WO2021088225A1 - 声学装置及电子设备 - Google Patents

声学装置及电子设备 Download PDF

Info

Publication number
WO2021088225A1
WO2021088225A1 PCT/CN2019/127838 CN2019127838W WO2021088225A1 WO 2021088225 A1 WO2021088225 A1 WO 2021088225A1 CN 2019127838 W CN2019127838 W CN 2019127838W WO 2021088225 A1 WO2021088225 A1 WO 2021088225A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
sound
acoustic device
cavity
acoustic
Prior art date
Application number
PCT/CN2019/127838
Other languages
English (en)
French (fr)
Inventor
周树芝
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021088225A1 publication Critical patent/WO2021088225A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein

Definitions

  • the present invention relates to the technical field of acoustics, and more specifically, to an acoustic device and an electronic device equipped with the acoustic device.
  • an acoustic system with a traditional structure includes a closed box and a sound unit arranged on the closed box. A cavity is formed between the closed box and the sound unit. Due to the limited volume, it is difficult for acoustic systems, especially small acoustic systems, to achieve satisfactory bass reproduction. Conventionally, in order to achieve satisfactory bass reproduction in an acoustic system, two methods are usually used. One is to install sound-absorbing materials (such as activated carbon, zeolite, etc.) in the cabinet of the acoustic system for adsorption or desorption. The gas in the body has the effect of increasing the volume and reducing the low-frequency resonance frequency.
  • sound-absorbing materials such as activated carbon, zeolite, etc.
  • the other is to install a passive radiator on the cabinet of the acoustic system (Prior Art 2), as shown in Figure 1, where 10 is sound
  • the unit, 20 is the box of the acoustic system
  • 30 is the passive radiator
  • the sound unit and the passive radiator radiate sound to the outside at the same time, using the principle of strong resonance between the passive radiator and the box at a specific frequency point fp (resonant frequency point)
  • the sound waves of the sounding unit and the passive radiator are connected and superimposed to enhance the local sensitivity near the resonance frequency point fp (for example, see patent CN1939086A).
  • the first solution to add sound-absorbing materials to the cabinet requires a good sealing and packaging of the sound-absorbing materials.
  • the passive radiator Near the resonance frequency point fp, the passive radiator radiates strongly, and the sound unit is almost stopped. Therefore, the high sensitivity design of the passive radiator can realize the acoustic system in the frequency band near fp The local sensitivity is enhanced; but in the frequency band below fp, the passive radiator and the sound unit have opposite phases of sound waves, and the sound waves cancel each other out.
  • the passive radiator has a negative effect on the sensitivity of the acoustic system.
  • Figure 2 is a test curve (SPL curve) of loudness at different frequencies between prior art 2 and prior art 1. Therefore, it is necessary to make further improvements to the defects in the prior art.
  • An object of the present invention is to provide an acoustic device that effectively reduces the resonance frequency, greatly improves the low-frequency sensitivity of the product as a whole, and can reduce noise generation and improve the listening effect.
  • an acoustic device including:
  • a sound generating unit includes a vibrating diaphragm, and a sound outlet is provided on the acoustic device, and the sound wave on the front side of the vibrating diaphragm is radiated to the outside through the sound outlet;
  • the acoustic device includes a first housing, the sound generating unit is mounted on the first housing to form a sound generating assembly, and a first airtight cavity is formed between the vibrating diaphragm of the sound generating unit and the first housing, A mounting hole is opened on the first housing, and a flexible deformable part is provided on the mounting hole;
  • the acoustic device includes a second housing, the sound generating component is installed in the second housing, a second sealed cavity is formed between the second housing and the first housing, and the flexible deforming part Located between the first airtight cavity and the second airtight cavity, the second airtight cavity encloses the sound wave generated by the flexible deformable portion during deformation in the second airtight cavity;
  • the acoustic resistance material for reducing the flow rate of the airflow, and the acoustic resistance material divides the first airtight cavity into close The front cavity of the sound unit and the back cavity near the flexible deforming part.
  • the acoustic resistance material is sound-absorbing cotton.
  • the acoustic resistance material is a breathable net or a breathable film.
  • the acoustic resistance material is a block-shaped sound-absorbing member formed by bonding sound-absorbing particles, or by adhering sound-absorbing particles to a porous material skeleton;
  • the acoustic resistance material is a gas-permeable sound-absorbing member composed of sound-absorbing particles and a gas-permeable net.
  • the second housing is a housing of an electronic device for installing the acoustic device.
  • the flexible deformable part includes a body part, the body part includes a central part and a convex suspension part located outside the central part, and the suspension part is fixedly connected to the first housing.
  • the flexible deformable part further includes a composite sheet coupled to the central part of the main body part, the central part is a sheet-like overall structure or the central part is a hollow structure.
  • the flexible deformable portion is fixed to a surface of the first housing facing the first sealed cavity;
  • the flexible deformable portion is fixed to a surface of the first housing facing the second sealed cavity;
  • the first housing around the mounting hole is recessed from the second sealed cavity toward the first sealed cavity to form a groove, and the flexible deformable portion is fixed to the groove bottom of the groove .
  • the main body of the flexible deformable portion has a single-layer structure, and the single-layer structure is made of one of polymer plastic, thermoplastic elastomer, and silicone rubber;
  • the main body of the flexible deformable portion is a multilayer structure, and at least one layer of the multilayer structure is made of one of polymer plastic, thermoplastic elastomer and silicone rubber.
  • Another object of the present invention is to provide an electronic device that includes a housing of the electronic device and the above-mentioned acoustic device, the acoustic device being installed in the housing of the electronic device.
  • the acoustic device can effectively reduce the resonance frequency, greatly improve the low-frequency sensitivity of the product as a whole, and can reduce high-order harmonic distortion, reduce noise generation, and improve the listening effect.
  • a first airtight cavity is formed between the vibrating diaphragm and the first housing, a flexible deformable part is provided on the mounting hole of the first housing, and the first airtight cavity is also provided on the outside of the first airtight cavity.
  • the second airtight cavity that closes the sound waves generated by the flexible deformable part during deformation is provided.
  • the flexible deformable part deforms with the sound pressure, and the volume of the first airtight chamber is adjustable, thereby increasing the equivalent of the first airtight chamber Sound compliance effectively reduces the resonance frequency of the acoustic device and improves low-frequency sensitivity; and through the isolation design of the sound unit and the flexible deformation part, the radiated sound wave of the flexible deformation part is enclosed inside the acoustic device to avoid the anti-phase radiated sound wave of the flexible deformation part. It has a cancelling effect on the sound waves radiated in the forward direction of the sound unit, thereby greatly improving the low-frequency sensitivity of the product as a whole.
  • an acoustic resistance material for slowing down the flow rate of airflow is provided in the first airtight cavity and located between the sound generating unit and the flexible deforming part, and the acoustic resistance material will The first closed cavity is divided into a front cavity close to the sound unit and a rear cavity close to the flexible deforming part.
  • the above design through the installation of acoustic resistance material, slows down the flow rate of the air flow from the front cavity to the back cavity, and the force when the air reaches the flexible deformation part is uniform and soft, so that the upper and lower amplitude symmetry of the flexible deformation part becomes better and effective Improve the polarization problem, which can reduce high-order harmonic distortion, reduce noise generation, and improve the listening effect.
  • Fig. 1 is a schematic structural diagram of an acoustic device provided with a passive radiator in prior art 2.
  • Fig. 2 is a test curve (SPL curve) of loudness at different frequencies between an acoustic device with a passive radiator in the prior art 2 and an acoustic device with a traditional structure in the prior art 1.
  • Fig. 3A is a schematic structural diagram of an acoustic device according to an embodiment of the present invention.
  • Fig. 3B is an enlarged schematic view of the structure of the flexible deformable part in Fig. 3A.
  • Fig. 4A is a test curve of the vibration displacement of different parts of the flexible deformable part at different frequencies according to an embodiment of the present invention.
  • Fig. 4B is a test curve of the vibration displacement of different parts of the flexible deformable part at different frequencies in the prior art.
  • Fig. 5 is a test curve (SPL curve) of loudness at different frequencies between an acoustic device according to an embodiment of the present invention and an acoustic device with a traditional structure in the prior art 1.
