WO2021087653A1 - 一种电磁流量计、喷洒系统及无人机 - Google Patents

一种电磁流量计、喷洒系统及无人机 Download PDF

Info

Publication number
WO2021087653A1
WO2021087653A1 PCT/CN2019/115291 CN2019115291W WO2021087653A1 WO 2021087653 A1 WO2021087653 A1 WO 2021087653A1 CN 2019115291 W CN2019115291 W CN 2019115291W WO 2021087653 A1 WO2021087653 A1 WO 2021087653A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow tube
electromagnetic flowmeter
electrode plate
electromagnet
electrode
Prior art date
Application number
PCT/CN2019/115291
Other languages
English (en)
French (fr)
Inventor
舒展
潘仑
胡德琪
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/115291 priority Critical patent/WO2021087653A1/zh
Priority to CN202111205108.0A priority patent/CN114130563B/zh
Priority to CN201980008156.5A priority patent/CN111630352B/zh
Publication of WO2021087653A1 publication Critical patent/WO2021087653A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/0403Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides

Definitions

  • This application relates to the field of mechanical technology, and in particular to an electromagnetic flowmeter, a spraying system and an unmanned aerial vehicle.
  • a plant protection drone is a kind of equipment that is widely used in agricultural and forestry plant protection operations.
  • the plant protection drone can replace people to achieve spraying operations, and can spray medicines, seeds, powders, etc.
  • electromagnetic flowmeters are used when plant protection drones are performing spraying operations. Since the signal detected by the electromagnetic flowmeter is a differential signal, the electromagnetic flowmeter needs a potential reference point and needs to be grounded, that is, the circuit board is connected to the water flow.
  • this application is proposed in order to provide an electromagnetic flowmeter, spraying system and unmanned aerial vehicle that solve the above-mentioned problems.
  • an electromagnetic flowmeter including:
  • Main body with entrance and exit;
  • a flow tube the flow tube is arranged in the main body, the flow tube communicates with the outside through the inlet and the outlet; the flow tube is provided with a pair of detection electrodes, and the flow tube is close to the Ground electrodes are provided at one end of the inlet and the end close to the outlet;
  • the electromagnet is arranged in the main body, and one side of the flow tube is adjacent to the electromagnet.
  • a spraying system including:
  • An electromagnetic flowmeter comprising: a main body having an inlet and an outlet; a flow tube, the flow tube is arranged in the main body, and the flow tube communicates with the outside through the inlet and the outlet;
  • the flow tube is provided with a pair of detection electrodes, the end of the flow tube close to the inlet and the end close to the outlet are both provided with ground electrodes;
  • an electromagnet the electromagnet is arranged in the main body, the One side of the flow tube is adjacent to the electromagnet;
  • a water tank the water tank is connected to the flow tube through the inlet;
  • a pump which is connected to the flow tube through the outlet
  • a spray device which is connected to the pump.
  • an unmanned aerial vehicle including: an unmanned aerial vehicle body and a spraying system provided on the unmanned aerial vehicle body;
  • the spraying system includes:
  • the spraying system includes:
  • An electromagnetic flowmeter comprising: a main body having an inlet and an outlet; a flow tube, the flow tube is arranged in the main body, and the flow tube communicates with the outside through the inlet and the outlet;
  • the flow tube is provided with a pair of detection electrodes, the end of the flow tube close to the inlet and the end close to the outlet are both provided with ground electrodes;
  • an electromagnet the electromagnet is arranged in the main body, the One side of the flow tube is adjacent to the electromagnet;
  • a water tank the water tank is connected to the flow tube through the inlet;
  • a pump which is connected to the flow tube through the outlet
  • a plurality of spraying devices, and the spraying devices are connected with the pump.
  • the electromagnetic flowmeter is grounded by the grounding electrode at the end of the flow tube close to the inlet and the end close to the outlet, which can effectively shorten the length of the grounding path, improve the anti-interference ability of the electromagnetic flowmeter, and improve Reliability of grounding.
  • FIG. 1 is a schematic diagram of an exploded structure of an electromagnetic flowmeter provided by an embodiment of the application
  • Fig. 2 is a schematic structural diagram of an electromagnetic flowmeter provided by an embodiment of the application.
  • Fig. 3 is a schematic sectional view of the A-A plane in Fig. 2;
  • Fig. 4 is a schematic sectional view of the B-B plane in Fig. 2;
  • Fig. 5 is a schematic cross-sectional structure diagram of the C-C plane in Fig. 2;
  • Fig. 6 is a schematic structural diagram of the electromagnetic flowmeter provided in Fig. 2 in the absence of a main body;
  • FIG. 7 is a schematic diagram of the structure of the electromagnetic flowmeter in FIG. 6 in the absence of an electrode plate from another perspective;
  • Fig. 8 is a schematic cross-sectional structure diagram of the D-D plane in Fig. 7;
  • FIG. 9 is a schematic diagram of the structure of an electrode plate and a main board provided by an embodiment of the application.
  • Figure 10 is a schematic plan view of the structure of Figure 9;
  • FIG. 11 is a schematic diagram of a plane structure of an unmanned aerial vehicle with a spraying system provided by an embodiment of the application;
  • FIG. 12 is a schematic diagram of a three-dimensional structure of an unmanned aerial vehicle with a spray system provided by an embodiment of the application.
  • first and second are only used to facilitate the description of different components, and cannot be understood as indicating or implying the order relationship, relative importance, or implicitly indicating what is indicated.
  • the electromagnetic flowmeter since the signal detected by the electromagnetic flowmeter is a differential signal, the electromagnetic flowmeter needs a potential reference point and needs to be grounded, that is, the circuit board is connected to the water flow.
  • most of the grounding methods for electromagnetic flowmeters are to contact water through a metal joint, which is connected to a metal casing, and the metal casing is connected to the circuit board to realize the connection between the water flow and the circuit.
  • the inventor has discovered through practice for many times that this grounding method has many shortcomings. One is that the grounding path is too long and it is susceptible to interference. The second is that the joint and the shell must be made of metal, which increases the weight and cost.
  • the connection between the metal joint and the metal shell is prone to galvanic corrosion, which affects the reliability of grounding.
  • the circuit board is connected with the measuring tube and the metal casing, which requires high manufacturing and assembly accuracy. Once an error occurs, the circuit board cannot contact the casing or is deformed by force.
  • the present application provides an electromagnetic flow meter, a spraying system and an unmanned aerial vehicle, which can effectively shorten the length of the grounding path, improve the anti-interference ability of the electromagnetic flow meter, and improve the reliability of grounding.
  • FIG. 1 is a schematic diagram of the exploded structure of an electromagnetic flowmeter provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the structure of an electromagnetic flowmeter provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of the cross-sectional structure of the AA plane in FIG. 2
  • FIG. 4 It is a schematic diagram of the cross-sectional structure of the BB plane in FIG. 2, which is shown in conjunction with FIGS. 1 to 4.
  • an electromagnetic flowmeter which includes a main body 10, a flow tube 20, and an electromagnet 30.
  • the main body 10 has an inlet and an outlet.
  • the flow tube 20 is disposed in the main body 10, and the flow tube 20 communicates with the outside through an inlet and an outlet.
  • the flow tube 20 is provided with a pair of detection electrodes 21, and the end of the flow tube 20 close to the inlet and the end close to the outlet are both provided with a ground electrode 22.
  • the electromagnet 30 is arranged in the main body 10, and one side of the flow tube 20 is adjacent to the electromagnet 30.
  • the main body 10 can be understood as the casing of the electromagnetic flowmeter, the flow tube 20 and the electromagnet 30 are both arranged in the main body 10, and the main body 10 provides protection for its internal components.
  • the main body 10 has an inlet and an outlet for the flow tube 20 to communicate with the outside of the main body 10.
  • the flow tube 20 is a tubular member, which is arranged inside the main body 10, and fluid can flow in the tubular member.
  • the electromagnetic flowmeter includes a flow tube body, and at least one flow channel is provided on the flow tube body. The fluid can flow in the flow channel, and the flow channel is the flow tube 20.
  • a pair of detection electrodes 21 are arranged on the flow tube 20, and the detection electrodes 21 extend into the flow tube 20 to contact the fluid.
  • the direction of the magnetic field generated by the electromagnet 30, the direction of fluid flow in the flow tube 20, and the detection direction of the detection electrode 21 are orthogonally distributed.
  • the conductive fluid flows through a magnetic field perpendicular to the direction of flow, the conductive fluid induces an induced voltage proportional to the average flow velocity, and the induced voltage is detected by two detection electrodes 21 directly in contact with the conductive fluid.
  • the induced voltage detected by the detection electrode 21 is proportional to the magnetic field strength and the water flow speed, and the voltage value detected by the detection electrode 21 can reversely infer the size of the fluid flow.
  • the polarity of the electromagnet 30 toward the end of the flow tube 20 needs to be rapidly and repeatedly changed to form an alternating magnetic field and avoid charge accumulation in the flow tube 20 , It affects the detection of the induced voltage by the detection electrode 21, thereby affecting the calculation of the fluid flow rate.
  • the grounding electrode 22 at the end of the flow tube 20 close to the inlet and the end close to the outlet can realize the grounding of the electromagnetic flowmeter, effectively shorten the length of the grounding path, improve the anti-interference ability of the electromagnetic flowmeter, and improve the reliability of grounding.
  • the electromagnetic flowmeter includes, but is not limited to, it can be used for agricultural plant protection drones, pesticide spraying vehicles, human spraying devices, greening spraying equipment and other equipment.
  • the ground electrode 22 is arranged on the flow tube 20, and the installation method can refer to the installation method of the detection electrode, which is simple and easy to implement.
  • the main body 10 is also provided with a first electrode plate 40, a second electrode plate 41, and electrical connections.
  • One of the pair of detection electrodes 21 is electrically connected to the first electrode plate 40, and the other is electrically connected to the second electrode plate 41.
  • the ground electrode 22 is electrically connected to the first electrode plate 40 or the second electrode plate 41.
  • the electrical connector 42 bypasses the magnetic field formed by the electromagnet 30 and is electrically connected to the first electrode plate 40 and the second electrode plate 41 respectively.
  • One end of the detection electrode 21 extends into the flow tube 20 to be in contact with the fluid, and the other end is connected to the first electrode plate 40 or the second electrode plate 41.
  • the first electrode plate 40 and the second electrode plate 41 are connected by an electrical connector 42 so that The detection electrode 21-the first electrode plate 40-the electrical connector 42-the second electrode plate 41-the detection electrode 21 form a signal detection loop, so as to better realize the detection of the induced voltage by the detection electrode 21.
  • the electrical connector 42 bypasses the magnetic field formed by the electromagnet 30 to avoid interference from the alternating magnetic field.
  • ground electrode 22 extends into the flow tube 20 to contact the fluid, and the other end is connected to the first electrode plate 40 or the second electrode plate 41, and the first electrode plate 40 or the second electrode plate 42 is realized by the ground electrode 22. Grounding, the grounding path is short, thereby improving the anti-interference ability.
  • an achievable way of connecting the detection electrode 21 and the flow tube 20 is that the flow tube 20 is provided with a detection mounting hole.
  • the detection electrode 21 has a multi-section columnar structure. One end of the detection electrode 21 extends into the detection mounting hole, and the other end is connected to the first electrode plate 40 or the second electrode plate 41.
  • a first sealing structure is provided on the detection electrode 21, and the first sealing structure seals the gap between the detection electrode 21 and the detection mounting hole.
  • the first sealing structure includes, but is not limited to, a sealing ring.
  • the detection electrode 21 includes, but is not limited to, made of corrosion-resistant metal materials, such as stainless steel, titanium alloy, and the like.
  • a clearance fit can be used between the detection electrode 21 and the detection mounting hole.
  • the detection electrode 21 is covered with a sealing ring, which is a radial sealing ring. Compared with the end face seal, the end face of the detection electrode 21 The sealing effect can be guaranteed without too much pressing force.
  • the detection electrode 21 and the first electrode plate 40 or the second electrode plate 41 can be connected by screws, or the detection electrode 21 and the first electrode plate 40 or the second electrode plate 41 can be welded, such as the end surface of the detection electrode 21 and the first electrode plate 40 Or the second electrode plate 41 is in close contact, the first electrode plate 40 or the second electrode plate 41 is provided with an electrode hole, a conductive copper sheet is arranged around the electrode hole, the detection electrode 21 extends into the electrode hole, and the first electrode plate 40 or The second electrode plate 41 and the circuit board are connected by soldering. Further, in order to improve the solderability of the detection electrode 21, the surface of the detection electrode 21 may be plated with tin in advance.
