3;计算:单位时间内脱硫后的烟气G 1中O 2的流量为P 2*U 1g/h,燃烧流量为U 1的脱硫脱硝烟气 G 3中、含量为P 1的CO所需的氧气流量U 4Nm 3/h:
Figure PCTCN2020115793-appb-000015
其中:d为反应系数,取值为0.7-1,优选为0.8-0.98,更优选为0.9-0.95。
若U 4≤P 2*U 1,则不需要向氧化处理系统4中补充含氧气体。
若U 4>P 2*U 1,则需要向氧化处理系统4中补充含氧气体。
作为优选,若U 4>P 2*U 1,单位时间内向氧化处理系统4中补充含氧气体的流量使得含氧气体中氧气的流量为U 5Nm 3/h:U 5=U 4-P 2*U 1
实施例1
如图4所示,一种用于第一种实施方案中所述烟气多污染物协同净化工艺的装置,该装置包括除尘系统1、脱硫系统2、脱硝系统3、氧化处理系统4。除尘系统1的进气口与原烟气输送管道L0连接。第一输送管道L1连接除尘系统1的气体出口与脱硫系统2的进气口。第二输送管道L2连接脱硫系统2的排气口与脱硝系统3的进气口。第三输送管道L3连接脱硝系统3的排气口与氧化处理系统4的进气口。氧化处理系统4的排气口与第四输送管道L4连接。
实施例2
如图5所示,重复实施例1,只是第二输送管道L2与第四输送管道L4上设有换热器5。
实施例3
如图6所示,重复实施例2,该装置还包括碱液处理装置6。第四输送管道L4的末端连接至碱液处理装置6。
实施例4
如图7所示,重复实施例3,只是该装置还包括:加热炉7。加热炉7设置在第二输送管道L2上,并且位于换热器5与第二输送管道L2连接位置的下游。氧化处理系统4上设有含氧气体入口,含氧气体入口与含氧气体输送管道L5连接。
实施例5
重复实施例4,只是所述除尘系统1为电除尘系统或布袋除尘系统,所述 脱硫系统2为活性炭脱硫处理系统,所述脱硝系统3为SCR脱硝处理系统,所述换热器5为GGH换热器。
实施例6
如图1所示,一种烟气多污染物协同净化工艺,该工艺包括以下步骤:
1)将待处理烟气G 0输送至除尘系统1进行除尘处理,待处理烟气G 0中的粉尘经过除尘系统1被第一次脱除,获得除尘后的烟气G 1
2)将除尘后的烟气G 1输送至脱硫系统2进行脱硫处理,除尘后的烟气G 1中的硫氧化物经过脱硫系统2后被脱除、除尘后的烟气G 1中的粉尘经过脱硫系统2被第二次脱除、除尘后的烟气G 1中的二噁英经过脱硫系统2被第一次脱除,获得脱硫后的烟气G 2
3)将脱硫后的烟气G 2经过脱硝系统3进行脱硝处理,脱硫后的烟气G 2中的氮氧化物经过脱硝系统3后被脱除,经过脱硝系统3后的烟气为脱硫脱硝烟气G 3
4)将脱硫脱硝烟气G 3输送至氧化处理系统4进行氧化处理,脱硫脱硝烟气G 3中的一氧化碳在氧化处理系统4中发生反应,一氧化碳被氧化为二氧化碳,同时放出热量;脱硫脱硝烟气G 3中的二噁英经过氧化处理系统4被第二次脱除;脱硫脱硝烟气G 3中的氨气经过氧化处理系统4被氧化;脱硫脱硝烟气G 3经过氧化处理系统4后变为脱除CO烟气G 4
实施例7
如图2所示,重复实施例6,只是待处理烟气G 0经过原烟气输送管道L0输送至除尘系统1的进气口。除尘系统1的气体出口通过第一输送管道L1输送至脱硫系统2的进气口。脱硫系统2的排气口通过第二输送管道L2输送至脱硝系统3的进气口。脱硝系统3的排气口通过第三输送管道L3输送至氧化处理系统4的进气口。氧化处理系统4的排气口与第四输送管道L4连接。第二输送管道L2与第四输送管道L4上设有换热器5。换热器5吸收脱除CO烟气G 4中的热量,传递给脱硫后的烟气G 2,提升进入脱硝系统3前烟气的温度。
实施例8
如图3所示,重复实施例7,只是该工艺还包括步骤5)碱液处理:将脱除CO烟气G 4经过碱液处理装置6,脱除CO烟气G 4中的二氧化碳、三氧化 硫、二氧化氮、卤素被碱液处理装置6中的碱性溶液吸收,脱除CO烟气G 4经过碱液处理装置6后变为净烟气G 5
第四输送管道L4连接至碱液处理装置6,所述碱性溶液为氢氧化钠。
实施例9
重复实施例7,只是步骤4)中还包括:向氧化处理系统4中补充空气。
实施例10