  • Fig. 6 is a test curve (SPL curve) of loudness at different frequencies between an acoustic device according to an embodiment of the present invention and an acoustic device provided with a passive radiator in prior art 2.
  • Fig. 7 is a schematic structural diagram of an acoustic device according to another embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of an electronic device using an acoustic device according to the present invention.
  • Fig. 9 is a partial enlarged view of Fig. 8.
  • Sounding unit 11. Vibrating diaphragm; 2. First shell; 21. First closed cavity; 22. Flexible deformation part; 221. Central part, 222, Suspension part, 223, Composite sheet, 23. Pressure equalization Hole; 3. The second shell; 31. The second sealed cavity; 4. The sound outlet; 5. Electronic equipment; 6. Acoustic resistance material.
  • an acoustic device includes a sound emitting unit 1.
  • the sound emitting unit 1 is a miniature sound emitting unit. More specifically, the sound emitting unit 1 is a miniature moving coil speaker.
  • the sounding unit 1 generally includes a housing and a vibration system and a magnetic circuit system fixed in the housing.
  • the vibration system includes a vibration diaphragm 11 fixed on the housing and a voice coil combined with the vibration diaphragm 11.
  • the magnetic circuit system is formed with A magnetic gap, the voice coil is arranged in the magnetic gap, the voice coil reciprocates up and down in the magnetic field after the alternating current is applied to the voice coil, thereby driving the vibrating diaphragm 11 to vibrate and produce sound.
  • the acoustic device is provided with a sound outlet 4, the sound waves on the front side of the vibrating diaphragm 11 are radiated to the outside through the sound outlet 4, and the sound waves on the back side of the vibrating diaphragm 11 are kept inside the acoustic device.
  • a cavity is formed between the vibrating diaphragm 11 and the casing and the magnetic circuit system.
  • a rear sound hole is opened on the casing or the magnetic circuit system or between the two, and the sound waves on the rear side of the vibrating diaphragm 11 will pass through the rear sound. The hole enters the interior of the acoustic device.
  • the vibration direction of the vibrating diaphragm 11 of the sound generating unit 1 is parallel to the thickness direction of the acoustic device, which is beneficial to the thin design of the acoustic device.
  • the rear side of the vibrating diaphragm 11 forms a sealed first sealed cavity 21, the cavity wall of the first sealed cavity 21 is provided with a mounting hole, and a flexible deformation is provided on the mounting hole.
  • the portion 22 is provided with a second sealed cavity 31 outside the first sealed cavity 21, and the flexible deformable portion 22 is located between the first sealed cavity 21 and the second sealed cavity 31.
  • the vibrating diaphragm 11 vibrates, the internal sound pressure of the first airtight cavity 21 changes, and the flexible deformable portion 22 deforms as the sound pressure changes in the first airtight cavity 21, which affects the first airtight cavity 21.
  • the airtight cavity 21 performs flexible adjustment of the volume; the second airtight cavity 31 encloses the sound waves generated by the flexible deformable portion 22 during deformation in the second airtight cavity 31.
  • the “closed” described in the present embodiment and the present invention can be a fully closed physical structure or a relatively closed state.
  • the first closed cavity can include openings based on product usage requirements.
  • the pressure equalizing hole 23, or other open-hole structure, which can balance the internal and external air pressure and has no significant effect on the rapid change of sound pressure, is also regarded as a closed cavity.
  • the second airtight cavity may include gaps generated when combined with the first airtight cavity, as well as gaps of its own structure, etc., which can effectively isolate the sound waves generated by the flexible deformable part and have no significant impact on the sound waves generated by the sound generating unit , Also regarded as a closed cavity.
  • the total area of the above-mentioned openings or gaps does not exceed 20mm 2 .
  • the flexible deformable portion 22 is fixed to the surface of the cavity wall of the first hermetic cavity 21 facing the first hermetic cavity 21; or, the flexible deformable portion 22 is fixed to the surface of the first hermetic cavity 21 The surface of the cavity wall facing the second sealed cavity 31.
  • the cavity wall of the first sealed cavity 21 around the mounting hole is recessed from the second sealed cavity 31 toward the first sealed cavity 21 to form a groove, and the flexible deformable portion 22 is fixed At the bottom of the groove, this design may not occupy the cavity volume of the second closed cavity 31.
  • the acoustic device includes a first housing 2, the sound generating unit 1 is mounted on the first housing 2 to form a sound generating assembly, and the vibrating diaphragm 11 of the sound generating unit 1 and the
  • the first sealed cavity 21 is formed between the first housing 2, the mounting hole is opened on the first housing 2, the flexible deformable portion 22 is provided on the mounting hole, the mounting hole and The flexible deformable portion 22 is not limited to one group, and multiple groups may be provided at different positions of the first housing 2.
  • the acoustic device includes a second housing 3, the sound generating component is installed in the second housing 3, and the second sealed cavity 31 is formed between the second housing 3 and the first housing 1. Wherein, when there are other components in the second housing 3, the second sealed cavity 31 is actually constituted by the gap between the components and the second housing 3 and the first housing 2.
  • the sound generating unit 1 is arranged inside the first housing 2 and the two form an integral structure, and then the sound generating unit 1 is assembled with the second housing 3.
  • the first housing 2 is provided with an opening, and the space on the front side of the diaphragm communicates with the opening, and the sound is radiated to the sound outlet 4 of the acoustic device through the opening.
  • the acoustic device is installed in an electronic device such as a mobile phone, and the housing of the electronic device doubles as the second housing 3 of the acoustic device.
  • the space between the housing and internal components of the electronic device and the first housing 2 of the acoustic device forms a second closed cavity 31, the second housing of the acoustic device itself is omitted, and the housing components of the electronic device are fully utilized
  • the gap space between the two can realize the maximized design of the second closed cavity 31.
  • the acoustic device When the acoustic device is in working condition, when the vibrating diaphragm 11 vibrates downwards to compress the volume on the rear side of the vibrating diaphragm 11, the sound pressure will be transmitted to the flexible deforming part 22 through the first closed cavity 21, and the flexible deforming part 22 will face the second A closed cavity 21 expands and deforms on the outside; on the contrary, when the diaphragm vibrates upward, the flexible deformable portion 22 will contract and deform inward, thereby adjusting the volume of the first closed cavity 21, thereby increasing the 21-effect sound of the first closed cavity.
  • the radiated sound wave of the flexible deformation part 22 is enclosed inside the acoustic device to avoid the reverse phase of the flexible deformation part 22
  • the radiated sound waves have an offsetting effect on the forward radiated sound waves of the sound unit 1, thereby greatly improving the low-frequency sensitivity of the product as a whole.
  • the flexible deformable portion 22 includes a body portion, the body portion includes a central portion 221 and a convex suspension portion 222 located outside the central portion 221, the suspension portion 222 and the first The cavity wall of the closed cavity 21, that is, the first housing is fixedly connected.
  • the body portion of the flexible deformable portion 22 may be a single-layer structure made of one of polymer plastics, thermoplastic elastomers, and silicone rubber, or may be a multi-layer structure. At least one layer in the structure is made of one of polymer plastic, thermoplastic elastomer and silicone rubber.
  • a composite sheet 223 may be superimposed on the central part 221 of the main body of the flexible deformable part 22.
  • the strength of the composite sheet 223 is higher than the strength of the main body, and may be metal, plastic, carbon fiber or Is its composite structure and so on.
  • the central portion 221 may be a sheet-like overall structure or a hollow structure, and the hollow structure is sealed by the composite sheet 223.
  • an acoustic resistance material 6 for slowing down the flow rate of airflow is provided in the first airtight cavity 21 and between the sound generating unit 1 and the flexible deforming part 22.
  • the acoustic resistance material 6 divides the first sealed cavity 21 into a front cavity close to the sound unit 1 and a rear cavity close to the flexible deforming part 22.
  • the acoustic resistance material 6 is provided to reduce the flow rate of the acoustic air flow generated by the vibrating diaphragm 11 from the front cavity to the back cavity, and the force when the air reaches the flexible deforming part 22 is uniform and soft, thereby making the flexible deformation
  • the upper and lower amplitude symmetry of the part 22 becomes better, which effectively improves the polarization problem, thereby reducing high-order harmonic distortion, reducing noise generation, and improving the listening effect.
  • the acoustic resistance material 6 may be sound-absorbing cotton.