  • the first electrode plate 40 and the second electrode plate 41 can be made of hard circuit boards, which can act as electrode pressing pieces, directly pressing the detection electrode 21, avoiding the addition of additional electrode pressing pieces and screws, thereby saving Electrode pressing pieces and screws reduce material and assembly costs, making the structure of the electromagnetic flowmeter more compact.
  • connection mode of the ground electrode 22 and the flow tube 20 can refer to the connection mode of the detection electrode 21 and the flow tube 20.
  • An achievable connection between the ground electrode 22 and the flow tube 20 is that the flow tube 20 is provided with a grounding installation hole.
  • the ground electrode 22 has a multi-section columnar structure. One end of the ground electrode 22 extends into the ground mounting hole, and the other end is connected to the first electrode plate 40 or the second electrode plate 41.
  • a second sealing structure is provided on the ground electrode 22, and the second sealing structure seals the gap between the ground electrode 22 and the ground mounting hole.
  • the second sealing structure includes, but is not limited to, a sealing ring.
  • the ground electrode 22 includes, but is not limited to, made of corrosion-resistant metal materials, such as stainless steel, titanium alloy, and the like.
  • a gap fit can be adopted between the ground electrode 22 and the ground mounting hole.
  • the ground electrode 22 is covered with a sealing ring.
  • the sealing ring is a radial sealing ring. Compared with the end face seal, the end face of the ground electrode 22 The sealing effect can be guaranteed without too much pressing force.
  • the ground electrode 22 and the first electrode plate 40 or the second electrode plate 41 may be connected by screws, or the ground electrode 22 and the first electrode plate 40 or the second electrode plate 41 may be welded.
  • the electrical connection 42 is provided with a shock absorber 43, and the shock absorber 43 prevents the electrical The connecting piece 42 vibrates.
  • the shock absorber 43 includes, but is not limited to, shock absorber foam.
  • the shock absorber foam can be pasted on the electrical connector 42, and the shock absorber foam is connected to other components at the same time.
  • the cushioning effect of the shock absorber 43 can reduce the impact of the vibration on the electrical connector 42 to ensure the signal transmission of the electrical connector 42 and prevent the electrical connector 42 from vibration and electromagnetic interference.
  • the damping member 43 may not be provided on the electrical connection member 42 but is provided around the electrical connection member 42 so as to prevent the electrical connection member 42 from vibrating and generating electromagnetic interference.
  • the detection electrode 21 in order to process the signal of the detection electrode 21, it is necessary to connect the detection electrode 21 with an external processing device.
  • One possible way is to connect the first electrode plate 40 or the second electrode plate 41 to The external processing device is connected, so that the signal of the detection electrode 21 is processed by the external processing device.
  • the induced voltage of the detection electrode 21 is amplified, filtered, shaped by a converter, and sent to the MCU (Microcontroller Unit) , Complete the display and output control of instantaneous flow and cumulative flow.
  • MCU Microcontroller Unit
  • a main board 44 is also provided in the main body 10.
  • the main board 44 is electrically connected to the electromagnet 30 and electrically connected to the first electrode plate 40 or the second electrode plate 41.
  • the main board 44 is provided with a quick plug interface 45, and the quick plug interface 45 extends outward through the electrical connection port on the main body 10.
  • the main board 44 is provided with a power supply unit, a signal processing unit, and a computing unit.
  • the power supply unit can supply power to the electromagnet 30.
  • the signal processing unit is used to amplify, filter, and reshape the induced voltage of the detection electrode 21.
  • the computing unit can detect The induced voltage detected by the electrode 21 calculates the flow rate of the fluid in the flow tube 20.
  • One possible implementation of the quick plug interface 45 is a pin, which is used to connect the electromagnetic flowmeter with an external processing device, and can transmit the signal processed by the main board 44 to the processing device.
  • the electrical connector 42 can be implemented by an FPC (Flexible Printed Circuit, flexible circuit board), which is formed by bypassing the electromagnet 30
  • the magnetic field ensures that the signal detection loop plane is parallel to the direction of the magnetic field, so that it will not be interfered by the alternating magnetic field.
  • the detection electrode 21 and the first electrode plate 40 or the second electrode plate 41 can be connected by a compression screw.
  • the first electrode plate 40 is electrically connected to the main board 44 through the plug.
  • the detection electrode is connected with the first electrode plate and the second electrode plate to form a detection circuit, and the signal is relatively weak.
  • the power supply signal and the processing circuit are arranged on the main board, the signal is relatively strong, and the interference of the strong signal to the weak signal is avoided, thereby ensuring the detection accuracy.
  • the conductive fluid passes through the flow tube 20, that is, when the conductive fluid cuts the magnetic lines of force to generate an induced voltage, the fluid itself is taken as the zero potential. At this time, a positive potential is generated on a detection electrode 21, A negative potential is generated on the other detection electrode 21, which changes continuously. Therefore, the main board 44 needs to be at zero potential and conduction with the conductive fluid to form a symmetrical input circuit. Since the output induced voltage of the detection electrode 21 is very small, usually only a few millivolts. In order to improve the anti-interference ability of the electromagnetic flowmeter, the zero potential in the input loop must be grounded, and the ground potential is the zero potential. If the grounding is poor or not grounded, it will cause external interference signals, and cause errors in the induction power supply of the detection electrode 21 received by the main board 44.
  • the error reports include empty tubes, zero signals, or negative signals.
  • the ground electrode 22 is connected to the first electrode plate 40 or the second electrode plate 41, and the ground electrode 22—electrode plate (first electrode plate 40 or second electrode plate 41) at one end of the flow tube close to the inlet -
  • the ground electrode 22 at the end of the flow tube close to the outlet forms the ground loop of the electromagnetic flowmeter.
  • the conductive fluid is in contact with the ground electrode 22, and the ground electrode 22 is connected to the first electrode plate 40 or the second electrode plate 41 to realize the flow of ground current, thereby realizing the grounding of the electrode plate.
  • an achievable way of the electromagnet 30 is that the electromagnet 30 includes a support frame 31, an iron core 32, a coil 33 and a shock-absorbing plate 34.
  • the supporting frame 31 includes a supporting column and a limiting plate arranged at opposite ends of the supporting column, and the supporting column has a through-type inner cavity.
  • the iron core 32 is arranged in the inner cavity of the support column.
  • the coil 33 is wound on the outer surface of the support column and is located between the two limit plates.
  • the support frame 31 is used to provide support for the coil 33, and the diameter of the inner cavity of the support column matches the outer diameter of the iron core 32.
  • the “matching” here means that the diameter of the inner cavity of the support column can be slightly It is larger or slightly smaller than the outer diameter of the iron core 32.
  • the iron core 32 can be connected in the inner cavity of the support column by means of bonding, welding, or clamping.
  • the iron core 32 can be squeezed into the inner cavity of the support column, and the inner cavity of the support column and the iron core 32 are interference-connected.
  • the iron core 32 and the inner cavity of the support column are then connected by bonding, welding, and clamping.
  • the coil 33 is arranged between the two limit plates.
  • the limit plates at the opposite ends of the support column can limit the coil 33 in the axial direction of the coil 33 and prevent the coil 33 from axially moving on the support column.
  • the electromagnet 30 is also provided with a shock-absorbing sheet 34, and the shock-absorbing sheet 34 includes, but is not limited to, made of rubber material or silicone material.
  • the shock-absorbing pressing piece 34 is connected to the limiting plate and the main body 10 respectively.
  • the shock-absorbing pressing piece 34 is connected to the limiting plate and the flow tube 20 respectively. It should be noted that the above two methods can be implemented separately or in combination, and there is no specific limitation here.
  • the support frame 31 can be squeezed by the shock-absorbing sheet 34.
  • the shock-absorbing sheet 34 can prevent the support frame 31 from moving, thereby preventing magnetic field fluctuations caused by the vibration of the coil 33. Furthermore, the shock-absorbing pressure piece 34 can also be arranged between the coil 33 and the limiting plate to prevent the coil 33 from moving relative to the support column due to vibration. Furthermore, the shock-absorbing sheet 34 can also extend into the inner cavity of the support column to squeeze the iron core 32 to prevent the iron core 32 from moving relative to the support column due to vibration.
  • the electromagnet 30 in order to restrict the magnetic field direction of the electromagnet 30, reduce magnetic leakage, and prevent the external magnetic field from interfering with the electromagnet 30, the electromagnet 30 is also provided with a yoke plate or a yoke shell.
  • the yoke plate or the yoke shell includes but is not limited to being made of silicon steel sheet.
  • the arrangement of the yoke plate or the yoke shell can be set according to the different arrangement of the electromagnet 30.
  • the number of flow tubes is at least one. When the number of flow tubes is different, in order to ensure that an electromagnet is adjacent to one side of each flow tube, the arrangement of the electromagnet 30 is also different.
  • the electromagnet 30 when there is one flow tube 20, there may be one electromagnet 30.
  • One end of the electromagnet 30 faces the flow tube 20 and one end faces away from the flow tube 20.
  • the end facing the flow tube 20 provides a magnetic field for the flow tube 20, and the end facing away from the flow tube 20 is provided with a yoke plate.
  • the electromagnet 30 is arranged in the yoke housing, and the end of the yoke housing facing the flow tube 20 has a magnetic flux opening. It should be noted that when the electromagnet 30 is in use, the direction of the iron core 32 is the direction of the magnetic field of the electromagnet 30.
  • one end of the iron core 32 needs to face the flow tube 20, and the other end faces away from the flow tube 20.
  • the end of the electromagnet 30 facing away from the flow tube 20 means that the iron core 32 faces away from the flow tube 20.
  • the yoke plate can constrain the direction of the magnetic field of the electromagnet 30, reduce magnetic leakage, and prevent the external magnetic field from interfering with the electromagnet 30.
  • a yoke shell can also be used. The yoke shell is wrapped around the outer surface of the electromagnet 30 to prevent the magnetic field generated by the coil 33 from leaking out.
  • one possible implementation is that there are two flow tubes 20 and two electromagnets 30, and the two flow tubes 20 are located between the two electromagnets 30.
  • the side of the electromagnet 30 facing away from the flow tube 20 is provided with a yoke plate.
  • the electromagnet 30 is arranged in the yoke housing, and the end of the yoke housing facing the flow tube 20 has a magnetic flux opening.
  • Another achievable way is that there are two flow tubes 20, one electromagnet 30, and one electromagnet 30 is located between the two flow tubes 20.
  • the electromagnet 30 is arranged in the yoke housing, and the yoke housing has magnetic flux openings at both ends of the yoke housing facing the flow tube 20.
  • the electromagnet 30 can discharge the magnetic field through the flux openings at both ends of the yoke shell, so that the flow tubes 20 at both ends are located in the magnetic field.
  • the magnetic fields of the two flow tubes 20 are provided by the same electromagnet 30 and are also symmetrical. There is no problem of inconsistent magnetic fields.
  • the yoke shell is wrapped around the outer surface of the electromagnet 30, which can prevent the magnetic field generated after the coil 33 is energized from leaking.
  • FIGS. 1 to 6 show the case where there are four flow tubes 20.
  • An achievable way is that, referring to FIG. 3, there are four flow tubes 20, and every two flow tubes 20 form a flow tube group.
  • An electromagnet 30 is provided between the two flow tubes 20 in each flow tube group.
  • the electromagnet 30 is arranged in the yoke housing, and the yoke housing has magnetic flux openings at both ends of the yoke housing facing the flow tube 20.
  • the electromagnet 30 can discharge the magnetic field through the flux openings at both ends of the yoke shell, so that the flow tubes 20 at both ends are located in the magnetic field.
  • the magnetic fields of the two flow tubes 20 are provided by the same electromagnet 30 and are also symmetrical. There is no problem of inconsistent magnetic fields. At the same time, the yoke shell is wrapped around the outer surface of the electromagnet 30, which can prevent the magnetic field generated after the coil 33 is energized from leaking.
  • an achievable way is to further include a water tap 23.
  • the water diversion joint 23 is connected to the inlet of the main body 10, and a diversion cone 24 is provided in the diversion joint 23.
  • the diversion cone 24 divides the inner cavity of the diversion joint 23 into two diversion channels, and each diversion channel is connected to one The flow tube group is connected.
  • the conductive fluid at the inlet can be introduced into different water diversion channels through the guide cone 24, and the conductive fluid entering the water diversion channel can further enter different flow tubes 20 respectively.
  • the diversion cone 24 can also be arranged on the flow tube body and corresponding to the water inlet position of the water tap.
