WO2020199654A1 - 声学装置及电子设备 - Google Patents

声学装置及电子设备 Download PDF

Info

Publication number
WO2020199654A1
WO2020199654A1 PCT/CN2019/126123 CN2019126123W WO2020199654A1 WO 2020199654 A1 WO2020199654 A1 WO 2020199654A1 CN 2019126123 W CN2019126123 W CN 2019126123W WO 2020199654 A1 WO2020199654 A1 WO 2020199654A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
sound
acoustic device
cavity
vibrating diaphragm
Prior art date
Application number
PCT/CN2019/126123
Other languages
English (en)
French (fr)
Inventor
徐同雁
郭翔
张成飞
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2020199654A1 publication Critical patent/WO2020199654A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the utility model relates to the technical field of acoustics, and more specifically, to an acoustic device and an electronic device equipped with the acoustic device.
  • an acoustic system with a traditional structure includes a closed box and a sound unit arranged on the closed box. A cavity is formed between the closed box and the sound unit. Because of the cavity in the acoustic system Due to the limited volume, it is difficult for acoustic systems, especially small acoustic systems, to achieve satisfactory bass reproduction. Conventionally, in order to achieve satisfactory bass reproduction in an acoustic system, two methods are usually used. One is to install sound-absorbing materials (such as activated carbon, zeolite, etc.) in the cabinet of the acoustic system for adsorption or desorption. The gas in the body has the effect of increasing the volume and reducing the low-frequency resonance frequency.
  • sound-absorbing materials such as activated carbon, zeolite, etc.
  • the other is to install a passive radiator on the box of the acoustic system (Prior Art 2), as shown in Figure 1, where 10 is sound
  • the unit, 20 is the box of the acoustic system
  • 30 is the passive radiator
  • the sound unit and the passive radiator radiate sound to the outside at the same time, using the principle of strong resonance between the passive radiator and the box at a specific frequency point fp (resonance frequency),
  • the sound waves of the sounding unit and the passive radiator are connected and superimposed to enhance the local sensitivity near the resonance frequency point fp (for example, see patent CN1939086A).
  • the first solution to add sound-absorbing materials to the cabinet requires a good sealing and packaging of the sound-absorbing materials.
  • the passive radiator Near the resonance frequency point fp, the passive radiator radiates strongly and the sound unit is almost stopped. Therefore, the high sensitivity design of the passive radiator can realize the acoustic system in the frequency band near fp The local sensitivity is enhanced; but in the frequency band below fp, the passive radiator and the sound unit have opposite phases of sound waves, and the sound waves cancel each other out.
  • the passive radiator has a negative effect on the sensitivity of the acoustic system.
  • Fig. 2 is a test curve (SPL curve) of loudness at different frequencies between prior art 2 and prior art 1. Therefore, it is necessary to make further improvements to the defects in the prior art.
  • One purpose of the utility model is to provide an acoustic device that effectively reduces the resonance frequency and greatly improves the low frequency sensitivity of the product as a whole.
  • the technical solution provided by the present utility model is: in order to achieve the above-mentioned purpose, the acoustic device proposed by the present utility model includes: a sounding unit, the sounding unit includes a vibrating diaphragm, and the acoustic device is provided with a A sound port, the sound wave on the front side of the vibrating diaphragm radiates to the outside through the sound outlet;
  • the rear side of the vibrating diaphragm forms a closed airtight cavity, and the airtight cavity is divided into a first airtight cavity and a second airtight cavity by a spacer, wherein the spacer can be at least partially flexibly deformed, and the first airtight chamber Adjacent to the vibrating diaphragm, the second airtight cavity is far away from the vibrating diaphragm, and the second airtight cavity seals the sound wave generated by the flexible deformable portion during deformation in the second airtight cavity;
  • a pressure equalizing hole connecting the first sealed cavity and the second sealed cavity is provided on the flexible deforming part.
  • the diameter of the equalizing hole is 0.3-1.0 mm.
  • the pressure equalizing hole is a number of micropores arranged in a dispersed manner, and the diameter of each micropore is 0.05 mm to 0.15 mm.
  • a damping mesh covering the pressure equalizing hole is provided on the flexible deforming part.
  • the sound generating unit and the first airtight cavity are provided with multiple corresponding one-to-one, the second airtight cavity is provided with one, and each of the first airtight cavity and the second airtight cavity is The spacer is provided with a flexible deformable part.
  • the acoustic device includes a first housing, the sound generating unit is mounted on the first housing to form a sound generating assembly, and the vibration diaphragm of the sound generating unit and the first housing form the The first airtight cavity;
  • the acoustic device includes a second housing, the sound generating component is installed in the second housing, and the second sealed cavity is formed between the second housing and the first housing;
  • a part of the first housing forms the spacer
  • the second housing is a housing of an electronic device.
  • the second housing has a top wall, a bottom wall and a side wall connecting the top wall and the bottom wall, and the sound outlet is provided on the top wall, the bottom wall or the side wall. On the wall.
  • the acoustic device is provided with a sound outlet corresponding to the sound outlet, and the sound waves on the front side of the vibrating diaphragm are radiated to the sound outlet through the sound outlet, wherein:
  • the sound unit is installed in the first housing, and the sound channel is provided on the first housing;
  • the sound channel is provided on the second housing, and the sound component is docked with the sound channel;
  • the sound channel is separately provided, and the sound channel is connected to the sound outlet and the sound component respectively.
  • the flexible deformable portion is an independent component, and the flexible deformable portion is fixedly connected with other parts of the first housing by bonding, welding or hot melting;
  • the flexible deformable part is integrated with other parts of the first housing.
  • the present invention also proposes an electronic device, the electronic device includes the acoustic device as described above;
