WO2021088169A1 - 具有热致变色效应的材料及其制备方法和热致变色智能窗 - Google Patents

具有热致变色效应的材料及其制备方法和热致变色智能窗 Download PDF

Info

Publication number
WO2021088169A1
WO2021088169A1 PCT/CN2019/122493 CN2019122493W WO2021088169A1 WO 2021088169 A1 WO2021088169 A1 WO 2021088169A1 CN 2019122493 W CN2019122493 W CN 2019122493W WO 2021088169 A1 WO2021088169 A1 WO 2021088169A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
powder
sio
composite
add
Prior art date
Application number
PCT/CN2019/122493
Other languages
English (en)
French (fr)
Inventor
张�荣
徐磊
蒋希芝
严旎娜
柳军
冯敏
皮杰
夏礼如
Original Assignee
江苏省农业科学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省农业科学院 filed Critical 江苏省农业科学院
Publication of WO2021088169A1 publication Critical patent/WO2021088169A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2405Areas of differing opacity for light transmission control

Definitions

  • the invention relates to the field of intelligent energy-saving materials, in particular to a material with a thermochromic effect, a preparation method thereof, and a thermochromic smart window.
  • vanadium dioxide (VO 2 ) smart dimming material can selectively transmit, absorb or reflect specific spectra by changing its own optical characteristics under the stimulation of external conditions and temperature to produce adjusted light intensity And the spectral range and other effects, so as to realize the adjustment of the indoor temperature, and achieve the purpose of energy saving and temperature control. During the temperature transition, the transmittance of visible light hardly changes.
  • VO 2 film materials can actively adjust the transmittance of sunlight according to the ambient temperature, and finally obtain a "warm in winter and cool in summer” comfortable building environment, thereby reducing the need for cooling and cooling.
  • the energy consumption generated by heating has become the first choice for intelligent temperature control materials.
  • thermochromic composite material can actively adjust the transmittance of sunlight according to the ambient temperature , It has the advantages of extremely high visible light transmittance, variable temperature spectrum control efficiency, photothermal stability and adaptability.
  • the present invention provides a method for preparing a material with thermochromic effect, including the following steps:
  • V 1-x W x O 2 powder Disperse the V 1-x W x O 2 powder in a solvent, add reactive monomers and dispersants under the action of a catalyst to carry out hydrolysis and condensation reactions to obtain V 1-x W x O 2 @SiO 2 composite powder ;
  • V 1-x W x O 2 @SiO 2 composite powder and N-isopropyl acrylamide are subjected to emulsion polymerization reaction to produce V 1-x W x O 2 @SiO 2 /PNIPAM composite solution.
  • step S1 specifically includes:
  • step S12 Add 0.6-1 ml of hydrazine hydrate dropwise to the solution of step S11, and adjust the pH to 8-10 with sodium hydroxide;
  • step S13 Centrifugally extract powder from the solution in step S12, and wash with distilled water to obtain powder raw materials;
  • step S14 the reaction temperature is 240-270°C, the reaction time is 24-48h, ethanol and distilled water are used for washing after centrifugation, and the drying temperature is 40-80°C.
  • the solvent includes ethanol/the catalyst includes ammonia, the reaction monomer includes tetraethylorthosilicate, and the dispersant includes a silane coupling agent.
  • step S2 specifically includes the following steps:
  • step S21 Disperse the V 1-x W x O 2 powder obtained in step S1 in ethanol and stir, add ethanol and ammonia diluent to the solution dropwise, and stir for 30-120 min;
  • step S22 using a peristaltic pump to add tetraethyl orthosilicate to the solution obtained in step S21, and stirring at room temperature for 4-12 hours;
  • step S23 Separate the solution in step S22 by using a centrifuge, wash the separated solids with distilled water and alcohol in sequence, and then dry them at a temperature of 50-80°C for 6-24 hours to obtain powder A;
  • step S25 The reaction solution in step S24 is washed and centrifuged with distilled water and alcohol, and dried at a temperature of 50-80° C. for 6-24 hours to obtain V 1-x W x O 2 @SiO 2 composite powder.
  • the crosslinking agent includes an aqueous solution of N'N-methylenebisacrylamide, and the initiator includes an ammonium persulfate solution.
  • step S3 specifically includes:
  • step S34 The sodium lauryl sulfate solution containing V 1-x W x O 2 @SiO 2 composite powder is stirred and added to step S33 to obtain a mixed solution, wherein each milliliter contains V 1-x W x O 2 dodecyl sulfate composite powder @SiO 2 solution, V 1-x W x O 2 content of the composite powder 2 @SiO 0.0008-0.0032g;
  • step S35 Add ammonium persulfate solution to the mixed solution obtained in step S34, and stir;
  • step S36 Add N-isopropylacrylamide and N'N-methylenebisacrylamide aqueous solution to step S35, and react for 2-5 hours to obtain a composite solution of V 1-x W x O 2 @SiO 2 /PNIPAM, wherein 0 ⁇ x ⁇ 0.5.
  • the method further includes: forming the V 1-x W x O 2 @SiO 2 /PNIPAM composite solution obtained in the step S36 into a film and drying.
  • the present invention also provides a material with thermochromic effect, which is prepared by the method described in the first aspect.
  • the present invention also provides a material with thermochromic effect described in the second aspect for application in smart windows.
  • the material with thermochromic effect provided by the present invention has high visible light transmittance and variable temperature solar spectrum control performance.
  • the material is composed of silica-coated tungsten-doped vanadium dioxide and polynitroisopropyl acrylamide , Can actively adjust the transmittance of sunlight according to the ambient temperature, and finally obtain a "warm in winter and cool in summer” comfortable building environment, thereby reducing energy consumption due to cooling and heating.
  • the material of the invention has excellent thermal stability and adaptability.
  • the composition design and preparation of the material can be carried out according to production needs or environmental temperature and other conditions, and it has a very broad application prospect in the field of energy saving.
  • the present invention uses the hydrothermal reaction method and the emulsion polymerization method, and uses the organic-inorganic composite solution and ordinary glass to assemble a smart window with a "sandwich" structure.
  • Figure 1 is a dynamic light scattering particle size analysis diagram of V 0.8 W 0.2 O 2 @SiO 2 /PNIPAM prepared by the present invention
  • Figure 2 is a transmission electron microscope (TEM) image of V 0.8 W 0.2 O 2 @SiO 2 /PNIPAM prepared by the present invention
  • Fig. 3 is a cooling test diagram of V 0.8 W 0.2 O 2 @SiO 2 /PNIPAM and blank glass prepared by the present invention.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • Step S1 specifically includes the following steps:
  • step S12 Use a peristaltic pump to slowly drop 0.65 ml of hydrazine hydrate into the blue-green solution formed in step S11, and add sodium hydroxide, and adjust the solution to adjust the pH to 8.
  • step S13 Centrifuge the solution of step S12 to take powder at a speed of 11000 r/min, and wash it with distilled water three times to obtain a powder raw material.
  • Step S2 Disperse the V 0.8 W 0.2 O 2 powder in a solvent, add reactive monomers and dispersants under the action of a catalyst to carry out hydrolysis and condensation reactions to obtain V 0.8 W 0.2 O 2 @SiO 2 (silica-coated tungsten) Doped vanadium dioxide) composite powder.
  • Step S2 specifically includes the following steps:
  • step S21 Disperse a certain amount of the V 0.8 W 0.2 O 2 powder produced in step S1 in ethanol and stir for 1 hour. Add 280 ml of ethanol and 70 ml of ammonia diluent to the solution, and stir for 30 minutes.
  • step S23 Use a centrifuge to centrifuge the solution of step S22 to extract powder, and after the separated solids are washed with distilled water and alcohol in turn, the washed solids are dried at 80 degrees Celsius for 12 hours to obtain powder A.
  • step S24 Take 0.1 mg of the powder A obtained in step S23 and disperse it in a mixed solution of 100 ml of ethanol, aqueous ammonia solution and 0.2 ml of silane coupling agent, stir at room temperature for 4 hours, and the volume ratio of ethanol to ammonia is 99:1.
