WO2021085715A1 - 스마트 공장용 블록장치 및 그 이동 제어방법 - Google Patents

스마트 공장용 블록장치 및 그 이동 제어방법 Download PDF

Info

Publication number
WO2021085715A1
WO2021085715A1 PCT/KR2019/015444 KR2019015444W WO2021085715A1 WO 2021085715 A1 WO2021085715 A1 WO 2021085715A1 KR 2019015444 W KR2019015444 W KR 2019015444W WO 2021085715 A1 WO2021085715 A1 WO 2021085715A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
smart factory
block device
movement path
network
Prior art date
Application number
PCT/KR2019/015444
Other languages
English (en)
French (fr)
Inventor
정지은
송병훈
신준호
장찬희
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2021085715A1 publication Critical patent/WO2021085715A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a block device for a smart factory and a method for controlling its movement, and more particularly, to a block device for a smart factory, which can flexibly change a process topology or process flow even while a process line is arranged and production is in progress. It relates to an apparatus and a method for controlling its movement.
  • Smart factory refers to an intelligent production factory that improves productivity, quality, and customer satisfaction by applying Information and Communications Technologies (ICT) that combines digital automation solutions to the production process such as design, development, manufacturing, distribution, and logistics. .
  • ICT Information and Communications Technologies
  • a representative example of a smart factory model is process equipment and systems with a modular structure.
  • Representative research institutes at home and abroad have developed standard block equipment to enable a combination of module units, such as Lego blocks, and are flexible and flexible as if assembling blocks.
  • a production line was established and piloted.
  • the conventional modularized standard equipment requires an automated guided vehicle (AGV) or a person to be input when it is necessary to link between several modular process lines, which delays the process and requires a lot of cost and effort. There is this.
  • AGV automated guided vehicle
  • the present invention is invented to solve the above-described problems, and provides a block device for a smart factory and a method for controlling the movement thereof, which can flexibly change a process topology or a flow of a process even while a process line is arranged and production is in progress. It aims to provide.
  • the movable block may include a main frame; A plurality of wheels mounted on the main frame; A drive motor driving the plurality of wheels; And a controller mounted on the main frame, receiving the movement path through a network, and controlling driving of the driving motor according to the received movement path.
  • the movable block further includes a lidar sensor mounted on the main frame and detecting an obstacle while moving along the moving path, and further includes an obstacle detected by the lidar sensor. You can move by avoiding.
  • the movable block may include a bracket for attaching and detaching the main frame and the base block; It may further include.
  • the movable block may further include a buffer unit for buffering an impact between the main frame and the base block.
  • the mobile block may include a multi-connector for connecting communication and power to the base block; And a battery pack for supplying power to each component.
  • the movable block receives the movement path through a network after the docking unit connected to the other smart factory block device is separated.
  • a method for controlling movement of a block device for a smart factory for achieving the above object comprises: connecting a removable block and an interface; Receiving a moving route through a network; And controlling the driving of the wheel of the movable block along the set movement path.
  • the above-described movement control method of the smart factory block device further includes: detecting an obstacle in the movement path using a lidar sensor, and controlling the driving of the wheel may avoid the detected obstacle. It is also possible to control the driving of the wheel.
  • a method for controlling movement of a block device for a smart factory for achieving the above object is, in a method for controlling the movement of a block device for a smart factory combined with another block device for a smart factory in a module unit, the network A step of waiting until all of the currently ongoing work list is completed when a move request message is received through the device; Transmitting a separation command to a base block to separate a docking unit connected to the other smart factory block device when all the work list currently in progress is completed; Separating the docking part connected to the other smart factory block device by the base block according to the separation command; And, after the docking unit connected to the other smart factory block device is separated, driving and controlling the wheel along a set movement path.
  • the above-described method for controlling the movement of the smart factory block device may further include the step of setting the movement path through a network after the docking part connected to the other smart factory block device is separated.
  • the production module required for product production can be moved flexibly according to the needs of the customer, and the process topology or the flow of the process can be flexibly changed while the process line is arranged and production is in progress. Varied customized production becomes possible.