  • the acoustic device includes a first housing, the sounding unit is mounted on the first housing to form a sounding assembly, and the first airtight is formed between the vibrating diaphragm of the sounding unit and the first housing Cavity; the acoustic device further includes a second housing, the sound generating component is installed in the second housing, the second sealed cavity is formed between the second housing and the first housing;
  • a part of the first housing forms the spacer
  • the second housing is a housing of an electronic device.
  • the airtight cavity on the rear side of the vibrating diaphragm is separated into a first airtight cavity and a second airtight cavity by a spacer, and the spacer is provided with a flexible deforming part.
  • the flexible deformation part deforms with the sound pressure, and the volume of the first sealed cavity is adjustable, thereby increasing the equivalent acoustic compliance of the first sealed cavity, effectively reducing the resonance frequency of the acoustic device, and improving the low-frequency sensitivity;
  • the isolation design of the flexible deformation section seals the radiated sound wave of the flexible deformation section inside the acoustic device to avoid the anti-phase radiated sound wave of the flexible deformation section, which will offset the positive radiated sound wave of the sound unit, thereby greatly improving the product as a whole The low frequency band sensitivity.
  • a pressure equalizing hole is provided on the flexible deformable portion to communicate the two sealed cavities, so that the air pressure between the first sealed cavity and the second sealed cavity is balanced, thereby ensuring the product Stable when vibrating for a long time, improving performance reliability.
  • Fig. 1 is a schematic structural diagram of an acoustic device with a passive radiator in prior art 2.
  • Fig. 2 is a test curve (SPL curve) of loudness at different frequencies between an acoustic device with a passive radiator in prior art 2 and an acoustic device with a traditional structure in prior art 1.
  • Fig. 3 is a schematic structural diagram of an acoustic device according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the working state of the acoustic device according to an embodiment of the present invention.
  • Fig. 5 is a test curve (SPL curve) of loudness at different frequencies between an acoustic device according to an embodiment of the present invention and an acoustic device with a traditional structure in the prior art 1.
  • Fig. 6 is a test curve (SPL curve) of loudness at different frequencies between an acoustic device according to an embodiment of the present invention and an acoustic device provided with a passive radiator in prior art 2.
  • Fig. 7 is a schematic structural diagram of an acoustic device according to another embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of an acoustic device according to another embodiment of the present invention.
  • Fig. 9 is a schematic structural diagram of an acoustic device according to another embodiment of the present invention.
  • Figure 10 is a further improvement of Figure 9;
  • Fig. 11 is a structural diagram of an electronic device using an acoustic device according to the present invention.
  • Fig. 12 is a partial enlarged view of Fig. 11.
  • 1 Sounding unit
  • 11 Vibrating diaphragm
  • 2 First shell
  • 21 First airtight cavity
  • 22 Flexible deformation part
  • 23 Pressure equalizing hole
  • 3 Second shell
  • 31 Second airtight cavity
  • 4 Voice port
  • 5 electronic equipment.
  • an acoustic device includes a sound emitting unit 1.
  • the sound emitting unit 1 is a miniature sound emitting unit. More specifically, the sound emitting unit 1 is a miniature moving coil speaker.
  • the sound unit 1 generally includes a housing and a vibration system and a magnetic circuit system accommodating and fixed in the housing.
  • the vibration system includes a vibration diaphragm 11 fixed on the housing and a voice coil combined with the vibration diaphragm 11.
  • the magnetic circuit system is formed with A magnetic gap, the voice coil is arranged in the magnetic gap, and the voice coil reciprocates up and down in the magnetic field after the alternating current is applied, thereby driving the vibrating diaphragm 11 to vibrate and produce sound.
  • the acoustic device is provided with a sound outlet 4, the sound waves on the front side of the vibrating diaphragm 11 are radiated to the outside through the sound outlet 4, and the sound waves on the back side of the vibrating diaphragm 11 are kept inside the acoustic device.
  • a cavity is formed between the vibrating diaphragm 11 and the casing and the magnetic circuit system.
  • a rear sound hole is opened on the casing or the magnetic circuit system or between the two. The sound waves on the rear side of the vibrating diaphragm 11 will pass through the rear sound. The hole enters the interior of the acoustic device.
  • the vibration direction of the vibrating diaphragm 11 of the sound generating unit 1 is parallel to the thickness direction of the acoustic device, which is beneficial to the thin design of the acoustic device.
  • the rear side of the vibrating diaphragm 11 forms a closed airtight cavity, and the airtight cavity is divided into a first airtight cavity 21 and a second airtight cavity 31 by a spacer, wherein the spacer can be at least partially flexibly deformed.
  • the part that can be at least partially flexibly deformed is the flexible deformation portion 22, the first sealed cavity 21 is adjacent to the vibrating diaphragm 11, and the second sealed cavity 31 is away from the vibrating diaphragm 11.
  • the volume of the second sealed cavity 31 is greater than the volume of the first sealed cavity 21.
  • the vibrating diaphragm 11 vibrates, the internal sound pressure of the first airtight cavity 21 changes, and the flexible deformable portion 22 of the spacer is deformed as the sound pressure changes in the first airtight cavity 21, and it is
  • the first airtight cavity 21 performs a flexible adjustment of the volume;
  • the second airtight cavity 31 encloses the sound waves generated by the flexible deformable portion 22 during deformation in the second airtight cavity 31.
  • the electronic device 5 may be a mobile phone, a tablet computer, a notebook computer, etc. That is, part or all of the cavity wall of the first airtight cavity 21 is formed by the housing of the electronic device, or part or all of the cavity wall of the second airtight cavity 31 is formed by the housing of the electronic device, or, Part or all of the cavity walls of the first sealed cavity 21 and the second sealed cavity 31 are constituted by the housing of the electronic device.
  • the housing of the electronic device doubles as the cavity wall of the first sealed cavity and/or the second sealed cavity, which can make full use of the internal space of the electronic device, while saving a part of the space occupied by the cavity wall, which is more conducive to electronics
  • the thin design of the device is more conducive to electronics