  • step S25 Centrifuge the reaction solution of step S24 with distilled water and alcohol to collect the solids, and dry them at 80 degrees Celsius for 12 hours to obtain V 0.8 W 0.2 O 2 @SiO 2 composite powder.
  • Step S3 specifically includes the following steps:
  • step S34 During the stirring process, add 1 ml of sodium lauryl sulfate (sodium lauryl sulfate) solution containing 0.004 g V 0.8 W 0.2 O 2 @SiO 2 powder in step S33.
  • sodium lauryl sulfate sodium lauryl sulfate
  • S35 Add 0.8 ml of ammonium persulfate solution to the mixed solution of S33 to initiate a reaction, and stir for 1 minute.
  • step S36 Use a peristaltic pump to slowly add 3.5g of N-isopropylacrylamide and 168mg of N'N-methylenebisacrylamide aqueous solution in step S35, and react for 2 hours to obtain V 0.8 W 0.2 O 2 @SiO 2 /PNIPAM composite solution, encapsulate the obtained composite solution with glass.
  • the following step is further included: forming the V 0.8 W 0.2 O 2 @SiO 2 /PNIPAM composite solution obtained in the step S36 into a film and drying it.
  • the composite smart window material prepared in this embodiment can realize obvious thermochromic: at 20 degrees Celsius, the visible light transmittance can reach 92.46%, and the transmittance of the entire solar spectrum is 44.62%; at 40 degrees Celsius, the visible light transmittance is It can reach 29.05%, and the transmittance of the entire solar spectrum is 17.29%. Therefore, the phase transition temperature of the material in this embodiment is 32 degrees, and the temperature-variable spectrum control efficiency is 27.33%. Compared with blank glass, the temperature of the energy-saving test box can be reduced. 15.1 degrees Celsius.
  • Step S1 specifically includes the following steps:
  • step S12 Use a peristaltic pump to slowly drop 1 ml of hydrazine hydrate into the blue-green solution formed in step S11, and add sodium hydroxide, and adjust the solution to adjust the pH to 9.
  • step S13 Centrifuge the solution of step S12 to take powder at a speed of 11000 r/min, and wash it with distilled water three times to obtain a powder raw material.
  • Step S2 Disperse the V 0.9 W 0.1 O 2 powder in a solvent, and add reactive monomers and dispersants under the action of a catalyst to carry out hydrolysis and condensation reactions to obtain a V 0.9 W 0.1 O 2 @SiO 2 composite powder.
  • Step S2 specifically includes the following steps:
  • step S21 Disperse a certain amount of the V 0.9 W 0.1 O 2 powder produced in step S1 in ethanol and stir for 1 hour. Add 280 ml of ethanol and 70 ml of ammonia diluent to the solution, and stir for 30 minutes.
  • step S23 Use a centrifuge to centrifuge the solution in step S22 to obtain powder, and after the separated solids are washed with distilled water and alcohol in turn, the washed solids are dried at 80 degrees Celsius for 12 hours to obtain powder A.
  • step S24 Take 0.1 mg of the powder A obtained in step S23 and disperse it in a mixed solution of 100 ml of ethanol, aqueous ammonia solution and 0.2 ml of silane coupling agent, stir at room temperature for 4 hours, and the volume ratio of ethanol to ammonia is 99:1.
  • step S25 Centrifuge the reaction solution of step S24 with distilled water and alcohol to collect the solids, and dry them at 80 degrees Celsius for 12 hours to obtain V 0.9 W 0.1 O 2 @SiO 2 composite powder.
  • Step S3 specifically includes the following steps:
  • step S34 During the stirring process, add 1 ml of sodium lauryl sulfate (sodium lauryl sulfate) solution containing 0.0008 g of V 0.9 W 0.1 O 2 @SiO 2 powder in step S33.
  • sodium lauryl sulfate sodium lauryl sulfate
  • S35 Add 0.8 ml of ammonium persulfate solution to the mixed solution of S33 to initiate a reaction, and stir for 1 minute.
  • step S36 Use a peristaltic pump to slowly add 3.5g of N-isopropylacrylamide and 168mg of N'N-methylenebisacrylamide aqueous solution in step S35, and react for 2 hours to obtain V 0.9 W 0.1 O 2 @SiO 2 /PNIPAM composite solution, encapsulate the obtained composite solution with glass.
  • step S3 the following step is further included: forming a film of the V 0.9 W 0.1 O 2 @SiO 2 /PNIPAM composite solution obtained in step S36 and drying it.
  • the composite smart window material prepared in this example can realize obvious thermochromism: at 20 degrees Celsius, the visible light transmittance can reach 73.40%, and the transmittance of the entire solar spectrum is 38.20%; at 40 degrees Celsius, the visible light transmittance is The transmittance of the entire solar spectrum is 0.02%, and the transmittance of the entire solar spectrum is 0.04%. Therefore, the phase transition temperature of the material in this embodiment is 41 degrees, and the temperature-variable spectral control efficiency is 38.16%.
  • Step S1 using vanadyl sulfate and ammonium tungstate as raw materials to obtain V 0.7 W 0.3 O 2 powder through hydrothermal reaction.
  • Step S1 specifically includes the following steps:
  • step S12 Use a peristaltic pump to slowly drop 0.8 ml of hydrazine hydrate into the blue-green solution formed in step S11, and add sodium hydroxide, and adjust the solution to adjust the pH to 9.5.
  • step S13 Centrifuge the solution of step S12 to take powder at a speed of 11000 r/min, and wash it with distilled water three times to obtain a powder raw material.
  • Step S2 Disperse the V 0.7 W 0.3 O 2 powder in a solvent, and add reactive monomers and dispersants under the action of a catalyst to carry out hydrolysis and condensation reactions to obtain a V 0.7 W 0.3 O 2 @SiO 2 composite powder.
  • Step S2 specifically includes the following steps:
  • step S21 Disperse a certain amount of the V 0.7 W 0.3 O 2 powder produced in step S1 in ethanol and stir for 1 hour. Add 280 ml of ethanol and 70 ml of ammonia diluent to the solution, and stir for 30 minutes.
  • step S23 Use a centrifuge to centrifuge the solution of step S22 to extract powder, and after the separated solids are washed with distilled water and alcohol in turn, the washed solids are dried at 80 degrees Celsius for 12 hours to obtain powder A.
  • step S24 Take 0.1 mg of the powder A obtained in step S23 and disperse it in a mixed solution of 100 ml of ethanol, aqueous ammonia solution and 0.2 ml of silane coupling agent, stir at room temperature for 4 hours, and the volume ratio of ethanol to ammonia is 99:1.
  • step S25 Centrifuge the reaction solution of step S24 with distilled water and alcohol to collect the solids, and dry them at 80 degrees Celsius for 12 hours to obtain V 0.7 W 0.3 O 2 @SiO 2 composite powder.
  • Step S3 specifically includes the following steps:
  • step S34 During the stirring process, add 1 ml of sodium lauryl sulfate (sodium lauryl sulfate) solution containing 0.0016g V 0.7 W 0.3 O 2 @SiO 2 powder in step S33.
  • sodium lauryl sulfate sodium lauryl sulfate
  • S35 Add 0.8 ml of ammonium persulfate solution to the mixed solution of S33 to initiate a reaction, and stir for 1 minute.
  • step S36 Use a peristaltic pump to slowly add 3.5g of N-isopropylacrylamide and 168mg of N'N-methylenebisacrylamide aqueous solution in step S35, and react for 2 hours to obtain V 0.7 W 0.3 O 2 @SiO 2 /PNIPAM composite solution, encapsulate the obtained composite solution with glass.
  • step S3 the following step is further included: forming a film of the V 0.7 W 0.3 O 2 @SiO 2 /PNIPAM composite solution obtained in step S36 and drying it.
  • the composite smart window material prepared in this example can realize obvious thermochromic: at 20 degrees Celsius, the visible light transmittance can reach 81.61%, and the transmittance of the entire solar spectrum is 40.99%; at 40 degrees Celsius, the visible light transmittance is 40.99% It can reach 0.03%, and the transmittance of the entire solar spectrum is 0.96%. Therefore, in this embodiment, the phase transition temperature of the material is 25 degrees, and the temperature-variable spectral control efficiency is 40.03%.
  • Step S1 specifically includes the following steps:
  • step S12 Use a peristaltic pump to slowly drop 0.65 ml of hydrazine hydrate into the blue-green solution formed in step S11, and add sodium hydroxide, and adjust the solution to adjust the pH to 8.