重复实施例9,只是所述碱性溶液为碳酸钾溶液;步骤4)中还包括:向氧化处理系统4中补充液氧。
实施例11
重复实施例9,只是所述碱性溶液为碳酸氢钙溶液。
实施例12
重复实施例9,只是本工艺还包括:检测单位时间内脱硫脱硝烟气G 3的流量,标记为U 1Nm 3/h;检测脱硫脱硝烟气G 3的温度,标记为T 1℃;检测脱硫脱硝烟气G 3中CO的含量,标记为P 1g/Nm 3
计算:单位时间内脱硫脱硝烟气G 3中一氧化碳的质量流量为U 1*P 1g/h;单位时间内脱硫脱硝烟气G 3中一氧化碳燃烧放出的热量Q 1kJ/h:
Q 1=a*U 1*P 1*10.11;其中:a为燃烧系数,kJ/g;取值为0.8。
计算单位时间内脱硫脱硝烟气G 3中的一氧化碳在氧化处理系统4转化为二氧化碳后,脱除CO烟气G 4的温度T 2℃:
Figure PCTCN2020115793-appb-000016
其中:C为烟气的平均比热容,kJ/(℃·g);b为热传递系数,g/Nm 3;取值为0.9。
实施例13
重复实施例12,只是本工艺还包括:检测脱硫后的烟气G 2的温度,标记为T 3℃;根据脱硝系统3的工艺需要,设定脱硝系统3的最佳脱硝温度为T ℃。
计算通过换热器5,脱除CO烟气G 4能够释放的最大热量为Q 2,kJ/h;
Figure PCTCN2020115793-appb-000017
计算脱硫后的烟气G 2进入脱硝系统3需要吸收的热量Q 3,kJ/h;
Q 3=C*U 1*(T 脱硝-T 3)。
若Q 2≥Q 3,通过调节换热器5内换热介质的流速,使得进入脱硝系统3前脱硫后的烟气G 2的温度为T 脱硝±t℃。
若Q 2<Q 3,通过在第二输送管道L2增设加热炉7,通过加热炉7燃烧燃料,提升进入脱硝系统3前脱硫后的烟气G 2的温度达到T 脱硝±t℃。
实施例14
重复实施例13,只是本工艺还包括:若Q 2≥Q 3,所述通过调节换热器5内换热介质的流速,使得进入脱硝系统3前脱硫后的烟气G 2的温度为T 脱硝±t℃;具体为:
换热器5内换热介质的比热容为C 2kJ/(℃·g),计算单位时间内换热器5内介质的流量U 2Nm 3/h:
Figure PCTCN2020115793-appb-000018
其中:f为换热系数,取值为0.8;也就是说单位时间内,换热器5内需要通过流量为U 2Nm 3/h的换热介质,用于控制加热进入脱硝系统3前烟气的温度为T 脱硝±t℃。
实施例15
重复实施例13,只是本工艺还包括:若Q 2<Q 3,所述通过加热炉7燃烧燃料,提升进入脱硝系统3前脱硫后的烟气G 2的温度达到T 脱硝±t℃;具体为:
先通过换热器5将CO在氧化处理系统4中释放的热量传递给脱硫后的烟气G 2;检测脱硫后的烟气G 2经过换热后的温度T 4℃;向加热炉7内输送燃料,设定燃料的燃烧热为N kJ/g,计算需要补充燃料的质量流量U 3kg/h:
Figure PCTCN2020115793-appb-000019
其中:e为燃烧系数,取值为0.9;也就是说单位时间内,向加热炉7补充流量为U 3Nm 3/h、燃烧热为N kJ/g的燃料,使得进入脱硝系统3前烟气的温度达到T 脱硝±t℃。
实施例16
重复实施例14或15,只是T 脱硝为220℃,t为5℃。
实施例17
重复实施例13,所述向氧化处理系统4中补充含氧气体,具体为:
检测脱硫脱硝烟气G 3中O 2的含量,标记为P 2g/Nm 3;计算:单位时间内脱硫后的烟气G 1中O 2的流量为P 2*U 1g/h,燃烧流量为U 1的脱硫脱硝烟气G 3中、含量为P 1的CO所需的氧气流量U 4Nm 3/h:
Figure PCTCN2020115793-appb-000020
其中:d为反应系数,取值为0.92。
若U 4≤P 2*U 1,则不需要向氧化处理系统4中补充含氧气体。
若U 4>P 2*U 1,则需要向氧化处理系统4中补充含氧气体,单位时间内向氧化处理系统4中补充含氧气体的流量使得含氧气体中氧气的流量为U 5Nm 3/h:U 5=U 4-P 2*U 1
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (15)

