WO2021088245A1 - 一种货车枕簧视觉检测及智能选配系统和使用方法 - Google Patents

一种货车枕簧视觉检测及智能选配系统和使用方法 Download PDF

Info

Publication number
WO2021088245A1
WO2021088245A1 PCT/CN2020/070704 CN2020070704W WO2021088245A1 WO 2021088245 A1 WO2021088245 A1 WO 2021088245A1 CN 2020070704 W CN2020070704 W CN 2020070704W WO 2021088245 A1 WO2021088245 A1 WO 2021088245A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
axis
station
conveying
end surface
Prior art date
Application number
PCT/CN2020/070704
Other languages
English (en)
French (fr)
Inventor
郭其昌
孙志林
陶明魁
夏诗明
袁泉
沈煜
朱波
谢自攀
Original Assignee
南京拓控信息科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京拓控信息科技股份有限公司 filed Critical 南京拓控信息科技股份有限公司
Publication of WO2021088245A1 publication Critical patent/WO2021088245A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/52Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the invention belongs to the technical field of online detection equipment, and specifically relates to a visual detection and intelligent selection system for truck sleeper springs and a use method.
  • the 3D recognition optical system has a complex structure and poor recognition accuracy.
  • the low efficiency of data processing and calculation further affects the efficiency and accuracy of inspection operations, and therefore it is difficult to effectively meet the needs of use.
  • the invention discloses a visual detection and intelligent selection system for truck sleeper springs and a use method thereof, so as to solve the problems of low production efficiency and poor product quality existing in the prior art.
  • a visual inspection and intelligent matching system for truck sleeper springs including a conveying mechanism, a corner mechanism, a spring matching station, a tray, a 3D visual monitoring station and a control system, wherein the 3D visual monitoring station feed end and discharge end pass through the corners respectively
  • the mechanism is connected to at least one conveying mechanism, and each conveying mechanism is connected to a spring matching station.
  • At least one tray is slidably connected to the conveying mechanism, the corner mechanism, the spring matching station, and the 3D visual monitoring station.
  • the end surface is distributed parallel to the horizontal plane, and the conveying mechanism, the corner mechanism, the spring selection station, the tray, and the 3D visual monitoring station are all electrically connected to the control system.
  • the 3D vision monitoring station includes a base, a protective cover, a horizontal drive rail, a conveying table, a lifting drive mechanism, an in-position sensor, a bearing slider, a 3D camera, and a line laser transmitter
  • the base is a columnar frame Structure, the upper end surface of which is connected with the conveying table, the lifting drive mechanism and the in-position sensor
  • the conveying platform is coaxially distributed with the conveying mechanism and connected with the conveying mechanism through the corner mechanism
  • the lifting drive mechanism is coaxially distributed with the base and embedded in the Inside the conveying table, and the upper end surface of the lifting drive mechanism is higher than the upper end surface of the conveying table by -10 cm-50 cm
  • the in-position sensors are at least two, evenly distributed around the axis of the base, and the in-position sensor axis is perpendicular to the upper end surface of the base
  • the protective cover is a trough-like structure in the shape of " ⁇ " in cross section, which is wrapped on the upper end surface of the base and
  • the horizontal drive rail is embedded in the monitoring room and is connected to the upper end surface of the protective cover , And the axis of the horizontal drive rail and the axis of the conveying mechanism are distributed in the same plane perpendicular to the upper end surface of the base.
  • the 3D camera and the line laser transmitter are slidably connected to the horizontal drive rail through the bearing slider, and the 3D camera and the line laser are slidably connected to the horizontal drive rail.
  • the transmitters are distributed along the axis of the horizontal drive rail, where the axis of the line laser transmitter is perpendicular to and intersects with the axis of the conveyor, the 3D camera is located on the side of the line laser transmitter and the optical axis of the 3D camera intersects the optical axis of the line laser transmitter at 30° -135° included angle, and the focal point is at least 3 cm above the conveying platform.
  • the conveying platform, lifting drive mechanism, position sensor, 3D camera, and line laser transmitter are all electrically connected to the control system.
  • the corner mechanism is a bearing base, a lifting drive mechanism, a turntable mechanism, and a conveying roller table, wherein the upper end surface of the bearing base is connected to the lifting drive mechanism and distributed coaxially, and the upper end surface of the lifting drive mechanism passes through
  • the turntable mechanism is hinged to the lower end surface of the conveying roller table, and the axis of the conveying roller table is parallel to the upper end surface of the bearing base, and rotates in a horizontal range of 0°-360° around the axis of the turntable mechanism, and the lifting drive mechanism, the turntable mechanism and
  • the conveying roller table is electrically connected with the control system respectively.
  • the lifting drive mechanism is any one of a hydraulic cylinder, a pneumatic cylinder, a linear motor, a screw mechanism, and a worm gear mechanism.
  • the conveying mechanism is a conveying mechanism based on any one of a roller table, a transmission chain, a transmission belt, a linear motor, and a rodless cylinder as a power mechanism.
  • the spring selection station includes a bearing frame, a vertical drive rail, a positioning clamp, an in-position sensor, and a six-axis manipulator
  • the bearing frame is a rectangular columnar frame structure
  • the vertical drive rails are at least two , Embedded in the carrying frame and symmetrically distributed along the axis of the carrying frame, and the axis of the vertical drive rail is distributed parallel to the axis of the carrying frame
  • the vertical drive rail is provided with a number of positioning fixtures, and the vertical drive rail passes through to carry
  • the positioning fixtures distributed symmetrically on the axis of the rack are connected to at least one tray, and the trays are coaxially distributed with the carrying rack.
  • the six-axis manipulator At least one is located on one side of the carrying frame, and the vertical drive guide rail, positioning clamp, position sensor and six-axis manipulator are all electrically connected to the control system.
  • the tray includes a bearing base, a bearing plate, and a calibration reference block, wherein the bearing base is a rectangular frame structure, and the bearing base is slidably connected with the conveying mechanism, the corner mechanism, the spring selection station, and the 3D visual monitoring station, respectively
  • the bearing board is embedded in the bearing base and distributed coaxially with the bearing base, and at least one calibration reference block is connected perpendicularly to the end surface of the bearing board.
  • control system is based on any one or any combination of programmable controllers, industrial computers, and Internet of Things controllers.
