WO2021086099A1 - 안트라센 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

안트라센 화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2021086099A1
WO2021086099A1 PCT/KR2020/015006 KR2020015006W WO2021086099A1 WO 2021086099 A1 WO2021086099 A1 WO 2021086099A1 KR 2020015006 W KR2020015006 W KR 2020015006W WO 2021086099 A1 WO2021086099 A1 WO 2021086099A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
formula
layer
present specification
Prior art date
Application number
PCT/KR2020/015006
Other languages
English (en)
French (fr)
Inventor
김훈준
최지영
홍완표
이우철
김주호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/607,120 priority Critical patent/US20220165966A1/en
Priority to CN202080022634.0A priority patent/CN113631546B/zh
Publication of WO2021086099A1 publication Critical patent/WO2021086099A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present specification relates to an anthracene compound and an organic light emitting device including the same.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often made of a multilayer structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, and may be formed of, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Patent Literature 1 Unexamined Patent Publication 10-2015-0011347
  • the present specification is to provide an anthracene compound and an organic light emitting device including the same.
  • an anthracene compound represented by the following formula (1).
  • n1 8
  • n2 7
  • L is a direct bond; Or a substituted or unsubstituted arylene group.
  • the present specification is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the anthracene compound described above.
  • the compound according to the exemplary embodiment of the present specification is used in an organic light-emitting device, so that a driving voltage of the organic light-emitting device may be lowered and light efficiency may be improved. In addition, it is possible to improve the life characteristics of the device by the thermal stability of the compound.
  • the compound according to an exemplary embodiment of the present specification may be subjected to a solution process, and a large area of the device may be achieved.
  • 1 and 2 illustrate an example of an organic light-emitting device according to an exemplary embodiment of the present specification.
  • the anthracene compound represented by Formula 1 includes dibenzofuran and naphthyl groups as substituents. Dibenzofuran is not substituted with deuterium, and anthracene and naphthyl groups are substituted with deuterium.
  • the structure of Formula 1 has excellent hole and electron transport and injection capabilities, and thus has a low voltage characteristic when applied to a device.
  • the anthracene compound represented by Formula 1 since the anthracene compound represented by Formula 1 has a relatively high triplet energy value, when used as a host of an emission layer of an organic light-emitting device, it has characteristics of long life and high efficiency.
  • Formula 1 contains deuterium at all positions of the anthracene and naphthyl groups, the efficiency and life of the device are improved.
  • the vibration damping effect of molecules appears due to an increase in the weight of deuterium, which is a vibrator. This leads to a change in vibration energy that contributes to the energy of the molecule, and stabilizes it by lowering the energy of the molecule.
  • the effect of increasing the activation energy required to cleave the bond of the stabilized molecule appears. Accordingly, Formula 1 may improve the efficiency and life of the device by including deuterium.
  • both HOMO and LUMO of the compound of Formula 1 are located at anthracene, specific positions of the anthracene (eg, the remaining carbons excluding positions 9 and 10 of the anthracene) are highly reactive. Substituting deuterium for hydrogen at such a specific location may lower the reactivity and increase the rigidity of the material, and further improve the life of the device.
  • the solubility is excellent, the yield is high, and the amount of the deuterium source can be reduced.
  • substituted means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited as long as the position where the hydrogen atom is substituted, that is, the position where the substituent can be substituted, and when two or more are substituted , Two or more substituents may be the same or different from each other.
  • substituted or unsubstituted refers to deuterium; Halogen group; Nitrile group; Alkyl group; Aryl group; And substituted with one or two or more substituents selected from the group consisting of a heteroaryl group containing one or more heteroatoms other than carbon, or substituted with a substituent to which two or more substituents are connected, or not having any substituents Means that.
  • connection of two or more substituents means that hydrogen of any one of the substituents has been replaced with another substituent.
  • an isopropyl group and a phenyl group are connected or It may be a substituent of.
  • connection of three substituents is not only that (substituent 1)-(substituent 2)-(substituent 3) is continuously connected, but also (substituent 2) and (substituent 3) are Includes connections.
  • two phenyl groups and isopropyl groups are connected or It may be a substituent of. The same applies to those in which four or more substituents are connected.
  • N% substitution with deuterium means that N% of the hydrogen available in the structure is substituted with deuterium. For example, supposing that 25% of dibenzofuran is substituted with deuterium, it means that two of the eight hydrogens in dibenzofuran have been substituted with deuterium.
  • the degree of deuteration can be confirmed by a known method such as nuclear magnetic resonance spectroscopy (1 H NMR) or GC/MS.
  • examples of the halogen group include fluorine, chlorine, bromine, or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but 1 to 30; 1 to 20; 1 to 10; Or it is preferably 1 to 5.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, t-butyl, sec-butyl, 1-methylbutyl, 1-ethylbutyl, pentyl, n-pentyl, iso Pentyl, neopentyl, t-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, 1-methylhexyl, cyclopentyl Methyl, cyclohexylmethyl, octyl
  • an aryl group means a monovalent group of a monovalent aromatic hydrocarbon or an aromatic hydrocarbon derivative.
  • an aromatic hydrocarbon refers to a compound in which pi electrons are fully conjugated and includes a planar ring
  • a group derived from an aromatic hydrocarbon refers to a structure in which an aromatic hydrocarbon or a cyclic aliphatic hydrocarbon is condensed with an aromatic hydrocarbon.
  • the aryl group is intended to include a monovalent group in which two or more aromatic hydrocarbons or derivatives of aromatic hydrocarbons are connected to each other.
  • the aryl group is not particularly limited, but includes 6 to 50 carbon atoms; 6 to 30; 6 to 25; 6 to 20; 6 to 18; Or it is preferably 6 to 13, and the aryl group may be monocyclic or polycyclic. Specifically, the monocyclic aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a triphenyl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and adjacent substituents may be bonded to each other to form a ring.
  • the substituted fluorenyl group when the fluorenyl group may be substituted, includes all compounds in which the substituents of the pentagonal rings of fluorene are spied to each other to form an aromatic hydrocarbon ring.
  • the substituted fluorenyl group includes 9,9'-spirobifluorene, spiro[cyclopentane-1,9'-fluorene], spiro[benzo[c]fluorene-7,9-fluorene], etc. However, it is not limited thereto.
  • the heteroaryl group refers to a monovalent aromatic heterocycle.
  • the aromatic heterocycle is a monovalent group of an aromatic ring or a derivative of an aromatic ring, and refers to a group including at least one of N, O, and S as a hetero atom in the ring.
  • the aromatic ring derivative includes all structures in which an aromatic ring or an aliphatic ring is condensed with an aromatic ring.
  • the heteroaryl group is intended to include a monovalent group in which an aromatic ring containing two or more heteroatoms or a derivative of an aromatic ring containing heteroatoms are connected to each other.
  • heteroaryl group examples include a thiophene group, a furanyl group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, a pyridine group, a pyrimidine group, a triazine group, a triazole group, an acridine group, a pyridazine group, a pyrazine group, Quinoline group, quinazoline group, quinoxaline group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzo A furan group, a phenanthrolinyl group, a dibenzofuran group
  • the heteroaryl group may be monocyclic or polycyclic, and may be aromatic, aliphatic, or a condensed ring of aromatic and aliphatic.
  • an arylene group means that the aryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the aryl group described above may be applied.
  • n1 8
  • n2 7
  • L is a direct bond; Or a substituted or unsubstituted arylene group.
  • n1 is 8.
  • n2 is 7.
  • L is a direct bond; Or a substituted or unsubstituted arylene group.
  • L is a direct bond; Or a substituted or unsubstituted C6 to C30 arylene group.
  • L is a direct bond; Or an arylene group having 6 to 20 carbon atoms substituted or unsubstituted with deuterium.
  • L is a direct bond; Or an arylene group having 6 to 10 carbon atoms substituted or unsubstituted with deuterium.
  • L is a direct bond; A phenylene group unsubstituted or substituted with deuterium; Biphenylene group unsubstituted or substituted with deuterium; Or a naphthylene group unsubstituted or substituted with deuterium.
  • L is a direct bond; A phenylene group unsubstituted or substituted with deuterium; Or a naphthylene group unsubstituted or substituted with deuterium.
  • L is a direct bond; Phenylene group; Or it is a naphthylene group.
  • L is a direct bond or any one selected from the following structures.
  • the structure is deuterium; Alkyl group; Aryl group; And a substituent selected from the group consisting of a heteroaryl group or a substituent to which two or more substituents are connected, or does not have any substituent.
  • L includes deuterium as a substituent.
  • L is a direct bond or any one selected from the following structures.
  • D means deuterium
  • k1 is an integer of 0 to 4
  • k2 is an integer of 0 to 6.
  • k1 is an integer of 1 to 4.
  • k2 is an integer of 1 to 6.
  • k1 is 4.
  • k2 is 6.
  • k1 is 0.
  • k2 is 0.
  • Chemical Formula 1 is represented by any one of Chemical Formulas 101 to 104 below.