  • the flexible deformable portion is provided with a pressure equalizing hole 23 that communicates the first closed cavity and the second closed cavity, and the pressure equalizing hole 23 can balance the internal and external air pressure.
  • the effect does not have a significant effect on rapid changes in sound pressure.
  • the pressure equalizing hole is provided on the plastic shell, and the processing cost is high.
  • a pressure equalizing hole is provided on a thin flexible deformable part material, so that the flexible deformable part and the pressure equalizing hole are integrated
  • the design saves space.
  • pressure equalizing holes can be opened directly by stamping or laser drilling technology. The processing technology is simple, the cost is low, and the opening size is relatively easy to grasp, which can ensure product quality and consistency.
  • the diameter of the equalizing hole is 0.3-1.0 mm.
  • the pressure equalizing hole is a number of micropores arranged in a dispersed manner, and the diameter of each micropore is 0.05 mm to 0.15 mm.
  • the damping mesh can be covered on the pressure equalizing hole, and the acoustic resistance can be further adjusted through the damping mesh.
  • the acoustic device includes a first housing 2, the sound generating unit 1 is mounted on the first housing 2 to form a sound generating assembly, and the vibration diaphragm 11 of the sound generating unit 1 is connected to the
  • the first sealed cavity 21 is formed between the first housing 2;
  • the acoustic device includes a second housing 3, and the sound generating component is installed in the second housing 3, and the second housing 3 is connected to the
  • the second sealed cavity 31 is formed between the first casing 1; a part of the first casing 2 forms the spacer.
  • the second sealed cavity 31 is actually constituted by the gap between the components and the second housing 3 and the first housing 2.
  • the sound generating unit 1 is arranged inside the first housing 2, and the two form an integral structure, and then are assembled with the second housing 3.
  • the first housing 2 is provided with an opening, and the space on the front side of the diaphragm communicates with the opening, and the sound is radiated to the sound outlet 4 of the acoustic device through the opening.
  • the acoustic device is installed in an electronic device such as a mobile phone, and the housing of the electronic device doubles as the second housing 3 of the acoustic device.
  • the space between the housing and internal components of the electronic device and the first housing 2 of the acoustic device forms a second closed cavity 31, the second housing of the acoustic device itself is omitted, and the housing components of the electronic device are fully utilized
  • the gap space between the two can realize the maximized design of the second closed cavity 31.
  • the body of the flexible deformable part 22 may be made of plastic material or thermoplastic elastomer material, or silicone rubber material, and may be a layer or multilayer composite structure, and the body of the flexible deformable part may be flat, or Partially convex or concave structures, such as central convex, edge convex, or a combination of central convex and edge convex.
  • a composite sheet may be superimposed on the middle part of the main body of the flexible deformable part 22. The strength of the composite sheet is higher than that of the main body, and may be metal, plastic, carbon fiber, or a composite structure thereof, etc. .
  • the body of the flexible deformable portion 22 can be a sheet-like overall structure, or a structure with a hollowed-out middle and a composite sheet.
  • the edge can be flat or flat. A convex shape or a wave shape.
  • the flexible deformable portion 22 is integrated with the other parts of the first housing 2.
  • the flexible deformable portion 22 can be manufactured first, and then the flexible deformable portion 22 is integrally molded as an insert. In other parts of the housing.
  • the main bodies of the first sealed cavity 21 and the second sealed cavity 31 extend along the horizontal direction formed by the length and width of the acoustic device.
  • the horizontal direction can also be defined by a direction perpendicular to the thickness direction of the acoustic device.
  • the horizontal direction generally refers to the direction parallel to the horizontal plane when the acoustic device is placed on a horizontal plane, and the two chambers are arranged along the horizontal direction, so as not to occupy the space in the height direction of the acoustic device as much as possible, which is beneficial to the thin design of the product .
  • the second housing 3 has a top wall, a bottom wall, and a side wall connecting the top wall and the bottom wall, and the sound outlet 4 of the acoustic device is provided on the top wall, the bottom wall or the side wall.
  • the airtight cavity on the rear side of the vibrating diaphragm 11 is separated into a first airtight cavity 21 and a second airtight cavity 31 by a spacer, and a flexible deformable part 22 is provided on the spacer.
  • the flexible deforming part 22 deforms with the sound pressure, and the volume of the first sealed cavity 21 is adjustable, thereby increasing the equivalent acoustic compliance of the first sealed cavity 21, effectively reducing the resonance frequency of the acoustic device, and improving low-frequency sensitivity;
  • the second airtight cavity 31 is used to isolate the sound radiation generated during the deformation of the flexible deformable part 22, and the radiated sound waves of the flexible deformable part 22 are enclosed inside the acoustic device to avoid the reverse phase radiated sound waves of the flexible deformable part 22, which will affect the sound unit 1
  • the positive radiated sound waves cause the cancellation effect, and then the overall low-frequency sensitivity of the product is greatly improved.
  • the volume of the second sealed cavity 31 is greater than the volume of the first sealed cavity 21, which can make the deformation of the flexible deformable portion 22 easier, which is more conducive to increasing the equivalent sound of the first sealed cavity 21 and effectively reducing the acoustics.
  • the resonance frequency of the device improves the low frequency sensitivity.
  • the compliance of the acoustic device is formed by the parallel connection of the sound generating unit and the enclosed cavity in the box.
  • the fs formula of the prior art 1 is as follows:
  • fs the resonance frequency of the acoustic device
  • Cas the equivalent sound of the sound unit
  • Cab the equivalent sound of the air in the cabinet
  • Mac the equivalent sound quality of the vibration system of the sound unit.
  • Figure 2 shows the loudness test of the acoustic device with passive radiator in prior art 2 and the acoustic device with traditional structure in prior art 1 at different frequencies