  • a method for using the visual inspection and intelligent matching system for truck sleeper springs includes the following steps:
  • the conveyor mechanism, corner mechanism, spring matching station, pallet, 3D visual monitoring station and control system are assembled to obtain a complete inspection system.
  • the feed port of the 3D vision monitoring station in the inspection system is connected to at least one spring selection station through a conveying mechanism, and the spring selection station is connected with the spring production system to form a loading group.
  • the 3D vision monitoring station in the complete inspection system The discharge port is connected with at least one spring matching station through a conveying mechanism, and the spring matching station is connected with the spring storage system to form a screening storage group, and finally the control system is connected with the external monitoring platform;
  • step S2 inspection work, after completing step S1, first install and place the spring to be tested obtained by the spring production system on the tray through the spring selection station of the loading group, and then the spring to be tested is transported along with the tray to the 3D visual monitoring through the conveying mechanism Station and enter the 3D vision monitoring station.
  • the lifting drive mechanism first drives the tray up, and the 3D camera and the line laser transmitter are diagonally crossed through the calibration reference block on the tray, and the line The laser line of the laser transmitter is vertically distributed with the axis of the horizontal drive guide rail.
  • the 3D camera and line laser transmitter are translated at a constant speed from the feed end to the discharge end of the 3D visual monitoring station through the carrying slider, and are in the process of translation.
  • the line laser transmitter is used to identify the contour structure characteristics of the spring to be monitored; on the other hand, the 3D camera is used to recognize and collect the three-dimensional structural characteristics of the spring to be monitored, and the 3D camera and the line laser transmitter are translated to 3D visual monitoring.
  • the inspection operation is completed at the position of the discharging end of the station.
  • the pallet is lowered by the lifting drive mechanism and returned to the conveying table, and then discharged from the outlet of the 3D visual monitoring station, and transferred to the screening and warehousing group through the conveying mechanism
  • the spring selection station of the company conducts spring sorting after testing, and saves and recovers qualified and non-qualified products separately to complete the testing operation.
  • step S2 when the video detection operation is performed through the 3D camera and the line laser transmitter:
  • the first step is to construct a coordinate system, with the horizontal drive rail axis as the Y axis, the vertical direction to the upper end surface of the pallet as the X axis, the vertical direction to the conveyor table axis as the Z axis, and the horizontal drive rail at the 3D visual monitoring station for discharge
  • the end port is the origin, which constitutes the detection and recognition coordinate system
  • the second step is data recognition. After the first step is completed, the three-dimensional recognition operation function is established according to the detection and recognition coordinate system constructed in the first step.
  • the specific expression is:
  • (r 1 , r 4 , r 7 ), (r 2 , r 5 , r 8 ), (r 3 , r 6 , r 9 ) represent the X, Y, and Z axis direction vectors of the coordinate system, respectively.
  • the system of the present invention has simple structure, flexible and convenient installation, operation and maintenance. On the one hand, it has good site adaptation and environmental practicability, and can effectively meet the needs of a variety of plant space layouts and production inspection quantities. On the other hand, it detects the video system structure Simple and powerful in data recognition and calculation, which greatly improves the detection efficiency and accuracy.
  • Figure 1 is a schematic diagram of the structure of the present invention
  • Figure 2 is a schematic diagram of the structure of a 3D visual monitoring station
  • Figure 3 is a schematic diagram of the structure of the corner mechanism
  • Figure 4 is a schematic diagram of the structure of the spring matching station
  • Figure 5 is a schematic diagram of the tray structure
  • Figure 6 is a schematic flow chart of the detection method of the present invention.
  • Figure 7 is a schematic flow diagram of the video signal processing method during video detection.
  • a truck sleeper spring visual inspection and intelligent matching system including conveying mechanism 1, corner mechanism 2, spring matching station 3, pallet 4, 3D visual monitoring station 5 and control system 6, of which 3D
  • the feeding end and the discharging end of the visual monitoring station 5 are respectively connected to at least one conveying mechanism 1 through a corner mechanism 2, and each conveying mechanism 1 is connected to a spring matching station 3, and at least one tray 4 is connected to the conveying mechanism.
  • the 3D visual monitoring station 5 is slidingly connected, and the upper end of the tray 4 is parallel to the horizontal plane, the conveying mechanism 1, the corner mechanism 2, the spring selection station 3, the tray 4, 3D visual monitoring Station 5 is electrically connected to the control system.
  • the 3D vision monitoring station 5 includes a base 51, a protective cover 52, a horizontal drive rail 53, a conveying table 54, a lifting drive mechanism 7, an in-position sensor 55, a carrying slider 56, a 3D camera 57, and a line laser
  • the transmitter 58, the base 51 is a columnar frame structure, and its upper end surface is connected with the conveying table 54, the lifting driving mechanism 7, and the in-position sensor 55.
  • the conveying table 54 is coaxially distributed with the conveying mechanism 1 and is connected to the conveying mechanism 2 through the corner mechanism 2.
  • the conveying mechanism 1 is connected, the lifting driving mechanism 7 is coaxially distributed with the base 51 and embedded in the conveying table 54, and the upper end surface of the lifting driving mechanism 7 is higher than the upper end surface of the conveying table 54 by -10 cm-50 cm, so
  • the upper end surface of the base 51 and the upper end surface of the base 51 constitute a monitoring room.
  • the horizontal drive rail 53 is embedded in the monitoring room and is connected to the upper end surface of the protective cover 52.
  • the axis of the horizontal drive rail 53 and the axis of the conveying mechanism 1 are distributed on the same base.
  • the 3D camera 57 and the line laser emitter 58 are slidably connected to the horizontal drive rail 53 through the bearing slider 56, and the 3D camera 57 and the line laser emitter 58 are along the axis of the horizontal drive rail 53
  • the axis of the line laser transmitter 58 is perpendicular to and intersects with the axis of the conveyor 54.
  • the 3D camera 57 is located on the side of the line laser transmitter 58 and the optical axis of the 3D camera 57 intersects the optical axis of the line laser transmitter 58 at 30°—