  • the flow tube 20 is provided with a guide curved surface 25 at one end of the flow tube 20 facing the water diversion channel. According to the distance between the flow tube 20 and the guide cone 24, the curvature of the guide curved surface 25 is also different.
  • the guide surface 25 on the flow tube 20 closer to the guide cone 24 has a smaller curvature.
  • the electromagnetic flowmeter further includes a fixing plate 26.
  • the fixing plate 26 is located between the water tap 23 and the end surface of the inlet.
  • the four flow tubes 20 are fixed on the fixed plate 26 and pass through the fixed plate 26 to communicate with the water diversion channel.
  • the fixing plate 26 may also be provided on the flow tube body.
  • each flow tube 20 close to the outlet is provided with an outlet connector 27 communicating with the flow tube 20, and the outlet connector 27 is connected to the main body 10.
  • the outlet connector 27 realizes the communication between the flow tube 20 and the outside, and the fluid flows out of the flow tube 20 from the outlet connector 27.
  • the outlet connector 27 includes a flange joint and a joint nut.
  • the flange joint is detachably connected to the main body 10 and communicates with the corresponding flow tube 20.
  • the flange joint and the flow tube 20 are integrally formed.
  • the joint nut is sleeved outside the flange joint and can be detachably connected with the flange joint.
  • the flange joint can be connected to the main body 10 by fasteners, such as screws.
  • a sealing ring is provided at the connection between the flange joint and the flow tube 20 to prevent fluid from overflowing the flow tube 20 from the connection between the flange joint and the flow tube 20.
  • the flange joint and the joint nut are provided with threads that cooperate with each other, and the joint nut can be screwed on the flange joint.
  • the connection between the flange joint and the external pipeline can be realized through the joint nut.
  • One possible way is to first sleeve the joint nut on the external pipeline, then connect the external pipeline to the flange joint, and then connect the joint nut Connected to the flange joint. When the joint nut is connected to the flange joint, the joint nut squeezes the external pipeline to fix the external pipeline on the flange joint.
  • the first electrode plate 40 is used to connect to the main board 44, and the second electrode plate 41 is divided into two pieces, and the two second electrode plates 41 are respectively connected to the first electrode plate 40 through different electrical connectors 43 ,
  • the first electrode plate 40 is connected to the main board 44 through a connector, and the connector is arranged in the middle of the first electrode plate 40.
  • the detection loop lengths of the detection electrodes 21 in different flow tube groups are not much different, and are approximately equal, which can effectively improve the detection accuracy.
  • the first electrode plate 40 is connected to the first electrode plate 40, and the other detection electrode 21 is connected to the second electrode plate 41, wherein, The first electrode plate 40 and the second electrode plate 41 connected to the detection electrodes 21 in different flow tube groups are different.
  • the first electrode plate 40 and the second electrode plate 41 connected to the detection electrode 21 in the same flow tube group are connected by an electrical connector 42.
  • the first electrode plate 40 is used to connect to the main board 44, the first electrode plate 40 is divided into two, the second electrode plate 41 is also divided into two, and the two second electrode plates 41 pass through different
  • the electrical connector 42 is connected to the corresponding first electrode plate 40.
  • the two first electrode plates 40 are connected to the main board 44 through a plug-in member, and the plug-in member is arranged at a middle position of the two first electrode plates 40.
  • the detection loop lengths of the detection electrodes 21 in different flow tube groups are not much different, and are approximately equal, which can effectively improve the detection accuracy.
  • an embodiment of the present application also provides a spraying system, including: an electromagnetic flowmeter 50, a water tank 60, a pump 70 and a spraying device 80.
  • the electromagnetic flowmeter 50 can be realized by the electromagnetic flowmeter described in the first embodiment above.
  • the spray system includes: an electromagnetic flow meter 50, a water tank 60, a pump 70 and a spray device 80.
  • the electromagnetic flowmeter 50 includes a main body 10, a flow tube 20 and an electromagnet 30.
  • the main body 10 has an inlet and an outlet.
  • the flow tube 20 is provided in the main body 10, and the flow tube 20 communicates with the outside through an inlet and an outlet.
  • the flow tube 20 is provided with a pair of detection electrodes 21, and the end of the flow tube 20 close to the inlet and the end close to the outlet are both provided with a ground electrode 22.
  • the electromagnet 30 is arranged in the main body 10, and one side of the flow tube 20 is adjacent to the electromagnet 30.
  • the water tank 60 is connected to the flow tube 20 through the inlet.
  • the pump 70 is connected to the flow tube 20 through an outlet.
  • the spray device 80 is connected to the pump 70.
  • each flow tube 20 of the electromagnetic flowmeter 50 takes four flow tubes 20 of the electromagnetic flowmeter 50 and four pumps 70 as an example.
  • the four flow tubes 20 are respectively connected to the water tank 60 through inlets, each flow tube is connected to four pumps 70 through outlets, and each pump 70 is connected to at least one spray device 80 respectively.
  • a plurality of spray devices 80 are arranged symmetrically, two pumps 70 are responsible for spraying on the left, and the other two pumps 70 are responsible for spraying on the right.
  • the four flow tubes in the electromagnetic flowmeter 50 correspond to monitor the flow rates of the two pumps 70 on the left side of the spray and monitor the flow rates of the two pumps 70 on the right side of the spray to ensure uniform spraying on the left and right sides of the fuselage.
  • the spraying system includes, but is not limited to, it can be used for agricultural plant protection drones, pesticide spraying vehicles, human spraying devices, greening spraying equipment and other equipment.
  • the electromagnetic flowmeter 50 is grounded through the ground electrode 22.
  • the grounding path is short and the anti-interference ability is strong.
  • the ground electrode 22 is arranged on the flow tube 20, and the installation method can refer to the installation method of the detection electrode 21, which is simple and easy to implement.
  • an embodiment of the present application also provides an unmanned aerial vehicle, including: an unmanned aerial vehicle body 90 and an unmanned aerial vehicle body 90 arranged on the unmanned aerial vehicle body 90 Spraying system on top.
  • the spraying system can be realized by the spraying system described in Embodiment 2 above, and the electromagnetic flowmeter 50 in the spraying system can be realized by the electromagnetic flowmeters in Embodiments 1 and 2.
  • the drone includes: a drone body 90 and a spray system provided on the drone body 90.
  • the spray system includes: an electromagnetic flow meter 50, a water tank 60, a pump 70, and a plurality of spray devices 80.
  • the electromagnetic flowmeter 50 includes a main body 10, a flow tube 20 and an electromagnet 30.
  • the main body 10 has an inlet and an outlet.
  • the flow tube 20 is disposed in the main body 10, and the flow tube 20 communicates with the outside through an inlet and an outlet.
  • the flow tube 20 is provided with a pair of detection electrodes 21, and the end of the flow tube 20 close to the inlet and the end close to the outlet are both provided with a ground electrode 22.
  • the electromagnet 30 is arranged in the main body 10, and one side of the flow tube 20 is adjacent to the electromagnet 30.
  • the water tank 60 is connected to the flow tube 20 through the inlet.
  • the pump 70 is connected to the flow tube 20 through an outlet.
  • a plurality of spray devices 80 are connected to the pump 70.
  • each flow tube 20 is connected to at least two pumps 70 through an outlet, and each pump 70 is connected to at least one spray device 80.
  • the spray device 80 includes, but is not limited to, a spray head.
  • the UAV is equipped with four pumps 70, namely pumps 70 1234 in Figure 11.
  • Each pump 70 is connected to two spraying devices 80, that is, No. 1 pump 70 is connected to two nozzles a and b, No. 2 pump 70 is connected to two nozzles c and d, and No. 3 pump 70 is connected to h, g Two nozzles, No. 4 pump 70 is connected to two nozzles e and f.
  • a plurality of spray devices 80 are symmetrically distributed on both sides of the drone body 90 along the first axis 91.
  • the spray devices 80 on the same side communicate with the same flow tube 20.
  • the extending direction of the first axis 91 is the length direction of the drone. That is, the four nozzles a, b, c, and d are symmetrically distributed along the first axis 91 with the four nozzles e, f, g, and h. In most cases, there are only two pumps 70 working.
  • Each pump 70 monitors one pump 70 through a flow tube 20.
  • the electromagnetic flowmeter 50 with two flow tubes 20 is sufficient to meet the working requirements. When a large flow is required for spraying, the four pumps will be fully opened. Two of the pumps 70 are responsible for spraying on the left side of the drone body 90, and the other two pumps 70 are responsible for spraying on the right side of the drone body 90. At this time, there are still requirements for the flow uniformity on the left and right sides of the drone body 90.
  • One flow tube 20 in the electromagnetic flowmeter 50 is used to monitor the flow of the two pumps 70 on the left side of the spray, and the other flow tube 20 It is used to monitor the flow of the two pumps 70 on the right side of the spray to ensure that the drone body 90 sprays evenly.
  • the pumps on the same side are symmetrically distributed along the second axis 92 of the drone body 90.
  • the extension direction of the second axis 92 is the width direction of the drone. Since the drone will only spray when it is flying forward and backward, even if the flow rate is different, the amount of medicine sprayed on the crop is the sum of the flow rate of the front and rear pump 70, and the flow rate on the left and right sides is still the same. At the same time, it can also avoid leakage or inadequate protection.
  • each flow tube 20 is connected to at least one pump 70 through an outlet, and each pump 70 is connected to at least one spray device 80.
  • each pump 70 is connected to at least one spray device 80.
  • the four flow tubes 20 in the electromagnetic flowmeter 50 correspond to monitor the flow of the two pumps 70 on the left side of the spraying and the flow of the two pumps 70 on the right side of the spraying to ensure that the drone body 90 is sprayed evenly.
  • the drone body 90 is further provided with a controller and a control switch coupled with the controller.
  • the controller and the control switch can be arranged inside the drone body 90, therefore, they are not shown in the drawings.
  • the control switch is coupled to the electromagnetic flowmeter 50, and the controller controls the working state of the electromagnetic flowmeter 50 through the control switch.
  • the controller can facilitate the user to control the electromagnetic flowmeter 50, and facilitate the user to detect the flow rate of the spraying system, thereby improving the spraying efficiency of the drone.
  • the controller is coupled to the pump 70, and the controller controls the working state of the electromagnetic flowmeter 50 through a control switch according to the working state of the pump 70.
  • the controller can monitor the working status of the pump 70. If the pump 70 starts, it indicates that spraying operation is required. At this time, the controller can control the operation of the electromagnetic flowmeter 50 to detect the fluid flow rate during the spraying operation. If the pump 70 stops working, it means that the spraying operation is completed. At this time, the controller can control the electromagnetic flowmeter 50 to stop working.
  • This control process can be completed during the flight of the drone. It can accurately detect the flow at the start point of spraying and end the flow detection at the end of the spraying, so as to accurately obtain the sprayed amount and the statistical work area is also more accurate.
  • the above-mentioned controller controls the working state of the electromagnetic flowmeter 50 through the control switch according to the working state of the pump 70, which is an automatic control method of the electromagnetic flowmeter 50.
  • a manual control method of the electromagnetic flowmeter 50 is also provided, which is specifically as follows:
  • the unmanned aerial vehicle also includes a ground control terminal, which is coupled to the controller.
  • the controller receives a control signal from the ground control terminal and controls the working state of the electromagnetic flowmeter 50 through a control switch according to the control signal.
  • the ground control terminal can remotely send a control signal to the controller, so that the controller controls the working state of the electromagnetic flowmeter 50 through the control switch according to the control signal.
  • the user can control the drone's controller on the ground through the ground control terminal, without the drone being parked on the ground.
  • the user can send a control signal to the controller to turn on the electromagnetic flowmeter 50 through the ground control terminal.
  • the controller controls the switch to turn on the electromagnetic flowmeter 50 according to the control signal.
  • the user can send a control signal to turn off the electromagnetic flowmeter 50 to the controller through the ground control terminal.
  • the controller controls the switch to control the electromagnetic flowmeter 50 to turn off according to the control signal.
  • Embodiment 3 The technical solutions of the related spraying system and electromagnetic flowmeter described in Embodiment 3 and the technical solutions described in Embodiment 1 and Embodiment 2 can be referred to each other for reference, and will not be repeated here.
  • the electromagnetic flowmeter is grounded through the ground electrode.
  • the grounding path is short and the anti-interference ability is strong.
  • the ground electrode is arranged on the flow tube, and the installation method can refer to the installation method of the detection electrode, which is simple and easy to implement.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种电磁流量计包括:主体(10),具有入口及出口;流量管(20),设置在主体(10)内,流量管(20)通过入口及出口与外部连通;流量管(20)上设有成对的检测电极(21),流量管(20)靠近入口的一端及靠近出口的一端均设置有接地电极(22);电磁铁(30),设置在主体(10)内,流量管(20)的一侧相邻电磁铁(30)。该流量计可有效缩短接地路径长度,提高电磁流量计的抗干扰能力,并且提高接地的可靠性。还提供了一种喷洒系统及无人机。