  • Curve (SPL curve) Fig. 5 is a test curve (SPL curve) of loudness at different frequencies between the acoustic device of this embodiment and the acoustic device of prior art 1.
  • the sounding unit is connected in parallel with a passive radiator/flexible deforming part 22
  • the compliance of the resulting increase in the final equivalent compliance, thereby reducing F0.
  • the fs formulas of prior art 2 and this embodiment are as follows:
  • fs the resonance frequency of the acoustic device
  • Cas the equivalent sound of the sounding unit
  • Cab the equivalent sound of the air in the first airtight cavity
  • Mac the equivalent sound quality of the vibration system of the sounding unit
  • Cap passive radiation
  • the sound unit and the passive radiator radiate to the outside at the same time, and the sound waves at frequencies below the resonance point fp have opposite phases, and the sound pressure cancels each other out.
  • the passive radiator has a negative effect on the sensitivity of the acoustic system.
  • FIG. 6 is a test curve (SPL curve) of loudness at different frequencies between the acoustic device of this embodiment and the acoustic device of the prior art 2 with passive radiators.
  • SPL curve test curve
  • the second airtight cavity 31 retains the sound waves generated on the back side of the diaphragm of the acoustic device inside the acoustic device.
  • the second airtight cavity 31 removes the sound generated by the flexible deformation part 22.
  • the pressure isolation prevents the anti-phase radiated sound waves generated by the deformation of the flexible deforming part 22 from canceling the forward radiated sound waves of the sound unit, thereby greatly improving the low-frequency sensitivity of the product as a whole.
  • the flexible deformable portion 22 in this embodiment is an independent mounting component, and the isolation portion (not shown) is provided with a through hole, and the flexible deformable portion 22 is installed on the through hole.
  • the flexible deformable portion 22 is fixedly connected to the first housing part around the through hole by bonding, welding or hot melting.
  • This improved design makes the selection of the flexible deformable part 22 more convenient and can achieve a more realistic combination with the first housing.
  • a through hole is provided on the first housing, which can simplify the product process.
  • the acoustic device in this embodiment is provided with a sound channel, which is designed corresponding to the sound outlet 4, and the sound waves on the front side of the vibrating diaphragm 11 are radiated to the sound channel through the sound channel. Speak out 4.
  • This design is more in line with the design requirements of some terminal products, does not occupy the space of the panel of mobile phones and other panels, is conducive to the design of full screens, and avoids occlusion and interference from other components.
  • the sound unit 1 is installed in the first housing 2, and the sound channel is also provided on the first housing 2.
  • the sound channel is provided on the second housing 3, and the sound component is connected to the sound channel; or the sound channel is separately provided, and the sound channel is connected to the sound outlet 4 and the sound component respectively Docking.
  • the acoustic device in this embodiment includes two sound emitting units 1, and two first airtight cavities 21 are correspondingly designed at the same time, the second airtight cavity 31 is one, and the two first airtight cavities Separate portions are provided between 21 and the second sealed cavity 32, and flexible deformable portions 22 are respectively designed on the separate portions.
  • the number of first sealed cavities can also be other numbers, and they form a sealed cavity with one second sealed cavity.
  • FIG. 10 there are multiple sound emitting units 1, and the multiple sound emitting units correspond to the same first airtight cavity 21.
  • This embodiment specifically includes two sound emitting units 1, the second There is one airtight cavity 31, and a flexible deformable part 22 is provided between the first airtight cavity 21 and the second airtight cavity 31; this implementation process can also be further improved, for example, there may be more than one second airtight cavity 31, and the first airtight cavity 21 is one, all of which can achieve the technical effects created by the utility model.
  • This embodiment discloses an electronic device 5. As shown in FIG. 11 and FIG. 12, the acoustic device in the foregoing embodiment is installed on the electronic device 5.
  • the electronic device 5 may be a mobile phone, a tablet computer, a notebook, or the like.
  • the electronic device 5 specifically includes a housing of the electronic device, and at least a part of the housing of the electronic device is used to form the first sealed cavity 21 and/or the second sealed cavity 31 of the acoustic device. That is, part or all of the cavity wall of the first airtight cavity 21 is formed by the housing of the electronic device, or part or all of the cavity wall of the second airtight cavity 31 is formed by the housing of the electronic device, or, Part or all of the cavity walls of the first sealed cavity 21 and the second sealed cavity 31 are constituted by the housing of the electronic device.
  • the housing of the electronic device doubles as the cavity wall of the first sealed cavity 21 and/or the second sealed cavity 31, which can make full use of the space inside the electronic device, while saving a part of the space occupied by the cavity wall, which is more effective Conducive to the thin design of electronic equipment.
  • the acoustic device includes a first housing 2, the sound generating unit 1 is mounted on the first housing 2 to form a sound generating assembly, and the vibration diaphragm 11 of the sound generating unit 1 is connected to the
  • the first sealed cavity 21 is formed between the first shells 2, wherein the spacer is a part of the first shell 2, and the spacer is provided with a flexible deformable part 22;
  • the acoustic device also includes a second shell 3
  • the sound component is installed in the second housing 3, and the second sealed cavity 31 is formed between the second housing 3 and the first housing 1.
  • the second housing 3 is a housing of an electronic device.
  • the space between the housing of the electronic equipment and the internal components and the first housing 2 of the acoustic device forms a second closed cavity 31, and the housing of the electronic equipment doubles as the second housing 3 of the acoustic device, which is omitted
  • the second housing of the acoustic device makes full use of the gap space between the components of the housing of the electronic device, which can realize the maximized design of the second sealed cavity 31, which is beneficial to the thin design of the electronic device.