  • the included angle is 135°
  • the focal point is at least 3 cm above the conveying table 54.
  • the conveying table 54, the lifting driving mechanism 7, the position sensor 55, the 3D camera 57, and the line laser transmitter 58 are all electrically connected to the control system 6.
  • the corner mechanism 2 is a bearing base 21, a lifting drive mechanism 7, a turntable mechanism 22, and a conveying roller table 23.
  • the upper end surface of the bearing base 21 is connected to the lifting drive mechanism 7 and distributed coaxially.
  • the upper end surface of the lifting drive mechanism 7 is hinged to the lower end surface of the conveying roller table 23 through the turntable mechanism 22, and the axis of the conveying roller table 23 is parallel to the upper end surface of the bearing base 21, and surrounds the axis of the turntable mechanism 22 in a horizontal range of 0°—360° It rotates, and the lifting driving mechanism 7, the turntable mechanism 22, and the conveying roller table 23 are electrically connected to the control system 6 respectively.
  • the lifting driving mechanism 7 is any one of a hydraulic cylinder, a pneumatic cylinder, a linear motor, a screw mechanism, and a worm gear mechanism.
  • the conveying mechanism 1 is a conveying mechanism based on any one of a roller table, a transmission chain, a transmission belt, a linear motor, and a rodless cylinder as a power mechanism.
  • the spring selection station 3 includes a bearing frame 31, a vertical drive rail 32, a positioning clamp 33, an in-position sensor 55, and a six-axis manipulator 34.
  • the bearing frame 31 is a rectangular columnar frame structure.
  • the vertical drive guide 32 A plurality of positioning clamps 33 are provided on the upper part, and the vertical drive guide 32 is connected to at least one tray 4 through positioning clamps 33 distributed symmetrically about the axis of the carrying frame 31, and the tray 4 is coaxially distributed with the carrying frame 31, the position sensor 55 Several, evenly distributed on the outside of the vertical drive rail 32 along the axis of the vertical drive rail 32, at least one six-axis manipulator 34 is located on the side of the carrying frame 31, the vertical drive rail 32, the positioning clamp 33, and the position Both the sensor 55 and the six-axis manipulator 34 are electrically connected to the control system 6.
  • the pallet 4 includes a bearing base 41, a bearing plate 42, and a calibration reference block 43, wherein the bearing base 41 is a rectangular frame structure, and the bearing base 41 is matched with the conveying mechanism 1, the corner mechanism 2, and the spring respectively.
  • the station 3 and the 3D visual monitoring station 5 are slidably connected.
  • the bearing plate 42 is embedded in the bearing base 41 and distributed coaxially with the bearing base 41.
  • At least one calibration reference block 43 is vertically connected to the upper end surface of the bearing plate 42.
  • control system 6 is based on any one or a combination of programmable controllers, industrial computers, and Internet of Things controllers.
  • a method for using the visual inspection and intelligent matching system for truck sleeper springs includes the following steps:
  • the conveyor mechanism, corner mechanism, spring matching station, pallet, 3D visual monitoring station and control system are assembled to obtain a complete inspection system.
  • the feed port of the 3D vision monitoring station in the inspection system is connected to at least one spring selection station through a conveying mechanism, and the spring selection station is connected with the spring production system to form a loading group.
  • the 3D vision monitoring station in the complete inspection system The discharge port is connected with at least one spring matching station through a conveying mechanism, and the spring matching station is connected with the spring storage system to form a screening storage group, and finally the control system is connected with the external monitoring platform;
  • step S2 inspection work, after completing step S1, first install and place the spring to be tested obtained by the spring production system on the tray through the spring selection station of the loading group, and then the spring to be tested is transported along with the tray to the 3D visual monitoring through the conveying mechanism Station and enter the 3D vision monitoring station.
  • the lifting drive mechanism first drives the tray up, and the 3D camera and the line laser transmitter are diagonally crossed through the calibration reference block on the tray, and the line The laser line of the laser transmitter is vertically distributed with the axis of the horizontal drive guide rail.
  • the 3D camera and line laser transmitter are translated at a constant speed from the feed end to the discharge end of the 3D visual monitoring station through the carrying slider, and are in the process of translation.
  • the line laser transmitter is used to identify the contour structure characteristics of the spring to be monitored; on the other hand, the 3D camera is used to recognize and collect the three-dimensional structural characteristics of the spring to be monitored, and the 3D camera and the line laser transmitter are translated to 3D visual monitoring.
  • the inspection operation is completed at the position of the discharging end of the station.
  • the pallet is lowered by the lifting drive mechanism and returned to the conveying table, and then discharged from the outlet of the 3D visual monitoring station, and transferred to the screening and warehousing group through the conveying mechanism
  • the spring selection station of the company conducts spring sorting after testing, and saves and recovers qualified and non-qualified products separately to complete the testing operation.
  • step S2 when the video detection operation is performed through the 3D camera and the line laser transmitter:
  • the first step is to construct a coordinate system, with the horizontal drive rail axis as the Y axis, the vertical direction to the upper end surface of the pallet as the X axis, the vertical direction to the conveyor table axis as the Z axis, and the horizontal drive rail at the 3D visual monitoring station for discharge
  • the end port is the origin, which constitutes the detection and recognition coordinate system
  • the second step is data recognition. After the first step is completed, the three-dimensional recognition operation function is established according to the detection and recognition coordinate system constructed in the first step.
  • the specific expression is:
  • (r 1 , r 4 , r 7 ), (r 2 , r 5 , r 8 ), (r 3 , r 6 , r 9 ) represent the X, Y, and Z axis direction vectors of the coordinate system, respectively.
  • the system of the present invention has simple structure, flexible and convenient installation, operation and maintenance. On the one hand, it has good site adaptation and environmental practicability, and can effectively meet the needs of a variety of plant space layouts and production inspection quantities. On the other hand, it detects the video system structure Simple and powerful in data recognition and calculation, which greatly improves the detection efficiency and accuracy.