  1. 一种烟气多污染物协同净化工艺,该工艺包括以下步骤:
    1)将待处理烟气G 0输送至除尘系统(1)进行除尘处理,待处理烟气G 0中的粉尘经过除尘系统(1)被第一次脱除,获得除尘后的烟气G 1
    2)将除尘后的烟气G 1输送至脱硫系统(2)进行脱硫处理,除尘后的烟气G 1中的硫氧化物经过脱硫系统(2)后被脱除、除尘后的烟气G 1中的粉尘经过脱硫系统(2)被第二次脱除、除尘后的烟气G 1中的二噁英经过脱硫系统(2)被第一次脱除,获得脱硫后的烟气G 2
    3)将脱硫后的烟气G 2经过脱硝系统(3)进行脱硝处理,脱硫后的烟气G 2中的氮氧化物经过脱硝系统(3)后被脱除,经过脱硝系统(3)后的烟气为脱硫脱硝烟气G 3
    4)将脱硫脱硝烟气G 3输送至氧化处理系统(4)进行氧化处理,脱硫脱硝烟气G 3中的一氧化碳在氧化处理系统(4)中发生反应,一氧化碳被氧化为二氧化碳,同时放出热量;脱硫脱硝烟气G 3中的二噁英经过氧化处理系统(4)被第二次脱除;脱硫脱硝烟气G 3中的氨气经过氧化处理系统(4)被氧化;脱硫脱硝烟气G 3经过氧化处理系统(4)后变为脱除CO烟气G 4
  2. 根据权利要求1所述的烟气多污染物协同净化工艺,其特征在于:待处理烟气G 0经过原烟气输送管道(L0)输送至除尘系统(1)的进气口;除尘系统(1)的气体出口通过第一输送管道(L1)输送至脱硫系统(2)的进气口;脱硫系统(2)的排气口通过第二输送管道(L2)输送至脱硝系统(3)的进气口;脱硝系统(3)的排气口通过第三输送管道(L3)输送至氧化处理系统(4)的进气口;氧化处理系统(4)的排气口与第四输送管道(L4)连接;第二输送管道(L2)与第四输送管道(L4)上设有换热器(5);换热器(5)吸收脱除CO烟气G 4中的热量,传递给脱硫后的烟气G 2,提升进入脱硝系统(3)前烟气的温度。
  3. 根据权利要求1或2所述的烟气多污染物协同净化工艺,其特征在于:该工艺还包括步骤5)碱液处理:将脱除CO烟气G 4经过碱液处理装置(6),脱除CO烟气G 4中的二氧化碳、三氧化硫、二氧化氮、卤素被碱液处理装置 (6)中的碱性溶液吸收,脱除CO烟气G 4经过碱液处理装置(6)后变为净烟气G 5
  4. 根据权利要求3所述的烟气多污染物协同净化工艺,其特征在于:第四输送管道(L4)连接至碱液处理装置(6);所述碱性溶液为碱溶液和/或强碱弱酸盐;所述碱性溶液优选为氢氧化钠、氢氧化钾、氢氧化钙、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、碳酸氢钙中的一种或多种。
  5. 根据权利要求1-4中任一项所述的烟气多污染物协同净化工艺,其特征在于:步骤4)中还包括:向氧化处理系统(4)中补充含氧气体,优选为空气或富氧气体。
  6. 根据权利要求1-5中任一项所述的烟气多污染物协同净化工艺,其特征在于:检测单位时间内脱硫脱硝烟气G 3的流量,标记为U 1Nm 3/h;检测脱硫脱硝烟气G 3的温度,标记为T 1℃;检测脱硫脱硝烟气G 3中CO的含量,标记为P 1g/Nm 3;计算:单位时间内脱硫脱硝烟气G 3中一氧化碳的质量流量为U 1*P 1g/h;单位时间内脱硫脱硝烟气G 3中一氧化碳燃烧放出的热量Q 1kJ/h:
    Q 1=a*U 1*P 1*10.11;其中:a为燃烧系数,kJ/g;取值为0.1-1,优选为0.4-0.95,更优选为0.7-0.9;
    计算单位时间内脱硫脱硝烟气G 3中的一氧化碳在氧化处理系统(4)转化为二氧化碳后,脱除CO烟气G 4的温度T 2℃:
    Figure PCTCN2020115793-appb-100001
    其中:C为烟气的平均比热容,kJ/(℃·g);b为热传递系数,g/Nm 3;取值为0.7-1,优选为0.8-0.98,更优选为0.9-0.95。
  7. 根据权利要求6所述的烟气多污染物协同净化工艺,其特征在于:检测脱硫后的烟气G 2的温度,标记为T 3℃;根据脱硝系统(3)的工艺需要,设定脱硝系统(3)的最佳脱硝温度为T 脱硝℃;
    计算通过换热器(5),脱除CO烟气G 4能够释放的最大热量为Q 2,kJ/h;
    Figure PCTCN2020115793-appb-100002
    计算脱硫后的烟气G 2进入脱硝系统(3)需要吸收的热量Q 3,kJ/h;
    Q 3=C*U 1*(T 脱硝-T 3);
    若Q 2≥Q 3,通过调节换热器(5)内换热介质的流速,使得进入脱硝系统(3)前脱硫后的烟气G 2的温度为T 脱硝±t℃;
    若Q 2<Q 3,通过在第二输送管道(L2)增设加热炉(7),通过加热炉(7)燃烧燃料,提升进入脱硝系统(3)前脱硫后的烟气G 2的温度达到T 脱硝±t℃。