Abstract

本申请提供了一种声学装置,声学装置上设置有出声口;振动膜片后侧形成密闭的密闭腔,密闭腔被间隔部间隔成第一密闭腔和第二密闭腔,间隔部可以至少部分柔性形变,第一密闭腔邻接振动膜片,第二密闭腔远离振动膜片,第二密闭腔将柔性形变部在形变时产生的声波封闭在第二密闭腔内;在柔性形变部上设有连通第一密闭腔与第二密闭腔的均压孔。此外,本申请还提出一种电子设备。本申请中的声学装置可以有效降低谐振频率,整体上较大幅度提升产品的低频段灵敏度。

Description

声学装置及电子设备 技术领域
本实用新型涉及声学技术领域,更具体地,涉及一种声学装置及安装有该声学装置的电子设备。
背景技术
一般而言,传统结构的声学系统(现有技术1)包括封闭箱体和设置在封闭箱体上的发声单元,封闭箱体与发声单元之间形成腔室,由于声学系统中的的腔室的容积限制,声学系统尤其是小型声学系统很难实现能令人满意地再现低音的效果。常规地,为了在声学系统中实现令人满意的低音再现,通常采用两种手段,一种是将吸音材料(例如活性炭、沸石等)设置于声学系统的箱体内,用于吸附或脱附箱体内的气体,起到容积增大进而降低低频谐振频率的效果,另一种是在声学系统的箱体上设置被动辐射体(现有技术2),例如图1所示,其中,10为发声单元,20为声学系统的箱体,30为被动辐射体,发声单元和被动辐射体同时对外辐射声音,利用被动辐射体与箱体在特定频点fp(共振频率点)形成强烈共振的原理,将发声单元和被动辐射体两者的声波连通叠加,对共振频率点fp附近局部灵敏度进行增强(例如,参见专利CN1939086A)。但是上述两种手段均存在问题,第一种在箱体中添加吸音材料的方案,需要实现吸音材料的良好密封封装,否则如果吸音材料进入扬声器单元,则损害扬声器单元的声学性能,影响扬声器单元的使用寿命;第二种采用被动辐射体的方案,在共振频率点fp附近,被动辐射体强烈辐射,发声单元近乎停止,因此可以通过被动辐射体的高灵敏度设计,在fp附近频段实现声学系统的局部灵敏度增强;但在fp以下频段,被动辐射体与发声单元声波相位相反,声波相互抵消,被动辐射体对声学系统灵敏度起负面作用。总言之,被动辐射体只能提升共振点附近频段的灵敏度,不能对全部低频段有所提升。如图2所示,图2是现有技术2与现有技 术1在不同频率下响度的测试曲线(SPL曲线)。所以有必要对现有技术存在的缺陷做进一步的改进。
实用新型内容
本实用新型的一个目的是提供一种有效降低谐振频率,整体上较大幅度提升产品的低频段灵敏度的声学装置。
为解决上述技术问题,本实用新型提供的技术方案是:为实现上述目的,本实用新型提出的声学装置,包括:发声单元,所述发声单元包括振动膜片,所述声学装置上设置有出声口,所述振动膜片前侧的声波通过所述出声口对外辐射;
所述振动膜片后侧形成密闭的密闭腔,所述密闭腔被间隔部间隔成第一密闭腔和第二密闭腔,其中,所述间隔部可以至少部分柔性形变,所述第一密闭腔邻接所述振动膜片,所述第二密闭腔远离所述振动膜片,所述第二密闭腔将所述柔性形变部在形变时产生的声波封闭在所述第二密闭腔内;
在所述柔性形变部上设有连通所述第一密闭腔与所述第二密闭腔的均压孔。
优选的,所述均压孔为一个,所述均压孔的孔径为0.3-1.0mm。
优选地,所述均压孔为分散设置的若干微孔,每个所述微孔的孔径为0.05mm至0.15mm。
优选地,所述柔性形变部上设有覆盖所述均压孔的阻尼网布。
优选地,所述发声单元和所述第一密闭腔一一对应设有多个,所述第二密闭腔设有一个,每个所述第一密闭腔与所述第二密闭腔之间的间隔部上设有柔性形变部。
优选地,所述声学装置包括第一壳体,所述发声单元安装在所述第一壳体上形成发声组件,所述发声单元的振动膜片与所述第一壳体之间形成所述第一密闭腔;
所述声学装置包括第二壳体,所述发声组件安装于所述第二壳体中,所述第二壳体与所述第一壳体之间形成所述第二密闭腔;
所述第一壳体的一部分形成所述间隔部;
所述第二壳体为电子设备的壳体。
优选地,所述第二壳体具有顶壁、底壁和连接所述顶壁和所述底壁的侧壁,所述出声口设于所述顶壁、所述底壁或者所述侧壁上。
优选地,所述声学装置设置有对应所述出声口的出声通道,所述振动膜片前侧的声波通过所述出声通道辐射到所述出声口,其中,
所述发声单元安装在所述第一壳体内,所述出声通道设置在所述第一壳体上;
或者,所述出声通道设于所述第二壳体上,所述发声组件与所述出声通道对接;
或者,所述出声通道单独设置,所述出声通道分别与所述出声口和所述发声组件对接。
优选地,所述柔性形变部为独立部件,所述柔性形变部与所述第一壳体的其他部分通过粘接、焊接或热熔方式固定连接;
或者,所述柔性形变部与所述第一壳体的其他部分一体结合。
此外,为解决上述问题,本实用新型还提出一种电子设备,所述电子设备包括如上述的声学装置;
所述声学装置包括第一壳体,所述发声单元安装在所述第一壳体上形成发声组件,所述发声单元的振动膜片与所述第一壳体之间形成所述第一密闭腔;所述声学装置还包括第二壳体,所述发声组件安装于所述第二壳体中,所述第二壳体与所述第一壳体之间形成所述第二密闭腔;
所述第一壳体的一部分形成所述间隔部;
所述第二壳体为电子设备的壳体。
本实用新型所提供的技术方案,声学装置中,振动膜片后侧的密闭腔通过间隔部间隔成第一密闭腔和第二密闭腔,且间隔部上设有柔性形变部,通过设置柔性形变部,柔性形变部随着声压产生变形,第一密闭腔的容积大小可调,从而增加第一密闭腔等效声顺,有效降低声学装置共振频率,提升低频灵敏度;并通过对发声单元和柔性形变部隔离设计,将柔性形变部的辐射声波封闭于声学装置内部,避免柔性形变部的反相位辐射声波,对发声单元的正向辐射声波造成抵消影响,进而整体上较大幅度提升产品的低频段灵敏度。进一步的,本实用新型中,通过在所述柔性形变部上开设均压孔以联通两个密闭腔,使得所述第一密闭腔与所述第二密闭腔之间的气压平衡,从而 保证产品长时间振动时平稳,改善性能可靠性。
通过以下参照附图对本实用新型的示例性实施例的详细描述,本实用新型的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本实用新型的实施例,并且连同其说明一起用于解释本实用新型的原理。
图1是现有技术2设置被动辐射体的声学装置的结构示意图。
图2是现有技术2设置被动辐射体的声学装置与现有技术1传统结构的声学装置在不同频率下响度的测试曲线(SPL曲线)。
图3是根据本实用新型的一个实施例的声学装置的结构示意图。
图4是根据本实用新型的一个实施例的声学装置工作状态示意图。
图5是根据本实用新型的一个实施例的声学装置与现有技术1传统结构的声学装置在不同频率下响度的测试曲线(SPL曲线)。
图6是根据本实用新型的一个实施例的声学装置与现有技术2中设置被动辐射体的声学装置在不同频率下响度的测试曲线(SPL曲线)。