  • step S13 Centrifuge the solution of step S12 to take powder at a speed of 11000 r/min, and wash it with distilled water three times to obtain a powder raw material.
  • Step S2 Disperse the V 0.8 W 0.2 O 2 powder in a solvent, and add reactive monomer and dispersant under the action of a catalyst to carry out hydrolysis and condensation reactions to obtain a V 0.8 W 0.2 O 2 @SiO 2 composite powder.
  • Step S2 specifically includes the following steps:
  • step S21 Disperse a certain amount of the V 0.8 W 0.2 O 2 powder produced in step S1 in ethanol and stir for 1 hour. Add 280 ml of ethanol and 70 ml of ammonia diluent to the solution, and stir for 30 minutes.
  • step S23 Use a centrifuge to centrifuge the solution of step S22 to extract powder, and after the separated solids are washed with distilled water and alcohol in turn, the washed solids are dried at 80 degrees Celsius for 12 hours to obtain powder A.
  • step S24 Take 0.1 mg of the powder A obtained in step S23 and disperse it in a mixed solution of 100 ml of ethanol, aqueous ammonia solution and 0.2 ml of silane coupling agent, stir at room temperature for 4 hours, and the volume ratio of ethanol to ammonia is 99:1.
  • step S25 Centrifuge the reaction solution of step S24 with distilled water and alcohol to collect the solids, and dry them at 80 degrees Celsius for 12 hours to obtain V 0.8 W 0.2 O 2 @SiO 2 composite powder.
  • Step S3 specifically includes the following steps:
  • step S34 During the stirring process, add 1 ml of sodium lauryl sulfate (sodium lauryl sulfate) solution containing 0.0024g V 0.8 W 0.2 O 2 @SiO 2 powder in step S33.
  • sodium lauryl sulfate sodium lauryl sulfate
  • S35 Add 0.8 ml of ammonium persulfate solution to the mixed solution of S33 to initiate a reaction, and stir for 1 minute.
  • step S36 Use a peristaltic pump to slowly add 3.5g of N-isopropylacrylamide and 168mg of N'N-methylenebisacrylamide aqueous solution in step S35, and react for 2 hours to obtain V 0.8 W 0.2 @SiO 2 /PNIPAM Composite solution, the obtained composite solution is encapsulated in glass.
  • step S3 the following step is further included: forming a film of the V 0.8 W 0.2 @SiO 2 /PNIPAM composite solution obtained in step S36 and drying it.
  • the composite smart window material prepared in this example can realize obvious thermochromism: at 20 degrees Celsius, the visible light transmittance can reach 88.12%, and the entire solar spectrum has a transmittance of 43.17%; at 40 degrees Celsius, the visible light transmittance is 43.17%. It can reach 0.04%, and the transmittance of the entire solar spectrum is 1.27%. Therefore, the phase transition temperature of the material in this embodiment is 32 degrees, and the temperature-variable spectral control efficiency is 41.90%.
  • Step S1 specifically includes the following steps:
  • step S12 Use a peristaltic pump to slowly drop 0.65 ml of hydrazine hydrate into the blue-green solution formed in step S11, and add sodium hydroxide, and adjust the solution to adjust the pH to 8.
  • step S13 Centrifuge the solution of step S12 to take powder at a speed of 11000 r/min, and wash it with distilled water three times to obtain a powder raw material.
  • Step S2 Disperse the V 0.8 W 0.2 O 2 powder in a solvent, and add reactive monomer and dispersant under the action of a catalyst to carry out hydrolysis and condensation reactions to obtain a V 0.8 W 0.2 O 2 @SiO 2 composite powder.
  • Step S2 specifically includes the following steps:
  • step S21 Disperse a certain amount of the V 0.8 W 0.2 O 2 powder produced in step S1 in ethanol and stir for 1 hour. Add 280 ml of ethanol and 70 ml of ammonia diluent to the solution, and stir for 30 minutes.
  • step S23 Use a centrifuge to centrifuge the solution of step S22 to extract powder, and after the separated solids are washed with distilled water and alcohol in turn, the washed solids are dried at 80 degrees Celsius for 12 hours to obtain powder A.
  • step S24 Take 0.1 mg of the powder A obtained in step S23 and disperse it in a mixed solution of 100 ml of ethanol, aqueous ammonia solution and 0.2 ml of silane coupling agent, stir at room temperature for 4 hours, and the volume ratio of ethanol to ammonia is 99:1.
  • step S25 Centrifuge the reaction solution of step S24 with distilled water and alcohol to collect the solids, and dry them at 80 degrees Celsius for 12 hours to obtain V 0.8 W 0.2 O 2 @SiO 2 composite powder.
  • Step S3 specifically includes the following steps:
  • step S34 During the stirring process, add 1 ml of sodium lauryl sulfate (sodium lauryl sulfate) solution containing 0.0032g V 0.8 W 0.2 O 2 @SiO 2 powder in step S33.
  • sodium lauryl sulfate sodium lauryl sulfate
  • S35 Add 0.8 ml of ammonium persulfate solution to the mixed solution of S33 to initiate a reaction, and stir for 1 minute.
  • step S36 Use a peristaltic pump to slowly add 3.5g of N-isopropylacrylamide and 168mg of N'N-methylenebisacrylamide aqueous solution in step S35, and react for 2 hours to obtain V 0.8 W 0.2 O 2 @SiO 2 /PNIPAM composite solution, encapsulate the obtained composite solution with glass.
  • the following step is further included: forming the V 0.8 W 0.2 O 2 @SiO 2 /PNIPAM composite solution obtained in the step S36 into a film and drying it.
  • the composite smart window material prepared in this embodiment can realize obvious thermochromic: at 20 degrees Celsius, the visible light transmittance can reach 91.41%, and the transmittance of the entire solar spectrum is 44.76%; at 40 degrees Celsius, the visible light transmittance is 44.76%. It can reach 12.15%, and the transmittance of the entire solar spectrum is 11.99%. Therefore, the phase transition temperature of the material in this embodiment is 32 degrees, and the temperature-variable spectral control efficiency is 32.77%.
  • the present invention also provides a material with thermochromic effect, which is prepared by the method described in Example 1 to Example 5.
  • the present invention also provides a thermochromic smart window.
  • the smart window includes glass and the material described in Embodiment 6, and the material is encapsulated between the interlayers of the glass. It should be noted that the material with thermochromic effect of the present invention is not limited to its application in smart windows.
  • Figure 1 is the dynamic light scattering particle size analysis diagram of V 0.8 W 0.2 O 2 @SiO 2 /PNIPAM prepared by the present invention
  • Figure 2 is the V 0.8 W 0.2 O 2 @SiO 2 prepared by the present invention /PNIPAM TEM image
  • Fig. 3 is a cooling test image of V 0.8 W 0.2 O 2 @SiO 2 /PNIPAM and blank glass prepared by the present invention.
  • the thermochromic composite material provided by the present invention can actively adjust the transmittance of sunlight according to the ambient temperature, and has extremely high visible light transmittance, variable temperature spectrum control efficiency, and light and heat stability. The advantages of sex and adaptability.
  • the material with thermochromic effect proposed in the present invention has high visible light transmittance and variable temperature solar spectrum control performance.
  • the material is composed of silica-coated tungsten-doped vanadium dioxide and polynitroisopropyl acrylamide , Can actively adjust the transmittance of sunlight according to the ambient temperature, and finally obtain a "warm in winter and cool in summer” comfortable building environment, thereby reducing energy consumption due to cooling and heating.
  • the material of the invention has excellent thermal stability and adaptability.
  • the composition design and preparation of the material can be carried out according to production requirements or environmental temperature and other conditions, and it has a very broad application prospect in the field of energy saving.
  • the present invention uses the hydrothermal reaction method and the emulsion polymerization method, and uses the organic-inorganic composite solution and ordinary glass to assemble a smart window with a "sandwich" structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明提供一种具有热致变色效应的材料及其制备方法和热致变色智能窗,所述方法包括如下步骤:以硫酸氧钒和钨酸铵为原料,通过水热反应,获得V1-xWxO 2粉体;将V1-xWxO2粉体分散于溶剂中,在催化剂作用下加入反应单体和分散剂进行水解和缩合反应,获得V1-xWxO2@SiO2复合粉体;在氮气和加热条件下,在交联剂和引发剂的作用下,将V1-xWxO2@SiO2复合粉体与N-异丙基丙烯酰胺发生乳液聚合反应,制得V1-xWxO2@SiO2/PNIPAM复合溶液。本发明的材料具有高可见光透过率、高变温光谱调控效率、光热稳定性以及适应性等优点。