  • the driving voltage of the device When connected to anthracene through carbon 1 or 2 of dibenzofuran as shown in Formulas 101 and 102, the driving voltage of the device is lower than that of carbon 3 or 4 of dibenzofuran (Formula 103 or 104). Loss, efficiency increases, or lifespan increases.
  • Chemical Formula 1 is represented by the following Chemical Formula 201 or 202.
  • Chemical Formula 1 is represented by any one of Chemical Formulas 301 to 308 below.
  • anthracene compound represented by Formula 1 is any one selected from the following compounds.
  • the compound according to an exemplary embodiment of the present specification may be prepared by a manufacturing method described below. If necessary, a substituent may be added or removed, and the position of the substituent may be changed. In addition, starting materials, reactants, reaction conditions, and the like can be changed based on techniques known in the art.
  • the compound represented by Formula 1 may have a core structure as shown in Formula 1 below.
  • Substituents may be bonded by methods known in the art, and the type, position, or number of substituents may be changed according to techniques known in the art. Substituents may be combined as shown in the following general formula 1, but are not limited thereto.
  • L is the same as defined in the general formula (1).
  • deuterium is not indicated in the general formula 1, through a hydrogen-deuterium exchange reaction under an acid catalyst using a reactant in which deuterium is substituted for I1 and I2, or using a deuterated solvent for the compound prepared in the general formula 1 Deuterium can also be introduced into the compound.
  • the compound of Formula 1 containing deuterium can be prepared by a known deuteration reaction.
  • the compound represented by Formula 1 is formed using a deuterated compound as a precursor, or deuterium is introduced into the compound through a hydrogen-deuterium exchange reaction under an acid catalyst using a deuterated solvent. You may.
  • the preparation method may be more specific in Preparation Examples to be described later, the reaction order may be changed depending on the compound, and the method for synthesizing the anthracene compound of Formula 1 is not limited to the method.
  • the present specification provides an organic light-emitting device including the above-described compound.
  • the present specification is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises an anthracene compound represented by Formula 1 to provide.
  • the "layer” is meant to be compatible with the'film' mainly used in the present technical field, and means a coating covering a desired area.
  • the size of the “layer” is not limited, and each "layer” may have the same size or different sizes. In one embodiment, the size of the "layer” may be the same as the entire device, may correspond to the size of a specific functional region, and may be as small as a single sub-pixel.
  • the meaning that a specific A material is included in the B layer means that i) at least one A material is included in one layer B, and ii) the B layer is composed of one or more layers, and the A material is a multilayer B Includes all those included in one or more of the floors.
  • the meaning that a specific A substance is included in the C layer or the D layer means i) is included in one or more of the C layers, ii) is included in one or more of the D layers, or iii ) It means both included in one or more layers C and one or more layers D, respectively.
  • the organic light-emitting device may include an additional organic material layer in addition to the emission layer.
  • the organic material layer of the organic light emitting device of the present specification may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • it may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron blocking layer, a hole blocking layer, and the like.
  • the structure of the organic light emitting device is not limited thereto.
  • the organic material layer includes an emission layer
  • the emission layer includes an anthracene compound represented by Formula 1 above.
  • the organic material layer includes an emission layer, and the emission layer includes an anthracene compound represented by Formula 1 as a host.
  • the emission layer includes a host and a dopant.
  • the host includes an anthracene compound represented by Chemical Formula 1.
  • the dopant is a phosphorescent dopant or a fluorescent dopant.
  • the emission layer further includes an arylamine compound. That is, the dopant of the light emitting layer is an arylamine compound.
  • the emission layer further includes an arylamine-based compound containing deuterium.
  • the emission layer further includes a boron compound. That is, the dopant of the light emitting layer is a boron compound.
  • the dopant is represented by the following formula Z1 or Z2.
  • R31 and R32 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group; A substituted or unsubstituted silyl group; Or a substituted or unsubstituted aryl group,
  • X3 and X4 are each hydrogen or deuterium, or are directly single bonded to each other to form a ring,
  • R41 and R42 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or a substituted or unsubstituted alkyl group,
  • R43 to R46 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group, or adjacent substituents combine with each other to form a substituted or unsubstituted ring,
  • Ar31 to Ar34 and Ar41 to Ar44 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • r41 and r42 are each an integer of 0 to 4, and when 2 or more, the substituents in parentheses are the same as or different from each other.
  • the dopant may be selected from the following structures, but is not limited thereto.
  • the dopant may be included in an amount of 0.1 to 50 parts by weight based on 100 parts by weight of the host, and preferably 1 to 30 parts by weight. When it is within the above range, energy transfer from the host to the dopant occurs efficiently.
  • the organic light-emitting device further includes one or more light-emitting layers.
  • Each of the one or more emission layers may include the above-described dopant.
  • the organic light-emitting device includes two or more light-emitting layers, one of the two or more light-emitting layers includes a fluorescent dopant, and the other layer includes a phosphorescent dopant.
  • a light emitting layer including a compound represented by Formula 1 is included, and a maximum emission peak of the light emitting layer is 400 nm to 500 nm.
  • the anthracene compound represented by Formula 1 is included in an amount of 50 parts by weight or more and less than 100 parts by weight, more preferably 70 parts by weight or more and 99 parts by weight or less, based on 100 parts by weight of the total weight of the light emitting layer.
  • the organic light-emitting device includes two or more emission layers, and at least one of the two or more emission layers includes an anthracene compound represented by Formula 1 above.
  • the light-emitting layer including the anthracene compound represented by Formula 1 has a blue color, and the light-emitting layer not including the anthracene compound represented by Formula 1 may include a blue, red, or green light-emitting compound known in the art.
  • the organic material layer includes a hole injection layer, a hole transport layer, an electron blocking layer, an electron injection layer, an electron transport layer or a hole blocking layer, and the hole injection layer, the hole transport layer, the electron blocking layer, and the electron
  • the injection layer, the electron transport layer, or the hole blocking layer includes an anthracene compound represented by Formula 1 above.
  • the organic material layer is a hole injection layer and a hole transport layer. It further includes one or two or more layers selected from the group consisting of a light-emitting layer, an electron transport layer, an electron injection layer, a hole blocking layer, and an electron blocking layer.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the second electrode is a cathode
  • the first electrode is an anode
  • the organic light-emitting device may be a normal type organic light-emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light-emitting device may be an inverted type organic light-emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of the organic light-emitting device according to the exemplary embodiment of the present specification is illustrated in FIGS. 1 and 2, but is not limited thereto.
  • FIG. 1 illustrates a structure of an organic light-emitting device in which an anode 102, an emission layer 106, and a cathode 110 are sequentially stacked on a substrate 101.
  • the compound represented by Formula 1 is included in the emission layer.
  • a structure of an organic light-emitting device in which the cathode 110 is sequentially stacked is illustrated.
  • the compound represented by Formula 1 is included in the emission layer.
  • the organic light-emitting device of the present specification may be manufactured by materials and methods known in the art, except that the organic material layer includes the compound.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present specification can be manufactured by sequentially laminating an anode, an organic material layer, and a cathode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or a conductive metal oxide or an alloy thereof is deposited on the substrate to form an anode.
  • It can be prepared by forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the anthracene compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light-emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate.
  • the manufacturing method is not limited thereto.
  • anode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • Metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof;
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO);
  • a combination of a metal and an oxide such as ZnO:Al or SnO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • Metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof;
  • There are a multi-layered material such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • Host materials include condensed aromatic ring derivatives or heterocyclic-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include dibenzofuran derivatives, ladder furan compounds, And pyrimidine derivatives, but are not limited thereto.
  • the dopant material examples include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamine group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamine group.
  • the styrylamine compound is a compound in which at least one arylvinyl group is substituted with a substituted or unsubstituted arylamine, and is selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamine group. Substituents are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, and styryltetraamine, but are not limited thereto.
  • examples of the metal complex include an iridium complex and a platinum complex, but are not limited thereto.
  • the hole injection layer is a layer that receives holes from an electrode. It is preferable that the hole injection material has the ability to transport holes and thus has a hole receiving effect from the anode and an excellent hole injection effect with respect to the light emitting layer or the light emitting material. In addition, a material having excellent ability to prevent the movement of excitons generated in the light emitting layer to the electron injection layer or the electron injection material is preferable. Further, a material having excellent thin film formation ability is preferable. In addition, it is preferable that the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material; Hexanitrile hexaazatriphenylene-based organic material; Quinacridone series organic matter; Perylene-based organics; There are polythiophene-based conductive polymers such as anthraquinone and polyaniline, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the emission layer, and may have a single layer or a multilayer structure of two or more layers.
  • the hole transport material a material capable of receiving holes from an anode or a hole injection layer and transferring them to the light emitting layer, and a material having high mobility for holes is preferable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
  • the hole transport layer has a multilayer structure of two or more layers. Specifically, it is a two-layer structure.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is preferable, and a material having high mobility for electrons is preferable. Specific examples include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired negative electrode material, as used according to the prior art.