  • FIG. 1 is a diagram showing an example of a block device for a smart factory according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of constructing a production line of a smart factory by module combination of the block device for a smart factory of FIG. 1.
  • FIG. 3 is a diagram schematically showing an example of a block device for a smart factory according to another embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating an example of the movable block shown in FIG. 3.
  • FIG. 5 is a view illustrating a wheel, a drive motor, a buffer unit, and a bracket of the mobile block shown in FIG. 3.
  • FIG. 6 is a flowchart illustrating a method of controlling movement of a block device for a smart factory according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of controlling movement of a block device for a smart factory according to another embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used in describing the constituent elements of the embodiment of the present invention. These terms are for distinguishing the constituent element from other constituent elements, and the nature, order, or order of the constituent element is not limited by the term.
  • FIG. 1 is a diagram showing an example of a block device for a smart factory according to an embodiment of the present invention.
  • a block device for a smart factory 100 includes an upper end of a mechanism unit 110 and a lower end of a base block 120.
  • the mechanism unit 110 is equipped with instruments of various processes for product production.
  • the mechanism unit 110 may include a universal table 111, a display panel 112, and a conveyor belt 113.
  • the universal table 111 is a device necessary for the production of products in various industries such as machinery, processing, electronics, injection molding, pharmaceuticals, cosmetics, as well as various devices such as robots, parts assembly units, and inspection equipment. Can be customized. To this end, the universal table 111 is provided with a taping hole so that various devices can be easily mounted, replaced, and removed. In addition, the display panel 112 displays the process and operation status, and the conveyor belt 113 transports the product.
  • the base block 120 is responsible for process control and collection of process data, and for this purpose, a PLC (Power Line Communication) 121, various electronic circuit panels 122, and electronic circuit panels 122 in the base block 120 It includes a universal connector 123 for electrical connection between the electrical connection or electrical connection with the electromagnetic repelling panel in another base block.
  • the base block 120 is implemented to interface with other smart factory block devices by unifying the standards of various sockets, connectors, and wiring based on a standard so as to be easily interlocked.
  • FIG. 2 is a diagram illustrating an example of constructing a production line of a smart factory by module combination of the block device for a smart factory of FIG. 1.
  • the smart factory block device 100 may be combined with different smart factory block devices 100-1 and 100-2 as if assembling a block.
  • factory block devices By combining factory block devices with modules, it is possible to build a production line of a smart factory for flexible production.
  • each smart factory block device (100, 100-1, 100-2) is implemented as a module so that it can be combined and separated from each other, so that the modules required for product production according to the customer's needs are then assembled in a prefabricated manner.
  • each of the smart factory block devices 100, 100-1, 100-2 has a docking pin 120a on one side and a docking pin 120a on the other side to facilitate mutual coupling and separation.
  • a docking hole 120b corresponding to is provided.
  • FIG. 3 is a diagram schematically showing an example of a block device for a smart factory according to another embodiment of the present invention.
  • the smart factory block device according to the embodiment of the present invention is different from the smart factory block device shown in FIG. 1 in that the base block 120 includes a movable block 200, and other components and each Since the functions are the same or similar, the same reference numerals are assigned to the same or similar components, and detailed descriptions thereof are omitted.
  • the base block 120 may further include a movable block 200 for the smart factory block device shown in FIG. 1.
  • the movable block 200 is detachably attached to the lower end of the base block 120.
  • the movable block 200 receives a movement path set through the network, and moves the smart factory block device 100 along the set movement path.
  • FIG. 4 is a diagram schematically illustrating an example of the movable block shown in FIG. 3
  • FIG. 5 is a view illustrating a wheel, a driving motor, a buffer unit, and a bracket of the movable block shown in FIG. 3.
  • the movable block 200 includes a main frame 210, a plurality of wheels 220, a driving motor 230, a controller 240, a lidar sensor 250, It includes a bracket 260, a buffer unit 270, a multi-connector 280, and a battery pack 290.
  • the main frame 210 supports the base block 120 attached to its upper end, and mounts a plurality of wheels 220 at its lower end.