Description

具有热致变色效应的材料及其制备方法和热致变色智能窗 技术领域
本发明涉及智能节能材料领域,具体涉及一种具有热致变色效应的材料及其制备方法和热致变色智能窗。
背景技术
窗口作为建筑物与外界环境热交换的主要通道,占据了建筑物内部50%的热交换能量。因此,建筑节能的关键在于建筑物窗口。二氧化钒(VO 2)智能调光材料作为一种新型节能材料,可在外界条件温度的刺激下,通过改变自身的光学特性,选择性地透过、吸收或反射特定光谱,产生调节光强和光谱范围等效果,从而实现对室内温度的调节,达到节能控温的目的。在温度转变的过程中,可见光的透过率几乎不会发生改变。与传统节能玻璃以及其他类型的智能窗材料相比,VO 2薄膜材料可根据环境温度主动调节太阳光的透过率,最终获得“冬暖夏凉”式的舒适建筑环境,从而减少因制冷和采暖产生的能耗,成为了智能控温材料的首选。
中国专利公开号为CN 103205249A、CN 104725581A和CN 109293826A分别介绍了二氧化钒材料、聚氮异丙基丙烯酰胺及其复合材料,但是未同时实现高可见光透过率、高变温太阳光谱调控性能及接近室温的相转变温度,且节能效率较低。因此,目前尚未实现足够稳定和有效的热致变色材料在智能窗中实际使用。
因此,有必要提供一种新的技术方案。
发明内容
为解决现有技术中存在的技术问题,本发明公开了一种具有热致变色效应的材料及其制备方法,所制备的热致变色复合材料,可根据环境温度主动调节太阳光的透过率,具有极高的可见光透过率、变温光谱调控效率、光热稳定性以及适应性等优点。具体技术方案如下所述:
第一方面,本发明提供一种具有热致变色效应的材料的制备方法,包 括如下步骤:
S1、以硫酸氧钒和钨酸铵为原料,通过水热反应,获得V 1-xW xO 2粉体;
S2、将V 1-xW xO 2粉体分散于溶剂中,在催化剂作用下加入反应单体和分散剂进行水解和缩合反应,获得V 1-xW xO 2@SiO 2复合粉体;
S3、在氮气和加热条件下,在交联剂和引发剂的作用下,将V 1-xW xO 2@SiO 2复合粉体与N-异丙基丙烯酰胺发生乳液聚合反应,制得V 1-xW xO 2@SiO 2/PNIPAM复合溶液。
进一步地,步骤S1具体包括:
S11、将3-6g硫酸氧钒和0.2-2g钨酸铵加入120-160ml蒸馏水中;
S12、将0.6-1ml水合肼滴加入步骤S11的溶液中,并采用氢氧化钠调整pH值为8-10;
S13、对步骤S12的溶液进行离心取粉,并用蒸馏水洗涤,获得粉体原料;
S14、将粉体原料放入水热反应釜中进行反应,经离心、洗涤、干燥,获得粉体V 1-xW xO 2粉体。
进一步地,步骤S14中,反应温度为240-270℃,反应时间为24-48h,离心后依次采用乙醇和蒸馏水进行洗涤,干燥温度为40-80℃。
进一步地,步骤S2中,所述溶剂包括乙醇/催化剂包括氨水,所述反应单体包括正硅酸四乙酯,所述分散剂包括硅烷偶联剂。
进一步地,步骤S2具体包括如下步骤:
S21、将步骤S1获得的V 1-xW xO 2粉体分散在乙醇中搅拌,往溶液中滴加乙醇和氨水稀释液,并搅拌30-120min;
S22、采用蠕动泵将正硅酸四乙酯加入到步骤S21获得的溶液中,室温搅拌4-12h;
S23、采用离心机对步骤S22的溶液进行分离,依次通过蒸馏水和酒精对分离出的固体物进行洗涤后,于50-80℃温度下干燥6-24h,获得粉体A;
S24、室温下,将所述粉体A分散于乙醇、氨水和硅烷偶联剂的混合溶液中进行反应,其中乙醇和氨水体积比为99:1~80:20;
S25、对步骤S24的反应液采用蒸馏水和酒精洗涤离心,于50-80℃温 度下干燥6-24h,获得V 1-xW xO 2@SiO 2复合粉体。
进一步地,步骤S3中交联剂包括N’N-亚甲基双丙烯酰胺水溶液,所述引发剂包括过硫酸铵溶液。
进一步地,步骤S3具体包括:
S31、配置十二烷基硫酸钠水溶液,将V 1-xW xO 2@SiO 2复合粉体分散于十二烷基硫酸钠水溶液中,常温搅拌,制得含有V 1-xW xO 2@SiO 2复合粉体的十二烷基硫酸钠溶液;
S32、取蒸馏水于四口烧瓶中,抽真空并通氮气,加热,
S33、将N-异丙基丙烯酰胺和N’N-亚甲基双丙烯酰胺水溶液加入步骤S32的四口烧瓶中;
S34、将含有V 1-xW xO 2@SiO 2复合粉体的十二烷基硫酸钠溶液搅拌加入到步骤S33中,获得混合溶液,其中,每毫升含有V 1-xW xO 2@SiO 2复合粉体的十二烷基硫酸钠溶液中,V 1-xW xO 2@SiO 2复合粉体的含量为0.0008-0.0032g;
S35、在步骤S34获得的混合液中加入过硫酸铵溶液,搅拌;
S36、将N-异丙基丙烯酰胺和N’N-亚甲基双丙烯酰胺水溶液加入步骤S35中,反应2-5h,获得V 1-xW xO 2@SiO 2/PNIPAM复合溶液,其中0≤x≤0.5。
进一步地,所述步骤S3之后还包括:将步骤S36获得的V 1-xW xO 2@SiO 2/PNIPAM复合溶液成膜、晾干。
第二方面,本发明还提供一种具有热致变色效应的材料,其采用第一方面所述的方法制得。
第三方面,本发明还提供一种上述第二方面所述的具有热致变色效应的材料在智能窗中应用。
本发明具有以下有益效果:
1、本发明提供的具有热致变色效应的材料,其具有高可见光透过率和变温太阳光谱调控性能,该材料组成为二氧化硅包裹的掺钨二氧化钒和聚氮异丙基丙烯酰胺,可根据环境温度主动调节太阳光的透过率,最终获得“冬暖夏凉”式的舒适建筑环境,从而减少因制冷和采暖产生的能耗。同时,该发明材料具有优异的热稳定性和适应性,可根据生产需要或环境温 度等条件特点,进行材料的组成设计与制备,在节能领域具有非常广泛的应用前景。
2、本发明使用水热反应法和乳液聚合法,利用有机-无机复合溶液和普通玻璃,组装得到“三明治”式结构的智能窗。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是本发明制备的V 0.8W 0.2O 2@SiO 2/PNIPAM的动态光散射粒径分析图;
图2是本发明制备的V 0.8W 0.2O 2@SiO 2/PNIPAM的透射电镜(TEM)图;
图3是本发明制备的V 0.8W 0.2O 2@SiO 2/PNIPAM与空白玻璃的降温测试图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。在本发明中,除非另有明确的规 定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以使直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
实施例1
S1、以硫酸氧钒和钨酸铵为原料,通过水热反应,获得V 0.8W 0.2O 2粉体。步骤S1具体包括如下步骤:
S11、按照化学计量比称量试剂:硫酸氧钒4.8g,钨酸铵1.6g,将其溶于120毫升蒸馏水中,形成蓝绿色的溶液。
S12、使用蠕动泵缓慢地滴加0.65ml的水合肼于步骤S11形成的蓝绿色的溶液中,并加入氢氧化钠,调整溶液调整pH值为8。
S13、在11000r/min的速度下对步骤S12的溶液离心取粉,并用蒸馏水洗涤三次,获得粉体原料。
S14、将粉体原料转移到100ml的水热反应釜中,在260摄氏度下保温36小时,最后使用离心机收集粉体,并分别使用乙醇和蒸馏水分别洗涤三次,在50摄氏度烘箱中干燥24小时,得到粉体V 0.8W 0.2O 2(钨掺杂的二氧化钒)。
S2、将V 0.8W 0.2O 2粉体分散于溶剂中,在催化剂作用下加入反应单体和分散剂进行水解和缩合反应,获得V 0.8W 0.2O 2@SiO 2(二氧化硅包裹的钨掺杂的二氧化钒)复合粉体。步骤S2具体包括如下步骤:
S21、取一定量的步骤S1制得的V 0.8W 0.2O 2粉体分散在乙醇中,搅拌1小时,往溶液中滴加280ml乙醇和70毫升的氨水稀释液,并搅拌30分钟。
S22、使用蠕动泵添加0.5毫升的正硅酸四乙酯于步骤S21中的溶液中,室温搅拌4小时。
S23、使用离心机对步骤S22的溶液进行离心取粉,依次通过蒸馏水和酒精对分离出的固体物进行洗涤后,将洗涤后得到的固体物于80摄氏度中干燥12小时,获得粉体A。
S24、取0.1毫克步骤S23获得的粉体A分散于100毫升乙醇、氨水溶液和0.2毫升的硅烷偶联剂的混合溶液中,室温搅拌4小时,乙醇氨水体积比为99:1。
S25、对步骤S24的反应液分别地使用蒸馏水和酒精离心收集出固体物,并于80摄氏度中干燥12小时,得到V 0.8W 0.2O 2@SiO 2复合粉体。
S3、在氮气和加热条件下,在交联剂和引发剂的作用下,将V 0.8W 0.2O 2@SiO 2复合粉体与N-异丙基丙烯酰胺发生乳液聚合反应,制得V 0.8W 0.2O 2@SiO 2/PNIPAM(二氧化硅包裹的钨掺杂的二氧化钒与聚氮异丙基丙烯酰胺)复合溶液。步骤S3具体包括如下步骤:
S31、配置0.19mol/L的十二烷基硫酸钠的水溶液10ml,将0.005g的A粉体分散其中,并常温搅拌12小时,制得含有V 0.8W 0.2O 2@SiO 2复合粉体的十二烷基硫酸钠溶液。
S32、取200毫升的蒸馏水于四口烧瓶中,抽真空并通氮气,并加热溶液至80摄氏度。
S33、加入含有0.4g N-异丙基丙烯酰胺和7mg的N’N-亚甲基双丙烯酰胺水溶液于四口烧瓶中。
S34、在搅拌过程中,加入1毫升含有0.004g V 0.8W 0.2O 2@SiO 2粉体的十二烷基硫酸钠(月桂醇硫酸酯钠)溶液于步骤S33中。
S35、加入0.8毫升的过硫酸铵溶液于S33的混合溶液中进行引发反应,搅拌1分钟。
S36、用蠕动泵缓慢滴加3.5g N-异丙基丙烯酰胺和168mg的N’N-亚甲基双丙烯酰胺水溶液于步骤S35中,反应2小时,获得V 0.8W 0.2O 2@SiO 2/PNIPAM复合溶液,将得到的复合溶液用玻璃封装。
在一个实施例中,所述步骤S3之后还包括如下步骤:将步骤S36获得的V 0.8W 0.2O 2@SiO 2/PNIPAM复合溶液成膜、晾干。
该实施例中制备的复合智能窗材料能实现明显的热致变色:20摄氏度时,可见光透过率可达92.46%,整个太阳光谱的透过率为44.62%;40摄氏度时,可见光透过率可达29.05%,整个太阳光谱的透过率为17.29%,由此,该实施例中材料的相转变温度为32度,变温光谱调控效率为27.33%, 对比空白玻璃可使节能测试箱温度下降15.1摄氏度。
实施例2
S1、以硫酸氧钒和钨酸铵为原料,通过水热反应,获得V 0.9W 0.1O 2粉体。步骤S1具体包括如下步骤:
S11、按照化学计量比称量试剂:硫酸氧钒4.8g,钨酸铵0.8g,将其溶于160毫升蒸馏水中,形成蓝绿色的溶液。
S12、使用蠕动泵缓慢地滴加1ml的水合肼于步骤S11形成的蓝绿色的溶液中,并加入氢氧化钠,调整溶液调整pH值为9。
S13、在11000r/min的速度下对步骤S12的溶液离心取粉,并用蒸馏水洗涤三次,获得粉体原料。
S14、将粉体原料转移到100ml的水热反应釜中,在260摄氏度下保温24小时,最后使用离心机收集粉体,并分别使用乙醇和蒸馏水分别洗涤三次,在60摄氏度烘箱中干燥48小时,得到粉体V 0.9W 0.1O 2
S2、将V 0.9W 0.1O 2粉体分散于溶剂中,在催化剂作用下加入反应单体和分散剂进行水解和缩合反应,获得V 0.9W 0.1O 2@SiO 2复合粉体。步骤S2具体包括如下步骤:
S21、取一定量的步骤S1制得的V 0.9W 0.1O 2粉体分散在乙醇中,搅拌1小时,往溶液中滴加280ml乙醇和70毫升的氨水稀释液,并搅拌30分钟。
S22、使用蠕动泵添加0.5毫升的正硅酸四乙酯于步骤S21中的溶液中,室温搅拌4小时。
S23、使用离心机对步骤S22的溶液进行离心取粉,依次通过蒸馏水和酒精对分离出的固体物进行洗涤后,将洗涤后得到的固体物于80摄氏度中干燥12小时,获得粉体A。
S24、取0.1毫克步骤S23获得的粉体A分散于100毫升乙醇、氨水溶液和0.2毫升的硅烷偶联剂的混合溶液中,室温搅拌4小时,乙醇氨水体积比为99:1。
S25、对步骤S24的反应液分别地使用蒸馏水和酒精离心收集出固体物,并于80摄氏度中干燥12小时,得到V 0.9W 0.1O 2@SiO 2复合粉体。
S3、在氮气和加热条件下,在交联剂和引发剂的作用下,将 V 0.9W 0.1O 2@SiO 2复合粉体与N-异丙基丙烯酰胺发生乳液聚合反应,制得V 0.9W 0.1O 2@SiO 2/PNIPAM复合溶液。步骤S3具体包括如下步骤:
S31、配置0.19mol/L的十二烷基硫酸钠的水溶液10ml,将0.005g的A粉体分散其中,并常温搅拌12小时,制得含有V 0.9W 0.1O 2@SiO 2复合粉体的十二烷基硫酸钠溶液。
S32、取200毫升的蒸馏水于四口烧瓶中,抽真空并通氮气,并加热溶液至80摄氏度。
S33、加入含有0.4g N-异丙基丙烯酰胺和7mg的N’N-亚甲基双丙烯酰胺水溶液于四口烧瓶中。
S34、在搅拌过程中,加入1毫升含有0.0008g V 0.9W 0.1O 2@SiO 2粉体的十二烷基硫酸钠(月桂醇硫酸酯钠)溶液于步骤S33中。
S35、加入0.8毫升的过硫酸铵溶液于S33的混合溶液中进行引发反应,搅拌1分钟。
S36、用蠕动泵缓慢滴加3.5g N-异丙基丙烯酰胺和168mg的N’N-亚甲基双丙烯酰胺水溶液于步骤S35中,反应2小时,获得V 0.9W 0.1O 2@SiO 2/PNIPAM复合溶液,将得到的复合溶液用玻璃封装。
在一个实施例中,所述步骤S3之后还包括如下步骤:将步骤S36获得的V 0.9W 0.1O 2@SiO 2/PNIPAM复合溶液成膜、晾干。
该实施例中制备的复合智能窗材料能实现明显的热致变色:20摄氏度时,可见光透过率可达73.40%,整个太阳光谱的透过率为38.20%;40摄氏度时,可见光透过率为0.02%,整个太阳光谱的透过率为0.04%,由此,该实施例中材料的相转变温度为41度,变温光谱调控效率为38.16%。
实施例3
S1、以硫酸氧钒和钨酸铵为原料,通过水热反应,获得V 0.7W 0.3O 2粉体。步骤S1具体包括如下步骤:
S11、按照化学计量比称量试剂:硫酸氧钒4.8g,钨酸铵0.24g,将其溶于150毫升蒸馏水中,形成蓝绿色的溶液。
S12、使用蠕动泵缓慢地滴加0.8ml的水合肼于步骤S11形成的蓝绿色的溶液中,并加入氢氧化钠,调整溶液调整pH值为9.5。
S13、在11000r/min的速度下对步骤S12的溶液离心取粉,并用蒸馏水洗涤三次,获得粉体原料。
S14、将粉体原料转移到100ml的水热反应釜中,在260摄氏度下保温48小时,最后使用离心机收集粉体,并分别使用乙醇和蒸馏水分别洗涤三次,在50摄氏度烘箱中干燥24小时,得到粉体V 0.7W 0.3O 2
S2、将V 0.7W 0.3O 2粉体分散于溶剂中,在催化剂作用下加入反应单体和分散剂进行水解和缩合反应,获得V 0.7W 0.3O 2@SiO 2复合粉体。步骤S2具体包括如下步骤:
S21、取一定量的步骤S1制得的V 0.7W 0.3O 2粉体分散在乙醇中,搅拌1小时,往溶液中滴加280ml乙醇和70毫升的氨水稀释液,并搅拌30分钟。
S22、使用蠕动泵添加0.5毫升的正硅酸四乙酯于步骤S21中的溶液中,室温搅拌4小时。
S23、使用离心机对步骤S22的溶液进行离心取粉,依次通过蒸馏水和酒精对分离出的固体物进行洗涤后,将洗涤后得到的固体物于80摄氏度中干燥12小时,获得粉体A。
S24、取0.1毫克步骤S23获得的粉体A分散于100毫升乙醇、氨水溶液和0.2毫升的硅烷偶联剂的混合溶液中,室温搅拌4小时,乙醇氨水体积比为99:1。
S25、对步骤S24的反应液分别地使用蒸馏水和酒精离心收集出固体物,并于80摄氏度中干燥12小时,得到V 0.7W 0.3O 2@SiO 2复合粉体。
S3、在氮气和加热条件下,在交联剂和引发剂的作用下,将V 0.7W 0.3O 2@SiO 2复合粉体与N-异丙基丙烯酰胺发生乳液聚合反应,制得V 0.7W 0.3O 2@SiO 2/PNIPAM复合溶液。步骤S3具体包括如下步骤:
S31、配置0.19mol/L的十二烷基硫酸钠的水溶液10ml,将0.005g的A粉体分散其中,并常温搅拌12小时,制得含有V 0.7W 0.3O 2@SiO 2复合粉体的十二烷基硫酸钠溶液。
S32、取200毫升的蒸馏水于四口烧瓶中,抽真空并通氮气,并加热溶液至80摄氏度。
S33、加入含有0.4g N-异丙基丙烯酰胺和7mg的N’N-亚甲基双丙烯酰 胺水溶液于四口烧瓶中。
S34、在搅拌过程中,加入1毫升含有0.0016g V 0.7W 0.3O 2@SiO 2粉体的十二烷基硫酸钠(月桂醇硫酸酯钠)溶液于步骤S33中。
S35、加入0.8毫升的过硫酸铵溶液于S33的混合溶液中进行引发反应,搅拌1分钟。
S36、用蠕动泵缓慢滴加3.5g N-异丙基丙烯酰胺和168mg的N’N-亚甲基双丙烯酰胺水溶液于步骤S35中,反应2小时,获得V 0.7W 0.3O 2@SiO 2/PNIPAM复合溶液,将得到的复合溶液用玻璃封装。
在一个实施例中,所述步骤S3之后还包括如下步骤:将步骤S36获得的V 0.7W 0.3O 2@SiO 2/PNIPAM复合溶液成膜、晾干。
该实施例中制备的复合智能窗材料能实现明显的热致变色:20摄氏度时,可见光透过率可达81.61%,整个太阳光谱的透过率为40.99%;40摄氏度时,可见光透过率可达0.03%,整个太阳光谱的透过率为0.96%,由此该实施例中,材料的相转变温度为25度,变温光谱调控效率为40.03%。
实施例4