  • suitable cathode materials have a low work function and are conventional materials followed by an aluminum layer or a silver layer. Specifically, there are cesium, barium, calcium, ytterbium and samarium, and in each case, an aluminum layer or a silver layer follows.
  • the electron injection layer is a layer that receives electrons from an electrode.
  • the electron injection material preferably has an excellent ability to transport electrons, has an effect of receiving electrons from the second electrode, and an excellent electron injection effect with respect to the light emitting layer or the light emitting material.
  • a material that prevents excitons generated in the light emitting layer from moving to the hole injection layer and has excellent thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, and their derivatives, Metal complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • 8-hydroxyquinolinato lithium bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese , Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h ]Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato) (o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. , But is not limited thereto.
  • the electron blocking layer is a layer capable of improving the lifespan and efficiency of a device by preventing electrons injected from the electron injection layer from entering the hole injection layer through the light emitting layer.
  • Known materials may be used without limitation, and may be formed between the light-emitting layer and the hole injection layer, or between the light-emitting layer and a layer that simultaneously injects and transports holes.
  • the hole blocking layer is a layer that prevents holes from reaching the cathode, and may be generally formed under the same conditions as the electron injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, aluminum complexes, and the like, but are not limited thereto.
  • the organic light-emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • a glass substrate coated with a thin film of ITO (Indium Tin Oxide) having a thickness of 150 nm was placed in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • ITO Indium Tin Oxide
  • a Fischer Co. product was used as a detergent, and distilled water secondarily filtered with a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • HAT-CN was thermally vacuum-deposited on the prepared ITO transparent electrode to a thickness of 50 ⁇ to form a hole injection layer, and HTL1, a material for transporting holes, was vacuum-deposited to a thickness of 1150 ⁇ on the HAT-CN to form a hole transport layer. Then, an electron blocking layer (150 ⁇ ) was formed using HTL2. Then, compound 1 synthesized in Preparation Example 1 was used as a host, and BD was used as a dopant (2% by weight compared to 100% of the total weight of the light emitting layer). 360 ⁇ , vacuum evaporation) was formed.
  • ETL1 was deposited to form a hole blocking layer, and an electron transport layer having a thickness of 250 ⁇ was formed by mixing compound ETL2 and Liq at 7:3.
  • magnesium and lithium fluoride (LiF) having a thickness of 50 ⁇ were deposited as an electron injection layer, and 200 ⁇ of magnesium and silver (1:4) were formed as a cathode, and 600 ⁇ of CP1 was deposited to complete the device.
  • the deposition rate of the organic material was maintained at 1 ⁇ /sec.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that compounds 2 to 16 were used instead of 1 as the host compound of the emission layer in Example 1 above.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that compounds BH-A to BH-F were used instead of 1 as the host compound of the emission layer in Example 1.
  • Compounds BH-A to BH-F are as follows, respectively.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that compounds BH-G to BH-H were used instead of 1 as the host compound of the emission layer in Example 1.
  • Compounds BH-G to BH-H are as follows, respectively.
  • the driving voltage and luminous efficiency were measured at a current density of 10 mA/cm 2 for the organic light emitting device prepared in the above Examples, Comparative Examples and Reference Examples, and 97% of the initial luminance at a current density of 20 mA/cm 2
  • the time to be (T 97 ) was measured. The results are shown in Table 1 below.
  • the organic light emitting devices of Examples 1 to 16 each including Formulas 1 to 16 as hosts of the emission layer, Comparative Examples 1 to 1 including Formulas BH-A to BH-F, respectively, as hosts. It can be seen that the characteristics of long lifespan are significantly better than that of the organic light-emitting device of 6, and the organic light-emitting devices of Examples 1 to 14 of the present invention exhibit the same effect as those of Reference Examples 1 and 2 containing 100% deuterated compounds.
  • Table 1 the organic light emitting devices of Examples 1 to 16 each including Formulas 1 to 16 as hosts of the emission layer, Comparative Examples 1 to 1 including Formulas BH-A to BH-F, respectively, as hosts. It can be seen that the characteristics of long lifespan are significantly better than that of the organic light-emitting device of 6, and the organic light-emitting devices of Examples 1 to 14 of the present invention exhibit the same effect as those of Reference Examples 1 and 2 containing 100% deuterated compounds.
  • Compound 5 of the present invention and compound BH-G of Reference Example are each synthesized through the following preparation method.
  • Compound 5 of the present invention and reference compound BH-G as well as compound 6 and reference compound BH-H of the present invention can be synthesized by the following method.
  • Compound 5 of the present invention can be prepared by linking unsubstituted dibenzofuran to a deuterated anthracene derivative. At this time, the yield of each step is 96%, 90%, 52%, respectively, and has a total yield of 45%.
  • the total deuterated compound BH-G can be obtained by total deuteration in the final stage of preparation.
  • the yield of each step is 91%, 88%, 46%, and has a total yield of 32%.
  • This difference in yield is due to the difference in the solubility of the substance in the deuterium substitution step, because the solubility of the intermediate (compound of the present invention) before dibenzofuran connection is superior to that of the intermediate (reference example compound) to which dibenzofuran is connected to be.
  • the compound of the present invention can have an advantage in terms of production cost because the amount of the deuterium source C 6 D 6 used in the production can be saved.
  • the compound of the present invention can exhibit equivalent device performance while having a high synthetic yield and low production cost compared to the total deuterated compound (reference example compound).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 안트라센 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.

Description

안트라센 화합물 및 이를 포함하는 유기 발광 소자
본 명세서는 안트라센 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 출원은 2019년 10월 30일 한국특허청에 제출된 한국 특허 출원 제10-2019-0136733호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.
[선행기술문헌] (특허문헌 1) 공개특허공보 10-2015-0011347
본 명세서는 안트라센 화합물 및 이를 포함하는 유기 발광 소자를 제공하고자 한다.
본 명세서는 하기 화학식 1로 표시되는 안트라센 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020015006-appb-I000001
상기 화학식 1에 있어서,
D는 중수소이고,
n1은 8 이고
n2는 7 이고,
L은 직접결합; 또는 치환 또는 비치환된 아릴렌기이다.
또한, 본 명세서는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 전술한 안트라센 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 따른 화합물은 유기 발광 소자에 사용되어, 유기 발광 소자의 구동전압을 낮출 수 있으며, 광효율을 향상시킬 수 있다. 또한, 화합물의 열적 안정성에 의하여 소자의 수명 특성을 향상시킬 수 있다.
또한, 본 명세서의 일 실시상태에 따른 화합물은 용액 공정이 가능하며, 소자의 대면적화가 가능하다.
도 1 및 2는 본 명세서의 일 실시상태에 따른 유기 발광 소자의 예를 도시한 것이다.
[부호의 설명]
101: 기판
102: 양극
103: 정공 주입층
104: 정공 수송층
105: 전자차단층
106: 발광층
107: 전자 수송층
108: 전자 주입층
110: 음극
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
상기 화학식 1로 표시되는 안트라센 화합물은 디벤조퓨란 및 나프틸기를 치환기로 포함한다. 디벤조퓨란은 중수소로 치환되지 않으며, 안트라센 및 나프틸기는 중수소로 치환된다. 상기 화학식 1의 구조는 정공 및 전자의 이동 및 주입 능력이 우수하여 소자에 적용될 때 저전압의 특성이 있다. 또한, 상기 화학식 1로 표시되는 안트라센 화합물은 비교적 높은 삼중항에너지 값을 갖고 있어, 유기 발광 소자의 발광층의 호스트로 사용될 때 장수명 및 고효율의 특성이 있다.
또한, 상기 화학식 1은 안트라센과 나프틸기의 모든 위치에 중수소를 포함하고 있어, 소자의 효율 및 수명이 개선된다. 수소가 중수소로 대체되는 경우 진동자인 중수소의 중량 증가로 인하여, 분자의 진동 감쇠 효과가 나타난다. 이는 분자의 에너지에 기여하는 진동 에너지 변화로 이어지며, 분자의 에너지를 낮추어 안정화시킨다. 안정화된 분자의 결합을 절단하기 위하여 필요한 활성 에너지가 커지는 효과가 나타난다. 이에 상기 화학식 1은 중수소를 포함함으로써 소자의 효율 및 수명을 개선할 수 있다.
상기 화학식 1의 화합물의 HOMO 및 LUMO은 모두 안트라센에 위치하고 있어, 안트라센의 특정 위치(예컨대, 안트라센의 9번, 10번 위치를 제외한 나머지 탄소)는 반응성이 높다. 그러한 특정 위치의 수소를 중수소로 대체하면 반응성을 낮추고 물질의 강성(rigidity)를 증가시킬 수 있으며, 나아가 소자의 수명을 향상시킬 수 있다.
또한, 상기 화학식 1의 화합물의 중수소 치환시 용해도가 우수하여, 수율이 높고, 중수소원 사용량을 줄일 수 있다.