Abstract

一种货车枕簧视觉检测及智能选配系统,包括输送机构(1)、转角机构(2)、弹簧选配站(3)、托盘(4)、3D视觉监测站(5)及控制系统(6),其中3D视觉监测站(5)进料端和出料端分别通过转角机构(2)与至少一条输送机构(1)连接,且每一条输送机构(1)均与一个弹簧选配站(3)相互连接,托盘(4)分别与输送机构(1)、转角机构(2)、弹簧选配站(3)、3D视觉监测站(5)滑动连接,输送机构(1)、转角机构(2)、弹簧选配站(3)、托盘(4)、3D视觉监测站(5)均与控制系统(6)电气连接。包括系统组装和检测作业等两个步骤。该系统一方面具有良好的场地适应新及环境实用性,可有效满足多种厂房空间布局及生产检测量使用的需要,另一方面检测视频系统结构简单,数据识别运算能力强,从而极大的提高了检测效率和精度。

Description

一种货车枕簧视觉检测及智能选配系统和使用方法 技术领域
本发明属于在线检测设备技术领域,具体涉及一种货车枕簧视觉检测及智能选配系统和使用方法。
背景技术
在货车枕簧产品生产质量及多个货车枕簧选择配套作业中,当前主要是通过,人工测量设备对枕簧的结构、型号等参数进行检测,然后根据检测结果进行质量判断和选型配套作业,虽然可以一定程度满足实际工作的需要,但检测效率低下、检测精度差,因此导致当前枕簧质量检测和选型配组工作效率和质量均不能有效满足实际使用的需要,针对这一问题,当前开发了基于3D识别技术的机器视觉枕簧结构识别判断系统,虽然有效提高了识别检测作业的效率,但一方面传统的3D识别技术中,3D识别光学系统结构复杂,识别精度差,另一方面数据处理运算效率低下,进一步影响了检测作业的效率和精度,因此也难以有效满足使用的需要。
针对这一现状,需要开发一种全新的车枕簧视觉检测及智能选配系统及使用方法,以满足实际使用的需要。
发明内容
本发明公开了一种货车枕簧视觉检测及智能选配系统及其使用方法,以解决现有技术存在的生产效率低和产品质量差等问题。
为解决上述技术问题,本发明采用的技术方案如下:
一种货车枕簧视觉检测及智能选配系统,包括输送机构、转角机构、弹簧选配站、托盘、3D视觉监测站及控制系统,其中3D视觉监测站进料端和出料端分别通过转角机构与至少一条输送机构连接,且每一条输送机 构均与一个弹簧选配站相互连接,托盘至少一个,分别与输送机构、转角机构、弹簧选配站、3D视觉监测站滑动连接,且托盘上端面与水平面平行分布,输送机构、转角机构、弹簧选配站、托盘、3D视觉监测站均与控制系统电气连接。
进一步的,所述的3D视觉监测站包括基座、防护罩、水平驱动导轨、输送台、升降驱动机构、到位传感器、承载滑块、3D摄像头、线激光发射器,所述基座为柱状框架结构,其上端面与输送台、升降驱动机构、到位传感器连接,所述输送台与输送机构同轴分布并通过转角机构与输送机构连接,所述升降驱动机构与基座同轴分布并嵌于输送台内,且所述升降驱动机构上端面高出输送台上端面-10厘米—50厘米,所述到位传感器至少两个,环绕基座轴线均布且到位传感器轴线与基座上端面垂直分布,所述防护罩为横断面呈“冂”字形槽状结构,包覆在基座上端面并与基座上端面构成监测室,所述水平驱动导轨嵌于监测室内,与防护罩上端面连接,且水平驱动导轨轴线与输送机构轴线分布在同一与基座上端面垂直分布的平面内,所述3D摄像头、线激光发射器通过承载滑块与水平驱动导轨滑动连接,且3D摄像头、线激光发射器沿水平驱动导轨轴线方向分布,其中线激光发射器轴线与输送台轴线垂直并相交,3D摄像头位于线激光发射器一侧且3D摄像头光轴与线激光发射器光轴相交并呈30°—135°夹角,且焦点位于输送台上方至少3厘米处,所述输送台、升降驱动机构、到位传感器、3D摄像头、线激光发射器均与控制系统电气连接。
进一步的,所述的转角机构为承载基座、升降驱动机构、转台机构及输送辊道,其中所述承载基座上端面与升降驱动机构连接并同轴分布,所述升降驱动机构上端面通过转台机构与输送辊道下端面铰接,且输送辊道轴线与承载基座上端面平行分布,并环绕转台机构轴线进行0°—360°水平范围内旋转,且所述升降驱动机构、转台机构及输送辊道分别与控制系 统电气连接。
进一步的,所述的升降驱动机构为液压缸、气压缸、直线电动机、丝杠机构及涡轮蜗杆机构中的任意一种。
进一步的,所述的输送机构为基于辊道、传动链条、传动带、直线电动机、无杆气缸中任意一种为动力机构的输送机构。
进一步的,所述的弹簧选配站包括承载机架、竖直驱动导轨、定位夹具、到位传感器及六轴机械手,所述承载机架为矩形柱状框架结构,所述竖直驱动导轨至少两条,嵌于承载机架内并以承载机架轴线对称分布,且竖直驱动导轨轴线与承载机架轴线平行分布,所述竖直驱动导轨上设若干定位夹具,且竖直驱动导轨通过以承载机架轴线对称分布的定位夹具与至少一个托盘连接,且托盘与承载机架同轴分布,所述到位传感器若干,沿竖直驱动导轨轴线均布在竖直驱动导轨外侧,所述六轴机械手至少一个,并位于承载机架一侧,所述竖直驱动导轨、定位夹具、到位传感器及六轴机械手均与控制系统电气连接。