  • a double-sided tape is provided on one surface of the sound-absorbing cotton. After the sound-absorbing cotton is bonded to one surface of the first housing 2 through the double-sided tape, it passes through the other surface of the first housing 2. Squeeze and fix the sound-absorbing cotton.
  • the acoustic resistance material 6 is a breathable net or a breathable film.
  • the breathable net or the breathable membrane can be integrally formed on the wall of the first housing 2 by injection molding or hot pressing, or can be fixed on the wall of the first housing 2 by bonding.
  • the acoustic resistance material 6 may also be a block-shaped sound-absorbing member formed by bonding sound-absorbing particles, or by bonding sound-absorbing particles to the skeleton of a porous material.
  • the acoustic resistance material 6 is an air-permeable sound-absorbing member composed of sound-absorbing particles and an air-permeable net. The above-mentioned sound-absorbing member is placed in the first sealed cavity 21, and the first sealed cavity 21 is divided into a front cavity close to the sound unit 1 and a rear cavity close to the flexible deforming part 22.
  • the acoustic resistance material 6 of the present invention is not limited to the specific material selection in the above-mentioned embodiments, and may also be other well-known materials and structural designs that have air permeability and can slow down the airflow.
  • the flexible deformable portion 22 can be integrated with other parts of the first housing 2.
  • the flexible deformable portion 22 can be manufactured first, and then the flexible deformed portion 22 is integrally injection molded as an insert into the other parts of the housing . It is also possible that the flexible deformable portion 22 is fixedly connected to the first housing part around the mounting hole by bonding, welding or hot melting.
  • the main bodies of the first sealed cavity 21 and the second sealed cavity 31 extend along the horizontal direction formed by the length and width of the acoustic device.
  • the horizontal direction can also be defined by a direction perpendicular to the thickness direction of the acoustic device.
  • the horizontal direction generally refers to the direction parallel to the horizontal plane when the acoustic device is placed on a horizontal plane, and the two chambers are arranged along the horizontal direction, so as not to occupy the space in the height direction of the acoustic device as much as possible, which is conducive to the thin design of the product .
  • the second housing 3 has a top wall, a bottom wall, and a side wall connecting the top wall and the bottom wall, and the sound outlet 4 of the acoustic device is provided on the top wall, the bottom wall or the side wall.
  • the sound outlet 4 is provided on the top wall, and a pressure equalizing hole 23 is provided on the first closed cavity 21.
  • the flexible deforming part 22 in the acoustic device, by providing the flexible deforming part 22, the flexible deforming part 22 is deformed according to the sound pressure, and the volume of the first sealed cavity 21 is adjustable, thereby increasing the equivalent sound of the first sealed cavity 21.
  • the second closed cavity 31 isolates the sound radiation generated during the deformation of the flexible deformation part 22, and seals the radiated sound waves of the flexible deformation part 22 inside the acoustic device to avoid flexible deformation
  • the anti-phase radiated sound waves of the part 22 have a canceling effect on the forward radiated sound waves of the sound generating unit 1, thereby greatly improving the low-frequency sensitivity of the product as a whole.
  • the volume of the second sealed cavity 31 in this embodiment is greater than the volume of the first sealed cavity 21, which can make the deformation of the flexible deformable portion 22 easier, which is more conducive to increasing the equivalent sound of the first sealed cavity 21 and effectively reducing the acoustics.
  • the resonant frequency of the device improves the low frequency sensitivity.
  • the compliance of the acoustic device is formed by the parallel connection of the sound generating unit and the enclosed cavity in the box.
  • the fs formula of the prior art 1 is as follows:
  • fs the resonance frequency of the acoustic device
  • Cas the equivalent sound of the sound unit
  • Cab the equivalent sound of the air in the box
  • Mac the equivalent sound quality of the vibration system of the sound unit.
  • Figure 2 is a test of loudness at different frequencies between an acoustic device with a passive radiator in prior art 2 and an acoustic device with a traditional structure in prior art 1.
  • Curve (SPL curve) Fig. 5 is a test curve (SPL curve) of loudness at different frequencies between the acoustic device of this embodiment and the acoustic device of the prior art 1.
  • the sounding unit is connected in parallel with a passive radiator/flexible deforming part 22
  • the compliance of the resulting increase in the final equivalent compliance, thereby reducing F0.
  • the fs formula of prior art 2 and this embodiment is as follows:
  • fs the resonance frequency of the acoustic device
  • Cas the equivalent sound of the sound unit
  • Cab the equivalent sound of the air in the first closed cavity
  • Mac the equivalent sound quality of the vibration system of the sound unit
  • Cap passive radiation
  • the sound unit and the passive radiator radiate externally at the same time.
  • the sound waves At frequencies below the resonance point fp, the sound waves have opposite phases and the sound pressure cancels each other out.
  • the passive radiator has a negative effect on the sensitivity of the acoustic system.
  • FIG. 6 is a test curve (SPL curve) of loudness at different frequencies between the acoustic device of this embodiment and the acoustic device of the prior art 2 with passive radiators.
  • SPL curve test curve
  • the second airtight cavity 31 retains the sound waves generated on the back side of the diaphragm of the acoustic device in the interior of the acoustic device.
  • the sound waves generated by the flexible deforming part 22 are removed by the second airtight cavity 31.
  • the pressure isolation prevents the anti-phase radiated sound waves generated by the deformation of the flexible deformable portion 22 from canceling the forward radiated sound waves of the sound unit, thereby greatly improving the low-frequency sensitivity of the product as a whole.
  • the sound generating unit 1 and the first sealed cavity 21 are provided in a one-to-one correspondence with multiple, and the second sealed cavity 31 is provided with one, and each of the first sealed cavities
  • the cavity wall of the cavity 21 is provided with a flexible deformable part.
  • the acoustic device in this embodiment includes two sound emitting units 1, and two first airtight cavities 21 are respectively correspondingly designed, one second airtight cavity 31, and two first airtight cavities
  • the cavity walls of 21 are respectively designed with flexible deformable portions 22. This design can facilitate the realization of applications in the case of an acoustic device or system that requires multiple sound generating units 1, such as stereo or array design requirements.
  • the first sealed cavity in this embodiment can also be of other numbers, and together with a second sealed cavity form a sealed cavity.
  • This embodiment discloses an electronic device 5. As shown in Figs. 8 and 9, the acoustic device in the foregoing embodiment is installed on the electronic device 5.
  • the electronic device 5 may be a mobile phone, a tablet computer, a notebook, or the like.
  • the electronic device 5 specifically includes a housing of the electronic device, and at least a part of the housing of the electronic device is used to form the first sealed cavity 21 and/or the second sealed cavity 31 of the acoustic device. That is, part or all of the cavity wall of the first airtight cavity 21 is formed by the housing of the electronic device, or part or all of the cavity wall of the second airtight cavity 31 is formed by the housing of the electronic device, or, Part or all of the cavity walls of the first airtight cavity 21 and the second airtight cavity 31 are constituted by the housing of the electronic device.
  • the housing of the electronic device doubles as the cavity wall of the first airtight cavity 21 and/or the second airtight cavity 31, which can make full use of the space inside the electronic device while saving a part of the space occupied by the cavity wall, which is more conducive to Thin design of electronic equipment.
  • the acoustic device includes a first housing 2, the sound generating unit 1 is mounted on the first housing 2 to form a sound generating assembly, and the vibrating diaphragm 11 of the sound generating unit 1 and the
  • the first airtight cavity 21 is formed between the first shells 2, a mounting hole is opened on the first shell 2, and a flexible deforming portion 22 is provided on the mounting hole, a mounting hole and a flexible deforming portion 22 It is not limited to one group, and multiple groups may be provided at different positions of the first housing 2.
  • the acoustic device further includes a second housing 3, the sound generating component is installed in the second housing 3, and the second airtight is formed between the second housing 3 and the first housing 1. Cavities 31.
  • the second housing 3 is a housing of an electronic device.
  • the space between the housing of the electronic device and the internal components and the first housing 2 of the acoustic device forms a second closed cavity 31, and the housing of the electronic device doubles as the second housing 3 of the acoustic device, which is omitted
  • the second housing of the acoustic device makes full use of the gap space between the components of the housing of the electronic device, and can achieve the maximum design of the second sealed cavity 31, which is beneficial to the thin design of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