본 명세서에 있어서,
Figure PCTKR2020015006-appb-I000002
은 연결되는 부위를 의미한다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 알킬기; 아릴기; 및 탄소가 아닌 이종 원자 중 1개 이상을 포함하는 헤테로아릴기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
본 명세서에 있어서, 2 이상의 치환기가 연결된다는 것은 어느 하나의 치환기의 수소가 다른 치환기로 대체된 것을 말한다. 예를 들어, 이소프로필기와 페닐기가 연결되어
Figure PCTKR2020015006-appb-I000003
또는
Figure PCTKR2020015006-appb-I000004
의 치환기가 될 수 있다.
본 명세서에 있어서, 3개의 치환기가 연결되는 것은 (치환기 1)-(치환기 2)-(치환기 3)이 연속하여 연결되는 것뿐만 아니라, (치환기 1)에 (치환기 2) 및 (치환기 3)이 연결되는 것도 포함한다. 예를 들어, 2개의 페닐기 및 이소프로필기가 연결되어
Figure PCTKR2020015006-appb-I000005
또는
Figure PCTKR2020015006-appb-I000006
의 치환기가 될 수 있다. 4 이상의 치환기가 연결되는 것에도 전술한 것과 동일하게 적용된다.
본 명세서에 있어서, 중수소로 N% 치환되었다는 것은 해당 구조에서 이용가능한 수소의 N%가 중수소로 치환되는 것을 의미한다. 예를 들어, 디벤조퓨란에서 중수소로 25% 치환되었다고 하면, 디벤조퓨란의 8개의 수소 중 2개가 중수소로 치환된 것을 의미한다.
본 명세서에 있어서, 중수소화된 정도는 핵자기 공명 분광법(1H NMR)이나 GC/MS 등의 공지의 방법으로 확인할 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬, 또는 요오드가 있다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 30; 1 내지 20; 1 내지 10; 또는 1 내지 5인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, t-부틸, sec-부틸, 1-메틸부틸, 1-에틸부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, t-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, t-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸프로필, 1,1-디메틸프로필, 이소헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 1가의 방향족 탄화수소 또는 방향족 탄화수소 유도체의 1가의 기를 의미한다. 본 명세서에 있어서, 방향족 탄화수소는 pi 전자가 완전히 콘쥬게이션되고 평면인 고리를 포함하는 화합물을 의미하며, 방향족 탄화수소에서 유도되는 기란, 방향족 탄화수소에 방향족 탄화수소 또는 고리형 지방족 탄화수소가 축합된 구조를 의미한다. 또한 본 명세서에 있어서, 아릴기는 2 이상의 방향족 탄화수소 또는 방향족 탄화수소의 유도체가 서로 연결된 1가의 기를 포함하고자 한다. 아릴기는 특별히 한정되지 않으나, 탄소수 6 내지 50; 6 내지 30; 6 내지 25; 6 내지 20; 6 내지 18; 또는 6 내지 13인 것이 바람직하며, 상기 아릴기는 단환식 또는 다환식일 수 있다. 구체적으로 단환식 아릴기로는 페닐기, 비페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 트리페닐기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
본 명세서에 있어서, 플루오레닐기가 치환될 수 있다고 할 때, 치환된 플루오레닐기는 플루오렌의 5각 고리의 치환기가 서로 스피로 결합하여 방향족 탄화수소고리를 형성하는 화합물까지 모두 포함하는 것이다. 상기 치환된 플루오레닐기는 9,9'-스피로바이플루오렌, 스피로[사이클로펜탄-1,9'-플루오렌], 스피로[벤조[c]플루오렌-7,9-플루오렌] 등을 포함하나, 이에 한정되지 않는다.
본 명세서에 있어서, 헤테로아릴기는 1가의 방향족 헤테로고리를 의미한다. 여기서 방향족 헤테로고리란 방향족 고리 또는 방향족 고리의 유도체의 1가의 기로서, 이종 원자로 N, O 및 S 중 1개 이상을 고리에 포함하는 기를 의미한다. 상기 방향족 고리의 유도체란, 방향족 고리에 방향족 고리 또는 지방족 고리가 축합된 구조를 모두 포함한다. 또한 본 명세서에 있어서, 헤테로아릴기는 2 이상의 이종원자를 포함한 방향족 고리 또는 이종원자를 포함한 방향족 고리의 유도체가 서로 연결된 1가의 기를 포함하고자 한다. 상기 헤테로아릴기의 탄소수 2 내지 50; 2 내지 30; 2 내지 20; 2 내지 18; 또는 2 내지 13인 것이 바람직하다. 헤테로아릴기의 예로는 티오펜기, 퓨라닐기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 피리딘기, 피리미딘기, 트리아진기, 트리아졸기, 아크리딘기, 피리다진기, 피라진기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨란기, 페난쓰롤리닐기, 디벤조퓨란기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 단환 또는 다환일 수 있으며, 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다.
이하, 하기 화학식 1로 표시되는 안트라센 화합물에 관하여 상세히 설명한다.
[화학식 1]
Figure PCTKR2020015006-appb-I000007
상기 화학식 1에 있어서,
D는 중수소이고,
n1은 8 이고
n2는 7 이고,
L은 직접결합; 또는 치환 또는 비치환된 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, n1은 8 이다.
안트라센에 8개의 중수소가 치환된 경우, 반응성이 높은 위치를 중수소로 대체하여 화합물의 강성(rigidity)를 증가시킬 수 있다. 나아가 소자의 수명을 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, n2는 7 이다.
본 명세서의 일 실시상태에 있어서, L은 직접결합; 또는 치환 또는 비치환된 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L은 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L은 직접결합; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L은 직접결합; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 10의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L은 직접결합; 중수소로 치환 또는 비치환된 페닐렌기; 중수소로 치환 또는 비치환된 바이페닐렌기; 또는 중수소로 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 있어서, L은 직접결합; 중수소로 치환 또는 비치환된 페닐렌기; 또는 중수소로 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 있어서, L은 직접결합; 페닐렌기; 또는 나프틸렌기이다.
본 명세서의 일 실시상태에 있어서, L은 직접결합 또는 하기 구조에서 선택된 어느 하나이다.
Figure PCTKR2020015006-appb-I000008
상기 구조는 중수소; 알킬기; 아릴기; 및 헤테로아릴기로 이루어진 군에서 선택된 치환기 또는 2 이상의 치환기가 연결된 치환기로 연결되거나 어떠한 치환기도 갖지 않는다.
본 명세서의 일 실시상태에 있어서, L은 치환기로서 중수소를 포함한다.
본 명세서의 일 실시상태에 있어서, L은 직접결합 또는 하기 구조에서 선택된 어느 하나이다.
Figure PCTKR2020015006-appb-I000009
상기 구조에 있어서, D는 중수소를 의미하고, k1은 0 내지 4의 정수이고, k2는 0 내지 6의 정수이다.
본 명세서의 일 실시상태에 있어서, k1는 1 내지 4의 정수이다.
본 명세서의 일 실시상태에 있어서, k2는 1 내지 6의 정수이다.
본 명세서의 일 실시상태에 있어서, k1은 4 이다.
본 명세서의 일 실시상태에 있어서, k2는 6 이다.
본 명세서의 일 실시상태에 있어서, k1은 0 이다.
본 명세서의 일 실시상태에 있어서, k2는 0 이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 101 내지 104 중 어느 하나로 표시된다.
Figure PCTKR2020015006-appb-I000010
상기 화학식 101 내지 104에 있어서, D, n1, n2 및 L의 정의는 화학식 1에서 정의한 바와 같다.
상기 화학식 101 및 102과 같이 디벤조퓨란의 1번 또는 2번 탄소를 통해 안트라센에 연결되는 경우, 디벤조퓨란의 3번 또는 4번 탄소 연결(화학식 103 또는 104)에 비하여 소자의 구동전압이 낮아지거나, 효율이 상승하거나, 수명이 상승한다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 201 또는 202로 표시된다.
Figure PCTKR2020015006-appb-I000011
상기 화학식 201 또는 202에 있어서, D, n1, n2 및 L의 정의는 화학식 1에서 정의한 바와 같다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 301 내지 308 중 어느 하나로 표시된다.
Figure PCTKR2020015006-appb-I000012
Figure PCTKR2020015006-appb-I000013
상기 화학식 301 내지 308에 있어서, D, n1, n2 및 L의 정의는 화학식 1에서 정의한 바와 같다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 안트라센 화합물은 하기 화합물 중에서 선택되는 어느 하나이다.
Figure PCTKR2020015006-appb-I000014
Figure PCTKR2020015006-appb-I000015
Figure PCTKR2020015006-appb-I000016
Figure PCTKR2020015006-appb-I000017
본 명세서의 일 실시상태에 따른 화합물은 후술하는 제조 방법으로 제조될 수 있다. 필요에 따라, 치환기를 추가하거나 제외할 수 있으며, 치환기의 위치를 변경할 수 있다. 또한, 당 기술분야에 알려져 있는 기술을 기초로, 출발물질, 반응물질, 반응 조건 등을 변경할 수 있다.