进一步的,所述的托盘包括承载底座、承载板、标定基准块,其中所述承载底座为矩形框架结构,承载基座分别与输送机构、转角机构、弹簧选配站、3D视觉监测站滑动连接,承载板嵌于承载底座内并与承载底座同轴分布,所述标定基准块至少一个,与承载板上端面垂直连接。
进一步的,所述的控制系统为基于可编程控制器、工业计算机、物联网控制器中的任意一种或任意几种共用。
一种货车枕簧视觉检测及智能选配系统的使用方法,包括如下步骤:
S1,系统组装,首先根据货车枕簧生产、库存及监测的需要,对输送机构、转角机构、弹簧选配站、托盘、3D视觉监测站及控制系统进行组装,得到完整的检测系统,其中完整的检测系统中3D视觉监测站的进料口通过输送机构与至少一个弹簧选配站连接,且该弹簧选配站与弹簧生产系统连 接构成上料组,完整的检测系统中3D视觉监测站的出料口通过输送机构与至少一个弹簧选配站连接,且该弹簧选配站与弹簧仓储系统连接构成筛选入库组,最后将控制系统与外部监控平台连接;
S2,检测作业,完成S1步骤后,首先将弹簧生产系统获得的待检测弹簧通过上料组的弹簧选配站安装摆放在托盘上,然后待检测弹簧随托盘通过输送机构输送至3D视觉监测站并进入到3D视觉监测站内,托盘进入到3D视觉监测站后,首先由升降驱动机构驱动托盘上升,并通过托盘上的标定基准块对3D摄像头、线激光发射器进行对角,并使线激光发射器激光线与水平驱动导轨轴线垂直分布,完成对角作业后,3D摄像头、线激光发射器通过承载滑块从3D视觉监测站进料端向出料端匀速平移,并在平移过程中,一方面通过线激光发射器对待监测弹簧轮廓结构特征进行标记识别;另一方面通过3D摄像头对待监测弹簧的结构特征进行三维识别并采集,并在3D摄像头、线激光发射器平移至3D视觉监测站出料端位置时完成检测作业,完成视频检测作业后,托盘通过升降驱动机构下降并回落至输送台上,然后从3D视觉监测站出料口排出,并通过输送机构转送至筛选入库组的弹簧选配站根据检测结果进行检测后的弹簧分选,将合格品与非合格品分别进行保存回收,从而完成检测作业。
进一步的,所述的S2步骤中,在通过3D摄像头、线激光发射器进行视频检测作业时:
第一步,构建坐标系,以水平驱动导轨轴线方向为Y轴、与托盘上端面垂直方向为X轴、以与输送台轴线垂直方向为Z轴、以水平驱动导轨位于3D视觉监测站出料端端口为原点,从而构成检测识别坐标系;
第二步,数据识别,完成第一步作业后,根据第一步构建的检测识别坐标系,建立三维识别运算函数,具体表达式为:
Figure PCTCN2020070704-appb-000001
其中(r 1,r 4,r 7)、(r 2,r 5,r 8)、(r 3,r 6,r 9)分别表示坐标系X、Y、Z轴方向向量。
本发明系统构成简单,安装、操作及维护灵活方便,一方面具有良好的场地适应新及环境实用性,可有效满足多种厂房空间布局及生产检测量使用的需要,另一方面检测视频系统结构简单,数据识别运算能力强,从而极大的提高了检测效率和精度。
附图说明
图1为本发明结构示意图;
图2为3D视觉监测站结构示意图;
图3为转角机构结构示意图;
图4为弹簧选配站结构示意图;
图5为托盘结构示意图;
图6为本发明检测方法流程示意图;
图7为视频检测时视频信号处理法流程示意图。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
如图1—5所示一种货车枕簧视觉检测及智能选配系统,包括输送机构1、转角机构2、弹簧选配站3、托盘4、3D视觉监测站5及控制系统6,其中3D视觉监测站5进料端和出料端分别通过转角机构2与至少一条输送 机构1连接,且每一条输送机构1均与一个弹簧选配站3相互连接,托盘4至少一个,分别与输送机构1、转角机构2、弹簧选配站3、3D视觉监测站5滑动连接,且托盘4上端面与水平面平行分布,输送机构1、转角机构2、弹簧选配站3、托盘4、3D视觉监测站5均与控制系统电气连接。
重点说明的,所述的3D视觉监测站5包括基座51、防护罩52、水平驱动导轨53、输送台54、升降驱动机构7、到位传感器55、承载滑块56、3D摄像头57、线激光发射器58,所述基座51为柱状框架结构,其上端面与输送台54、升降驱动机构7、到位传感器55连接,所述输送台54与输送机构1同轴分布并通过转角机构2与输送机构1连接,所述升降驱动机构7与基座51同轴分布并嵌于输送台54内,且所述升降驱动机构7上端面高出输送台54上端面-10厘米—50厘米,所述到位传感器55至少两个,环绕基座51轴线均布且到位传感器55轴线与基座51上端面垂直分布,所述防护罩52为横断面呈“冂”字形槽状结构,包覆在基座51上端面并与基座51上端面构成监测室,所述水平驱动导轨53嵌于监测室内,与防护罩52上端面连接,且水平驱动导轨53轴线与输送机构1轴线分布在同一与基座51上端面垂直分布的平面内,所述3D摄像头57、线激光发射器58通过承载滑块56与水平驱动导轨53滑动连接,且3D摄像头57、线激光发射器58沿水平驱动导轨53轴线方向分布,其中线激光发射器58轴线与输送台54轴线垂直并相交,3D摄像头57位于线激光发射器58一侧且3D摄像头57光轴与线激光发射器58光轴相交并呈30°—135°夹角,且焦点位于输送台54上方至少3厘米处,所述输送台54、升降驱动机构7、到位传感器55、3D摄像头57、线激光发射器58均与控制系统6电气连接。