S1、以硫酸氧钒和钨酸铵为原料,通过水热反应,获得V 0.8W 0.2O 2粉体。步骤S1具体包括如下步骤:
S11、按照化学计量比称量试剂:硫酸氧钒4.8g,钨酸铵1.6g,将其溶于120毫升蒸馏水中,形成蓝绿色的溶液。
S12、使用蠕动泵缓慢地滴加0.65ml的水合肼于步骤S11形成的蓝绿色的溶液中,并加入氢氧化钠,调整溶液调整pH值为8。
S13、在11000r/min的速度下对步骤S12的溶液离心取粉,并用蒸馏水洗涤三次,获得粉体原料。
S14、将粉体原料转移到100ml的水热反应釜中,在260摄氏度下保温36小时,最后使用离心机收集粉体,并分别使用乙醇和蒸馏水分别洗涤三次,在50摄氏度烘箱中干燥24小时,得到粉体V 0.8W 0.2O 2
S2、将V 0.8W 0.2O 2粉体分散于溶剂中,在催化剂作用下加入反应单体和分散剂进行水解和缩合反应,获得V 0.8W 0.2O 2@SiO 2复合粉体。步骤S2具体包括如下步骤:
S21、取一定量的步骤S1制得的V 0.8W 0.2O 2粉体分散在乙醇中,搅拌1小时,往溶液中滴加280ml乙醇和70毫升的氨水稀释液,并搅拌30分钟。
S22、使用蠕动泵添加0.5毫升的正硅酸四乙酯于步骤S21中的溶液中,室温搅拌4小时。
S23、使用离心机对步骤S22的溶液进行离心取粉,依次通过蒸馏水和酒精对分离出的固体物进行洗涤后,将洗涤后得到的固体物于80摄氏度中干燥12小时,获得粉体A。
S24、取0.1毫克步骤S23获得的粉体A分散于100毫升乙醇、氨水溶液和0.2毫升的硅烷偶联剂的混合溶液中,室温搅拌4小时,乙醇氨水体积比为99:1。
S25、对步骤S24的反应液分别地使用蒸馏水和酒精离心收集出固体物,并于80摄氏度中干燥12小时,得到V 0.8W 0.2O 2@SiO 2复合粉体。
S3、在氮气和加热条件下,在交联剂和引发剂的作用下,将V 0.8W 0.2O 2@SiO 2复合粉体与N-异丙基丙烯酰胺发生乳液聚合反应,制得V 0.8W 0.2O 2@SiO 2/PNIPAM复合溶液。步骤S3具体包括如下步骤:
S31、配置0.19mol/L的十二烷基硫酸钠的水溶液10ml,将0.005g的A粉体分散其中,并常温搅拌12小时,制得含有V 0.8W 0.2O 2@SiO 2复合粉体的十二烷基硫酸钠溶液。
S32、取200毫升的蒸馏水于四口烧瓶中,抽真空并通氮气,并加热溶液至80摄氏度。
S33、加入含有0.4g N-异丙基丙烯酰胺和7mg的N’N-亚甲基双丙烯酰胺水溶液于四口烧瓶中。
S34、在搅拌过程中,加入1毫升含有0.0024g V 0.8W 0.2O 2@SiO 2粉体的十二烷基硫酸钠(月桂醇硫酸酯钠)溶液于步骤S33中。
S35、加入0.8毫升的过硫酸铵溶液于S33的混合溶液中进行引发反应,搅拌1分钟。
S36、用蠕动泵缓慢滴加3.5g N-异丙基丙烯酰胺和168mg的N’N-亚甲基双丙烯酰胺水溶液于步骤S35中,反应2小时,获得V 0.8W 0.2@SiO 2/PNIPAM复合溶液,将得到的复合溶液用玻璃封装。
在一个实施例中,所述步骤S3之后还包括如下步骤:将步骤S36获得的V 0.8W 0.2@SiO 2/PNIPAM复合溶液成膜、晾干。
该实施例中制备的复合智能窗材料能实现明显的热致变色:20摄氏度时,可见光透过率可达88.12%,整个太阳光谱的透过率为43.17%;40摄氏度时,可见光透过率可达0.04%,整个太阳光谱的透过率为1.27%,由此,该实施例中材料的相转变温度为32度,变温光谱调控效率为41.90%。
实施例5
S1、以硫酸氧钒和钨酸铵为原料,通过水热反应,获得V 0.8W 0.2O 2粉体。步骤S1具体包括如下步骤:
S11、按照化学计量比称量试剂:硫酸氧钒4.8g,钨酸铵1.6g,将其溶于120毫升蒸馏水中,形成蓝绿色的溶液。
S12、使用蠕动泵缓慢地滴加0.65ml的水合肼于步骤S11形成的蓝绿色的溶液中,并加入氢氧化钠,调整溶液调整pH值为8。
S13、在11000r/min的速度下对步骤S12的溶液离心取粉,并用蒸馏水洗涤三次,获得粉体原料。
S14、将粉体原料转移到100ml的水热反应釜中,在260摄氏度下保温36小时,最后使用离心机收集粉体,并分别使用乙醇和蒸馏水分别洗涤三次,在50摄氏度烘箱中干燥24小时,得到粉体V 0.8W 0.2O 2
S2、将V 0.8W 0.2O 2粉体分散于溶剂中,在催化剂作用下加入反应单体和分散剂进行水解和缩合反应,获得V 0.8W 0.2O 2@SiO 2复合粉体。步骤S2具体包括如下步骤:
S21、取一定量的步骤S1制得的V 0.8W 0.2O 2粉体分散在乙醇中,搅拌1小时,往溶液中滴加280ml乙醇和70毫升的氨水稀释液,并搅拌30分钟。
S22、使用蠕动泵添加0.5毫升的正硅酸四乙酯于步骤S21中的溶液中,室温搅拌4小时。
S23、使用离心机对步骤S22的溶液进行离心取粉,依次通过蒸馏水和酒精对分离出的固体物进行洗涤后,将洗涤后得到的固体物于80摄氏度中干燥12小时,获得粉体A。
S24、取0.1毫克步骤S23获得的粉体A分散于100毫升乙醇、氨水溶 液和0.2毫升的硅烷偶联剂的混合溶液中,室温搅拌4小时,乙醇氨水体积比为99:1。
S25、对步骤S24的反应液分别地使用蒸馏水和酒精离心收集出固体物,并于80摄氏度中干燥12小时,得到V 0.8W 0.2O 2@SiO 2复合粉体。
S3、在氮气和加热条件下,在交联剂和引发剂的作用下,将V 0.8W 0.2O 2@SiO 2复合粉体与N-异丙基丙烯酰胺发生乳液聚合反应,制得V 0.8W 0.2O 2@SiO 2/PNIPAM复合溶液。步骤S3具体包括如下步骤:
S31、配置0.19mol/L的十二烷基硫酸钠的水溶液10ml,将0.005g的A粉体分散其中,并常温搅拌12小时,制得含有V 0.8W 0.2O 2@SiO 2复合粉体的十二烷基硫酸钠溶液。
S32、取200毫升的蒸馏水于四口烧瓶中,抽真空并通氮气,并加热溶液至80摄氏度。
S33、加入含有0.4g N-异丙基丙烯酰胺和7mg的N’N-亚甲基双丙烯酰胺水溶液于四口烧瓶中。
S34、在搅拌过程中,加入1毫升含有0.0032g V 0.8W 0.2O 2@SiO 2粉体的十二烷基硫酸钠(月桂醇硫酸酯钠)溶液于步骤S33中。
S35、加入0.8毫升的过硫酸铵溶液于S33的混合溶液中进行引发反应,搅拌1分钟。
S36、用蠕动泵缓慢滴加3.5g N-异丙基丙烯酰胺和168mg的N’N-亚甲基双丙烯酰胺水溶液于步骤S35中,反应2小时,获得V 0.8W 0.2O 2@SiO 2/PNIPAM复合溶液,将得到的复合溶液用玻璃封装。
在一个实施例中,所述步骤S3之后还包括如下步骤:将步骤S36获得的V 0.8W 0.2O 2@SiO 2/PNIPAM复合溶液成膜、晾干。
该实施例中制备的复合智能窗材料能实现明显的热致变色:20摄氏度时,可见光透过率可达91.41%,整个太阳光谱的透过率为44.76%;40摄氏度时,可见光透过率可达12.15%,整个太阳光谱的透过率为11.99%,由此,该实施例中材料的相转变温度为32度,变温光谱调控效率为32.77%。
实施例6
本发明还提供一种具有热致变色效应的材料,其采用实施例1至实施例 5所述的方法制得。
实施例7
本发明还提供一种热致变色智能窗,所述智能窗包括玻璃及实施例6所述的材料,所述材料封装于所述玻璃的夹层之间。需要说明的是,本发明的具有热致变色效应的材料不仅限于在智能窗中的应用。
请参阅图1至3,图1是本发明制备的V 0.8W 0.2O 2@SiO 2/PNIPAM的动态光散射粒径分析图;图2是本发明制备的V 0.8W 0.2O 2@SiO 2/PNIPAM的TEM图;图3是本发明制备的V 0.8W 0.2O 2@SiO 2/PNIPAM与空白玻璃的降温测试图。如图1至图3所示,本发明所提供的热致变色复合材料,可根据环境温度主动调节太阳光的透过率,具有极高的可见光透过率、变温光谱调控效率、光热稳定性以及适应性等优点。
本发明具有以下有益效果:
1、本发明提出的具有热致变色效应的材料,其具有高可见光透过率和变温太阳光谱调控性能,该材料组成为二氧化硅包裹的掺钨二氧化钒和聚氮异丙基丙烯酰胺,可根据环境温度主动调节太阳光的透过率,最终获得“冬暖夏凉”式的舒适建筑环境,从而减少因制冷和采暖产生的能耗。同时,该发明材料具有优异的热稳定性和适应性,可根据生产需要或环境温度等条件特点,进行材料的组成设计与制备,在节能领域具有非常广泛的应用前景。
2、本发明使用水热反应法和乳液聚合法,利用有机-无机复合溶液和普通玻璃,组装得到“三明治”式结构的智能窗。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实 施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改和变型。