  • the main frame 210 is a driving motor 230, a controller 240, a lidar sensor 250, a bracket 260, a buffer unit 270, a multi-connector 280, a battery pack ( 290) and other various components are mounted and fixed.
  • the plurality of wheels 220 are mounted on the lower end of the main frame 210.
  • each wheel 220 is implemented as a Mecanum Wheel.
  • the mecanum wheel direction of each wheel 220 forms an inclination of 45 degrees
  • the left and right wheels on the front side are in opposite directions
  • the left and right wheels on the rear side are in opposite directions
  • the left or right front wheel It is preferable that the wheels on the and rear sides are implemented in opposite directions to each other.
  • the wheel on the front side and the wheel on the rear side which are diagonal to each other, have the same mecanum wheel direction. Through this, it is possible to control the movement of the smart factory block device 100 in various directions by individually controlling the driving of each wheel 220 without rotating the direction of the wheel 220 itself.
  • a separate mechanical configuration for changing the direction of the wheel 220 is not required, a structure for changing the direction of the movable block 200 can be simply implemented.
  • the driving motor 230 is installed corresponding to each wheel 220 and independently drives the corresponding wheel 220. At this time, each of the driving motors 230 can rotate in a forward direction or in a reverse direction as well as control a corresponding rotation speed.
  • the controller 240 is mounted on the main frame 210, receives a movement path through a network, and controls the driving of the driving motor 230 according to the received movement path. That is, the controller 240 can communicate with an administrator terminal (not shown) through a network, and may receive a movement route set by the administrator from the administrator terminal. In addition, the controller 240 individually controls each of the driving motors 230 based on the set movement path, so that the smart factory block device 100 can not only proceed in the front-rear direction but also change the direction in various directions. have.
  • the lidar sensor 250 is mounted on the main frame 210 and detects an obstacle located on the path while moving along the movement path. In this case, when the lidar sensor 250 detects that there is an obstacle within the set range, the lidar sensor 250 transmits a detection signal including the distance and direction to the obstacle to the controller 240. In this case, the controller 240 can move by avoiding an obstacle by changing the progress path and direction based on the detection signal received from the lidar sensor 250.
  • the bracket 260 attaches the main frame 210 and the base block 120 to be detachably attached.
  • a buffer unit 270 is installed between the bracket 260 and the main frame 210 for buffering an impact such as a spring.
  • the buffer unit 270 can minimize the transmission of the impact applied from the floor to the base block 120 even when passing through an uneven path while the smart factory block device 100 is moving.
  • the multi-connector 280 interfaces communication and power with the base block 120.
  • the multi-connector 280 may interface with various components mounted on the main frame 210, for example, the driving motor 230 and the controller 240. Through this, the base block 120 and the mobile block 200 can transmit and receive data to each other.
  • the battery pack 290 supplies power to each component.
  • the battery pack 290 may supply power to not only each component mounted on the main frame 210, but also each component of the base block 120 connected through the multi-connector 280.
  • the controller 240 waits until all the work list currently in progress is completed, and then moves along the moving path after all the work list in progress is completed. Start.
  • the controller 240 is a case in which the smart factory block device 100 is combined with at least one other smart factory block device 100-1 and 100-2 to establish a production line, as described in FIG. 2.
  • the move request message is received through the network, it waits until all the currently in progress work list is completed, and the other smart factory block devices (100-1, 100-2) combined after all the work list currently in progress is completed.
  • a detach command for detaching the docking units 120a and 120b is transmitted to the base block 120.
  • the base block 120 separates the docking units 120a and 120b coupled with the other smart factory block devices 100-1 and 100-2 according to the separation command received from the controller 240, and the controller After confirming that the base block 120 is separated from the other smart factory block devices 100-1 and 100-2, the base block 120 starts moving along the movement path.
  • the controller 240 may be implemented to receive a movement path through a network after confirming that the base block 120 is separated from other smart factory block devices 100-1 and 100-2.
  • FIG. 6 is a flowchart illustrating a method of controlling movement of a block device for a smart factory according to an embodiment of the present invention.
  • a block device for a smart factory 100 connects an interface between a removable block 200 and a base block 120 (S110).