本发明公开了一种声学装置和及电子设备,包括:发声单元,第一壳体,所述发声单元安装在第一壳体上形成发声组件,所述发声单元的振动膜片与所述第一壳体之间形成第一密闭腔,在所述第一壳体上设有柔性形变部;所述声学装置包括第二壳体,所述第二壳体与所述第一壳体之间形成第二密闭腔,所述柔性形变部位于所述第一密闭腔和所述第二密闭腔之间;在所述第一密闭腔中,且位于所述发声单元与所述柔性形变部之间设有用于使气流流速减缓的声阻材料。本发明中的声学装置可以有效降低谐振频率,整体上较大幅度提升产品的低频段灵敏度,并且能够改善听音效果。

Description

声学装置及电子设备 技术领域
本发明涉及声学技术领域,更具体地,涉及一种声学装置及安装有该声学装置的电子设备。
背景技术
一般而言,传统结构的声学系统(现有技术1)包括封闭箱体和设置在封闭箱体上的发声单元,封闭箱体与发声单元之间形成腔室,由于声学系统中的的腔室的容积限制,声学系统尤其是小型声学系统很难实现能令人满意地再现低音的效果。常规地,为了在声学系统中实现令人满意的低音再现,通常采用两种手段,一种是将吸音材料(例如活性炭、沸石等)设置于声学系统的箱体内,用于吸附或脱附箱体内的气体,起到容积增大进而降低低频谐振频率的效果,另一种是在声学系统的箱体上设置被动辐射体(现有技术2),例如图1所示,其中,10为发声单元,20为声学系统的箱体,30为被动辐射体,发声单元和被动辐射体同时对外辐射声音,利用被动辐射体与箱体在特定频点fp(共振频率点)形成强烈共振的原理,将发声单元和被动辐射体两者的声波连通叠加,对共振频率点fp附近局部灵敏度进行增强(例如,参见专利CN1939086A)。但是上述两种手段均存在问题,第一种在箱体中添加吸音材料的方案,需要实现吸音材料的良好密封封装,否则如果吸音材料进入扬声器单元,则损害扬声器单元的声学性能,影响扬声器单元的使用寿命;第二种采用被动辐射体的方案,在共振频率点fp附近,被动辐射体强烈辐射,发声单元近乎停止,因此可以通过被动辐射体的高灵敏度设计,在fp附近频段实现声学系统的局部灵敏度增强;但在fp以下频段,被动辐射体与发声单元声波相位相反,声波相互抵消,被动辐射体对声学系统灵敏度起负面作用。总言之,被动辐射体只能提升共振点附近频段的灵敏度,不能对全部低频段有所提升。如图2所示,图2是现有技术2与现有技 术1在不同频率下响度的测试曲线(SPL曲线)。所以有必要对现有技术存在的缺陷做进一步的改进。
发明内容
本发明的一个目的是提供一种有效降低谐振频率,整体上较大幅度提升产品的低频段灵敏度,并且能够减少杂音产生,提升听音效果的声学装置。
为解决上述技术问题,本发明提供的技术方案是:一种声学装置,包括:
发声单元,所述发声单元包括振动膜片,所述声学装置上设置有出声口,所述振动膜片前侧的声波通过所述出声口对外辐射;
所述声学装置包括第一壳体,所述发声单元安装在所述第一壳体上形成发声组件,所述发声单元的振动膜片与所述第一壳体之间形成第一密闭腔,在所述第一壳体上开设有安装孔,在所述安装孔上设有柔性形变部;
所述声学装置包括第二壳体,所述发声组件安装于所述第二壳体中,所述第二壳体与所述第一壳体之间形成第二密闭腔,所述柔性形变部位于所述第一密闭腔和所述第二密闭腔之间,所述第二密闭腔将所述柔性形变部在形变时产生的声波封闭在所述第二密闭腔内;
在所述第一密闭腔中,且位于所述发声单元与所述柔性形变部之间设有用于使气流流速减缓的声阻材料,所述声阻材料将所述第一密闭腔分割为靠近所述发声单元的前段腔体和靠近所述柔性形变部的后段腔体。
优选的,所述声阻材料为吸音棉。
优选的,所述声阻材料为透气网或者透气膜。
优选的,所述声阻材料为由吸音颗粒粘接形成、或由吸音颗粒粘附于多孔材料骨架上形成的块状吸音件;
或者,所述声阻材料为由吸音颗粒和透气网构成的透气吸音件。
优选的,所述第二壳体为用于安装所述声学装置的电子设备的壳体。
优选的,所述柔性形变部包括本体部,所述本体部包括中心部和位于所述中心部外侧的凸起状的悬挂部,所述悬挂部与所述第一壳体固定连接。
优选的,所述柔性形变部还包括结合于所述本体部的中心部上的复合片,所述中心部为片状的整体结构或者所述中心部为镂空结构。
优选的,所述柔性形变部固定于所述第一壳体的朝向所述第一密闭腔的表面;
或者,所述柔性形变部固定于所述第一壳体的朝向所述第二密闭腔的表面;
或者,所述安装孔周边的所述第一壳体上由所述第二密闭腔朝向所述第一密闭腔的方向凹陷形成凹槽,所述柔性形变部固定于所述凹槽的槽底。
优选的,所述柔性形变部的本体部是单层结构,所述单层结构由高分子塑料、热塑性弹性体和硅橡胶中的一种材料制成;
或者,所述柔性形变部的本体部是多层结构,所述多层结构中的至少一层为高分子塑料、热塑性弹性体和硅橡胶中的一种材料制成。
本发明的另一个目的是提供一种电子设备,该电子设备包括电子设备的壳体和上述的声学装置,所述声学装置安装于所述电子设备的壳体中。该声学装置能够有效降低谐振频率,整体上较大幅度提升产品的低频段灵敏度,并且能够降低高次谐波失真,减少杂音产生,提升听音效果。
本发明所提供的技术方案,振动膜片与第一壳体之间形成第一密闭腔,在第一壳体的安装孔上覆盖设置柔性形变部,在第一密闭腔的外侧还设有用于封闭柔性形变部在形变时产生的声波的第二密闭腔,通过设置柔性形变部,柔性形变部随着声压产生变形,第一密闭腔的容积大小可调,从而增加第一密闭腔等效声顺,有效降低声学装置共振频率,提升低频灵敏度;并通过对发声单元和柔性形变部隔离设计,将柔性形变部的辐射声波封闭于声学装置内部,避免柔性形变部的反相位辐射声波,对发声单元的正向辐射声波造成抵消影响,进而整体上较大幅度提升产品的低频段灵敏度。