图7是根据本实用新型的另一个实施例的声学装置的结构示意图。
图8是根据本实用新型再一个实施例的声学装置的结构示意图。
图9是根据本实用新型又一个实施例的声学装置的结构示意图。
图10是图9的进一步改进;
图11是根据本实用新型使用声学装置电子设备的结构示意图。
图12是图11的局部放大图。
附图标记说明:
1:发声单元;11:振动膜片;2:第一壳体;21:第一密闭腔;22:柔性形变部;23:均压孔;3:第二壳体;31:第二密闭腔;4:出声口;5:电子设备。
具体实施方式
现在将参照附图来详细描述本实用新型的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本实用新型的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本实用新型及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
实施例一:
如图3所示,一种声学装置,包括发声单元1,其中,本实施例中,发声单元1为微型发声单元,更具体的,发声单元1为微型的动圈式扬声器。发声单元1一般包括外壳和容置固定在外壳中的振动系统和磁路系统,振动系统包括固定在外壳上的振动膜片11和结合在振动膜片11上的音圈,磁路系统形成有磁间隙,音圈设置于该磁间隙中,音圈通入交流电后在磁场中做上下往复运动,从而带动振动膜片11振动发声。
在声学装置上设置有出声口4,振动膜片11前侧的声波通过出声口4对外辐射,振动膜片11后侧的声波留置于声学装置内部。振动膜片11与外壳和磁路系统之间形成有腔室,一般在外壳上或者磁路系统上或者两者之间开设有后声孔,振动膜片11后侧的声波会通过该后声孔进入声学装置的内部。本实施例中,发声单元1的振动膜片11的振动方向平行于声学装置的厚度方向,有利于声学装置的薄型化设计。
进一步的,本实施例中,振动膜片11后侧形成密闭的密闭腔,密闭腔被间隔部间隔成第一密闭腔21和第二密闭腔31,其中,间隔部可以至少部分柔性形变,该可以至少部分柔性形变的部分为柔性形变部22,所述第一密闭腔21邻接所述振动膜片11,所述第二密闭腔31远离所述振动膜片11。 进一步的,本实施例中第二密闭腔31的容积大于第一密闭腔21的容积。
当所述振动膜片11振动时,所述第一密闭腔21的内部声压发生变化,所述间隔部的柔性形变部22随第一密闭腔21内的声压变化而产生形变,对所述第一密闭腔21进行容积大小的柔性调节;所述第二密闭腔31将所述柔性形变部22在形变时产生的声波封闭在所述第二密闭腔31内。
本实施例中,用于安装声学装置的电子设备的壳体的至少一部分用于形成所述第一密闭腔21和/或所述第二密闭腔31。其中,电子设备5可以是手机、平板电脑、笔记本电脑等。即,第一密闭腔21的腔体壁的部分或全部是由电子设备的壳体构成,或者,第二密闭腔31的腔体壁的部分或全部是由电子设备的壳体构成,或者,第一密闭腔21和第二密闭腔31的腔体壁的部分或全部由电子设备的壳体构成。本实用新型中,电子设备的壳体兼做第一密闭腔和/第二密闭腔的腔体壁,能够充分利用电子设备内部的空间,同时节约一部分腔体壁占用的空间,更加有利于电子设备的薄型化设计。
进一步的,本实施例中,在所述柔性形变部上设有连通所述第一密闭腔与所述第二密闭腔的均压孔23,所述均压孔23可以起到平衡内外气压的效果且对声压快速变化没有显著影响。并且相对于现有技术中在产品中的塑料壳体上设置均压孔的结构,因为塑料壳体是注塑模制加工成型,因此在塑料壳体上设置均压孔,加工成本高,均压孔尺寸受限,一般无法做到0.3mm以下,并且占用额外空间;而本实施例中,是在较薄的柔性形变部材料上设置均压孔,一来柔性形变部与均压孔一体化设计节省空间,二来直接可以通过冲压或者激光打孔技术开设均压孔,加工工艺简单,成本低,而且开孔大小比较容易掌握,能够保证产品质量及一致性好。
具体的,所述均压孔为一个,且均压孔的孔径为0.3-1.0mm。或者,所述均压孔为分散设置的若干微孔,每个所述微孔的孔径为0.05mm至0.15mm。
更进一步的,可以在均压孔上覆盖阻尼网布,通过阻尼网布进一步调整声阻。
作为一种具体实施例,所述声学装置包括第一壳体2,所述发声单元1安装在所述第一壳体2上形成发声组件,所述发声单元1的振动膜片11与所述第一壳体2之间形成所述第一密闭腔21;所述声学装置包括第二壳体3,所述发声组件安装于第二壳体3内,所述第二壳体3与所述第一壳体1之间 形成所述第二密闭腔31;所述第一壳体2的一部分形成所述间隔部。其中,在第二壳体3内还存在其他零部件的情况下,第二密闭腔31实际上由零部件与第二壳体3和第一壳体2之间的间隙构成。
本实施例中,发声单元1设置在第一壳体2的内部,两者形成一个整体结构,然后与第二壳体3进行装配。第一壳体2上设有开口,振膜前侧空间与该开口连通,通过该开口将声音辐射到声学装置的出声口4。
在本实施例中,进一步结合图11和图12所示的电子设备的结构图,声学装置安装于手机等电子设备中,且电子设备的壳体兼做声学装置的第二壳体3。电子设备的壳体与内部零部件以及与声学装置的第一壳体2之间的空间形成第二密闭腔31,省略了声学装置自身的第二壳体,充分利用了电子设备壳体零部件之间的间隙空间,可以实现第二密闭腔31的最大化设计。
如图4所示,当声学装置在工作状态下,当振动膜片11向下振动压缩振动膜片11后侧的容积时,声压会通过第一密闭腔21传递至柔性形变部22,柔性形变部22会朝向第一密闭腔21外侧来扩张形变;反之,当振膜向上振动时,柔性形变部22会向内收缩形变,从而对第一密闭腔21的容积进行调节。其中,柔性形变部22的本体可以为塑料材质或者热塑性弹性体材质,还可以是硅橡胶材质,可以是一层也可以是多层复合结构,并且,柔性形变部的本体可以是平板状,或者部分凸起或凹陷的结构,例如中心部凸起、边缘部凸起,或者中心部凸起加边缘部凸起相结合的结构。进一步的,为了提升振动效果,还可以在柔性形变部22的本体的中间部位叠加一复合片,该复合片的强度高于本体的强度,可以是金属、塑料、碳纤维或者是其复合结构等等。另外柔性形变部22的本体可以是片状的整体结构,也可以是中间镂空加复合片的结构,柔性形变部22的本体中间镂空结构只保留边缘部的情况下,边缘部可以是平板状或者朝一侧凸起的形状、或者为波浪形。
本实施例中,优选的,柔性形变部22与第一壳体2的其他部分一体结合,作为一种具体方案,可以先制作柔性形变部22,然后把柔性形变部22作为嵌件一体注塑成型于壳体的其他部分中。
本实施例中,第一密闭腔21和第二密闭腔31的主体沿声学装置的长和宽构成的水平方向延伸,该水平方向也可以用垂直于声学装置厚度方向的方 向来定义。该水平方向一般是指声学装置放于一个水平面时,平行于该水平面的方向,两个腔室沿该水平方向设置,尽量不占用声学装置的高度方向上的空间,有利于产品的薄型化设计。