예컨대, 상기 화학식 1로 표시되는 화합물은 하기 일반식 1와 같이 코어 구조가 제조될 수 있다. 치환기는 당기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기의 종류, 위치 또는 개수는 당기술분야에 알려져 있는 기술에 따라 변경될 수 있다. 하기 일반식 1와 같이 치환기를 결합시킬 수 있으나, 이에 한정되는 것은 아니다.
[일반식 1]
Figure PCTKR2020015006-appb-I000018
상기 일반식 1에 있어서, L의 정의는 상기 화학식 1에서 정의한 바와 동일하다. 상기 일반식 1에는 중수소가 표시되어 있지 않지만, I1 및 I2를 중수소 치환된 반응물을 사용하거나, 상기 일반식 1에서 제조된 화합물을 중수소화된 용매를 이용하여 산 촉매 하에서 수소-중수소 교환 반응을 통하여 중수소를 화합물에 도입할 수도 있다.
중수소를 포함하는 화학식 1의 화합물은 공지된 중수소화 반응에 의하여 제조될 수 있다. 본 명세서의 일 실시상태에 따르면, 화학식 1로 표시되는 화합물은 중수소화된 화합물을 전구체로 사용하여 형성하거나, 중수소화된 용매를 이용하여 산 촉매 하에서 수소-중수소 교환 반응을 통하여 중수소를 화합물에 도입할 수도 있다.
상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있으며, 화합물에 따라 상기 반응 순서는 바뀔 수 있으며, 상기 화학식 1의 안트라센 화합물 합성방법은 상기 방법에만 한정되는 것은 아니다.
본 명세서는 상기 전술한 화합물을 포함하는 유기 발광 소자를 제공한다.
본 명세서는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화학식 1로 표시되는 안트라센 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 상기 "층"은 본 기술분야에 주로 사용되는 '필름'과 호환되는 의미이며, 목적하는 영역을 덮는 코팅을 의미한다. 상기 "층"의 크기는 한정되지 않으며, 각각의 "층"은 그 크기가 동일하거나 상이할 수 있다. 일 실시상태에 있어서, "층"의 크기는 전체 소자와 같을 수 있고, 특정 기능성 영역의 크기에 해당할 수 있으며, 단일 서브픽셀(sub-pixel)만큼 작을 수도 있다.
본 명세서에 있어서, 특정한 A 물질이 B층에 포함된다는 의미는 i) 1종 이상의 A 물질이 하나의 B층에 포함되는 것과 ii) B층이 1층 이상으로 구성되고, A 물질이 다층의 B층 중 1층 이상에 포함되는 것을 모두 포함한다.
본 명세서에 있어서, 특정한 A 물질이 C층 또는 D층에 포함된다는 의미는 i) 1층 이상의 C층 중 1층 이상에 포함되거나, ii) 1층 이상의 D층 중 1층 이상에 포함되거나, iii) 1층 이상의 C층 및 1층 이상의 D층에 각각 포함되는 것을 모두 의미하는 것이다.
본 명세서에 따른 유기 발광 소자는 상기 발광층 이외에 추가의 유기물층을 포함할 수 있다.
본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층, 전자 차단층, 정공 차단층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 안트라센 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 안트라센 화합물을 호스트로서 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 발광층은 호스트 및 도펀트를 포함한다. 일 실시상태에 있어서, 상기 호스트는 상기 화학식 1로 표시되는 안트라센 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 도펀트는 인광 도펀트 또는 형광 도펀트이다.
본 명세서의 일 실시상태에 있어서, 상기 발광층은 아릴아민계 화합물을 더 포함한다. 즉, 발광층의 도펀트는 아릴아민계 화합물이다.
본 명세서의 일 실시상태에 있어서, 상기 발광층은 중수소를 포함하는 아릴아민계 화합물을 더 포함한다.
또다른 일 실시상태에 있어서, 상기 발광층은 보론 화합물을 더 포함한다. 즉, 발광층의 도펀트는 보론 화합물이다
본 명세서의 일 실시상태에 있어서, 상기 도펀트는 하기 화학식 Z1 또는 Z2로 표시된다.
[화학식 Z1]
Figure PCTKR2020015006-appb-I000019
[화학식 Z2]
Figure PCTKR2020015006-appb-I000020
상기 화학식 Z1 및 Z2에 있어서,
R31 및 R32는 서로 동일하거나 상이하고 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 또는 치환 또는 비치환된 아릴기이고,
X3 및 X4는 각각 수소 또는 중수소이거나 서로 직접 단일결합하여 고리를 형성하고,
R41 및 R42는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 알킬기이고,
R43 내지 R46은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이거나, 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
Ar31 내지 Ar34 및 Ar41 내지 Ar44는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
r41 및 r42는 각각 0 내지 4의 정수이고, 2 이상인 경우 괄호 내의 치환기는 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 도펀트는 하기의 구조에서 선택될 수 있으며, 이에 한정되지 않는다.
Figure PCTKR2020015006-appb-I000021
본 명세서의 일 실시상태에 있어서, 발광층 내에 도펀트는 호스트 100 중량부를 기준으로 0.1 중량부 내지 50 중량부로 포함될 수 있으며, 바람직하게는 1 중량부 내지 30 중량부로 포함될 수 있다. 상기 범위 내일 때, 호스트에서 도펀트로 에너지 전달이 효율적으로 일어난다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 1층 이상의 발광층을 더 포함한다. 상기 1층 이상의 발광층은 각각 전술한 도펀트를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 2층 이상의 발광층을 포함하고, 상기 2층 이상의 발광층 중 한 층은 형광 도펀트를 포함하고, 다른 한 층은 인광 도펀트를 포함한다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물을 포함하는 발광층을 포함하고, 상기 발광층의 최대 발광 피크는 400 nm 내지 500 nm이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 안트라센 화합물은 발광층 총 중량 100 중량부 대비 50 중량부 이상 100 중량부 미만, 더욱 바람직하게는 70 중량부 이상 99 중량부 이하로 포함된다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 2층 이상의 발광층을 포함하고, 상기 2층 이상의 발광층 중 적어도 하나는 상기 화학식 1로 표시되는 안트라센 화합물을 포함한다. 상기 화학식 1로 표시되는 안트라센 화합물을 포함한 발광층은 청색을 띠며, 상기 화학식 1로 표시되는 안트라센 화합물을 포함하지 않은 발광층은 당업계에 알려진 청색, 적색 또는 녹색 발광 화합물을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 정공 주입층, 정공 수송층, 전자 차단층, 전자 주입층, 전자 수송층 또는 정공 차단층을 포함하고, 상기 정공 주입층, 정공 수송층, 전자 차단층, 전자 주입층, 전자 수송층 또는 정공 차단층은 상기 화학식 1로 표시되는 안트라센 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 정공 주입층, 정공 수송층. 발광층, 전자 수송층, 전자 주입층, 정공 차단층 및 전자 차단층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다.
본 명세서의 일 실시상태에 있어서, 상기 제2 전극은 음극이고, 상기 제1 전극은 양극이다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
예컨대, 본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조가 도 1 및 2에 예시되어 있으며, 이에 한정되는 것은 아니다.
도 1에는 기판(101) 위에 양극(102), 발광층(106) 및 음극(110)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 상기 화학식 1로 표시되는 화합물은 발광층에 포함된다.
도 2에는 기판(101) 위에 양극(102), 정공주입층(103), 정공수송층(104), 전자차단층(105), 발광층(106), 전자수송층(107), 전자주입층(108) 및 음극(110)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 상기 화학식 1로 표시되는 화합물은 발광층에 포함된다.
본 명세서의 유기 발광 소자는 유기물층이 상기 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질, 유기물층 및 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다.
또한, 상기 화학식 1로 표시되는 안트라센 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하나, 이에 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다. 다만, 제조 방법이 이에 한정되는 것은 아니다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 예를 들어, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 예를 들어, 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로, 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되는 것은 아니다.
상기 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로, 방향족 아민 유도체로는 치환 또는 비치환된 아릴아민기를 갖는 축합 방향족환 유도체로서, 아릴아민기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있다. 또한, 스티릴아민 화합물은 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아민기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.
상기 정공 주입층은 전극으로부터 정공을 수취하는 층이다. 정공 주입 물질은 정공을 수송하는 능력을 가져 양극으로부터 정공 수취 효과 및 발광층 또는 발광 재료에 대하여 우수한 정공 주입 효과를 갖는 것이 바람직하다. 또한, 발광층에서 생성된 엑시톤의 전자 주입층 또는 전자 주입 재료에의 이동을 방지할 수 있는 능력이 우수한 물질이 바람직하다. 또한, 박막 형성 능력이 우수한 물질이 바람직하다. 또한, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는, 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물; 헥사니트릴헥사아자트리페닐렌 계열의 유기물; 퀴나크리돈(quinacridone)계열의 유기물; 페릴렌(perylene) 계열의 유기물; 안트라퀴논, 폴리아닐린과 같은 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이에 한정 되는 것은 아니다.