由于振动膜片产生的声波气流直接冲击柔性形变部,使柔性形变部产生振动,在振动过程中由于气流到达柔性形变部的先后及流速不同,导致柔性形变部产生严重偏振,且上下振幅对称性差。进一步的,本发明中,在所述第一密闭腔中,且位于所述发声单元与所述柔性形变部之间设有用于使气流流速减缓的声阻材料,所述声阻材料将所述第一密闭腔分割为靠近所述发声单元的前段腔体和靠近所述柔性形变部的后段腔体。上述设计,通过设置声阻材料,使气流由前段腔体到达后段腔体的过程中流速减缓,气流到达柔性 形变部时的力均匀柔和,从而使柔性形变部上下振幅对称性变好,有效改善偏振问题,进而能够降低高次谐波失真,减少杂音产生,提升听音效果。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是现有技术2设置被动辐射体的声学装置的结构示意图。
图2是现有技术2设置被动辐射体的声学装置与现有技术1传统结构的声学装置在不同频率下响度的测试曲线(SPL曲线)。
图3A是根据本发明的一个实施例的声学装置的结构示意图。
图3B是图3A中柔性形变部的放大结构示意图。
图4A是根据本发明的一个实施例的柔性形变部不同部位在不同频率下振动位移的测试曲线。
图4B是现有技术中柔性形变部不同部位在不同频率下振动位移的测试曲线。
图5是根据本发明的一个实施例的声学装置与现有技术1传统结构的声学装置在不同频率下响度的测试曲线(SPL曲线)。
图6是根据本发明的一个实施例的声学装置与现有技术2中设置被动辐射体的声学装置在不同频率下响度的测试曲线(SPL曲线)。
图7是根据本发明另一个实施例的声学装置的结构示意图。
图8是根据本发明使用声学装置电子设备的结构示意图。
图9是图8的局部放大图。
附图标记说明:
1、发声单元;11、振动膜片;2、第一壳体;21、第一密闭腔;22、柔性形变部;221、中心部,222、悬挂部,223、复合片,23、均压孔;3、第二壳体;31、第二密闭腔;4、出声口;5、电子设备;6、声阻材料。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
实施例一:
如图3A所示,一种声学装置,包括发声单元1,其中,本实施例中,发声单元1为微型发声单元,更具体的,发声单元1为微型的动圈式扬声器。发声单元1一般包括外壳和容置固定在外壳中的振动系统和磁路系统,振动系统包括固定在外壳上的振动膜片11和结合在振动膜片11上的音圈,磁路系统形成有磁间隙,音圈设置于该磁间隙中,音圈通入交流电后在磁场中做上下往复运动,从而带动振动膜片11振动发声。
在声学装置上设置有出声口4,振动膜片11前侧的声波通过出声口4对外辐射,振动膜片11后侧的声波留置于声学装置内部。振动膜片11与外壳和磁路系统之间形成有腔室,一般在外壳上或者磁路系统上或者两者之间开设有后声孔,振动膜片11后侧的声波会通过该后声孔进入声学装置的内部。本实施例中,发声单元1的振动膜片11的振动方向平行于声学装置的厚度方向,有利于声学装置的薄型化设计。
进一步的,本实施例中,振动膜片11后侧形成密闭的第一密闭腔21,所述第一密闭腔21的腔体壁上开设有安装孔,在所述安装孔上设有柔性形 变部22,在所述第一密闭腔21的外侧设有第二密闭腔31,所述柔性形变部22位于所述第一密闭腔21和所述第二密闭腔31之间。
当所述振动膜片11振动时,所述第一密闭腔21的内部声压发生变化,所述柔性形变部22随第一密闭腔21内的声压变化而产生形变,对所述第一密闭腔21进行容积大小的柔性调节;所述第二密闭腔31将所述柔性形变部22在形变时产生的声波封闭在所述第二密闭腔31内。
需要说明的是,本实施例及本发明中所描述的“封闭”,可以是物理结构上的全封闭,也可以是相对密闭状态,例如,第一密闭腔,可以包括基于产品使用要求,开设的起到平衡内外气压且对声压快速变化没有显著影响的均压孔23,或者其他开孔结构,也视为密闭腔。又例如第二密闭腔,可以包括与第一密闭腔组合时产生的缝隙等,以及其自身结构的缝隙等,它们能够将柔性形变部产生的声波有效隔离,对发声单元产生的声波没有明显影响,也视为密闭腔。一般情况下,上述开孔或缝隙的总面积不超过20mm 2
具体的,所述柔性形变部22固定于第一密闭腔21的腔体壁的朝向所述第一密闭腔21的表面;或者,所述柔性形变部22固定于所述第一密闭腔21的腔体壁的朝向所述第二密闭腔31的表面。或者,所述安装孔周边的所述第一密闭腔21的腔体壁上由所述第二密闭腔31朝向所述第一密闭腔21的方向凹陷形成凹槽,所述柔性形变部22固定于所述凹槽的槽底,该种设计可以不占用第二密闭腔31的腔体体积。
作为一种具体实施例,所述声学装置包括第一壳体2,所述发声单元1安装在所述第一壳体2上形成发声组件,所述发声单元1的振动膜片11与所述第一壳体2之间形成所述第一密闭腔21,在所述第一壳体2上开设有所述安装孔,在所述安装孔上设有所述柔性形变部22,安装孔和柔性形变部22不限于一组,可以在第一壳体2的不同位置设置多组。所述声学装置包括第二壳体3,所述发声组件安装于第二壳体3内,所述第二壳体3与所述第一壳体1之间形成所述第二密闭腔31。其中,在第二壳体3内还存在其他零部件的情况下,第二密闭腔31实际上由零部件与第二壳体3和第一壳体2之间的间隙构成。
本实施例中,发声单元1设置在第一壳体2的内部,两者形成一个整体 结构,然后与第二壳体3进行装配。第一壳体2上设有开口,振膜前侧空间与该开口连通,通过该开口将声音辐射到声学装置的出声口4。
在本实施例中,进一步结合图8和图9所示的电子设备的结构图,声学装置安装于手机等电子设备中,且电子设备的壳体兼做声学装置的第二壳体3。电子设备的壳体与内部零部件以及与声学装置的第一壳体2之间的空间形成第二密闭腔31,省略了声学装置自身的第二壳体,充分利用了电子设备壳体零部件之间的间隙空间,可以实现第二密闭腔31的最大化设计。