第二壳体3具有顶壁、底壁和连接该顶壁和底壁的侧壁,声学装置的出声口4设于顶壁、底壁或者侧壁上。
本实施例的技术方案,声学装置中,振动膜片11后侧的密闭腔通过间隔部间隔成第一密闭腔21和第二密闭腔31,且间隔部上设有柔性形变部22,通过设置柔性形变部22,柔性形变部22随着声压产生形变,第一密闭腔21的容积大小可调,从而增加第一密闭腔21等效声顺,有效降低声学装置共振频率,提升低频灵敏度;通过第二密闭腔31来隔绝柔性形变部22形变过程中产生的声音辐射,将柔性形变部22的辐射声波封闭于声学装置内部,避免柔性形变部22的反相位辐射声波,对发声单元1的正向辐射声波造成抵消影响,进而整体上较大幅度提升产品的低频段灵敏度。
并且,本实施例中第二密闭腔31的容积大于第一密闭腔21的容积,可以使柔性形变部22的变形更加容易,更加有利于增加第一密闭腔21等效声顺,有效降低声学装置共振频率,提升低频灵敏度。
现有技术1中,声学装置的顺性由发声单元和箱体内封闭腔的顺性并联而成,现有技术1的fs公式如下:
Figure PCTCN2019126123-appb-000001
其中,fs:声学装置的共振频率;Cas:发声单元的等效声顺;Cab:箱体内空气的等效声顺;Mac:发声单元的振动系统等效声质量。
现有技术2和本实施例中,结合图2和图5所示,图2是现有技术2设置被动辐射体的声学装置与现有技术1传统结构的声学装置在不同频率下响度的测试曲线(SPL曲线),图5是本实施例的声学装置与现有技术1的声学装置在不同频率下响度的测试曲线(SPL曲线),发声单元因为又并联一个被动辐射体/柔性形变部22的顺性导致最终的等效顺性增大,从而F0降低。现有技术2和本实施例的fs公式如下:
Figure PCTCN2019126123-appb-000002
其中,fs:声学装置的共振频率;Cas:发声单元的等效声顺;Cab:第一密闭腔内空气的等效声顺;Mac:发声单元的振动系统等效声质量;Cap:被动辐射体/柔性形变部的等效声顺。
并且,现有技术2中,发声单元和被动辐射体同时对外辐射,在共振点fp以下频率两者声波相位相反,声压相互抵消,被动辐射体对声学系统灵敏度起负面作用。
进一步的,本实施例中,结合图6所示,图6是本实施例的声学装置与现有技术2的设置被动辐射体的声学装置在不同频率下响度的测试曲线(SPL曲线)。通过设置封闭的第二密闭腔31,第二密闭腔31将声学装置振膜膜片后侧产生的声波留置在声学装置的内部,具体是通过第二密闭腔31将柔性形变部22产生的声压隔离,避免柔性形变部22形变产生的反相位辐射声波,对发声单元的正向辐射声波造成抵消影响,进而整体上较大幅度的提升产品的低频段灵敏度。
实施例二:
如图7所示,本实施例与实施例一的主要区别在于,本实施例中的柔性形变部22为独立的安装部件,在隔离部(未标出)上设置有通孔,柔性形变部22安装在通孔上,具体的,柔性形变部22与通孔周边的第一壳体部分通过粘接、焊接或热熔方式固定连接。这种改进设计,在柔性形变部22的选材上更为便捷,能够与第一壳体实现较为符合实际的组合。同时,在第一壳体上设置通孔,可以简化产品工艺实现。
实施例三:
本实施例与上述实施例的主要区别在于,本实施例中的声学装置上设置有出声通道,出声通道对应出声口4设计,振动膜片11前侧的声波通过出声通道辐射到出声口4。这种设计更为符合部分终端产品的设计要求,不会 占用手机等面板的空间,利于全面屏等设计,同时避免其它部件对其的遮挡和干扰。
具体的,如图8所示,发声单元1安装在第一壳体2内,出声通道也设置在所述第一壳体2上。在其他实施例中,还可以是,出声通道设于第二壳体3上,发声组件与出声通道对接;或者,出声通道单独设置,出声通道分别与出声口4和发声组件对接。
实施例四:
本实施例与上述实施例的主要区别在于,本实施例中,发声单元1和第一密闭腔21一一对应设有多个,第二密闭腔31设有一个,每个所述第一密闭腔21与共同的一个第二密闭腔31之间的间隔部上设有柔性形变部。具体的,如图9所示,本实施例中的声学装置包括两个发声单元1,同时分别对应设计有两个第一密闭腔21,第二密闭腔31为一个,两个第一密闭腔21分别与第二密闭腔32之间设有间隔部,并在间隔部上分别设计有柔性形变部22。这种设计可以便于实现需要多个发声单元1的声学装置或系统的情况下的应用,如立体声或阵列形式的设计要求。本实施例中的第一密闭腔也可以为其它数量,共同与一个第二密闭腔形成密闭腔。
作为本实施例的进一步改进,如图10所示,发声单元1为多个,且多个发声单元对应于同一个第一密闭腔21,本实施例具体设有两个发声单元1,第二密闭腔31为一个,第一密闭腔21和第二密闭腔31之间设置有柔性形变部22;本实施过程也可以进一步改进,如第二密闭腔31也可以为多个,第一密闭腔21为一个,皆可以实现本实用新型创造的技术效果。
实施例五:
本实施例公开了一种电子设备5,如图11和图12所示,在电子设备5上安装有上述实施例中的声学装置,电子设备5可以是手机、平板电脑、笔记本等。
电子设备5具体包括电子设备的壳体,所述电子设备的壳体的至少一 部分用于形成声学装置的第一密闭腔21和/或第二密闭腔31。即,第一密闭腔21的腔体壁的部分或全部是由电子设备的壳体构成,或者,第二密闭腔31的腔体壁的部分或全部是由电子设备的壳体构成,或者,第一密闭腔21和第二密闭腔31的腔体壁的部分或全部由电子设备的壳体构成。本实用新型中,电子设备的壳体兼做第一密闭腔21和/第二密闭腔31的腔体壁,能够充分利用电子设备内部的空间,同时节约一部分腔体壁占用的空间,更加有利于电子设备的薄型化设计。
在该具体实施例中,所述声学装置包括第一壳体2,所述发声单元1安装在所述第一壳体2上形成发声组件,所述发声单元1的振动膜片11与所述第一壳体2之间形成所述第一密闭腔21,其中,间隔部是第一壳体2的一部分,间隔部上设有柔性形变部22;所述声学装置还包括第二壳体3,所述发声组件安装于所述第二壳体3中,所述第二壳体3与所述第一壳体1之间形成所述第二密闭腔31。其中,所述第二壳体3为电子设备的壳体。实际上,电子设备壳体与内部零部件以及与声学装置的第一壳体2之间的空间形成第二密闭腔31,电子设备的壳体兼做声学装置的第二壳体3,省略了声学装置自身的第二壳体,充分利用了电子设备壳体零部件之间的间隙空间,可以实现第二密闭腔31的最大化设计,有利于电子设备薄型化设计。
虽然已经通过例子对本实用新型的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本实用新型的范围。本领域的技术人员应该理解,可在不脱离本实用新型的范围和精神的情况下,对以上实施例进行修改。本实用新型的范围由所附权利要求来限定。