상기 정공 수송층은 정공 주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 단층 또는 2층 이상의 다층구조일 수 있다. 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수취하여 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 바람직하다. 구체적인 예로는, 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 정공 수송층은 2층 이상의 다층구조이다. 구체적으로는 2층 구조이다.
상기 전자 수송층은 전자 주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층이다. 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 바람직하다. 구체적인 예로는, 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이에 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이, 임의의 원하는 음극 물질과 함께 사용할 수 있다. 특히, 적절한 음극 물질은 낮은 일함수를 가지며, 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로, 세슘, 바륨, 칼슘, 이테르븀 및 사마륨 등이 있고, 각 경우 알루미늄층 또는 실버층이 뒤따른다.
상기 전자 주입층은 전극으로부터 전자를 수취하는 층이다. 전자 주입물로는 전자를 수송하는 능력이 우수하고, 제2 전극으로부터의 전자 수취 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 갖는 것이 바람직하다. 또한, 발광층에서 생성된 엑시톤이 정공 주입층으로 이동하는 것을 방지하고, 박막 형성 능력이 우수한 물질이 바람직하다. 구체적으로는, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되는 것은 아니다.
상기 금속 착체 화합물로는 8-히드록시퀴놀리나토 리튬, 비스(8-히드록시퀴놀리나토)아연, 비스(8-히드록시퀴놀리나토)구리, 비스(8-히드록시퀴놀리나토)망간, 트리스(8-히드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-히드록시퀴놀리나토)알루미늄, 트리스(8-히드록시퀴놀리나토)갈륨, 비스(10-히드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-히드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.
상기 전자 차단층은 전자 주입층으로부터 주입된 전자가 발광층을 지나 정공 주입층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이다. 공지된 재료는 제한 없이 사용 가능하며, 발광층과 정공 주입층 사이에, 또는 발광층과 정공 주입 및 정공 수송을 동시에 하는 층 사이에 형성될 수 있다.
상기 정공 차단층은 정공의 음극으로 도달을 저지하는 층으로, 일반적으로 전자 주입층과 동일한 조건으로 형성될 수 있다. 구체적으로, 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예 및 비교예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예 및 비교예는 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예 및 비교예에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예 및 비교예는 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[제조예]
(제조예 1) 화합물 1의 제조
(제조예 1-1) 화합물 A-2의 제조
Figure PCTKR2020015006-appb-I000022
3 구 플라스크에 9-브로모안트라센(50.0g, 194mmol), 나프탈렌-1-보론산 (36.79g, 214mmol)을 1,4-디옥산 500ml에 녹이고 K2CO3 (80.6g, 583mmol)을 H2O 200ml에 녹여 넣었다. 여기에 Pd(P(t-Bu)3)2 (1.98g, 3.9mmol)를 넣고, 아르곤 분위기 환류 조건하에서 5시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 톨루엔으로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-2를 50.1g 수득하였다. (수율 85%, MS[M+H]+=305)
(제조예 1-2) 화합물 A-1의 제조
Figure PCTKR2020015006-appb-I000023
합성한 화합물 A-2 (20g), TfOH(2ml)을 C6D6 (200ml)에 넣고 30분 교반하였다. 반응 종료 후 D2O (50ml)를 넣고 30분 교반한 뒤 트리메틸아민(trimethylamine) (6ml)를 적가하였다. 반응액을 분액 깔대기에 옮기고, 물과 톨루엔으로 추출하였다. 추출액을 MgSO4로 건조 후, 에틸아세테이트로 재결정하여 화합물 A-1을 20.3g 수득하였다. (수율 96%, MS[M+H]+=320)
(제조예 1-3) 화합물 A의 제조
Figure PCTKR2020015006-appb-I000024
2 구 플라스크에 화합물 A-1 (20.0g, 62.4mmol), N-브로모숙신이미드(NBS) (11.66g, 65.5mmol), 디메틸포름아마이드(DMF) 300ml를 넣고, 아르곤 분위기 하에서 상온에서 8시간 교반하였다. 반응 종료 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸아세테이트로 유기층을 추출하였다. 추출액을 MgSO4로 건조하고, 여과 및 농축한 후, 에틸아세테이트로 정제하여 화합물 A를 22.3g 수득하였다. (수율 90%, MS[M+H]+=398)
(제조예 1-4) 화합물 1의 제조
Figure PCTKR2020015006-appb-I000025
3 구 플라스크에 화합물 A (20.0g, 62.4mmol), 디벤조퓨란-1-보론산 (14.5g, 68.6mmol)을 1,4-디옥산 300ml에 녹이고 K2CO3 (25.9g, 187mmol)을 H2O 100ml에 녹여 넣었다. 여기에 Pd(P(t-Bu)3)2 (0.64g, 1.2mmol)를 넣고, 아르곤 분위기 환류 조건하에서 5시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 톨루엔으로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1을 13.2g 수득하였다. (수율 44%, MS[M+H]+=486)
(제조예 2) 화합물 2의 제조
(제조예 2-1) 화합물 B-2의 제조
Figure PCTKR2020015006-appb-I000026
제조예 1-1)에서 나프탈렌-1-보론산 대신 나프탈렌-2-보론산을 사용한 것 외에는 동일한 방법으로 화합물 B-2를 48.8g 수득하였다. (수율 83%, MS[M+H]+=305)
(제조예 2-2) 화합물 B-1의 제조
Figure PCTKR2020015006-appb-I000027
제조예 1-2)와 동일한 방법으로 합성을 진행하여 화합물 B-1을 19.1g 수득하였다. (수율 91%, MS[M+H]+=320)
(제조예 2-3) 화합물 B의 제조
Figure PCTKR2020015006-appb-I000028
제조예 1-3)과 동일한 방법으로 합성을 진행하여 화합물 B를 21.9g 수득하였다. (수율 88%, MS[M+H]+=320)
(제조예 2-4) 화합물 2의 제조
Figure PCTKR2020015006-appb-I000029
제조예 1-4)과 동일한 방법으로 합성을 진행하여 화합물 2를 12.9g 수득하였다. (수율 42%, MS[M+H]+=486)
(제조예 3) 화합물 3의 제조
Figure PCTKR2020015006-appb-I000030
디벤조퓨란-1-보론산 대신 디벤조퓨란-2-보론산을 사용한 것 외에는 제조예 1-4)과 동일한 방법으로 합성을 진행하여 화합물 3를 15.1g 수득하였다. (수율 50%, MS[M+H]+=486)
(제조예 4) 화합물 4의 제조
Figure PCTKR2020015006-appb-I000031
디벤조퓨란-1-보론산 대신 디벤조퓨란-2-보론산을 사용한 것 외에는 제조예 2-4)과 동일한 방법으로 합성을 진행하여 화합물 4를 13.0g 수득하였다. (수율 43%, MS[M+H]+=486)
(제조예 5) 화합물 5의 제조
Figure PCTKR2020015006-appb-I000032
디벤조퓨란-1-보론산 대신 디벤조퓨란-3-보론산을 사용한 것 외에는 제조예 1-4)과 동일한 방법으로 합성을 진행하여 화합물 5를 15.6g 수득하였다. (수율 52%, MS[M+H]+=486)
(제조예 6) 화합물 6의 제조
Figure PCTKR2020015006-appb-I000033
디벤조퓨란-1-보론산 대신 디벤조퓨란-4-보론산을 사용한 것 외에는 제조예 2-4)과 동일한 방법으로 합성을 진행하여 화합물 6을 13.9g 수득하였다. (수율 46%, MS[M+H]+=486)
(제조예 7) 화합물 7의 제조
(제조예 7-1) 화합물 C의 제조
Figure PCTKR2020015006-appb-I000034
3 구 플라스크에 디벤조퓨란-1-보론산 (20.0g, 94.3mmol), 1-브로모-4-클로로벤젠(18.1g, 94.3mmol)을 THF 300ml에 녹이고 K2CO3 (39.1g, 283mmol)을 H2O 100ml에 녹여 넣었다. 여기에 Pd(P(t-Bu)3)2 (0.96g, 1.9mmol)를 넣고, 아르곤 분위기 환류 조건하에서 2시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 톨루엔으로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후 바로 다음 반응을 진행하였다.