当声学装置在工作状态下,当振动膜片11向下振动压缩振动膜片11后侧的容积时,声压会通过第一密闭腔21传递至柔性形变部22,柔性形变部22会朝向第一密闭腔21外侧来扩张形变;反之,当振膜向上振动时,柔性形变部22会向内收缩形变,从而对第一密闭腔21的容积进行调节,从而增加第一密闭腔等21效声顺,有效降低声学装置共振频率,提升低频灵敏度;并通过对发声单元1和柔性形变部22隔离设计,将柔性形变部22的辐射声波封闭于声学装置内部,避免柔性形变部22的反相位辐射声波,对发声单元1的正向辐射声波造成抵消影响,进而整体上较大幅度提升产品的低频段灵敏度。
具体的,结合图3B所示,柔性形变部22包括本体部,所述本体部包括中心部221和位于所述中心部221外侧的凸起状的悬挂部222,所述悬挂部222与第一密闭腔21的腔体壁也即第一壳体固定连接。其中,柔性形变部22的本体部可以是单层结构,所述单层结构由高分子塑料、热塑性弹性体和硅橡胶中的一种材料制成,也可以是多层结构,所述多层结构中的至少一层为高分子塑料、热塑性弹性体和硅橡胶中的一种材料制成。
进一步的,为了提升振动效果,还可以在柔性形变部22的本体部的中心部221上叠加一复合片223,该复合片223的强度高于本体部的强度,可以是金属、塑料、碳纤维或者是其复合结构等等。另外所述中心部221可以是片状的整体结构,也可以是镂空结构,通过复合片223密闭该镂空结构。
本实施例中,结合图3所示,在所述第一密闭腔21中,且位于所述发声单元1与所述柔性形变部22之间设有用于使气流流速减缓的声阻材料6,所述声阻材料6将所述第一密闭腔21分割为靠近所述发声单元1的前段腔 体和靠近所述柔性形变部22的后段腔体。上述设计,通过设置声阻材料6,使振动膜片11产生的声波气流由前段腔体到达后段腔体的过程中流速减缓,气流到达柔性形变部22时的力均匀柔和,从而使柔性形变部22上下振幅对称性变好,有效改善偏振问题,进而能够降低高次谐波失真,减少杂音产生,提升听音效果。
结合图4A和图4B所示,现有技术中没有加声阻材料的方案,柔性形变部的上下振幅差异大于0.1mm,且上下振幅较大,偏振问题比较严重,且振幅较大容易导致柔性形变部的损伤破裂。本实施例中设置声阻材料后,柔性形变部的上下振幅更加平衡,振幅对称性变好;并且振幅明显减小。
作为具体的实施例,所述声阻材料6可以采用吸音棉。作为一个具体的实施例,在吸音棉的一个面上设有双面胶,将吸音棉通过双面胶粘接到第一壳体2的一个面上后,通过第一壳体2的另外表面对吸音棉产生挤压固定。
作为另一具体的实施例,所述声阻材料6为透气网或者透气膜。透气网或者透气膜可以通过注塑、热压的形式一体成型在所述第一壳体2的壁上,也可以通过粘接的形式固定在第一壳体2的壁上。
作为其他的实施例,所述声阻材料6还可以是由吸音颗粒粘接形成、或由吸音颗粒粘附于多孔材料骨架上形成的块状吸音件。或者,所述声阻材料6为由吸音颗粒和透气网构成的透气吸音件。上述吸音件放置于第一密闭腔21中,将第一密闭腔21分割为靠近所述发声单元1的前段腔体和靠近所述柔性形变部22的后段腔体。
当然,本发明的声阻材料6不限于上述实施例中的具体材料选择,还可以是其他公知的,具有透气效果、能够对气流产生减缓作用的材料和结构设计。
作为具体的实施例,柔性形变部22可以与第一壳体2的其他部分一体结合,可以先制作柔性形变部22,然后把柔性形变部22作为嵌件一体注塑成型于壳体的其他部分中。也可以是,柔性形变部22与安装孔周边的第一壳体部分通过粘接、焊接或热熔方式固定连接。
本实施例中,第一密闭腔21和第二密闭腔31的主体沿声学装置的长和宽构成的水平方向延伸,该水平方向也可以用垂直于声学装置厚度方向的方 向来定义。该水平方向一般是指声学装置放于一个水平面时,平行于该水平面的方向,两个腔室沿该水平方向设置,尽量不占用声学装置的高度方向上的空间,有利于产品的薄型化设计。
第二壳体3具有顶壁、底壁和连接该顶壁和底壁的侧壁,声学装置的出声口4设于顶壁、底壁或者侧壁上。如图3和图4所示,本实施例中,出声口4设于顶壁上,在第一密闭腔21上设有均压孔23。
本实施例的技术方案,声学装置中,通过设置柔性形变部22,柔性形变部22随着声压产生形变,第一密闭腔21的容积大小可调,从而增加第一密闭腔21等效声顺,有效降低声学装置共振频率,提升低频灵敏度;通过第二密闭腔31来隔绝柔性形变部22形变过程中产生的声音辐射,将柔性形变部22的辐射声波封闭于声学装置内部,避免柔性形变部22的反相位辐射声波,对发声单元1的正向辐射声波造成抵消影响,进而整体上较大幅度提升产品的低频段灵敏度。
并且,本实施例中第二密闭腔31的容积大于第一密闭腔21的容积,可以使柔性形变部22的变形更加容易,更加有利于增加第一密闭腔21等效声顺,有效降低声学装置共振频率,提升低频灵敏度。
现有技术1中,声学装置的顺性由发声单元和箱体内封闭腔的顺性并联而成,现有技术1的fs公式如下:
Figure PCTCN2019127838-appb-000001
其中,fs:声学装置的共振频率;Cas:发声单元的等效声顺;Cab:箱体内空气的等效声顺;Mac:发声单元的振动系统等效声质量。
现有技术2和本实施例中,结合图2和图5所示,图2是现有技术2设置被动辐射体的声学装置与现有技术1传统结构的声学装置在不同频率下响度的测试曲线(SPL曲线),图5是本实施例的声学装置与现有技术1的声学装置在不同频率下响度的测试曲线(SPL曲线),发声单元因为又并联一个被动辐射体/柔性形变部22的顺性导致最终的等效顺性增大,从而F0降低。现有技术2和本实施例的fs公式如下:
Figure PCTCN2019127838-appb-000002
其中,fs:声学装置的共振频率;Cas:发声单元的等效声顺;Cab:第一密闭腔内空气的等效声顺;Mac:发声单元的振动系统等效声质量;Cap:被动辐射体/柔性形变部的等效声顺。
并且,现有技术2中,发声单元和被动辐射体同时对外辐射,在共振点fp以下频率两者声波相位相反,声压相互抵消,被动辐射体对声学系统灵敏度起负面作用。