  • the smart factory block device 100 receives a movement path from the manager terminal through the network (S120).
  • the smart factory block device 100 individually drives and controls the wheels 220 of the movable block 200 along the set movement path (S130).
  • the smart factory block device 100 may detect an obstacle in the movement path using the lidar sensor 250 while moving along the movement path (S140). In this case, the smart factory block device 100 may individually control the driving of the wheel 220 according to a detection signal received from the lidar sensor 250 to avoid obstacles and proceed.
  • FIG. 7 is a flowchart illustrating a method of controlling movement of a block device for a smart factory according to another embodiment of the present invention.
  • the smart factory block device 100 is module-coupled with other smart factory block devices 100-1 and 100-2 to establish a production line and a move request message through a network during operation. When is received, it waits until all of the currently ongoing work list is completed (S210).
  • the smart factory block device 100 is a docking unit 120a connected to the other smart factory block devices 100-1 and 100-2 to the base block 120 when the list of tasks currently in progress is completed. , 120b) and transmits a separation command to separate (S220).
  • the base block 120 separates the docking units 120a and 120b connected to the other smart factory block devices 100-1 and 100-2 according to the separation command received from the mobile block 200 (S230).
  • the smart factory block device 100 may set a movement path through a network (S240). ).
  • the smart factory block device 100 includes a wheel of the movable block 200 along a set movement path. It is possible to individually drive and control 220.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Factory Administration (AREA)

Abstract

[요약] 스마트 공장용 블록장치 및 그 이동 제어방법이 개시된다. 본 발명에 따른 스마트 공장용 블록장치는, 제품 생산을 위한 기구가 장착되는 기구부; 및 기구부에 의해 수행되는 공정을 제어하며, 공정 데이터를 수집하는 베이스블록;을 포함하며, 베이스블록은 하단부에 탈착이 가능하게 부착되는 이동형 블록을 포함하고, 이동형 블록은 네트워크를 통해 이동경로를 설정 받으며, 설정된 이동경로를 따라 이동하는 것을 특징으로 한다.

Description

스마트 공장용 블록장치 및 그 이동 제어방법
본 발명은 스마트 공장용 블록장치 및 그 이동 제어방법에 관한 것으로서, 보다 상세하게는 공정 라인 배치가 이루어지고 생산이 진행되는 중간에도 공정 토폴로지나 공정의 흐름을 유동적으로 변경할 수 있는, 스마트 공장용 블록장치 및 그 이동 제어방법에 관한 것이다.
오래 전부터 선진 자동차, 전자 제조업체를 비롯하여 의류, 식품 제조업체들은 고객의 니즈(Needs) 다변화에 대응하기 위해 유연생산을 확대하여 왔으며, 최근에는 대량생산과 고정설비로 대변되는 화학, 기계 등 전통 제조산업에서도 생존차원에서 유연생산의 도입을 검토하고 있다.
미래의 제조업은 기존의 고정, 일반화된 생산에서 벗어나 개인화된 제품 생산과 다양한 제품의 변형이 가능한 유연생산 기술 개발에 주력하고 있으며, 이와 같은 생산의 가변성을 극대화하기 위해 모듈화 개념의 스마트 공장 모델이 주목 받고 있다.
스마트 공장이란 설계, 개발, 제조, 유통, 물류 등 생산 과정에 디지털 자동화 솔루션이 결합된 정보통신기술(ICT: Information and Communications Technologies)을 적용하여 생산성, 품질, 고객만족도를 향상시키는 지능형 생산공장을 말한다.
스마트 공장 모델의 대표적인 예로 모듈화된 구조를 가지는 공정 장비 및 시스템이 있으며, 국내외 대표 연구기관에서는 레고 블록과 같이 모듈 단위의 조합이 가능하도록 표준 블록 장비를 개발하여, 블록을 조립하듯이 유연하고 가변적인 생산라인을 구축하여 시범 운용하고 있다.
그런데, 모듈화된 표준 장비로 구성된 유연 생산 라인이라 할지라도 일단 라인 배치가 이루어지고 생산이 진행되는 중간에는 공정 토폴로지(topology)나 공정의 흐름을 유동적으로 변경하기 어려운 문제점이 있다.