Description

一种电磁流量计、喷洒系统及无人机 技术领域
本申请涉及机械技术领域,尤其涉及一种电磁流量计、喷洒系统及无人机。
背景技术
随着科学技术的不断发展,很多工作通过机器设备代替了人工作业。例如,植保无人机就是一种被广泛在农林植物保护作业的设备。通过植保无人机可代替人来实现喷洒作业,可以喷洒药剂、种子、粉剂等。以喷洒药剂为例,植保无人机在进行喷洒作业时,为了提高喷洒的控制精度和已喷药量计算准确度,电磁流量计得以应用。由于电磁流量计检测的信号是差分信号,所以电磁流量计需要一个电势参考点,需要接地,即电路板与水流接通。
现有的接地方式存在接地路径太长,易受干扰,重量和成本高,接地不可靠,对制造和装配精度要求高等缺点。
申请内容
鉴于上述问题,提出了本申请,以便提供一种解决上述问题的电磁流量计、喷洒系统及无人机。
在本申请的一个实施例中,提供了一种电磁流量计,包括:
主体,具有入口及出口;
流量管,所述流量管设置在所述主体内,所述流量管通过所述入口及所述出口与外部连通;所述流量管上设有成对的检测电极,所述流量管靠近所述入口的一端及靠近所述出口的一端均设置有接地电极;
电磁铁,所述电磁铁设置在所述主体内,所述流量管的一侧相邻所述电磁铁。
在本申请的一个实施例中,还提供了一种喷洒系统,包括:
电磁流量计,所述电磁流量计包括:主体,具有入口及出口;流量管, 所述流量管设置在所述主体内,所述流量管通过所述入口及所述出口与外部连通;所述流量管上设有成对的检测电极,所述流量管靠近所述入口的一端及靠近所述出口的一端均设置有接地电极;电磁铁,所述电磁铁设置在所述主体内,所述流量管的一侧相邻所述电磁铁;
水箱,所述水箱通过所述入口与所述流量管连接;
泵机,所述泵机通过所述出口与所述流量管连接;
喷淋装置,所述喷淋装置与所述泵机连接。
在本申请的一个实施例中,还提供了一种无人机,包括:无人机本体及设置在所述无人机本体上的喷洒系统;
所述喷洒系统包括:
所述喷洒系统包括:
电磁流量计,所述电磁流量计包括:主体,具有入口及出口;流量管,所述流量管设置在所述主体内,所述流量管通过所述入口及所述出口与外部连通;所述流量管上设有成对的检测电极,所述流量管靠近所述入口的一端及靠近所述出口的一端均设置有接地电极;电磁铁,所述电磁铁设置在所述主体内,所述流量管的一侧相邻所述电磁铁;
水箱,所述水箱通过所述入口与所述流量管连接;
泵机,所述泵机通过所述出口与所述流量管连接;
多个喷淋装置,所述喷淋装置与所述泵机连接。
根据本申请实施例提供的技术方案,通过流量管靠近入口的一端及靠近出口的一端的接地电极,实现电磁流量计接地,可有效缩短接地路径长度,提高电磁流量计的抗干扰能力,并且提高接地的可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的电磁流量计的分解结构示意图;
图2为本申请一实施例提供的电磁流量计的结构示意图;
图3为图2中A-A面的剖面结构示意图;
图4为图2中B-B面的剖面结构示意图;
图5为图2中C-C面的剖面结构示意图;
图6为图2中提供的电磁流量计缺少主体情况下的结构示意图;
图7为图6中电磁流量计的缺少电极板情况下,另一视角下的结构示意图;
图8为图7中D-D面的剖面结构示意图;
图9为本申请一实施例提供的电极板及主板的结构示意图;
图10为图9的平面结构示意图;
图11为本申请一实施例提供的带有喷洒系统的无人机的平面结构示意图;
图12为本申请一实施例提供的带有喷洒系统的无人机的立体结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在本申请的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用 的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
现有技术中,由于电磁流量计检测的信号是差分信号,所以电磁流量计需要一个电势参考点,需要接地,即电路板与水流接通。目前使用电磁流量计的大多的接地方式是,通过金属接头与水接触,金属接头又跟金属外壳连接,金属外壳再跟电路板导通,实现水流与电路的接通。发明人经过多次实践发现,这种接地方式有诸多缺点,一是接地路径太长,易受干扰。二是接头和外壳必须是金属材质的,增加了重量和成本。三是金属接头与金属外壳的连接处容易发生电偶腐蚀,影响接地可靠性。四是电路板既与测量管连接,又与金属外壳连接,对制造和装配精度的要求很高,一旦出现误差,电路板与外壳接触不上或者受力变形。
针对上述问题,本申请提供一种电磁流量计、喷洒系统及无人机,可有效缩短接地路径长度,提高电磁流量计的抗干扰能力,并且提高接地的可靠性。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
图1为本申请一实施例提供的电磁流量计的分解结构示意图,图2为本申请一实施例提供的电磁流量计的结构示意图,图3为图2中A-A面的剖面结构示意图,图4为图2中B-B面的剖面结构示意图,结合图1至图4中所示。
在本申请的一个实施例中,提供了一种电磁流量计,包括:主体10、流量管20及电磁铁30。
其中,主体10具有入口及出口。流量管20设置在主体10内,流量管20通过入口及出口与外部连通。流量管20上设有成对的检测电极21,流量管20靠近入口的一端及靠近出口的一端均设置有接地电极22。电磁铁30设置在主体10内,流量管20的一侧相邻电磁铁30。
在本申请实施例中,主体10可理解为是电磁流量计的外壳,流量管20 及电磁铁30均设置在主体10内,主体10为其内部的部件提供保护。主体10上具有入口及出口,以供流量管20与主体10外部进行连通。
流量管20的一种可实现的方式是流量管20为管状部件,设置在主体10内部,流体可在管状部件内流动。流量管20的另一种可实现的方式是,电磁流量计包括流量管本体,流量管本体上设置有至少一个流动通道,流体可在流动通道内流动,流动通道即为流量管20。
成对的检测电极21设置在流量管20上,检测电极21伸入流量管20内与流体接触。电磁铁30产生的磁场方向、流量管20内流体流动的方向及检测电极21的检测方向,三者呈正交分布。当导电流体流过垂直于流动方向的磁场时,导电流体感应出与平均流速成正比的感应电压,感应电压通过两个直接与导电流体接触的检测电极21检出。检测电极21检测到的感应电压与磁场强度和水流速度成正比,通过检测电极21检测到的电压值可反推流体流量的大小。需要说明的是,本申请实施例中,电磁铁30在工作时,电磁铁30朝向流量管20的一端的极性需快速反复地变换,从而形成交变磁场,避免流量管20中产生电荷堆积,影响检测电极21对感应电压的检测,从而影响对流体流量大小的计算。
通过流量管20靠近入口的一端及靠近出口的一端的接地电极22,可实现电磁流量计的接地,可有效缩短接地路径长度,提高电磁流量计的抗干扰能力,并且提高接地的可靠性。
本申请实施例提供的技术方案,电磁流量计包括但不限于为可用于农业植保无人机、农药喷洒车、人力喷洒装置以及绿化喷洒设备等等设备上。通过接地电极22进行接地,与现有技术相比,接地路径短,抗干扰能力强,不用使用金属接头和金属外壳进行接地,减轻了重量和制作成本,不会发生金属接头与金属外壳的连接处电偶腐蚀的情况,接地可靠性高。同时,接地电极22设置在流量管20上,安装方式可参考检测电极的安装方式,简单易实现。
为更好地实现检测电极21对感应电压的检测继续参见图1、图4及图5,本申请实施例中,主体10内还设有第一电极板40、第二电极板41及电气连接件42。成对的检测电极21中的一个检测电极21与第一电极板40电气连接,另一个与第二电极板41电气连接。接地电极22与第一电极板40或第二 电极板41电气连接。电气连接件42绕过电磁铁30形成的磁场,分别与第一电极板40及第二电极板41电气连接。检测电极21的一端伸入流量管20内与流体接触,另一端与第一电极板40或第二电极板41连接,第一电极板40及第二电极板41通过电气连接件42连接,使得检测电极21—第一电极板40—电气连接件42—第二电极板41—检测电极21形成信号检测环路,从而更好地实现检测电极21对感应电压的检测。电气连接件42绕过电磁铁30形成的磁场,以避免受到交变磁场的干扰。
同时,接地电极22的一端伸入流量管20内与流体接触,另一端与第一电极板40或第二电极板41连接,通过接地电极22实现第一电极板40或第二电极板42的接地,接地路径短,从而提高抗干扰能力。
本申请实施例中,一种可实现的检测电极21与流量管20的连接方式是,流量管20上设置有检测安装孔。检测电极21为多段柱状结构,检测电极21的一端部分伸入检测安装孔内,另一端与第一电极板40或第二电极板41连接。进一步地,为防止流量管20内的流体通过检测安装孔溢出,检测电极21上设置有第一密封结构,第一密封结构密封检测电极21与检测安装孔之间的缝隙。第一密封结构包括但不限于为密封圈。
本申请实施例中,检测电极21包括但不限于为采用耐腐蚀金属材料制造,如不锈钢、钛合金等。为方便检测电极21的拆装,检测电极21与检测安装孔之间可采用间隙配合,检测电极21上套有密封圈,密封圈为径向密封圈,相比端面密封,检测电极21的端面无需太大的压紧力即可保证密封效果。检测电极21与第一电极板40或第二电极板41可通过螺丝连接,或者检测电极21与第一电极板40或第二电极板41可焊接,如检测电极21端面与第一电极板40或第二电极板41紧密接触,第一电极板40或第二电极板41上设置有电极孔,电极孔周围布置有导电铜皮,检测电极21伸入电极孔内,第一电极板40或第二电极板41与电路板通过锡焊连接。进一步地,为了提高检测电极21的可焊性,可在检测电极21的表面预先镀锡。第一电极板40及第二电极板41可采用硬质电路板制成,可以充当电极压片的作用,直接将检测电极21压紧,避免了增加额外的电极压片和螺丝,从而节省了电极压片和螺丝,降低了物料和组装成本,使得电磁流量计的结构也更加紧凑。
本申请实施例中,接地电极22与流量管20的连接方式可参考检测电极 21与流量管20的连接方式。一种可实现的接地电极22与流量管20的连接方式是,流量管20上设置有接地安装孔。接地电极22为多段柱状结构,接地电极22的一端部分伸入接地安装孔内,另一端与第一电极板40或第二电极板41连接。进一步地,为防止流量管20内的流体通过接地安装孔溢出,接地电极22上设置有第二密封结构,第二密封结构密封接地电极22与接地安装孔之间的缝隙。第二密封结构包括但不限于为密封圈。