进一步的,本实施例中,结合图6所示,图6是本实施例的声学装置与现有技术2的设置被动辐射体的声学装置在不同频率下响度的测试曲线(SPL曲线)。通过设置封闭的第二密闭腔31,第二密闭腔31将声学装置振膜膜片后侧产生的声波留置在声学装置的内部,具体是通过第二密闭腔31将柔性形变部22产生的声压隔离,避免柔性形变部22形变产生的反相位辐射声波,对发声单元的正向辐射声波造成抵消影响,进而整体上较大幅度的提升产品的低频段灵敏度。
实施例二:
本实施例与上述实施例的主要区别在于,本实施例中,发声单元1和第一密闭腔21一一对应设有多个,第二密闭腔31设有一个,每个所述第一密闭腔21的腔体壁上均设有一个柔性形变部。具体的,如图7所示,本实施例中的声学装置包括两个发声单元1,同时分别对应设计有两个第一密闭腔21,第二密闭腔31为一个,两个第一密闭腔21的腔体壁上分别设计有柔性形变部22。这种设计可以便于实现需要多个发声单元1的声学装置或系统的情况下的应用,如立体声或阵列形式的设计要求。本实施例中的第一密闭腔也可以为其它数量,共同与一个第二密闭腔形成密闭腔。
实施例三:
本实施例公开了一种电子设备5,如图8和图9所示,在电子设备5上 安装有上述实施例中的声学装置,电子设备5可以是手机、平板电脑、笔记本等。
电子设备5具体包括电子设备的壳体,所述电子设备的壳体的至少一部分用于形成声学装置的第一密闭腔21和/或第二密闭腔31。即,第一密闭腔21的腔体壁的部分或全部是由电子设备的壳体构成,或者,第二密闭腔31的腔体壁的部分或全部是由电子设备的壳体构成,或者,第一密闭腔21和第二密闭腔31的腔体壁的部分或全部由电子设备的壳体构成。本发明中,电子设备的壳体兼做第一密闭腔21和/第二密闭腔31的腔体壁,能够充分利用电子设备内部的空间,同时节约一部分腔体壁占用的空间,更加有利于电子设备的薄型化设计。
在该具体实施例中,所述声学装置包括第一壳体2,所述发声单元1安装在所述第一壳体2上形成发声组件,所述发声单元1的振动膜片11与所述第一壳体2之间形成所述第一密闭腔21,在所述第一壳体2上开设有安装孔,在所述安装孔上设有柔性形变部22,安装孔和柔性形变部22不限于一组,可以在第一壳体2的不同位置设置多组。所述声学装置还包括第二壳体3,所述发声组件安装于所述第二壳体3中,所述第二壳体3与所述第一壳体1之间形成所述第二密闭腔31。其中,所述第二壳体3为电子设备的壳体。实际上,电子设备壳体与内部零部件以及与声学装置的第一壳体2之间的空间形成第二密闭腔31,电子设备的壳体兼做声学装置的第二壳体3,省略了声学装置自身的第二壳体,充分利用了电子设备壳体零部件之间的间隙空间,可以实现第二密闭腔31的最大化设计,有利于电子设备薄型化设计。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种声学装置,包括:
    发声单元,所述发声单元包括振动膜片,所述声学装置上设置有出声口,所述振动膜片前侧的声波通过所述出声口对外辐射;其特征在于,
    所述声学装置包括第一壳体,所述发声单元安装在所述第一壳体上形成发声组件,所述发声单元的振动膜片与所述第一壳体之间形成第一密闭腔,在所述第一壳体上开设有安装孔,在所述安装孔上设有柔性形变部;
    所述声学装置包括第二壳体,所述发声组件安装于所述第二壳体中,所述第二壳体与所述第一壳体之间形成第二密闭腔,所述柔性形变部位于所述第一密闭腔和所述第二密闭腔之间,所述第二密闭腔将所述柔性形变部在形变时产生的声波封闭在所述第二密闭腔内;
    在所述第一密闭腔中,且位于所述发声单元与所述柔性形变部之间设有用于使气流流速减缓的声阻材料,所述声阻材料将所述第一密闭腔分割为靠近所述发声单元的前段腔体和靠近所述柔性形变部的后段腔体。
  2. 如权利要求1所述的声学装置,其特征在于,所述声阻材料为吸音棉。
  3. 如权利要求1所述的声学装置,其特征在于,所述声阻材料为透气网或者透气膜。
  4. 如权利要求1所述的声学装置,其特征在于,所述声阻材料为由吸音颗粒粘接形成、或由吸音颗粒粘附于多孔材料骨架上形成的块状吸音件;
    或者,所述声阻材料为由吸音颗粒和透气网构成的透气吸音件。
  5. 如权利要求1所述的声学装置,其特征在于,所述第二壳体为用于安装所述声学装置的电子设备的壳体。
  6. 如权利要求1所述的声学装置,其特征在于,所述柔性形变部包括本体部,所述本体部包括中心部和位于所述中心部外侧的凸起状的悬挂部,所述悬挂部与所述第一壳体固定连接。
  7. 如权利要求6所述的声学装置,其特征在于,所述柔性形变部还包括结合于所述本体部的中心部上的复合片,所述中心部为片状的整体结构或者所述中心部为镂空结构。
  8. 如权利要求1所述的声学装置,其特征在于,
    所述柔性形变部固定于所述第一壳体的朝向所述第一密闭腔的表面;
    或者,所述柔性形变部固定于所述第一壳体的朝向所述第二密闭腔的表面;
    或者,所述安装孔周边的所述第一壳体上由所述第二密闭腔朝向所述第一密闭腔的方向凹陷形成凹槽,所述柔性形变部固定于所述凹槽的槽底。
  9. 如权利要求1所述的声学装置,其特征在于,所述柔性形变部的本体部是单层结构,所述单层结构由高分子塑料、热塑性弹性体和硅橡胶中的一种材料制成;
    或者,所述柔性形变部的本体部是多层结构,所述多层结构中的至少一层为高分子塑料、热塑性弹性体和硅橡胶中的一种材料制成。
  10. 一种电子设备,其特征在于:所述电子设备包括电子设备的壳体和如权利要求1-9所述的声学装置,所述声学装置安装于所述电子设备的壳体中。
PCT/CN2019/127838 2019-11-09 2019-12-24 声学装置及电子设备 WO2021088225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911090986.5 2019-11-09
CN201911090986.5A CN110839194B (zh) 2019-11-09 2019-11-09 声学装置及电子设备