Claims (10)

  1. 一种声学装置,包括发声单元,所述发声单元包括振动膜片,所述声学装置上设置有出声口,所述振动膜片前侧的声波通过所述出声口对外辐射;其特征在于:
    所述振动膜片后侧形成密闭的密闭腔,所述密闭腔被间隔部间隔成第一密闭腔和第二密闭腔,其中,所述间隔部可以至少部分柔性形变,所述第一密闭腔邻接所述振动膜片,所述第二密闭腔远离所述振动膜片,所述第二密闭腔将所述间隔部的柔性形变部在形变时产生的声波封闭在所述第二密闭腔内;
    在所述柔性形变部上设有连通所述第一密闭腔与所述第二密闭腔的均压孔。
  2. 根据权利要求1所述的声学装置,其特征在于,所述均压孔为一个,所述均压孔的孔径为0.3-1.0mm。
  3. 根据权利要求1所述的声学装置,其特征在于,所述均压孔为分散设置的若干微孔,每个所述微孔的孔径为0.05mm至0.15mm。
  4. 根据权利要求2或3所述的声学装置,其特征在于,所述柔性形变部上设有覆盖所述均压孔的阻尼网布。
  5. 根据权利要求1所述的声学装置,其特征在于,
    所述发声单元和所述第一密闭腔一一对应设有多个,所述第二密闭腔设有一个,每个所述第一密闭腔与所述第二密闭腔之间的间隔部上设有柔性形变部。
  6. 根据权利要求1-5任一权利要求所述的声学装置,其特征在于,所述声学装置包括第一壳体,所述发声单元安装在所述第一壳体上形成发声组 件,所述发声单元的振动膜片与所述第一壳体之间形成所述第一密闭腔;
    所述声学装置包括第二壳体,所述发声组件安装于所述第二壳体中,所述第二壳体与所述第一壳体之间形成所述第二密闭腔;
    所述第一壳体的一部分形成所述间隔部;
    所述第二壳体为电子设备的壳体。
  7. 根据权利要求6所述的声学装置,其特征在于,所述第二壳体具有顶壁、底壁和连接所述顶壁和所述底壁的侧壁,所述出声口设于所述顶壁、所述底壁或者所述侧壁上。
  8. 根据权利要求7所述的声学装置,其特征在于,
    所述声学装置设置有对应所述出声口的出声通道,所述振动膜片前侧的声波通过所述出声通道辐射到所述出声口,其中,
    所述发声单元安装在所述第一壳体内,所述出声通道设置在所述第一壳体上;
    或者,所述出声通道设于所述第二壳体上,所述发声组件与所述出声通道对接;
    或者,所述出声通道单独设置,所述出声通道分别与所述出声口和所述发声组件对接。
  9. 根据权利要求6所述的声学装置,其特征在于,
    所述柔性形变部为独立部件,所述柔性形变部与所述第一壳体的其他部分通过粘接、焊接或热熔方式固定连接;
    或者,所述柔性形变部与所述第一壳体的其他部分一体结合。
  10. 一种电子设备,其特征在于:所述电子设备包括如权利要求1-9所述的声学装置;
    所述声学装置包括第一壳体,所述发声单元安装在所述第一壳体上形成发声组件,所述发声单元的振动膜片与所述第一壳体之间形成所述第一密闭 腔;所述声学装置还包括第二壳体,所述发声组件安装于所述第二壳体中,所述第二壳体与所述第一壳体之间形成所述第二密闭腔;
    所述第一壳体的一部分形成所述间隔部;
    所述第二壳体为电子设备的壳体。
PCT/CN2019/126123 2019-04-04 2019-12-18 声学装置及电子设备 WO2020199654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920461060.1 2019-04-04
CN201920461060.1U CN210298035U (zh) 2019-04-04 2019-04-04 声学装置及电子设备

Publications (1)

Publication Number Publication Date
WO2020199654A1 true WO2020199654A1 (zh) 2020-10-08

Family

ID=70067820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126123 WO2020199654A1 (zh) 2019-04-04 2019-12-18 声学装置及电子设备

Country Status (2)

Country Link
CN (1) CN210298035U (zh)
WO (1) WO2020199654A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475764A (en) * 1992-09-30 1995-12-12 Polk Investment Corporation Bandpass woofer and method
CN207560324U (zh) * 2017-11-21 2018-06-29 无锡睿勤科技有限公司 一种应用于笔记本电脑的喇叭系统及笔记本电脑
CN109218939A (zh) * 2018-08-16 2019-01-15 歌尔股份有限公司 发声装置及电子设备
CN109803215A (zh) * 2018-12-18 2019-05-24 歌尔股份有限公司 声学装置及电子设备
CN209462592U (zh) * 2018-12-17 2019-10-01 歌尔科技有限公司 声学装置和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475764A (en) * 1992-09-30 1995-12-12 Polk Investment Corporation Bandpass woofer and method
CN207560324U (zh) * 2017-11-21 2018-06-29 无锡睿勤科技有限公司 一种应用于笔记本电脑的喇叭系统及笔记本电脑
CN109218939A (zh) * 2018-08-16 2019-01-15 歌尔股份有限公司 发声装置及电子设备
CN209462592U (zh) * 2018-12-17 2019-10-01 歌尔科技有限公司 声学装置和电子设备
CN109803215A (zh) * 2018-12-18 2019-05-24 歌尔股份有限公司 声学装置及电子设备

Also Published As

Publication number Publication date
CN210298035U (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
US20220078546A1 (en) Acoustic device and electronic apparatus
US11962969B2 (en) Acoustic device and electronic apparatus
WO2021031486A1 (zh) 声学装置及电子设备
WO2018218766A1 (zh) 扬声器模组以及电子设备
WO2021031477A1 (zh) 声学装置及电子设备
CN110662133B (zh) 声学装置及电子设备
WO2021088225A1 (zh) 声学装置及电子设备
WO2020125703A1 (zh) 声学装置及电子设备
WO2021056862A1 (zh) 声学装置及电子设备
WO2021031475A1 (zh) 声学装置及电子设备
CN110572755B (zh) 声学装置及电子设备
WO2021062955A1 (zh) 发声装置及安装有该发声装置的声学模块及电子设备
WO2020199654A1 (zh) 声学装置及电子设备
WO2021031485A1 (zh) 声学装置及电子设备
WO2021031476A1 (zh) 声学装置及电子设备
WO2020125619A1 (zh) 声学装置及电子设备
WO2020125618A1 (zh) 声学装置及电子设备
CN210381285U (zh) 声学装置及电子设备
WO2020258786A1 (zh) 声学装置及电子设备
WO2020258787A1 (zh) 声学装置及电子设备
CN209824004U (zh) 声学装置及电子设备
CN104285453A (zh) 新颖扬声器
WO2021088212A1 (zh) 声学装置及电子设备
CN111083607A (zh) 一种声学装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922859

Country of ref document: EP

Kind code of ref document: A1