本申请实施例中,接地电极22包括但不限于为采用耐腐蚀金属材料制造,如不锈钢、钛合金等。为方便接地电极22的拆装,接地电极22与接地安装孔之间可采用间隙配合,接地电极22上套有密封圈,密封圈为径向密封圈,相比端面密封,接地电极22的端面无需太大的压紧力即可保证密封效果。接地电极22与第一电极板40或第二电极板41可通过螺丝连接,或者接地电极22与第一电极板40或第二电极板41可焊接。
参见图5和图6,为避免在电磁流量计出现震动时,对电气连接件42产生影响,本申请实施例中,电气连接件42上设置有减震件43,通过减震件43防止电气连接件42震动。减震件43包括但不限于为减震泡棉,减震泡棉可粘贴在电气连接件42上,减震泡棉同时与其他部件连接。当电磁流量计出现震动时,通过减震件43的缓冲作用,可减轻震动对电气连接件42的影响,以保证电气连接件42的信号传输,防止电气连接件42震动而产生电磁干扰。减震件43也可以不设置在电气连接件42上,设置在电气连接件42的附近周围,从而防止电气连接件42震动而产生电磁干扰。
在上述实施例中,为实现对检测电极21的信号进行处理,需要将检测电极21与外部的处理设备进行连接,一种可实现的方式是通过第一电极板40或第二电极板41与外部的处理设备进行连接,从而通过外部的处理设备对检测电极21的信号进行处理,例如,检测电极21的感应电压经转换器放大、滤波、整形,送至MCU(Microcontroller Unit,微控制单元),完成瞬时流量、累积流量的显示及输出控制。
进一步地,为避免与外部的处理单元进行信号传输时,传输路径过长,导致信号减弱。继续参见图1、图4至图6,本申请的一种可实现的实施例中,主体10内还设有主板44。主板44与电磁铁30电气连接,以及与第一电极板40或第二电极板41电气连接。主板44上设有快插接口45,快插接口45 通过主体10上的电气连接口向外伸出。主板44上设置有供电单元、信号处理单元及运算单元,供电单元可对电磁铁30进行供电,信号处理单元用于对检测电极21的感应电压进行放大、滤波、整形处理,运算单元可通过检测电极21检测到的感应电压运算出流量管20内流体的流量。快插接口45的一种可实现方式为插针,用于电磁流量计与外部的处理设备连接,可将主板44处理后的信号传输至处理设备。
举例来说,参见图5和图6,在本申请的一种可实现的实施例中,电气连接件42可通过FPC(Flexible Printed Circuit,柔性电路板)实现,FPC绕过电磁铁30形成的磁场,保证了信号检测环路平面与磁场方向平行,从而不会受到交变磁场的干扰。检测电极21与第一电极板40或第二电极板41可通过压紧螺丝进行连接。第一电极板40通过插接件与主板44电气连接。将检测电极与第一电极板及第二电极板连接,形成检测电路,信号相对微弱。将供电信号和处理电路布置在主板上,信号相对强烈,避免了强信号对弱信号的干扰,从而保证检测精度。
在本申请实施例中,当导电流体在流量管20中穿过时,即导电流体切割磁力线产生感应电压时,是以流体本身作为零电位的,此时,一个检测电极21上的产生正电势,另一个检测电极21上产生负电势,不断交替变化。因此,主板44需要与导电流体共处于零电位且导通,从而构成对称的输入回路。由于检测电极21的输出感应电压很小,通常只有几毫伏。为了提高电磁流量计的抗干扰能力,输入回路中的零电位必须接地,以大地电位为零电位。若接地不良或没接地会导致外界干扰信号,导致主板44接收检测电极21的感应电源出现错误,报错形式有:空管、信号为零或信号出现负值等情况。
本申请实施例中,接地电极22与第一电极板40或第二电极板41连接,通过流量管靠近入口的一端的接地电极22—电极板(第一电极板40或第二电极板41)—流量管靠近出口的一端的接地电极22形成电磁流量计的接地环路。导电流体与接地电极22接触,接地电极22与第一电极板40或第二电极板41连接,实现接地电流的流通,从而实现电极板的接地。
继续参见图3,本申请实施例中,电磁铁30的一种可实现的方式是,电磁铁30包括:支撑架31、铁芯32、线圈33及减震压片34。支撑架31包括支撑柱及设置在支撑柱相对的两端的限位板,支撑柱具有贯通式的内腔。铁 芯32设置在支撑柱的内腔内。线圈33缠绕在支撑柱的外表面,并位于两个限位板之间。其中,支撑架31用于为线圈33提供支撑,支撑柱的内腔的直径与铁芯32的外径相匹配,此处的“相匹配”表示的是,支撑柱的内腔的直径可以略大于或略小于铁芯32的外径。支撑柱的内腔的直径略大于铁芯32的外径时,铁芯32可通过粘接、焊接、卡接等方式连接在支撑柱的内腔内。支撑柱的内腔的直径略小于铁芯32的外径时,铁芯32可挤进支撑柱的内腔内,支撑柱的内腔与铁芯32过盈连接,为确保连接强度,铁芯32与支撑柱的内腔之间再通过粘接、焊接、卡接等方式连接。线圈33设置在两个限位板之间。通过支撑柱的相对的两端的限位板,可沿着线圈33的轴向方向上,对线圈33起到限位作用,防止线圈33在支撑柱上发生轴向移动。
为了防止线圈33震动导致的磁场波动,电磁铁30上还设置有减震压片34,减震压片34包括但不限于为通过橡胶材料、硅胶材料制成。一种减震压片34的设置方式是,减震压片34分别与限位板及主体10连接。另一种实现方式是,减震压片34分别与限位板及流量管20连接。需要说明的是,上述两种方式可单独实现,也可以组合在一起实现,此处并不做具体限定。通过减震压片34可对支撑架31进行挤压,在支撑架31发生震动时,减震压片34可防止支撑架31发生移动,从而防止线圈33震动导致的磁场波动。更进一步地,减震压片34还可设置在线圈33与限位板之间,防止线圈33因震动导致的相对于支撑柱发生移动。更进一步地,减震压片34还可伸入支撑柱的内腔内,对铁芯32进行挤压,以防止铁芯32因震动导致的相对于支撑柱发生移动。
进一步地,在本申请实施例中,为了约束电磁铁30的磁场方向,减少漏磁,同时防止外部磁场对电磁铁30产生干扰,电磁铁30上还设置有磁轭板或磁轭壳。其中,磁轭板或磁轭壳包括但不限于为通过硅钢片制成。磁轭板或磁轭壳的设置方式可根据电磁铁30的不同设置方式设定。在本申请实施例中,流量管的数量至少为一个,当流量管的数量不同时,为保证每个流量管的一侧均相邻有电磁铁,电磁铁30的设置方式也不同。
举例来说,流量管20为一个时,电磁铁30可为一个,电磁铁30一端朝向流量管20,一端背向流量管20。朝向流量管20的一端为流量管20提供磁场,背向流量管20的一端设置有磁轭板。或者,电磁铁30设置在磁轭壳内,磁轭壳朝向流量管20的一端具有通磁口。需要说明的是,电磁铁30在使用 时,铁芯32的朝向即为电磁铁30的磁场的朝向。为实现流量管20在磁场内,铁芯32的一端需朝向流量管20,另一端则背向流量管20,电磁铁30背向流量管20的一端是指铁芯32背向流量管20的一端。通过磁轭板可约束电磁铁30的磁场方向,减少漏磁,同时防止外部磁场对电磁铁30产生干扰。除了使用磁轭板35防止漏磁外,还可使用磁轭壳,磁轭壳包裹在电磁铁30的外表面,可防止线圈33通电后产生的磁场外漏。
以流量管20为两个为例,一种可实现方式是,流量管20为两个,电磁铁30为两个,两个流量管20位于两个电磁铁30之间。电磁铁30背向流量管20的一侧设置有磁轭板。或者,电磁铁30设置在磁轭壳内,磁轭壳朝向流量管20的一端具有通磁口。
另一种可实现的方式是,流量管20为两个,电磁铁30为一个,一个电磁铁30位于两个流量管20之间。电磁铁30设置在磁轭壳内,磁轭壳朝向流量管20的两端具有通磁口。电磁铁30可通过磁轭壳两端的通磁口进行磁场外放,使得两端的流量管20均位于磁场之内,两个流量管20的磁场是同一个电磁铁30提供的,也是对称的,没有磁场不一致的问题。同时,磁轭壳包裹在电磁铁30的外表面,可防止线圈33通电后产生的磁场外漏。
以流量管20为四个为例,图1至图6中所示即为流量管20为四个的情况。一种可实现的方式是,参见图3,流量管20为四个,每两个流量管20组成流量管组。电磁铁30为两个。每个流量管组中的两个流量管20之间均设置有一个电磁铁30。电磁铁30设置在磁轭壳内,磁轭壳朝向流量管20的两端具有通磁口。电磁铁30可通过磁轭壳两端的通磁口进行磁场外放,使得两端的流量管20均位于磁场之内,两个流量管20的磁场是同一个电磁铁30提供的,也是对称的,没有磁场不一致的问题。同时,磁轭壳包裹在电磁铁30的外表面,可防止线圈33通电后产生的磁场外漏。
进一步地,在本申请实施例中,电磁流量计在使用时,不论流量管20的数量是多少,导电流体均是同一个水箱进入不同的流浪管20的,因此,不论流量管20的数量是多少,均可通过同一个进口连接头与外部连通。以流量管20为四个为例,参见图1至图3,一种可实现的方式是,还包括分水接头23。分水接头23与主体10的入口连接,分水接头23内设有导流锥24,导流锥24将分水接头23内腔分隔成两个分水通道,每个分水通道分别与一个 流量管组连通。通过导流锥24可将入口的导电流体分别导入不同的分水通道内,进入分水通道内的导电流体进一步地可分别进入不同的流量管20内。
进一步地,当流量管20是通过流量管本体的方式实现时,参见图7和图8,导流锥24还可以设置在流量管本体上,并对应于分水接头的进水口位置设置。
进一步地,为确保导电流体可顺畅地进入各个流量管20内,参见图3、图7和图8,流量管20朝向分水通道的一端设置有导向曲面25。根据流量管20与导流锥24之间的距离不同,导向曲面25的弧度也不同,一种可实现的方式是,越靠近导流锥24的流量管20上的导向曲面25弧度越小。
进一步地,本申请实施例中,为将四个流量管20整合为一个整体,参见图1、图3及图6,电磁流量计还包括固定板26。固定板26位于分水接头23与入口的端面之间。四个流量管20固定于固定板26上,并穿过固定板26与分水通道连通。当流量管20是通过流量管本体的方式实现时,参见图7和图8,固定板26还可以设置在流量管本体上。
继续参见图1和图3,每个流量管20靠近出口的一端设置有与流量管20连通的出口连接头27,出口连接头27与主体10连接。通过出口连接头27实现流量管20与外部连通,流体从出口连接头27流出流量管20。