Publications (1)

Publication Number Publication Date
WO2021088225A1 true WO2021088225A1 (zh) 2021-05-14

Family

ID=69575005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127838 WO2021088225A1 (zh) 2019-11-09 2019-12-24 声学装置及电子设备

Country Status (2)

Country Link
CN (1) CN110839194B (zh)
WO (1) WO2021088225A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676581A (zh) * 2021-08-17 2021-11-19 维沃移动通信有限公司 发声器件及电子设备
CN115175052A (zh) * 2022-06-30 2022-10-11 歌尔股份有限公司 发声装置的外壳、发声装置和电子设备
WO2023130914A1 (zh) * 2022-01-07 2023-07-13 华为技术有限公司 电子设备及声学换能器
CN117915248A (zh) * 2024-03-20 2024-04-19 瑞声光电科技(常州)有限公司 一种发声装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556385A (zh) * 2020-05-12 2020-08-18 深圳市信维声学科技有限公司 微型扬声器及其振幅调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120017693A1 (en) * 2010-07-22 2012-01-26 Commissariat A L'energie Atomique Et Aux Ene Alt Mems dynamic pressure sensor, in particular for applications to microphone production
CN204993827U (zh) * 2015-09-09 2016-01-20 歌尔声学股份有限公司 一种扬声器模组
CN109803215A (zh) * 2018-12-18 2019-05-24 歌尔股份有限公司 声学装置及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7912239B2 (en) * 2005-06-06 2011-03-22 The Furukawa Electric Co., Ltd. Flat speaker
CN202255770U (zh) * 2011-08-10 2012-05-30 歌尔声学股份有限公司 扬声器模组气密性测试工装以及测试系统
JP5863182B2 (ja) * 2012-05-31 2016-02-16 株式会社オーディオテクニカ ヘッドホンユニットおよびヘッドホン
CN104113796B (zh) * 2013-04-16 2017-11-10 淇誉电子科技股份有限公司 被动辐射式音箱改良结构
CN203590393U (zh) * 2013-11-12 2014-05-07 歌尔声学股份有限公司 扬声器模组
CN203574851U (zh) * 2013-11-14 2014-04-30 歌尔声学股份有限公司 扬声器模组
CN206402416U (zh) * 2016-12-29 2017-08-11 深圳Tcl数字技术有限公司 倒相箱、音箱及电视机
CN209462592U (zh) * 2018-12-17 2019-10-01 歌尔科技有限公司 声学装置和电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120017693A1 (en) * 2010-07-22 2012-01-26 Commissariat A L'energie Atomique Et Aux Ene Alt Mems dynamic pressure sensor, in particular for applications to microphone production
CN204993827U (zh) * 2015-09-09 2016-01-20 歌尔声学股份有限公司 一种扬声器模组
CN109803215A (zh) * 2018-12-18 2019-05-24 歌尔股份有限公司 声学装置及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANG, YANG ET AL.: "Research on Design of the Resistance Probe and Experiments Using the Probe", JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY (TRANSPORTATION SCIENCE & ENGINEERING) ), vol. 36, no. 6, 30 December 2012 (2012-12-30) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676581A (zh) * 2021-08-17 2021-11-19 维沃移动通信有限公司 发声器件及电子设备
CN113676581B (zh) * 2021-08-17 2024-04-19 维沃移动通信有限公司 发声器件及电子设备
WO2023130914A1 (zh) * 2022-01-07 2023-07-13 华为技术有限公司 电子设备及声学换能器
CN115175052A (zh) * 2022-06-30 2022-10-11 歌尔股份有限公司 发声装置的外壳、发声装置和电子设备
CN117915248A (zh) * 2024-03-20 2024-04-19 瑞声光电科技(常州)有限公司 一种发声装置
CN117915248B (zh) * 2024-03-20 2024-05-14 瑞声光电科技(常州)有限公司 一种发声装置

Also Published As

Publication number Publication date
CN110839194A (zh) 2020-02-25
CN110839194B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
US12096179B2 (en) Acoustic device and electronic apparatus
WO2021088225A1 (zh) 声学装置及电子设备
WO2020125633A1 (zh) 声学装置和电子设备
WO2021031486A1 (zh) 声学装置及电子设备
WO2021031477A1 (zh) 声学装置及电子设备
WO2019119943A1 (zh) 一种吸音颗粒的封装结构及扬声器模组
CN110662133B (zh) 声学装置及电子设备
WO2021056862A1 (zh) 声学装置及电子设备
CN210381285U (zh) 声学装置及电子设备
WO2020125703A1 (zh) 声学装置及电子设备
WO2021031475A1 (zh) 声学装置及电子设备
WO2020199654A1 (zh) 声学装置及电子设备
WO2021031485A1 (zh) 声学装置及电子设备
CN209824004U (zh) 声学装置及电子设备
CN110784816B (zh) 声学装置及电子设备
WO2021031476A1 (zh) 声学装置及电子设备
WO2020258787A1 (zh) 声学装置及电子设备
WO2020125619A1 (zh) 声学装置及电子设备
WO2020258786A1 (zh) 声学装置及电子设备
WO2020125618A1 (zh) 声学装置及电子设备
WO2021088212A1 (zh) 声学装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951875

Country of ref document: EP

Kind code of ref document: A1