또한, 종래의 모듈화된 표준 장비는 모듈화된 여러 공정 라인간의 연계가 필요할 경우에 자동운반장치(AGV: Automated Guided Vehicle)나 사람이 투입되어야 하며 이로 인해 공정이 지연되고 많은 비용과 수고가 소요되는 문제점이 있다.
[선행기술문헌]
[특허문헌]
공개특허공보 제10-2019-0076544호 (공개일자: 2019.07.02.)
본 발명은 전술한 문제점을 해결하기 위하여 창안된 것으로서, 공정 라인 배치가 이루어지고 생산이 진행되는 중간에도 공정 토폴로지나 공정의 흐름을 유동적으로 변경할 수 있는, 스마트 공장용 블록장치 및 그 이동 제어방법을 제공하는 것을 목적으로 한다.
전술한 목적을 달성하기 위한 본 발명의 일 측면에 따른 스마트 공장용 블록장치는, 제품 생산을 위한 기구가 장착되는 기구부; 및 상기 기구부에 의해 수행되는 공정을 제어하며, 공정 데이터를 수집하는 베이스블록;을 포함하며, 상기 베이스블록은 하단부에 탈착이 가능하게 부착되는 이동형 블록을 포함하고, 상기 이동형 블록은 네트워크를 통해 이동경로를 설정 받으며, 설정된 상기 이동경로를 따라 이동하는 것을 특징으로 한다.
상기 이동형 블록은, 메인 프레임; 상기 메인 프레임에 장착되는 복수의 휠; 복수의 상기 휠을 구동하는 구동모터; 및 상기 메인 프레임에 장착되며, 네트워크를 통해 상기 이동경로를 수신하고, 수신되는 상기 이동경로에 따라 상기 구동모터의 구동을 제어하는 컨트롤러;를 포함할 수 있다.
또한, 상기 이동형 블록은, 상기 메인 프레임에 장착되며, 상기 이동경로를 따라 이동하는 도중의 장애물을 감지하는 라이다 센서(Lidar sensor);를 더 포함하고, 상기 라이다 센서에 의해 감지되는 장애물을 회피하여 이동할 수 있다.
또한, 상기 이동형 블록은, 상기 메인 프레임과 상기 베이스블록을 탈착이 가능하게 부착시키는 브라켓(bracket); 을 더 포함할 수 있다.
또한, 상기 이동형 블록은, 상기 메인 프레임과 상기 베이스블록의 사이에서 충격을 완충시키는 완충유닛;을 더 포함할 수 있다.
또한, 상기 이동형 블록은, 상기 베이스블록과 통신 및 전원을 연결하는 멀티커넥터; 및 각각의 구성요소에 전원을 공급하는 배터리 팩;을 더 포함할 수 있다.
전술한 목적을 달성하기 위한 본 발명의 다른 측면에 따른 스마트 공장용 블록장치는, 다른 스마트 공장용 블록장치와 모듈 단위로 결합하기 위한 도킹부가 마련된 베이스 블록; 및 네트워크를 통하여 이동요청 메시지가 수신되는 경우, 현재 진행중인 작업 리스트가 모두 완료될 때까지 대기하며, 현재 진행중인 상기 작업 리스트가 모두 완료되면 상기 베이스 블록에 분리명령을 전송하는 이동형 블록;을 포함하며, 상기 베이스 블록은 상기 분리명령에 따라 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부를 분리하고, 상기 이동형 블록은 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부가 분리된 후에, 설정된 이동경로를 따라 이동하는 것을 특징으로 한다.
여기서, 상기 이동형 블록은 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부가 분리된 후에, 네트워크를 통하여 상기 이동경로를 설정 받는다.
전술한 목적을 달성하기 위한 본 발명의 일 측면에 따른 스마트 공장용 블록장치의 이동 제어방법은, 탈착이 가능한 이동형 블록과 인터페이스를 연결하는 단계; 네트워크를 통해 이동경로를 설정 받는 단계; 및 설정된 상기 이동경로를 따라 상기 이동형 블록의 휠의 구동을 제어하는 단계;를 포함하는 것을 특징으로 한다.