Claims (10)

  1. 一种具有热致变色效应的材料的制备方法,其特征在于,包括如下步骤:
    S1、以硫酸氧钒和钨酸铵为原料,通过水热反应,获得V 1-xW xO 2粉体;
    S2、将V 1-xW xO 2粉体分散于溶剂中,在催化剂作用下加入反应单体和分散剂进行水解和缩合反应,获得V 1-xW xO 2@SiO 2复合粉体;
    S3、在氮气和加热条件下,在交联剂和引发剂的作用下,将V 1-xW xO 2@SiO 2复合粉体与N-异丙基丙烯酰胺发生乳液聚合反应,制得V 1-xW xO 2@SiO 2/PNIPAM复合溶液。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1具体包括:
    S11、将3-6g硫酸氧钒和0.2-2g钨酸铵加入120-160ml蒸馏水中;
    S12、将0.6-1ml水合肼滴加入步骤S11的溶液中,并采用氢氧化钠调整pH值为8-10;
    S13、对步骤S12的溶液进行离心取粉,并用蒸馏水洗涤,获得粉体原料;
    S14、将粉体原料放入水热反应釜中进行反应,经离心、洗涤、干燥,获得V 1-xW xO 2粉体。
  3. 根据权利要求2所述的方法,其特征在于,步骤S14中,反应温度为240-270℃,反应时间为24-48h,离心后依次采用乙醇和蒸馏水进行洗涤,干燥温度为40-80℃。
  4. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述溶剂包括乙醇/催化剂包括氨水,所述反应单体包括正硅酸四乙酯,所述分散剂包括硅烷偶联剂。
  5. 根据权利要求4所述的方法,其特征在于,步骤S2具体包括如下步 骤:
    S21、将步骤S1获得的V 1-xW xO 2粉体分散在乙醇中搅拌,往溶液中滴加乙醇和氨水稀释液,并搅拌30-120min;
    S22、采用蠕动泵将正硅酸四乙酯加入到步骤S21获得的溶液中,室温搅拌4-12h;
    S23、采用离心机对步骤S22的溶液进行分离,依次通过蒸馏水和酒精对分离出的固体物进行洗涤后,于50-80℃温度下干燥6-24h,获得粉体A;
    S24、室温下,将所述粉体A分散于乙醇、氨水和硅烷偶联剂的混合溶液中进行反应,其中乙醇和氨水体积比为99:1~80:20;
    S25、对步骤S24的反应液采用蒸馏水和酒精洗涤离心,于50-80℃温度下干燥6-24h,获得V 1-xW xO 2@SiO 2复合粉体。
  6. 根据权利要求1所述的方法,其特征在于,步骤S3中交联剂包括N’N-亚甲基双丙烯酰胺水溶液,所述引发剂包括过硫酸铵溶液。
  7. 根据权利要求6所述的方法,其特征在于,步骤S3具体包括:
    S31、配置十二烷基硫酸钠水溶液,将V 1-xW xO 2@SiO 2复合粉体分散于十二烷基硫酸钠水溶液中,常温搅拌,制得含有V 1-xW xO 2@SiO 2复合粉体的十二烷基硫酸钠溶液;
    S32、取蒸馏水于四口烧瓶中,抽真空并通氮气,加热,
    S33、将N-异丙基丙烯酰胺和N’N-亚甲基双丙烯酰胺水溶液加入步骤S32的四口烧瓶中;
    S34、将含有V 1-xW xO 2@SiO 2复合粉体的十二烷基硫酸钠溶液搅拌加入到步骤S33中,获得混合溶液,其中,每毫升含有V 1-xW xO 2@SiO 2复合粉体的十二烷基硫酸钠溶液中,V 1-xW xO 2@SiO 2复合粉体的含量为0.0008-0.0032g;
    S35、在步骤S34获得的混合液中加入过硫酸铵溶液,搅拌;
    S36、将N-异丙基丙烯酰胺和N’N-亚甲基双丙烯酰胺水溶液加入步骤S35中,反应2-5h,获得V 1-xW xO 2@SiO 2/PNIPAM复合溶液,其中0≤x≤0.5。
  8. 根据权利要求7所述的方法,其特征在于,所述步骤S3之后还包括:将步骤S36获得的V 1-xW xO 2@SiO 2/PNIPAM复合溶液成膜、晾干。
  9. 一种具有热致变色效应的材料,其特征在于,其采用权利要求1-8任一所述的方法制得。
  10. 一种热致变色智能窗,其特征在于:所述智能窗包括玻璃及权利要求9所述的材料,所述材料封装于所述玻璃的夹层之间。
PCT/CN2019/122493 2019-11-08 2020-01-07 具有热致变色效应的材料及其制备方法和热致变色智能窗 WO2021088169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911088976.8 2019-11-08
CN201911088976.8A CN110835526A (zh) 2019-11-08 2019-11-08 具有热致变色效应的材料及其制备方法和热致变色智能窗