  8. 根据权利要求7所述的烟气多污染物协同净化工艺,其特征在于:所述通过调节换热器(5)内换热介质的流速,使得进入脱硝系统(3)前脱硫后的烟气G 2的温度为T 脱硝±t℃;具体为:
    换热器(5)内换热介质的比热容为C 2kJ/(℃·g),计算单位时间内换热器(5)内介质的流量U 2Nm 3/h:
    Figure PCTCN2020115793-appb-100003
    其中:f为换热系数,取值为0.5-1,优选为0.6-0.98,更优选为0.7-0.95;也就是说单位时间内,换热器(5)内需要通过流量为U 2Nm 3/h的换热介质,用于控制加热进入脱硝系统(3)前烟气的温度为T 脱硝±t℃。
  9. 根据权利要求7或8所述的烟气多污染物协同净化工艺,其特征在于:所述通过加热炉(7)燃烧燃料,提升进入脱硝系统(3)前脱硫后的烟气G 2的温度达到T 脱硝±t℃;具体为:
    先通过换热器(5)将CO在氧化处理系统(4)中释放的热量传递给脱硫后的烟气G 2;检测脱硫后的烟气G 2经过换热后的温度T 4℃;向加热炉(7)内输送燃料,设定燃料的燃烧热为N kJ/g,计算需要补充燃料的质量流量U 3kg/h:
    Figure PCTCN2020115793-appb-100004
    其中:e为燃烧系数,取值为0.6-1,优选为0.8-0.99,更优选为0.8-0.98;也就是说单位时间内,向加热炉(7)补充流量为U 3Nm 3/h、燃烧热为N kJ/g的燃料,使得进入脱硝系统(3)前烟气的温度达到T 脱硝±t℃。
  10. 根据权利要求7-9中任一项所述的烟气多污染物协同净化工艺,其特征在于:T 脱硝为180-280℃,优选为200-260℃,更优选为210-240℃;和/或
    t为0-20℃,优选为2-10℃,更优选为4-8℃。
  11. 根据权利要求5所述的烟气多污染物协同净化工艺,其特征在于:所述向氧化处理系统(4)中补充含氧气体,具体为:
    检测脱硫脱硝烟气G 3中O 2的含量,标记为P 2g/Nm 3;计算:单位时间内脱硫后的烟气G 1中O 2的流量为P 2*U 1g/h,燃烧流量为U 1的脱硫脱硝烟气G 3中、含量为P 1的CO所需的氧气流量U 4Nm 3/h:
    Figure PCTCN2020115793-appb-100005
    其中:d为反应系数,取值为0.7-1,优选为0.8-0.98,更优选为0.9-0.95;
    若U 4≤P 2*U 1,则不需要向氧化处理系统(4)中补充含氧气体;
    若U 4>P 2*U 1,则需要向氧化处理系统(4)中补充含氧气体;作为优选,单位时间内向氧化处理系统(4)中补充含氧气体的流量使得含氧气体中氧气的流量为U 5Nm 3/h:U 5=U 4-P 2*U 1
  12. 一种用于权利要求1-11中任一项所述烟气多污染物协同净化工艺的装置,该装置包括除尘系统(1)、脱硫系统(2)、脱硝系统(3)、氧化处理系统(4);其特征在于:除尘系统(1)的进气口与原烟气输送管道(L0)连接;第一输送管道(L1)连接除尘系统(1)的气体出口与脱硫系统(2)的进气口;第二输送管道(L2)连接脱硫系统(2)的排气口与脱硝系统(3)的进气口;第三输送管道(L3)连接脱硝系统(3)的排气口与氧化处理系统(4)的进气口;氧化处理系统(4)的排气口与第四输送管道(L4)连接。
  13. 根据权利要求12所述的装置,其特征在于:第二输送管道(L2)与第四输送管道(L4)上设有换热器(5);和/或
    该装置还包括碱液处理装置(6);第四输送管道(L4)的末端连接至碱液处理装置(6)。
  14. 根据权利要求12或13所述的装置,其特征在于:该装置还包括:加热炉(7);加热炉(7)设置在第二输送管道(L2)上;作为优选,加热炉(7)设置在第二输送管道(L2)上并且位于换热器(5)与第二输送管道(L2)连接位置的下游;和/或
    氧化处理系统(4)上设有含氧气体入口,含氧气体入口与含氧气体输送 管道(L5)连接。
  15. 根据权利要求12-14中任一项所述的装置,其特征在于:所述除尘系统(1)为电除尘系统或布袋除尘系统;所述脱硫系统(2)为活性炭脱硫处理系统;所述脱硝系统(3)为SCR脱硝处理系统;所述换热器(5)为GGH换热器。
PCT/CN2020/115793 2019-11-05 2020-09-17 一种烟气多污染物协同净化工艺及装置 WO2021088526A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112022007442A BR112022007442A2 (pt) 2019-11-05 2020-09-17 Processo e aparelho de purificação sinérgica de múltiplos poluentes de gás residual