전술한 스마트 공장용 블록장치의 이동 제어방법은, 라이다 센서를 이용하여 상기 이동경로 중의 장애물을 감지하는 단계;를 더 포함하며, 상기 휠의 구동을 제어하는 단계는 감지되는 상기 장애물을 회피하도록 상기 휠의 구동을 제어할 수도 있다.
전술한 목적을 달성하기 위한 본 발명의 다른 측면에 따른 스마트 공장용 블록장치의 이동 제어방법은, 다른 스마트 공장용 블록장치와 모듈 단위로 결합된 스마트 공장용 블록장치의 이동 제어방법에 있어서, 네트워크를 통하여 이동요청 메시지가 수신되는 경우, 현재 진행중인 작업 리스트가 모두 완료될 때까지 대기하는 단계; 현재 진행중인 상기 작업 리스트가 모두 완료되면 베이스 블록에 상기 다른 스마트 공장용 블록장치와 연결된 도킹부를 분리하도록 분리명령을 전송하는 단계; 상기 베이스 블록이 상기 분리명령에 따라 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부를 분리하는 단계; 및 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부가 분리된 후에, 설정된 이동경로를 따라 휠을 구동 제어하는 단계;를 포함하는 것을 특징으로 한다.
전술한 스마트 공장용 블록장치의 이동 제어방법은, 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부가 분리된 후에, 네트워크를 통하여 상기 이동경로를 설정 받는 단계;를 더 포함할 수도 있다.
본 발명에 따르면, 제품 생산에 필요한 생산 모듈을 고객의 니즈에 맞추어 유동적으로 이동이 가능하도록 하며, 공정 라인 배치가 이루어지고 생산이 진행되는 중간에도 공정 토폴로지나 공정의 흐름을 유동적으로 변경할 수 있도록 함으로써 가변화된 맞춤형 생산이 가능하게 된다.
도 1은 본 발명의 일 실시예에 따른 스마트 공장용 블록장치의 예를 나타낸 도면이다.
도 2는 도 1의 스마트 공장용 블록장치를 모듈 조합하여 스마트 공장의 생산 라인을 구축한 예를 나타낸 도면이다.
도 3은 본 발명의 다른 실시예에 따른 스마트 공장용 블록장치의 예를 개략적으로 도시한 도면이다.
도 4는 도 3에 나타낸 이동형 블록의 예를 개략적으로 도시한 도면이다.
도 5는 도 3에 나타낸 이동형 블록의 휠, 구동모터, 완충유닛 및 브라켓을 설명하기 위해 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 스마트 공장용 블록장치의 이동 제어방법을 나타낸 흐름도이다.
도 7은 본 발명의 다른 실시예에 따른 스마트 공장용 블록장치의 이동 제어방법을 나타낸 흐름도이다.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 설명한다. 각 도면의 구성요소들에 참조부호를 기재함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표시한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결, 결합 또는 접속될 수 있지만, 그 구성 요소와 그 다른 구성요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 스마트 공장용 블록장치의 예를 나타낸 도면이다.
도 1을 참조하면, 스마트 공장용 블록장치(100)는 상부단인 기구부(110)와 하부단인 베이스 블록(base block)(120)을 포함한다.
기구부(110)는 제품 생산을 위한 다양한 공정의 기구들이 장착된다. 이때, 기구부(110)는 유니버셜 테이블(111), 디스플레이 패널(112), 및 컨베이어 벨트(113)를 포함할 수 있다.
유니버셜 테이블(111)은 다양한 기구들 예를 들어, 로봇, 부품 조립용 유닛(unit), 검사용 장비뿐만 아니라 기계, 가공, 전자, 사출성형, 제약, 화장품 등의 다양한 업종의 제품 생산에 필요한 기구가 맞춤형으로 장착될 수 있다. 이를 위해, 유니버셜 테이블(111)은 다양한 기구가 용이하게 장착, 교체, 제거될 수 있도록 테이핑 홀(taping hole)이 구비된다. 또한, 디스플레이 패널(112)은 공정 및 작동 상태를 디스플레이하며, 컨베이어 벨트(113)는 제품을 이송한다.