Publications (1)

Publication Number Publication Date
WO2021088169A1 true WO2021088169A1 (zh) 2021-05-14

Family

ID=69574778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122493 WO2021088169A1 (zh) 2019-11-08 2020-01-07 具有热致变色效应的材料及其制备方法和热致变色智能窗

Country Status (2)

Country Link
CN (1) CN110835526A (zh)
WO (1) WO2021088169A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388052B (zh) * 2021-06-28 2022-09-02 绍兴迪飞新材料有限公司 智能动态调光膜及其制备工艺及调光玻璃及调光玻璃系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107549A1 (en) * 2010-11-01 2012-05-03 Agiltron, Inc. Smart surfaces with temperature induced solar reflectance changes and making methods
CN106892456A (zh) * 2017-03-03 2017-06-27 西南大学 一种优化掺杂m相二氧化钒相变性能的方法
CN107245125A (zh) * 2017-06-02 2017-10-13 绍兴市东进镭射包装材料有限公司 一种绿色环保热致变色材料及其合成方法
CN109293826A (zh) * 2017-07-25 2019-02-01 上海大学 PNIPAm微凝胶及二氧化钒/二氧化硅/PNIPAm复合微凝胶的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837061A (zh) * 2006-03-06 2006-09-27 复旦大学 一种相变温度可调的相变智能材料及其制备方法
CN101700909B (zh) * 2009-11-25 2012-02-29 中国科学技术大学 水热法制备具有智能节能性能的二氧化钒的方法
CN102219256A (zh) * 2011-03-03 2011-10-19 刘爱林 一种热致变色二氧化钒粉体及其制备方法
CN104153038B (zh) * 2014-05-04 2016-05-04 常州大学 一种氧化钒掺杂纳米线静电纺丝的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107549A1 (en) * 2010-11-01 2012-05-03 Agiltron, Inc. Smart surfaces with temperature induced solar reflectance changes and making methods
CN106892456A (zh) * 2017-03-03 2017-06-27 西南大学 一种优化掺杂m相二氧化钒相变性能的方法
CN107245125A (zh) * 2017-06-02 2017-10-13 绍兴市东进镭射包装材料有限公司 一种绿色环保热致变色材料及其合成方法
CN109293826A (zh) * 2017-07-25 2019-02-01 上海大学 PNIPAm微凝胶及二氧化钒/二氧化硅/PNIPAm复合微凝胶的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HE QIANG; WANG YONGJUAN; ZHOU YUMING; HE MAN; XU RAN; HU SAICHUN; WU WENTING; WANG RUILI: "PAM-PNIPAM/W-doped VO2 thermochromic hydrogel film with high solar modulation capability for smart windows deployment", OPTICAL MATERIALS, vol. 97, 109367, 13 September 2019 (2019-09-13), pages 1 - 7, XP085910419, ISSN: 0925-3467, DOI: 10.1016/j.optmat.2019.109367 *
WANG YU ,FANG ZHAO,WANG JIE, KHAN ALI RAZA, SHI YULIN ,CHEN ZHANG ,ZHANG KAIQIANG,LI LI,GAO YANFENG,GUO XUHONG: "VO2@SiO2/Poly(N-isopropylacrylamide)Hybrid Nanothermochromic Microgels for Smart Window", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 57, no. 38, 3 September 2018 (2018-09-03), pages 12801 - 12808, XP055810740, ISSN: 0888-5885, DOI: 10.1021/acs.iecr.8b02692 *
WANG YU: "Synthesis of VO2/(Thermal-Response Polymer)Hybrid Microgel and Its Applications for Smart Window", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 1 June 2017 (2017-06-01), XP055810724, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN110835526A (zh) 2020-02-25

Similar Documents

Publication Publication Date Title
CN104495928B (zh) 一种二氧化钒/氧化锌纳米复合粉体的制备方法
CN109293826B (zh) PNIPAm微凝胶及二氧化钒/二氧化硅/PNIPAm复合微凝胶的制备方法
CN105713597A (zh) 一种复合型热致变色浆料及其制备方法
WO2021088169A1 (zh) 具有热致变色效应的材料及其制备方法和热致变色智能窗
CN109762562A (zh) 一种CsPbX3@TiO2纳米材料及其制法和应用
CN103173208A (zh) 一种热致变色复合纳米粉体及其制备方法和用途
CN104108720B (zh) 一种高采光率的二氧化硅气凝胶颗粒的制备方法
CN109502987A (zh) 一种基于空心氧化硅制备高硬度减反膜的方法
CN108659812A (zh) 一种核壳结构的高效热致变色纳米复合粉体及其制备方法
CN111996679A (zh) 一种彩色辐射制冷柔性复合薄膜及其制备方法
CN106082697A (zh) 一种节能镀膜玻璃及其制备方法
CN104724757B (zh) 基于溶剂热低温直接合成金红石相二氧化钒纳米粉体的方法
KR101655558B1 (ko) 코어-쉘 구조의 온도감응색변화 복합안료, 이의 제조방법 및 이를 이용한 스마트 색변환 도료 조성물
CN109126643A (zh) 一种自调光型透明复合气凝胶及其制备方法
CN108946809A (zh) 利用棉花牺牲模板法制备钨掺杂多孔二氧化钒粉体及薄膜的方法
CN113185802B (zh) 三聚氰胺-甲醛树脂包覆的二氧化钒光热响应复合纳米颗粒及其制备方法
CN105694615A (zh) 一种高性能二氧化钒基热致变色复合材料
CN107674566A (zh) 一种中空二氧化钛@二氧化硅/水性聚氨酯复合透明隔热涂料的制备方法
CN104261693A (zh) 一种二氧化钒基热致变色复合粉体及其制备方法
WO2020224080A1 (zh) 一种储热传热材料及其制备方法
CN108298582A (zh) 一种由vo2纳米片层包围的空心球及薄膜的制备方法
CN105713502A (zh) 一种光吸收率高的太阳能吸热涂料
CN106010532B (zh) 高亮度红色光长余辉夜光材料的制备方法
Zhou et al. VO2 Nanoparticles‐Based Thermochromic Smart Windows
CN103173207A (zh) 一种制备热致变色复合纳米粉体的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951288

Country of ref document: EP

Kind code of ref document: A1