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911069846.X 2019-11-05
CN201911069846.XA CN112403154A (zh) 2019-11-05 2019-11-05 一种烟气多污染物协同净化工艺及装置

Publications (1)

Publication Number Publication Date
WO2021088526A1 true WO2021088526A1 (zh) 2021-05-14

Family

ID=74779492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115793 WO2021088526A1 (zh) 2019-11-05 2020-09-17 一种烟气多污染物协同净化工艺及装置

Country Status (3)

Country Link
CN (1) CN112403154A (zh)
BR (1) BR112022007442A2 (zh)
WO (1) WO2021088526A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115430213A (zh) * 2022-09-05 2022-12-06 中冶长天国际工程有限责任公司 一种智能控制抗结露型饱和湿烟气混流系统及方法
CN116272302A (zh) * 2023-03-30 2023-06-23 北京市弘洁蓝天科技股份有限公司 废活性炭再生尾气处理系统和处理方法
CN116550118A (zh) * 2023-07-09 2023-08-08 浙江百能科技有限公司 活化吸收结晶的一体化分离装置与方法
CN116658908A (zh) * 2023-05-29 2023-08-29 浙江大学 基于焚烧飞灰再生盐储热的垃圾焚烧电厂电力消纳系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125353A1 (en) * 2012-05-25 2015-05-07 Mitsubishi Heavy Industries, Ltd. Air pollution control apparatus
CN206746318U (zh) * 2017-01-03 2017-12-15 北京清新环境技术股份有限公司 一种烟气余热回收湿法集成净化系统
CN206965467U (zh) * 2017-05-11 2018-02-06 北京中航天业科技有限公司 一种应用于工业窑炉的脱硫脱硝除尘协同处理装置
CN207694581U (zh) * 2017-12-06 2018-08-07 东营市俊源石油技术开发有限公司 一种c10以下单体烷烃生产用脱硫脱硝成套装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785969B (zh) * 2010-03-03 2012-06-27 王向明 一种烟气净化的方法和系统
WO2014041645A1 (ja) * 2012-09-12 2014-03-20 三菱重工業株式会社 改質装置およびそれを備えた化成品の製造装置
CN209348416U (zh) * 2018-12-05 2019-09-06 江苏垦乐节能环保科技有限公司 一种烧结烟气同时脱硫脱硝脱co系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125353A1 (en) * 2012-05-25 2015-05-07 Mitsubishi Heavy Industries, Ltd. Air pollution control apparatus
CN206746318U (zh) * 2017-01-03 2017-12-15 北京清新环境技术股份有限公司 一种烟气余热回收湿法集成净化系统
CN206965467U (zh) * 2017-05-11 2018-02-06 北京中航天业科技有限公司 一种应用于工业窑炉的脱硫脱硝除尘协同处理装置
CN207694581U (zh) * 2017-12-06 2018-08-07 东营市俊源石油技术开发有限公司 一种c10以下单体烷烃生产用脱硫脱硝成套装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115430213A (zh) * 2022-09-05 2022-12-06 中冶长天国际工程有限责任公司 一种智能控制抗结露型饱和湿烟气混流系统及方法