在本申请的一种可实现的实施例中,出口连接头27包括法兰接头及接头螺母。法兰接头与主体10可拆卸连接,且与对应的流量管20连通。或者,法兰接头与流量管20为一体成型结构。接头螺母套接在法兰接头外,与法兰接头可拆卸连接。法兰接头与主体10可拆卸连接时,法兰接头可通过紧固件,如螺丝,与主体10连接。在法兰接头与流量管20的连接处设置有密封圈,以避免流体从法兰接头与流量管20的连接处溢出流量管20。法兰接头及接头螺母上设置有相互配合使用的螺纹,接头螺母可螺旋连接在法兰接头上。通过接头螺母可实现法兰接头与外部管路的连接,一种可实现的方式是,先将接头螺母套接在外部管路上,再将外部管路与法兰接头连接,然后再将接头螺母连接在法兰接头上。当接头螺母连接在法兰接头上时,接头螺母对外部管路进行挤压,从而将外部管路固定在法兰接头上。
以流量管20为四个为例,由于流量管20的数量较多,各个流量管20上的检测电极21若通过一个电气连接件42形成信号环路,由于检测回路长 度具有差异性,会影响检测的精度。为避免此类情况出现,参见图1、图5、图9及图10,本申请实施例中,一种可实现的方式是,两个流量管组中,成对的检测电极21中的一个检测电极21与同一个第一电极板40连接。另一个检测电极21与第二电极板41连接,其中,位于不同流量管组中的另一个检测电极21所连接的第二电极板41不同。不同的第二电极板41分别通过不同的电气连接件42与同一个第一电极板40连接。此种方式下,第一电极板40用于与主板44连接,将第二电极板41分为两块,两块第二电极板41分别通过不同的电气连接件43与第一电极板40连接,第一电极板40通过插接件与主板44连接,插接件设置在第一电极板40的中间位置。此种设置方式下,不同的流量管组中的检测电极21的检测回路长度相差不大,大致相等,可有效提高检测精度。
一种可实现的方式是,两个流量管组中,成对的检测电极21中的一个检测电极21与第一电极板40连接,另一个检测电极21与第二电极板41连接,其中,位于不同流量管组中的检测电极21所连接的第一电极板40及第二电极板41均不同。与同一流量管组中检测电极21连接的第一电极板40及第二电极板41通过电气连接件42连接。此种方式下,第一电极板40用于与主板44连接,将第一电极板40分为两块,第二电极板41也分为两块,两块第二电极板41分别通过不同的电气连接件42与对应的第一电极板40连接。两块第一电极板40通过插接件与主板44连接,插接件设置在两块第一电极板40的中间位置。此种设置方式下,不同的流量管组中的检测电极21的检测回路长度相差不大,大致相等,可有效提高检测精度。
实施例2
在实施例1的基础上,相应地,参见图11及图12,本申请实施例还提供了一种喷洒系统,包括:电磁流量计50、水箱60、泵机70及喷淋装置80。电磁流量计50可通过上述实施例1中所述的电磁流量计实现。
具体地,参见图11及图12,喷洒系统包括:电磁流量计50、水箱60、泵机70及喷淋装置80。
电磁流量计50包括:主体10、流量管20及电磁铁30。主体10具有入口及出口。流量管20设置在主体10内,流量管20通过入口及出口与外部连 通。流量管20上设有成对的检测电极21,流量管20靠近入口的一端及靠近出口的一端均设置有接地电极22。电磁铁30设置在主体10内,流量管20的一侧相邻电磁铁30。水箱60通过入口与流量管20连接。泵机70通过出口与流量管20连接。喷淋装置80与泵机70连接。
举例来说,以电磁流量计50的流量管20为四个,泵机70为四个为例。四个流量管20分别通过入口与水箱60连接,每个流量管分别通过出口与四个泵机70连接,每个泵机70分别连接至少一个喷淋装置80。在使用时,多个喷淋装置80呈左右对称设置,两个泵机70负责左边的喷洒,另外两个泵机70负责右边的喷洒。电磁流量计50中的四个流量管对应监测喷洒左侧的两个泵机70的流量及监测喷洒右侧的两个泵机70的流量,以保证机身左右喷洒均匀。
本申请实施例提供的技术方案,喷洒系统包括但不限于为可用于农业植保无人机、农药喷洒车、人力喷洒装置以及绿化喷洒设备等等设备上。其中,电磁流量计50通过接地电极22进行接地,与现有技术相比,接地路径短,抗干扰能力强,不用使用金属接头和金属外壳进行接地,减轻了重量和制作成本,不会发生金属接头与金属外壳的连接处电偶腐蚀的情况,接地可靠性高。同时,接地电极22设置在流量管20上,安装方式可参考检测电极21的安装方式,简单易实现。
实施例3
在实施例1及实施例2的基础上,相应地,参见图11及图12,本申请实施例还提供了一种无人机,包括:无人机本体90及设置在无人机本体90上的喷洒系统。喷洒系统可通过上述实施例2中记载的喷洒系统实现,喷洒系统中的电磁流量计50可通过实施例1及实施例2中的电磁流量计实现。
具体地,参见图11及图12,无人机包括:无人机本体90及设置在无人机本体90上的喷洒系统。
喷洒系统包括:电磁流量计50、水箱60、泵机70及多个喷淋装置80。电磁流量计50包括:主体10、流量管20及电磁铁30。主体10具有入口及出口。流量管20设置在主体10内,流量管20通过入口及出口与外部连通。流量管20上设有成对的检测电极21,流量管20靠近入口的一端及靠近出口 的一端均设置有接地电极22。电磁铁30设置在主体10内,流量管20的一侧相邻电磁铁30。水箱60通过入口与流量管20连接。泵机70通过出口与流量管20连接。多个喷淋装置80与泵机70连接。
参见图11,以流量管20为两个为例,流量管20为两个,每个流量管20通过出口至少与两个泵机70连接,每个泵机70至少连接一个喷淋装置80。喷淋装置80包括但不限于为喷头。如图11中所示,无人机配置了4个泵机70,即图11中的①②③④号泵机70。每个泵机70连接两个喷淋装置80,即,①号泵机70连接a、b两个喷头,②号泵机70连接c、d两个喷头,③号泵机70连接h、g两个喷头,④号泵机70连接e、f两个喷头。为保证无人机本体90左右两侧的喷洒均匀性,多个喷淋装置80沿第一轴线91,对称分布在无人机本体90的两侧。相对于第一轴线91,位于同一侧的喷淋装置80与同一个流量管20连通。如图11中所示,第一轴线91的延伸方向为无人机的长度方向。即a、b、c、d四个喷头与e、f、g、h四个喷头沿第一轴线91对称分布。大多数情况下,只有两个泵机70工作,一个负责无人机本体90左边的喷洒,一个负责无人机本体90右边的喷洒,每个泵机70通过一个流量管20监测一个泵机70的流量,具有两个流量管20的电磁流量计50已经足够满足工作需求。当需要大流量喷洒时,四泵才会全开,其中两个泵机70负责无人机本体90左边的喷洒,另外两个泵机70负责无人机本体90右边的喷洒。此时,仍然对无人机本体90左右两侧的流量均匀性有要求,电磁流量计50中的一个流量管20用于监测喷洒左侧的两个泵机70的流量,另外一个流量管20用于监测喷洒右侧的两个泵机70的流量,以保证无人机本体90左右喷洒均匀。
进一步地,当同侧的泵机70有所差异,导致同侧前后的流量有所差异时,为保证无人机本体90左右两侧的喷洒均匀性,本申请实施例中,位于同一侧的喷淋装置80沿无人机本体90的第二轴线92对称分布。第二轴线92的延伸方向为无人机的宽度方向。由于无人机在前后飞时才会喷洒,即使前后的流量有所差异,喷洒到农作物上的药量是前后泵机70流量的和,左右两侧的流量仍然是一致的。同时,还可以避免出现漏喷或者防护不到位的情况。
以流量管20为四个为例,流量管20为四个,每个流量管20通过出口至少与一个泵机70连接,每个泵机70至少连接一个喷淋装置80。四个泵机70开始工作时,其中两个泵机70负责无人机本体90左边的喷洒,另外两个泵 机70负责无人机本体90右边的喷洒。电磁流量计50中的四个流量管20对应监测喷洒左侧的两个泵机70的流量及监测喷洒右侧的两个泵机70的流量,以保证无人机本体90左右喷洒均匀。
为方便在无人机上实现对电磁流量计50的控制,本申请实施例中,无人机本体90上还设有控制器以及与控制器耦接的控制开关。其中,控制器以及与控制开关可设置在无人机本体90的内部,因此,附图中并未示出。控制开关与电磁流量计50耦接,控制器通过控制开关控制电磁流量计50的工作状态。通过控制器可方便使用者对电磁流量计50进行控制,方便使用者对喷洒系统的流量检测,从而提高无人机的喷洒效率。
更进一步地,本申请的一种可实现的实施例中,控制器与泵机70耦接,控制器根据泵机70的工作状态,通过控制开关控制电磁流量计50的工作状态。控制器可监控泵机70的工作状态,如果泵机70启动,说明需要进行喷洒作业,此时控制器可控制电磁流量计50运行,以便检测喷洒作业时的流体流量。如果泵机70停止工作,说明喷洒作业完成,此时控制器可控制电磁流量计50运行停止工作。这个控制过程可以在无人机飞行过程中完成,可精确地在喷洒起始点开始检测流量,在喷洒终点结束流量检测,从而准确地获得已喷药量,统计作业面积也更加准确。
上述控制器根据泵机70的工作状态,通过控制开关控制电磁流量计50的工作状态,是电磁流量计50的一种自动控制的方式。本申请实施例中,还提供电磁流量计50的一种手动的控制方式,具体如下:
无人机还包括地面控制端,地面控制端与控制器耦接,控制器接收地面控制端的控制信号,并根据控制信号通过控制开关控制电磁流量计50的工作状态。地面控制端可远程向控制器发送控制信号,从而控制器根据控制信号通过控制开关控制电磁流量计50的工作状态。使用者可在地面上通过地面控制端控制无人机的上的控制器,无需无人机停在地面上。
举例来说,无人机在农田上方飞行,此时使用者可通过地面控制端向控制器发送开启电磁流量计50的控制信号,此时控制器根据控制信号,控制开关控制电磁流量计50开启,以便检测无人机喷洒作业时的喷洒流量。当喷洒作业完成后,使用者可通过地面控制端向控制器发送关闭电磁流量计50的控制信号,此时控制器根据控制信号,控制开关控制电磁流量计50关闭。
实施例3中所记载的相关喷洒系统及电磁流量计的技术方案与实施例1及实施例2中所记载的技术方案可相互参考、借鉴,此处不再一一赘述。
综上所示,本申请实施例提供的技术方案,电磁流量计通过接地电极进行接地,与现有技术相比,接地路径短,抗干扰能力强,不用使用金属接头和金属外壳进行接地,减轻了重量和制作成本,不会发生金属接头与金属外壳的连接处电偶腐蚀的情况,接地可靠性高。同时,接地电极设置在流量管上,安装方式可参考检测电极的安装方式,简单易实现。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (23)