베이스 블록(120)은 공정 제어 및 공정 데이터의 수집을 담당하며, 이를 위한 PLC(Power Line Communication)(121), 다양한 전자회로 패널(122), 베이스 블록(120) 내의 전자회로 패널들(122) 사이의 전기적 연결이나 다른 베이스 블록 내의 전자회포 패널과의 전기적 연결을 위한 유니버셜 커넥터(123)를 포함한다. 이때, 베이스 블록(120)은 각종 소켓, 커넥터, 와이어링의 규격을 표준 기반으로 일원화함으로써, 다른 스마트 공장용 블록장치와 인터페이스 하여 용이하게 연동할 수 있도록 구현된다.
도 2는 도 1의 스마트 공장용 블록장치를 모듈 조합하여 스마트 공장의 생산 라인을 구축한 예를 나타낸 도면이다.
도 2에 도시한 바와 같이, 스마트 공장용 블록장치(100)는 서로 다른 스마트 공장용 블록장치들(100-1, 100-2)과 블록을 조립하듯이 결합될 수 있으며, 이와 같이 복수의 스마트 공장용 블록장치들을 모듈 조합함으로써 유연 생산을 위한 스마트 공장의 생산 라인을 구축할 수 있다. 즉, 각각의 스마트 공장용 블록장치(100, 100-1, 100-2)는 서로 결합 및 분리가 가능하도록 모듈로 구현됨으로써, 고객의 니즈에 따라 제품 생산에 필요한 모듈을 그때 그때 조립식으로 결합하고, 유동적으로 추가, 교체, 제거가 가능하도록 하여, 유연 생산을 위한 맞춤형 생산 라인을 구축할 수 있다. 이때, 각각의 스마트 공장용 블록장치(100, 100-1, 100-2)는 상호간의 결합 및 분리가 용이하도록, 일 측면에 도킹 핀(120a)을 구비하며, 다른 측면에 도킹 핀(120a)에 대응하는 도킹 홀(120b)이 마련된다. 이를 통해, 스마트 공장용 블록장치(100)는 다른 스마트 공장용 블록장치와 결합된 경우에 서로 흔들림이 없이 안정적으로 스마트 공장의 생산라인을 구축할 수 있다.
도 3은 본 발명의 다른 실시예에 따른 스마트 공장용 블록장치의 예를 개략적으로 도시한 도면이다. 본 발명의 실시예에 따른 스마트 공장용 블록장치는 도 1에 나타낸 스마트 공장용 블록장치에 대하여 베이스 블록(120)이 이동형 블록(200)을 포함하는 점에서 상이하며 그 외의 다른 구성요소 및 각각의 기능은 동일 또는 유사하므로, 동일 또는 유사한 구성요소에 대해서는 동일한 참조번호를 부여하였으며 그 상세한 설명을 생략한다.
베이스 블록(120)은 도 1에 나타낸 스마트 공장용 블록장치에 대하여 이동형 블록(200)을 더 포함할 수 있다. 이때, 이동형 블록(200)은 베이스 블록(120)의 하단부에 탈착이 가능하게 부착된다. 이때, 이동형 블록(200)은 네트워크를 통해 이동경로를 설정 받으며, 설정된 이동경로를 따라 스마트 공장용 블록장치(100)를 이동시킨다.
도 4는 도 3에 나타낸 이동형 블록의 예를 개략적으로 도시한 도면이며, 도 5는 도 3에 나타낸 이동형 블록의 휠, 구동모터, 완충유닛 및 브라켓을 설명하기 위해 도시한 도면이다.
도 4 및 도 5를 참조하면, 이동형 블록(200)은 메인 프레임(210), 복수의 휠(220), 구동모터(230), 컨트롤러(240), 라이다 센서(Lidar sensor)(250), 브라켓(260), 완충유닛(270), 멀티커넥터(280) 및 배터리 팩(290)을 포함한다.