CN115430213B (zh) * 2022-09-05 2023-06-23 中冶长天国际工程有限责任公司 一种智能控制抗结露型饱和湿烟气混流系统及方法
CN116272302A (zh) * 2023-03-30 2023-06-23 北京市弘洁蓝天科技股份有限公司 废活性炭再生尾气处理系统和处理方法
CN116658908A (zh) * 2023-05-29 2023-08-29 浙江大学 基于焚烧飞灰再生盐储热的垃圾焚烧电厂电力消纳系统
CN116550118A (zh) * 2023-07-09 2023-08-08 浙江百能科技有限公司 活化吸收结晶的一体化分离装置与方法
CN116550118B (zh) * 2023-07-09 2023-09-22 浙江百能科技有限公司 活化吸收结晶的一体化分离装置与方法

Also Published As

Publication number Publication date
BR112022007442A2 (pt) 2022-07-12
CN112403154A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021088526A1 (zh) 一种烟气多污染物协同净化工艺及装置
CN110860196B (zh) 一种水泥烟气的脱硫脱硝系统
CN110917843A (zh) 一种垃圾焚烧节能烟气超低净化系统
WO2021088524A1 (zh) 一种烟气脱一氧化碳脱硝的系统及方法
CN209490675U (zh) 一种用于烧结烟气的半干法与低温scr脱硝组合净化装置
WO2023050702A1 (zh) 垃圾电厂回转窑燃烧炉烟气低温脱硫脱硝方法和系统
CN103263828A (zh) 燃煤锅炉sncr与scr联合法烟气脱硝系统
CN109482049A (zh) 一种焦炉烟气干法脱硫脱硝净化一体化工艺
CN113864789A (zh) 一种处理含硫、含氮、含盐废液的焚烧系统
WO2023050896A1 (zh) 用于生物质电厂烟气的低温脱硫脱硝系统
CN108392956A (zh) 一种用于焦炉烟气的脱硫脱硝系统及方法
WO2023050897A1 (zh) 垃圾电厂回转窑燃烧炉烟气低温脱硫脱硝系统
CN110496527A (zh) 一种焦炉烟道废气脱硫脱硝的方法
JP2014128775A (ja) 排ガス処理設備およびこれを用いるガスタービン発電システム
CN111249873A (zh) 石灰窑烟气sds干法脱硫及scr低温脱硝的装置和方法
WO2023050699A1 (zh) 用于生物质电厂烟气的低温脱硫脱硝方法和系统
CN103100294A (zh) 臭氧氧化法脱除烟气中氮氧化合物的方法
CN102309920B (zh) 一种脱除FCC烟气中NOx和SOx的方法
CN103768918B (zh) 一种己内酰胺装置尾气净化方法和装置
CN209564826U (zh) 一种烟气脱硫脱硝脱白的一体化装置
CN108704464B (zh) 一种烧结烟气脱硫脱硝、烟气消白综合处理系统及工艺
CN203090746U (zh) 一种烟气脱硫脱硝一体化装置
CN210495844U (zh) 一种烟气脱硫脱碳脱硝协同处理系统
CN211753933U (zh) 一种一氧化碳氮氧化物协同处理系统
CN208583169U (zh) 一种烧结烟气脱硫脱硝、烟气消白综合处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886063

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007442

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022007442

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220418

122 Ep: pct application non-entry in european phase

Ref document number: 20886063

Country of ref document: EP

Kind code of ref document: A1