此外,所述的转角机构2为承载基座21、升降驱动机构7、转台机构22及输送辊道23,其中所述承载基座21上端面与升降驱动机构7连接并同轴分布,所述升降驱动机构7上端面通过转台机构22与输送辊道23下 端面铰接,且输送辊道23轴线与承载基座21上端面平行分布,并环绕转台机构22轴线进行0°—360°水平范围内旋转,且所述升降驱动机构7、转台机构22及输送辊道23分别与控制系统6电气连接。
本实施例中,所述的升降驱动机构7为液压缸、气压缸、直线电动机、丝杠机构及涡轮蜗杆机构中的任意一种。
本实施例中,所述的输送机构1为基于辊道、传动链条、传动带、直线电动机、无杆气缸中任意一种为动力机构的输送机构。
与此同时,所述的弹簧选配站3包括承载机架31、竖直驱动导轨32、定位夹具33、到位传感器55及六轴机械手34,所述承载机架31为矩形柱状框架结构,所述竖直驱动导轨32至少两条,嵌于承载机架31内并以承载机架31轴线对称分布,且竖直驱动导轨32轴线与承载机架31轴线平行分布,所述竖直驱动导轨32上设若干定位夹具33,且竖直驱动导轨32通过以承载机架31轴线对称分布的定位夹具33与至少一个托盘4连接,且托盘4与承载机架31同轴分布,所述到位传感器55若干,沿竖直驱动导轨32轴线均布在竖直驱动导轨32外侧,所述六轴机械手34至少一个,并位于承载机架31一侧,所述竖直驱动导轨32、定位夹具33、到位传感器55及六轴机械手34均与控制系统6电气连接。
进一步的,所述的托盘4包括承载底座41、承载板42、标定基准块43,其中所述承载底座41为矩形框架结构,承载基座41分别与输送机构1、转角机构2、弹簧选配站3、3D视觉监测站5滑动连接,承载板42嵌于承载底座41内并与承载底座41同轴分布,所述标定基准块43至少一个,与承载板42上端面垂直连接。
进一步优化的,所述的控制系统6为基于可编程控制器、工业计算机、物联网控制器中的任意一种或任意几种共用。
如图6和7所示,一种货车枕簧视觉检测及智能选配系统的使用方法, 包括如下步骤:
S1,系统组装,首先根据货车枕簧生产、库存及监测的需要,对输送机构、转角机构、弹簧选配站、托盘、3D视觉监测站及控制系统进行组装,得到完整的检测系统,其中完整的检测系统中3D视觉监测站的进料口通过输送机构与至少一个弹簧选配站连接,且该弹簧选配站与弹簧生产系统连接构成上料组,完整的检测系统中3D视觉监测站的出料口通过输送机构与至少一个弹簧选配站连接,且该弹簧选配站与弹簧仓储系统连接构成筛选入库组,最后将控制系统与外部监控平台连接;
S2,检测作业,完成S1步骤后,首先将弹簧生产系统获得的待检测弹簧通过上料组的弹簧选配站安装摆放在托盘上,然后待检测弹簧随托盘通过输送机构输送至3D视觉监测站并进入到3D视觉监测站内,托盘进入到3D视觉监测站后,首先由升降驱动机构驱动托盘上升,并通过托盘上的标定基准块对3D摄像头、线激光发射器进行对角,并使线激光发射器激光线与水平驱动导轨轴线垂直分布,完成对角作业后,3D摄像头、线激光发射器通过承载滑块从3D视觉监测站进料端向出料端匀速平移,并在平移过程中,一方面通过线激光发射器对待监测弹簧轮廓结构特征进行标记识别;另一方面通过3D摄像头对待监测弹簧的结构特征进行三维识别并采集,并在3D摄像头、线激光发射器平移至3D视觉监测站出料端位置时完成检测作业,完成视频检测作业后,托盘通过升降驱动机构下降并回落至输送台上,然后从3D视觉监测站出料口排出,并通过输送机构转送至筛选入库组的弹簧选配站根据检测结果进行检测后的弹簧分选,将合格品与非合格品分别进行保存回收,从而完成检测作业。
进一步的,所述的S2步骤中,在通过3D摄像头、线激光发射器进行视频检测作业时:
第一步,构建坐标系,以水平驱动导轨轴线方向为Y轴、与托盘上端 面垂直方向为X轴、以与输送台轴线垂直方向为Z轴、以水平驱动导轨位于3D视觉监测站出料端端口为原点,从而构成检测识别坐标系;
第二步,数据识别,完成第一步作业后,根据第一步构建的检测识别坐标系,建立三维识别运算函数,具体表达式为:
Figure PCTCN2020070704-appb-000002
其中(r 1,r 4,r 7)、(r 2,r 5,r 8)、(r 3,r 6,r 9)分别表示坐标系X、Y、Z轴方向向量。
本发明系统构成简单,安装、操作及维护灵活方便,一方面具有良好的场地适应新及环境实用性,可有效满足多种厂房空间布局及生产检测量使用的需要,另一方面检测视频系统结构简单,数据识别运算能力强,从而极大的提高了检测效率和精度。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