  1. 一种电磁流量计,其特征在于,包括:
    主体,具有入口及出口;
    流量管,所述流量管设置在所述主体内,所述流量管通过所述入口及所述出口与外部连通;所述流量管上设有成对的检测电极,所述流量管靠近所述入口的一端及靠近所述出口的一端均设置有接地电极;
    电磁铁,所述电磁铁设置在所述主体内,所述流量管的一侧相邻所述电磁铁。
  2. 根据权利要求1所述的电磁流量计,其特征在于,所述主体内还设有第一电极板、第二电极板及电气连接件;
    成对的所述检测电极中的一个所述检测电极与所述第一电极板电气连接,另一个与所述第二电极板电气连接;
    所述接地电极与所述第一电极板或第二电极板电气连接;
    所述电气连接件绕过所述电磁铁形成的磁场,分别与所述第一电极板及所述第二电极板电气连接。
  3. 根据权利要求2所述的电磁流量计,其特征在于,所述电气连接件上设置有减震件,通过所述减震件防止所述电气连接件震动。
  4. 根据权利要求2所述的电磁流量计,其特征在于,所述主体内还设有主板;
    所述主板与所述电磁铁电气连接,以及与所述第一电极板或所述第二电极板电气连接;
    所述主板上设有快插接口,所述快插接口通过所述主体上的电气连接口向外伸出。
  5. 根据权利要求2所述的电磁流量计,其特征在于,所述流量管上设置有检测安装孔;
    所述检测电极为多段柱状结构,所述检测电极的一端部分伸入所述检测安装孔内,另一端与所述第一电极板或所述第二电极板连接;
    所述检测电极上设置有第一密封结构,所述第一密封结构密封所述检测电极与所述检测安装孔之间的缝隙。
  6. 根据权利要求2所述的电磁流量计,其特征在于,所述流量管上设置有接地安装孔;
    所述接地电极为多段柱状结构,所述接地电极的一端部分伸入所述检测安装孔内,另一端与所述第一电极板或所述第二电极板连接;
    所述接地电极上设置有第二密封结构,所述第二密封结构密封所述接地电极与所述接地安装孔之间的缝隙。
  7. 根据权利要求1至6中任一项所述的电磁流量计,其特征在于,所述电磁铁包括:
    支撑架,所述支撑架包括支撑柱及设置在所述支撑柱相对的两端的限位板,所述支撑柱具有贯通式的内腔;
    铁芯,所述铁芯设置在所述支撑柱的内腔内;
    线圈,所述线圈缠绕在所述支撑柱的外表面,并位于两个所述限位板之间;
    减震压片,所述减震压片分别与所述限位板及所述主体连接;和/或
    所述减震压片分别与所述限位板及所述流量管连接。
  8. 根据权利要求1至6中任一项所述的电磁流量计,其特征在于,所述流量管为两个,所述电磁铁为两个,两个所述流量管位于两个所述电磁铁之间;
    所述电磁铁背向所述流量管的一侧设置有磁轭板;或者,所述电磁铁设置在磁轭壳内,所述磁轭壳朝向所述流量管的一端具有通磁口。
  9. 根据权利要求1至6中任一项所述的电磁流量计,其特征在于,所述流量管为两个,所述电磁铁为一个,一个所述电磁铁位于两个所述流量管之间;
    所述电磁铁设置在磁轭壳内,所述磁轭壳朝向所述流量管的两端具有通磁口。
  10. 根据权利要求1至6中任一项所述的电磁流量计,其特征在于,所述流量管为四个,每两个所述流量管组成流量管组;
    所述电磁铁为两个;
    每个所述流量管组中的两个流量管之间均设置有一个所述电磁铁;
    所述电磁铁设置在磁轭壳内,所述磁轭壳朝向所述流量管的两端具有通磁口。
  11. 根据权利要求10所述的电磁流量计,其特征在于,还包括分水接头;
    所述分水接头与所述主体的所述入口连接,所述分水接头内设有导流锥,所述导流锥将所述分水接头内腔分隔成两个分水通道,每个所述分水通道分别与一个所述流量管组连通。
  12. 根据权利要求11所述的电磁流量计,其特征在于,所述流量管朝向所述分水通道的一端设置有导向曲面。
  13. 根据权利要求11所述的电磁流量计,其特征在于,还包括固定板;
    所述固定板位于所述分水接头与所述入口的端面之间;
    四个所述流量管固定于所述固定板上,并穿过所述固定板与所述分水通道连通。
  14. 根据权利要求10所述的电磁流量计,其特征在于,两个所述流量管组中,成对的所述检测电极中的一个所述检测电极与同一个第一电极板连接;
    另一个所述检测电极与第二电极板连接,其中,位于不同所述流量管组中的另一个所述检测电极所连接的第二电极板不同;
    不同的第二电极板分别通过不同的电气连接件与同一个第一电极板连接;
    或者
    两个所述流量管组中,成对的所述检测电极中的一个所述检测电极与第一电极板连接,另一个所述检测电极与第二电极板连接,其中,位于不同所述流量管组中的所述检测电极所连接的第一电极板及第二电极板均不同;
    与同一所述流量管组中所述检测电极连接的所述第一电极板及所述第二电极板通过电气连接件连接。
  15. 根据权利要求10所述的电磁流量计,其特征在于,每个所述流量管靠近所述出口的一端设置有与所述流量管连通的出口连接头,所述出口连接头与所述主体连接。
  16. 根据权利要求15所述的电磁流量计,其特征在于,所述出口连接头包括法兰接头及接头螺母;
    所述法兰接头与所述主体可拆卸连接,且与对应的所述流量管连通;
    所述接头螺母套接在所述法兰接头外,与所述法兰接头可拆卸连接。
  17. 一种喷洒系统,其特征在于,包括:
    电磁流量计,所述电磁流量计包括:主体,具有入口及出口;流量管,所述流量管设置在所述主体内,所述流量管通过所述入口及所述出口与外部连通;所述流量管上设有成对的检测电极,所述流量管靠近所述入口的一端及靠近所述出口的一端均设置有接地电极;电磁铁,所述电磁铁设置在所述主体内,所述流量管的一侧相邻所述电磁铁;
    水箱,所述水箱通过所述入口与所述流量管连接;
    泵机,所述泵机通过所述出口与所述流量管连接;
    喷淋装置,所述喷淋装置与所述泵机连接。
  18. 一种无人机,其特征在于,包括:无人机本体及设置在所述无人机本体上的喷洒系统;
    所述喷洒系统包括:
    电磁流量计,所述电磁流量计包括:主体,具有入口及出口;流量管,所述流量管设置在所述主体内,所述流量管通过所述入口及所述出口与外部连通;所述流量管上设有成对的检测电极,所述流量管靠近所述入口的一端及靠近所述出口的一端均设置有接地电极;电磁铁,所述电磁铁设置在所述主体内,所述流量管的一侧相邻所述电磁铁;
    水箱,所述水箱通过所述入口与所述流量管连接;
    泵机,所述泵机通过所述出口与所述流量管连接;
    多个喷淋装置,所述喷淋装置与所述泵机连接。
  19. 根据权利要求18所述的无人机,其特征在于,所述流量管为两个,每个所述流量管通过所述出口至少与两个所述泵机连接,每个所述泵机至少 连接一个所述喷淋装置;
    多个所述喷淋装置沿第一轴线,对称分布在所述无人机本体的两侧;
    相对于所述第一轴线,位于同一侧的所述喷淋装置与同一个所述流量管连通;
    所述第一轴线的延伸方向为所述无人机的长度方向。
  20. 根据权利要求19所述的无人机,其特征在于,位于同一侧的所述喷淋装置沿所述无人机本体的第二轴线对称分布;
    所述第二轴线的延伸方向为所述无人机的宽度方向。
  21. 根据权利要求18所述的无人机,其特征在于,所述流量管为四个,每个所述流量管通过所述出口至少与一个所述泵机连接,每个所述泵机至少连接一个所述喷淋装置。
  22. 根据权利要求18所述的无人机,其特征在于,所述无人机本体上还设有控制器以及与所述控制器耦接的控制开关;
    所述控制开关与所述电磁流量计耦接,所述控制器通过所述控制开关控制所述电磁流量计的工作状态。
  23. 根据权利要求22所述的无人机,其特征在于,所述控制器与所述泵机耦接,所述控制器根据所述泵机的工作状态,通过所述控制开关控制所述电磁流量计的工作状态;或者,
    所述无人机还包括地面控制端,所述地面控制端与所述控制器耦接,所述控制器接收所述地面控制端的控制信号,并根据所述控制信号通过所述控制开关控制所述电磁流量计的工作状态。
PCT/CN2019/115291 2019-11-04 2019-11-04 一种电磁流量计、喷洒系统及无人机 WO2021087653A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/115291 WO2021087653A1 (zh) 2019-11-04 2019-11-04 一种电磁流量计、喷洒系统及无人机
CN202111205108.0A CN114130563B (zh) 2019-11-04 2019-11-04 一种电磁流量计、喷洒系统及无人机
CN201980008156.5A CN111630352B (zh) 2019-11-04 2019-11-04 一种电磁流量计、喷洒系统及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115291 WO2021087653A1 (zh) 2019-11-04 2019-11-04 一种电磁流量计、喷洒系统及无人机