3구 플라스크에 C-1 혼합물, 비스(피나콜라토)디보론 (28.7g, 113mmol), KOAc (27.8g, 283mmol)을 1,4-다이옥산 300ml에 녹이고 여기에 Pd(dppf)Cl2 (1.38g, 1.89mmol)을 넣고 아르곤 분위기 환류하에서 12시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 농축한 후 물과 클로로포름으로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 C를 23.3g 수득하였다. (총 수율 67%, MS[M+H]+=371)
(제조예 7-2) 화합물 7의 제조
Figure PCTKR2020015006-appb-I000035
3 구 플라스크에 화합물 A (20.0g, 50.2mmol), 화합물 C (20.5g, 55.2mmol)을 1,4-디옥산 300ml에 녹이고 K2CO3 (20.8g, 151mmol)을 H2O 100ml에 녹여 넣었다. 여기에 Pd(P(t-Bu)3)2 (0.51g, 1.0mmol)를 넣고, 아르곤 분위기 환류 조건하에서 3시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 톨루엔으로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 7을 16.6g 수득하였다. (수율 58%, MS[M+H]+=562)
(제조예 8) 화합물 8의 제조
Figure PCTKR2020015006-appb-I000036
제조예 7-2)과 동일한 방법으로 합성을 진행하여 화합물 8을 14.7g 수득하였다. (수율 52%, MS[M+H]+=562)
(제조예 9) 화합물 9의 제조
(제조예 9-1) 화합물 D의 제조
Figure PCTKR2020015006-appb-I000037
제조예 7-1)과 동일한 방법으로 합성을 진행하여 화합물 D를 24.1g 수득하였다. (총 수율 69%, MS[M+H]+=371)
(제조예 9-2) 화합물 9의 제조
Figure PCTKR2020015006-appb-I000038
제조예 7-2)과 동일한 방법으로 합성을 진행하여 화합물 9를 13.3g 수득하였다. (수율 47%, MS[M+H]+=562)
(제조예 10) 화합물 10의 제조
Figure PCTKR2020015006-appb-I000039
제조예 8-2)과 동일한 방법으로 합성을 진행하여 화합물 10을 12.9g 수득하였다. (수율 46%, MS[M+H]+=562)
(제조예 11) 화합물 11의 제조
(제조예 11-1) 화합물 E의 제조
Figure PCTKR2020015006-appb-I000040
제조예 7-1)과 동일한 방법으로 합성을 진행하여 화합물 E를 26.4g 수득하였다. (총 수율 76%, MS[M+H]+=371)
(제조예 11-2) 화합물 11의 제조
Figure PCTKR2020015006-appb-I000041
제조예 7-2)와 동일한 방법으로 합성을 진행하여 화합물 11을 14.1g 수득하였다. (총 수율 50%, MS[M+H]+=562)
(제조예 12) 화합물 12의 제조
Figure PCTKR2020015006-appb-I000042
제조예 9-2)과 동일한 방법으로 합성을 진행하여 화합물 12를 13.0g 수득하였다. (총 수율 46%, MS[M+H]+=562)
(제조예 13) 화합물 13의 제조
(제조예 13-1) 화합물 F의 제조
Figure PCTKR2020015006-appb-I000043
제조예 9-1)과 동일한 방법으로 합성을 진행하여 화합물 F를 25.5g 수득하였다. (총 수율 73%, MS[M+H]+=371)
(제조예 13-2) 화합물 13의 제조
Figure PCTKR2020015006-appb-I000044
제조예 9-2)과 동일한 방법으로 합성을 진행하여 화합물 13을 11.2g 수득하였다. (총 수율 32%, MS[M+H]+=562)
(제조예 14) 화합물 14의 합성
Figure PCTKR2020015006-appb-I000045
제조예 7-2)와 동일한 방법으로 합성을 진행하여 화합물 14를 12.0g 수득하였다. (총 수율 42%, MS[M+H]+=562)
(제조예 15) 화합물 15의 합성
(제조예 15-1) 화합물 G의 합성
Figure PCTKR2020015006-appb-I000046
제조예 7-1)과 동일한 방법으로 합성을 진행하여 화합물 G를 28.6g 수득하였다. (총 수율 72%, MS[M+H]+=421)
(제조예 15-2) 화합물 15의 제조
Figure PCTKR2020015006-appb-I000047
제조예 7-2)와 동일한 방법으로 합성을 진행하여 화합물 15를 14.8g 수득하였다. (총 수율 48%, MS[M+H]+=612)
(제조예 16) 화합물 16의 합성
(제조예 16-1) 화합물 H의 합성
Figure PCTKR2020015006-appb-I000048
제조예 7-1)과 동일한 방법으로 합성을 진행하여 화합물 H를 18.3g 수득하였다. (총 수율 46%, MS[M+H]+=421)
(제조예 16-2) 화합물 16의 합성
Figure PCTKR2020015006-appb-I000049
제조예 1-4)과 동일한 방법으로 합성을 진행하여 화합물 16을 16.6g 수득하였다. (수율 59%, MS[M+H]+=555)
[실험예 1] 유기 발광 소자의 제작
<실시예 1>
ITO(Indium Tin Oxide)가 150 nm의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤 및 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 질소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 위에 HAT-CN을 50Å의 두께로 열 진공 증착하여 정공주입층을 형성하고, 그 위에 정공을 수송하는 물질인 HTL1을 두께 1150Å로 진공증착하여 정공수송층을 형성하였다. 그 다음에 HTL2를 이용하여 전자차단층(150Å)을 형성하고 그 다음에 제조예 1에서 합성한 화합물 1을 호스트로 하고, BD를 도펀트(발광층 총 중량 100% 대비 2 중량%)로 하여 발광층(360Å, 진공 증착)을 형성하였다. 그 후 ETL1을 50Å 증착하여 정공차단층을 형성하고, 화합물 ETL2와 Liq를 7:3로 혼합하여 두께 250Å의 전자수송층을 형성하였다. 순차적으로 50Å 두께의 마그네슘과 리튬 플루오라이드(LiF)을 전자주입층으로 성막한 후 음극으로 마그네슘과 은(1:4)로 200Å 형성시킨 후 CP1을 600 Å 증착하여 소자를 완성하였다. 상기의 과정에서 유기물의 증착속도는 1 Å/sec를 유지하였다.
Figure PCTKR2020015006-appb-I000050
<실시예 2 내지 16>
상기 실시예 1에서 발광층의 호스트 화합물로 1 대신 화합물 2 내지 16을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2020015006-appb-I000051
<비교예 1 내지 6>
상기 실시예 1에서 발광층의 호스트 화합물로 1 대신 화합물 BH-A 내지 BH-F를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광 소자를 제작하였다. 화합물 BH-A 내지 BH-F는 각각 하기와 같다.
Figure PCTKR2020015006-appb-I000052
<참고예 1 및 2>
상기 실시예 1에서 발광층의 호스트 화합물로 1 대신 화합물 BH-G 내지 BH-H를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광 소자를 제작하였다. 화합물 BH-G 내지 BH-H는 각각 하기와 같다.
Figure PCTKR2020015006-appb-I000053
상기 실시예, 비교예 및 참고예에서 제조한 유기 발광 소자에 대하여 10 mA/cm2의 전류 밀도에서 구동 전압과 발광 효율을 측정하였고, 20 mA/cm2의 전류 밀도에서 초기 휘도 대비 97%가 되는 시간(T97)을 측정하였다. 상기 결과를 하기 표 1에 나타내었다.
호스트
화합물
10 mA/cm2 측정 값 수명
(T97)
구동전압
(VOP)
발광효율
(Cd/A)
색좌표
CIE_x CIE_y
실시예 1 1 3.50 8.43 0.137 0.114 150
실시예 2 2 3.52 8.41 0.137 0.116 155
실시예 3 3 3.43 8.49 0.137 0.110 160
실시예 4 4 3.46 8.51 0.138 0.114 158
실시예 5 5 3.60 8.35 0.138 0.115 130
실시예 6 6 3.63 8.30 0.138 0.114 125
실시예 7 7 3.43 8.43 0.137 0.113 156
실시예 8 8 3.43 8.45 0.137 0.114 154
실시예 9 9 3.33 8.44 0.137 0.112 161
실시예 10 10 3.33 8.45 0.138 0.113 163
실시예 11 11 3.34 8.53 0.138 0.111 152
실시예 12 12 3.32 8.52 0.138 0.111 154
실시예 13 13 3.37 8.48 0.137 0.112 155
실시예 14 14 3.39 8.51 0.137 0.113 151
실시예 15 15 3.33 8.58 0.137 0.115 150
실시예 16 16 3.71 8.53 0.137 0.115 116
비교예 1 BH-A 3.50 8.39 0.137 0.116 100
비교예 2 BH-B 3.44 8.46 0.137 0.110 110
비교예 3 BH-C 3.45 8.53 0.138 0.114 110
비교예 4 BH-D 3.33 8.46 0.138 0.113 115
비교예 5 BH-E 3.32 8.51 0.138 0.111 105
비교예 6 BH-F 3.71 8.53 0.137 0.115 65
참고예 1 BH-G 3.61 8.35 0.138 0.115 131
참고예 2 BH-H 3.63 8.30 0.138 0.114 125
상기 표 1에서 보는 바와 같이, 발광층의 호스트로써 각각 화학식 1 내지 16을 포함하고 있는 실시예 1 내지 16의 유기 발광 소자가, 호스트로써 각각 화학식 BH-A 내지 BH-F를 포함하는 비교예 1 내지 6의 유기 발광 소자보다 장수명의 특징이 현저히 우수함을 알 수 있으며, 본원 발명의 실시예 1 내지 14의 유기 발광 소자는 100% 중수소화된 화합물을 포함하는 참고예 1 및 2와 동등한 효과를 나타냄을 알 수 있었다.