  1. 一种货车枕簧视觉检测及智能选配系统,其特征在于,所述的货车枕簧视觉检测及智能选配系统包括输送机构、转角机构、弹簧选配站、托盘、3D视觉监测站及控制系统,其中所述3D视觉监测站进料端和出料端分别通过转角机构与至少一条输送机构连接,且每一条输送机构均与一个弹簧选配站相互连接,所述托盘至少一个,分别与输送机构、转角机构、弹簧选配站、3D视觉监测站滑动连接,且托盘上端面与水平面平行分布,所述输送机构、转角机构、弹簧选配站、托盘、3D视觉监测站均与控制系统电气连接。
  2. 根据权利要求1所述的一种货车枕簧视觉检测及智能选配系统,其特征在于,所述的3D视觉监测站包括基座、防护罩、水平驱动导轨、输送台、升降驱动机构、到位传感器、承载滑块、3D摄像头、线激光发射器,所述基座为柱状框架结构,其上端面与输送台、升降驱动机构、到位传感器连接,所述输送台与输送机构同轴分布并通过转角机构与输送机构连接,所述升降驱动机构与基座同轴分布并嵌于输送台内,且所述升降驱动机构上端面高出输送台上端面-10厘米—50厘米,所述到位传感器至少两个,环绕基座轴线均布且到位传感器轴线与基座上端面垂直分布,所述防护罩为横断面呈“冂”字形槽状结构,包覆在基座上端面并与基座上端面构成监测室,所述水平驱动导轨嵌于监测室内,与防护罩上端面连接,且水平驱动导轨轴线与输送机构轴线分布在同一与基座上端面垂直分布的平面内,所述3D摄像头、线激光发射器通过承载滑块与水平驱动导轨滑动连接,且3D摄像头、线激光发射器沿水平驱动导轨轴线方向分布,其中线激光发射器轴线与输送台轴线垂直并相交,3D摄像头位于线激光发射器一侧且3D摄像头光轴与线激光发射器光轴相交并呈30°—135°夹角,且焦点位于输送台上方至少3厘米处,所述输送台、升降驱动机构、到位传感器、3D摄像头、线激光发射器均与控制系统电气连接。
  3. 根据权利要求1所述的一种货车枕簧视觉检测及智能选配系统,其特征在于,所述的转角机构为承载基座、升降驱动机构、转台机构及输送辊道,其中所述承载基座上端面与升降驱动机构连接并同轴分布,所述升降驱动机构上端面通过转台机构与输送辊道下端面铰接,且输送辊道轴线与承载基座上端面平行分布,并环绕转台机构轴线进行0°—360°水平范围内旋转,且所述升降驱动机构、转台机构及输送辊道分别与控制系统电气连接。
  4. 根据权利要求2和3所述的一种货车枕簧视觉检测及智能选配系统,其特征在于,所述的升降驱动机构为液压缸、气压缸、直线电动机、丝杠机构及涡轮蜗杆机构中的任意一种。
  5. 根据权利要求1所述的一种货车枕簧视觉检测及智能选配系统,其特征在于,所述的输送机构为基于辊道、传动链条、传动带、直线电动机、无杆气缸中任意一种为动力机构的输送机构。
  6. 根据权利要求1所述的一种货车枕簧视觉检测及智能选配系统,其特征在于,所述的弹簧选配站包括承载机架、竖直驱动导轨、定位夹具、到位传感器及六轴机械手,所述承载机架为矩形柱状框架结构,所述竖直驱动导轨至少两条,嵌于承载机架内并以承载机架轴线对称分布,且竖直驱动导轨轴线与承载机架轴线平行分布,所述竖直驱动导轨上设若干定位夹具,且竖直驱动导轨通过以承载机架轴线对称分布的定位夹具与至少一个托盘连接,且托盘与承载机架同轴分布,所述到位传感器若干,沿竖直驱动导轨轴线均布在竖直驱动导轨外侧,所述六轴机械手至少一个,并位于承载机架一侧,所述竖直驱动导轨、定位夹具、到位传感器及六轴机械手均与控制系统电气连接。
  7. 根据权利要求1所述的一种货车枕簧视觉检测及智能选配系统,其特征在于,所述的托盘包括承载底座、承载板、标定基准块,其中所述承 载底座为矩形框架结构,承载基座分别与输送机构、转角机构、弹簧选配站、3D视觉监测站滑动连接,承载板嵌于承载底座内并与承载底座同轴分布,所述标定基准块至少一个,与承载板上端面垂直连接。
  8. 根据权利要求1所述的一种货车枕簧视觉检测及智能选配系统,其特征在于,所述的控制系统为基于可编程控制器、工业计算机、物联网控制器中的任意一种或任意几种共用。
  9. 一种货车枕簧视觉检测及智能选配系统的使用方法,其特征在于,所述的货车枕簧视觉检测及智能选配系统的使用方法包括如下步骤:
    S1,系统组装,首先根据货车枕簧生产、库存及监测的需要,对输送机构、转角机构、弹簧选配站、托盘、3D视觉监测站及控制系统进行组装,得到完整的检测系统,其中完整的检测系统中3D视觉监测站的进料口通过输送机构与至少一个弹簧选配站连接,且该弹簧选配站与弹簧生产系统连接构成上料组,完整的检测系统中3D视觉监测站的出料口通过输送机构与至少一个弹簧选配站连接,且该弹簧选配站与弹簧仓储系统连接构成筛选入库组,最后将控制系统与外部监控平台连接;
    S2,检测作业,完成S1步骤后,首先将弹簧生产系统获得的待检测弹簧通过上料组的弹簧选配站安装摆放在托盘上,然后待检测弹簧随托盘通过输送机构输送至3D视觉监测站并进入到3D视觉监测站内,托盘进入到3D视觉监测站后,首先由升降驱动机构驱动托盘上升,并通过托盘上的标定基准块对3D摄像头、线激光发射器进行对角,并使线激光发射器激光线与水平驱动导轨轴线垂直分布,完成对角作业后,3D摄像头、线激光发射器通过承载滑块从3D视觉监测站进料端向出料端匀速平移,并在平移过程中,一方面通过线激光发射器对待监测弹簧轮廓结构特征进行标记识别;另一方面通过3D摄像头对待监测弹簧的结构特征进行三维识别并采集,并在3D摄像头、线激光发射器平移至3D视觉监测站出料端位置时完成检测 作业,完成视频检测作业后,托盘通过升降驱动机构下降并回落至输送台上,然后从3D视觉监测站出料口排出,并通过输送机构转送至筛选入库组的弹簧选配站根据检测结果进行检测后的弹簧分选,将合格品与非合格品分别进行保存回收,从而完成检测作业。
  10. 根据权利要求1所述的一种货车枕簧视觉检测及智能选配系统的使用方法,其特征在于,所述的S2步骤中,在通过3D摄像头、线激光发射器进行视频检测作业时:
    第一步,构建坐标系,以水平驱动导轨轴线方向为Y轴、与托盘上端面垂直方向为X轴、以与输送台轴线垂直方向为Z轴、以水平驱动导轨位于3D视觉监测站出料端端口为原点,从而构成检测识别坐标系;
    第二步,数据识别,完成第一步作业后,根据第一步构建的检测识别坐标系,建立三维识别运算函数,具体表达式为:
    Figure PCTCN2020070704-appb-100001
    其中(r 1,r 4,r 7)、(r 2,r 5,r 8)、(r 3,r 6,r 9)分别表示坐标系X、Y、Z轴方向向量。
PCT/CN2020/070704 2019-11-05 2020-01-07 一种货车枕簧视觉检测及智能选配系统和使用方法 WO2021088245A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911068689.0 2019-11-05
CN201911068689 2019-11-05