Publications (1)

Publication Number Publication Date
WO2021087653A1 true WO2021087653A1 (zh) 2021-05-14

Family

ID=72261116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115291 WO2021087653A1 (zh) 2019-11-04 2019-11-04 一种电磁流量计、喷洒系统及无人机

Country Status (2)

Country Link
CN (2) CN111630352B (zh)
WO (1) WO2021087653A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115931415B (zh) * 2023-02-22 2023-05-16 埃森农机常州有限公司 一种大豆玉米带状复合种植喷药植保机喷施效果测试装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2098009U (zh) * 1991-07-12 1992-03-04 上海光华仪表厂 一种电磁流量计
WO2001002813A1 (en) * 1999-06-30 2001-01-11 Micro Motion, Inc. A coriolis flowmeter having bi-metallic process connections
CN202533116U (zh) * 2012-04-28 2012-11-14 重庆威巴仪器有限责任公司 电磁流量计
CN107044873A (zh) * 2015-12-25 2017-08-15 横河电机株式会社 电磁流量计
CN208140197U (zh) * 2017-04-28 2018-11-23 爱知时计电机株式会社 电磁流量计
CN209085686U (zh) * 2018-11-29 2019-07-09 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19907864A1 (de) * 1999-02-23 2000-09-14 Krohne Messtechnik Kg Magnetisch-induktives Durchflußmeßgerät
US6920799B1 (en) * 2004-04-15 2005-07-26 Rosemount Inc. Magnetic flow meter with reference electrode
JP4919328B2 (ja) * 2006-04-28 2012-04-18 愛知時計電機株式会社 電磁流量計
JP2007298402A (ja) * 2006-04-28 2007-11-15 Keyence Corp 容量式電磁流量計
JP2009115583A (ja) * 2007-11-06 2009-05-28 Yamatake Corp 電磁流量計
JP5391000B2 (ja) * 2009-09-04 2014-01-15 アズビル株式会社 電磁流量計
CN105157767A (zh) * 2015-05-22 2015-12-16 姜跃炜 一种电磁流量传感器
CN209069355U (zh) * 2018-11-29 2019-07-05 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2098009U (zh) * 1991-07-12 1992-03-04 上海光华仪表厂 一种电磁流量计
WO2001002813A1 (en) * 1999-06-30 2001-01-11 Micro Motion, Inc. A coriolis flowmeter having bi-metallic process connections
CN202533116U (zh) * 2012-04-28 2012-11-14 重庆威巴仪器有限责任公司 电磁流量计
CN107044873A (zh) * 2015-12-25 2017-08-15 横河电机株式会社 电磁流量计
CN208140197U (zh) * 2017-04-28 2018-11-23 爱知时计电机株式会社 电磁流量计
CN209085686U (zh) * 2018-11-29 2019-07-09 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机

Also Published As

Publication number Publication date
CN114130563A (zh) 2022-03-04
CN111630352B (zh) 2021-11-02
CN114130563B (zh) 2023-05-23
CN111630352A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2021087653A1 (zh) 一种电磁流量计、喷洒系统及无人机
CN101975154A (zh) 对数螺旋组合管无阀压电泵
CN113042308B (zh) 双组份点胶装置
CN211178609U (zh) 一种电磁流量计、喷洒系统及无人机
WO2021087655A1 (zh) 一种电磁流量计、喷洒系统及无人机
CN101430215B (zh) 电磁流量计
CN109839160A (zh) 流量检测设备、流量检测方法及喷洒设备
CN207805899U (zh) 涂胶机
WO2020107324A1 (zh) 电磁流量计和具有该电磁流量计的植保无人机
CN211425538U (zh) 电磁流量计、喷洒装置和可移动平台
CN201913041U (zh) 超声雾化器
WO2020107323A1 (zh) 电磁流量计和具有该电磁流量计的植保无人机
CN210893263U (zh) 电磁流量计、喷洒装置和可移动平台
CN209791807U (zh) 雾化装置
CN214216147U (zh) 一种喷淋系统及无人机
CN207333932U (zh) 一种阀闸组合流量控制装置
WO2021087705A1 (zh) 电磁流量计、喷洒装置和可移动平台
WO2021196206A1 (zh) 流量计、流量计组件及可移动平台
WO2021087708A1 (zh) 流场调节组件、流量计、喷洒装置和可移动平台
WO2020107325A1 (zh) 电磁流量计和具有该电磁流量计的植保无人机
CN216077466U (zh) 液泵及无人机
KR101218780B1 (ko) 초음파 센서 및 이를 이용한 초음파 유량계
WO2020107334A1 (zh) 电磁流量计和具有该电磁流量计的植保无人机
CN216539025U (zh) 一种新型雾化接头
CN220425285U (zh) 一种新型硫酸喷嘴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951911

Country of ref document: EP

Kind code of ref document: A1