또한, 상기 화학식 101 및 102과 같이 디벤조퓨란의 1번 또는 2번 탄소를 통해 안트라센에 연결되는 경우(실시예 1 내지 4), 디벤조퓨란의 3번 또는 4번 탄소 연결된 화학식 103 또는 104(실시예 5 및 6)에 비하여 소자의 구동전압이 낮아지거나, 효율이 상승하거나, 수명이 상승함을 알 수 있다.
[실험예 2] 화합물의 제조 수율 차이
본 발명의 화합물 5와 참고예 화합물 BH-G은 각각 하기와 같은 제조방법을 통해 합성된다. 본 발명의 화합물 5와 참고예 화합물 BH-G 뿐만 아니라 본 발명의 화합물 6과 참고예 화합물 BH-H도 하기와 같은 방법으로 합성될 수 있다.
[화합물 5의 제조방법]
Figure PCTKR2020015006-appb-I000054
[화합물 BH-G의 제조방법]
Figure PCTKR2020015006-appb-I000055
중수소화된 안트라센 유도체에 비치환된 디벤조퓨란을 연결시키면 본 발명의 화합물 5을 제조할 수 있다. 이때 각 step의 수율이 각각 96%, 90%, 52%이며 45%의 총 수율을 가진다.
반면, 전체 중수화된 화합물 BH-G는 제조 마지막 단계에서 전체 중수소화하여 얻을 수 있다. 이때 각 step의 수율이 91%, 88%, 46%이며 32%의 총 수율을 가진다.
이러한 수율의 차이는 중수소 치환 단계에서의 물질의 용해도 차이에 의한 것으로, 디벤조퓨란 연결 전 중간체(본 발명의 화합물)의 용해도가 디벤조퓨란이 연결된 중간체(참고예 화합물)의 용해도 보다 우수하기 때문이다.
또한, 본 발명의 화합물은 제조시 사용되는 중수소원 C6D6의 양도 절약할 수 있기 때문에 생산 단가 측면에서도 이점을 가질 수 있다.
즉, 본 발명의 화합물은 전체 중수소화된 화합물(참고예 화합물)에 비해, 합성 수율이 높고 생산 단가가 낮으면서도 동등한 소자 성능을 보일 수 있다.

Claims (11)

  1. 하기 화학식 1로 표시되는 안트라센 화합물:
    [화학식 1]
    Figure PCTKR2020015006-appb-I000056
    상기 화학식 1에 있어서,
    D는 중수소이고,
    n1은 8 이고
    n2는 7 이고,
    L은 직접결합; 또는 치환 또는 비치환된 아릴렌기이다.
  2. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 101 내지 104 중 어느 하나로 표시되는 것인 안트라센 화합물:
    Figure PCTKR2020015006-appb-I000057
    상기 화학식 101 내지 104에 있어서, D, n1, n2 및 L의 정의는 화학식 1에서 정의한 바와 같다.
  3. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 201 또는 202로 표시되는 것인 안트라센 화합물:
    Figure PCTKR2020015006-appb-I000058
    상기 화학식 201 또는 202에 있어서, D, n1, n2 및 L의 정의는 화학식 1에서 정의한 바와 같다.
  4. 청구항 1에 있어서, L은 직접결합 또는 하기 구조에서 선택된 어느 하나인 것인 안트라센 화합물:
    Figure PCTKR2020015006-appb-I000059
    상기 구조는 중수소; 알킬기; 아릴기; 및 헤테로아릴기로 이루어진 군에서 선택된 치환기 또는 2 이상의 치환기가 연결된 치환기로 연결되거나 어떠한 치환기도 갖지 않는다.
  5. 청구항 2에 있어서, 상기 화학식 1은 상기 화학식 101 또는 102로 표시되는 것인 안트라센 화합물.
  6. 청구항 1에 있어서, 상기 화학식 1로 표시되는 안트라센 화합물은 하기 화합물 중에서 선택되는 어느 하나인 것인 안트라센 화합물:
    Figure PCTKR2020015006-appb-I000060
    Figure PCTKR2020015006-appb-I000061
    Figure PCTKR2020015006-appb-I000062
    Figure PCTKR2020015006-appb-I000063
    .
  7. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 청구항 1 내지 6 중 어느 한 항에 따른 안트라센 화합물을 포함하는 것인 유기 발광 소자.
  8. 청구항 7에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 안트라센 화합물을 호스트로서 포함하는 것인 유기 발광 소자.
  9. 청구항 8에 있어서, 상기 발광층은 아릴아민계 화합물을 더 포함하는 것인 유기 발광 소자.
  10. 청구항 8에 있어서, 상기 발광층은 보론 화합물을 더 포함하는 것인 유기 발광 소자.
  11. 청구항 8에 있어서, 상기 발광층은 중수소를 포함하는 아릴아민계 화합물을 더 포함하는 것인 유기 발광 소자.
PCT/KR2020/015006 2019-10-30 2020-10-30 안트라센 화합물 및 이를 포함하는 유기 발광 소자 WO2021086099A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/607,120 US20220165966A1 (en) 2019-10-30 2020-10-30 Anthracene compound and organic light-emitting device comprising same
CN202080022634.0A CN113631546B (zh) 2019-10-30 2020-10-30 蒽化合物和包含其的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0136733 2019-10-30
KR20190136733 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021086099A1 true WO2021086099A1 (ko) 2021-05-06

Family

ID=75716111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015006 WO2021086099A1 (ko) 2019-10-30 2020-10-30 안트라센 화합물 및 이를 포함하는 유기 발광 소자

Country Status (4)

Country Link
US (1) US20220165966A1 (ko)
KR (1) KR102586528B1 (ko)
CN (1) CN113631546B (ko)
WO (1) WO2021086099A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910150B1 (ko) * 2008-04-02 2009-08-03 (주)그라쎌 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고있는 유기 발광 소자
KR20170009714A (ko) * 2015-07-14 2017-01-25 에스에프씨 주식회사 고효율의 유기 발광 소자
KR20170039020A (ko) * 2015-09-30 2017-04-10 주식회사 스킨앤스킨 유기 전계발광 화합물 및 유기 전계발광 소자
KR20180037717A (ko) * 2016-10-05 2018-04-13 에스에프씨 주식회사 장수명, 저전압 및 고효율 특성을 갖는 유기 발광 소자
KR20190113498A (ko) * 2018-03-28 2019-10-08 엘지디스플레이 주식회사 신규한 유기화합물 및 상기 유기화합물을 포함하는 유기전계 발광소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456897B (zh) 2012-05-30 2016-03-09 京东方科技集团股份有限公司 有机电致发光器件
CN110317186B (zh) * 2018-03-28 2023-07-07 乐金显示有限公司 新的有机化合物和包含其的有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910150B1 (ko) * 2008-04-02 2009-08-03 (주)그라쎌 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고있는 유기 발광 소자
KR20170009714A (ko) * 2015-07-14 2017-01-25 에스에프씨 주식회사 고효율의 유기 발광 소자
KR20170039020A (ko) * 2015-09-30 2017-04-10 주식회사 스킨앤스킨 유기 전계발광 화합물 및 유기 전계발광 소자
KR20180037717A (ko) * 2016-10-05 2018-04-13 에스에프씨 주식회사 장수명, 저전압 및 고효율 특성을 갖는 유기 발광 소자
KR20190113498A (ko) * 2018-03-28 2019-10-08 엘지디스플레이 주식회사 신규한 유기화합물 및 상기 유기화합물을 포함하는 유기전계 발광소자

Also Published As

Publication number Publication date
CN113631546B (zh) 2024-03-08
CN113631546A (zh) 2021-11-09
KR20210052359A (ko) 2021-05-10
US20220165966A1 (en) 2022-05-26
KR102586528B1 (ko) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2020091521A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019147077A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019235902A1 (ko) 다환 화합물 및 이를 포함하는 유기전자소자
WO2019240473A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2018030786A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2021091165A1 (ko) 유기 발광 소자
WO2019078692A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2022103049A1 (ko) 안트라센계 화합물 및 이를 포함하는 유기 발광 소자
WO2019194594A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2019177393A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2024053991A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020222433A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2019027189A1 (ko) 유기 전계 발광 소자
WO2020149609A1 (ko) 유기 발광 소자
WO2020091526A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022031016A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031013A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031028A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021040467A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2021149954A1 (ko) 유기 발광 소자
WO2020180005A1 (ko) 바이나프탈렌 화합물 및 이를 포함하는 유기 발광 소자
WO2021029715A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881233

Country of ref document: EP

Kind code of ref document: A1