Publications (1)

Publication Number Publication Date
WO2021088245A1 true WO2021088245A1 (zh) 2021-05-14

Family

ID=75849351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070704 WO2021088245A1 (zh) 2019-11-05 2020-01-07 一种货车枕簧视觉检测及智能选配系统和使用方法

Country Status (1)

Country Link
WO (1) WO2021088245A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115123773A (zh) * 2022-05-20 2022-09-30 中车石家庄车辆有限公司 一种铁路货车转向架弹簧检测配车生产线
CN115123773B (zh) * 2022-05-20 2024-04-26 中车石家庄车辆有限公司 一种铁路货车转向架弹簧检测配车生产线

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2386419Y (zh) * 1999-07-10 2000-07-05 邵志仁 火车枕簧自动检测装置
DE10016195A1 (de) * 2000-03-31 2001-10-11 Birke Elektroanlagen Gmbh Vorrichtung zur optischen Erfassung oder/und Vermessung von Objekten
KR20050053482A (ko) * 2004-09-08 2005-06-08 주식회사 풍산테크윈 스프링의 형상 측정장치
CN206677540U (zh) * 2017-03-21 2017-11-28 南京景曜智能科技有限公司 一种弹簧选配导向机构
CN206944949U (zh) * 2017-03-23 2018-01-30 南京景曜智能科技有限公司 一种3d视觉扫描机构
CN207280393U (zh) * 2017-07-04 2018-04-27 南京景曜智能科技有限公司 一种适用于多种型号枕簧分类及检测的系统
CN109978938A (zh) * 2017-12-28 2019-07-05 南京景曜智能科技有限公司 一种基于机器视觉的枕簧检测方法
CN109993723A (zh) * 2017-12-28 2019-07-09 南京景曜智能科技有限公司 一种基于机器视觉的枕簧分类检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2386419Y (zh) * 1999-07-10 2000-07-05 邵志仁 火车枕簧自动检测装置
DE10016195A1 (de) * 2000-03-31 2001-10-11 Birke Elektroanlagen Gmbh Vorrichtung zur optischen Erfassung oder/und Vermessung von Objekten
KR20050053482A (ko) * 2004-09-08 2005-06-08 주식회사 풍산테크윈 스프링의 형상 측정장치
CN206677540U (zh) * 2017-03-21 2017-11-28 南京景曜智能科技有限公司 一种弹簧选配导向机构
CN206944949U (zh) * 2017-03-23 2018-01-30 南京景曜智能科技有限公司 一种3d视觉扫描机构
CN207280393U (zh) * 2017-07-04 2018-04-27 南京景曜智能科技有限公司 一种适用于多种型号枕簧分类及检测的系统
CN109978938A (zh) * 2017-12-28 2019-07-05 南京景曜智能科技有限公司 一种基于机器视觉的枕簧检测方法
CN109993723A (zh) * 2017-12-28 2019-07-09 南京景曜智能科技有限公司 一种基于机器视觉的枕簧分类检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115123773A (zh) * 2022-05-20 2022-09-30 中车石家庄车辆有限公司 一种铁路货车转向架弹簧检测配车生产线
CN115123773B (zh) * 2022-05-20 2024-04-26 中车石家庄车辆有限公司 一种铁路货车转向架弹簧检测配车生产线

Similar Documents

Publication Publication Date Title
CN108380509B (zh) 基于机器视觉的led灯盘分拣与检测系统
CN210742146U (zh) 一种多工位、多角度视觉表面缺陷检测系统
WO2021083138A1 (zh) 适于自动换料的物料载台和相应的模组自动测试设备
CN205785090U (zh) 手机前壳与手机屏的组装间隙的检测设备
CN109622396A (zh) 一种透镜外径和中心厚双参数自动检测装置
CN203752405U (zh) 一种嵌件注塑产品的自动化生产、检测设备
CN110346369A (zh) 上下线性滑台式双面缺陷在线检测装置
CN203235694U (zh) 电子接插件高精度视觉测量系统
CN106076884B (zh) 一种自动智能型轴瓦检测线
CN112758677A (zh) 一种自动治具盖板弹力测试设备及测试方法
CN114252452A (zh) 一种小型回转体外观缺陷和轮廓尺寸在线检测装置及方法
CN106180880A (zh) 薄板自动检测及剪切系统
CN111420883A (zh) 一种货车枕簧视觉检测及智能选配系统和使用方法
WO2021088245A1 (zh) 一种货车枕簧视觉检测及智能选配系统和使用方法
CN107607067B (zh) 一种多功能在线检测设备
CN113566761A (zh) 一种平板电脑尺寸在线检测及修整装置
CN207439347U (zh) 一种曲面检测设备
CN109319477B (zh) 一种吊装式高速取放料平台及工作方法
CN216500828U (zh) 一种镀层产品尺寸检测分类装置
CN110726481A (zh) 红外焦平面阵列探测器参数性能自动化测试设备
CN110784075A (zh) 道闸全自动生产线
CN212674058U (zh) Ccd快速尺寸检测机构
CN103170460A (zh) 一种自动检测机
CN211602291U (zh) 电堆检测装置及具有其的燃料电池电堆组装系统
CN208513783U (zh) 单向器自动在线检测系统中的上料装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885049

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20885049

Country of ref document: EP

Kind code of ref document: A1