메인 프레임(210)은 그 상단에 부착되는 베이스 블록(120)을 지지하며, 그 하단에 복수의 휠(220)을 장착한다. 또한, 메인 프레임(210)은 구동모터(230), 컨트롤러(240), 라이다 센서(Lidar sensor)(250), 브라켓(260), 완충유닛(270), 멀티커넥터(280), 배터리 팩(290) 등의 다양한 구성요소를 장착하여 고정시킨다.
복수의 휠(220)은 메인 프레임(210)의 하단에 장착된다. 이때, 각각의 휠(220)은 메카넘 휠(Mecanum Wheel)로 구현된다. 또한, 각각의 휠(220)의 메카넘 휠 방향은 45도의 경사를 이루며, 앞 측의 좌우 휠이 서로 반대방향이고, 뒤 측의 휠의 좌우가 서로 반대방향이면서, 좌측 또는 우측의 앞 측 휠과 뒤 측의 휠이 서로 반대방향으로 구현되는 것이 바람직하다. 이 경우, 서로 대각 방향에 있는 앞 측의 휠과 뒤 측의 휠은 메카넘 휠 방향이 서로 동일하다. 이를 통해, 휠(220) 자체의 방향을 회전하지 않아도 각각의 휠(220)의 구동을 개별적으로 제어함으로써 스마트 공장용 블록장치(100)의 방향을 다양한 방향으로 이동 제어할 수 있다. 또한, 휠(220)의 방향 전환을 위한 별도의 기계적 구성이 필요하지 않기 때문에 이동형 블록(200)의 방향전환을 위한 구조를 간단하게 구현할 수 있게 된다.
구동모터(230)는 각각의 휠(220)에 대응하여 설치되며, 대응하는 휠(220)을 독립적으로 구동한다. 이때, 각각의 구동모터(230)는 정 방향의 회전 또는 역 방향의 회전이 가능할 뿐만 아니라 대응하는 회전속도의 제어가 가능하다.
컨트롤러(240)는 메인 프레임(210)에 장착되며, 네트워크를 통해 이동경로를 수신하고, 수신되는 이동경로에 따라 구동모터(230)의 구동을 제어한다. 즉, 컨트롤러(240)는 네트워크를 통해 관리자 단말기(도시하지 않음)와 통신이 가능하며, 관리자단말기로부터 관리자에 의해 설정된 이동경로를 수신할 수 있다. 또한, 컨트롤러(240)는 설정된 이동경로에 기반하여 각각의 구동모터(230)를 개별적으로 제어함으로써, 스마트 공장용 블록장치(100)를 전후 방향의 진행뿐만 아니라 다양한 방향으로의 방향전환을 시킬 수 있다.
라이다 센서(250)는 메인 프레임(210)에 장착되며, 이동경로를 따라 이동하는 도중의 경로상에 위치하는 장애물을 감지한다. 이때, 라이다 센서(250)는 설정된 범위 내에 장애물이 있는 것으로 감지되면, 장애물과의 거리 및 방향이 포함된 감지신호를 컨트롤러(240)에 전송한다. 이 경우, 컨트롤러(240)는 라이다 센서(250)로부터 수신되는 감지신호에 기반하여 진행경로 및 방향을 변경함으로써 장애물을 회피하여 이동할 수 있게 된다.
브라켓(260)은 메인 프레임(210)과 베이스블록(120)을 탈착이 가능하게 부착시킨다. 이때, 브라켓(260)과 메인 프레임(210)의 사이에는 스프링과 같은 충격을 완충시키기 위한 완충유닛(270)이 설치되는 것이 바람직하다. 이로써, 완충유닛(270)은 스마트 공장용 블록장치(100)의 이동 중에 울퉁불퉁한 경로를 지나더라도 바닥으로부터 가해지는 충격이 베이스블록(120)으로 전달되는 것을 최소화시킬 수 있게 된다.
멀티커넥터(280)는 베이스블록(120)과 통신 및 전원을 인터페이스 한다. 또한, 멀티커넥터(280)는 메인 프레임(210)에 장착되는 다양한 구성요소들 예를 들면, 구동모터(230), 컨트롤러(240) 등을 인터페이스 할 수도 있다. 이를 통해, 베이스블록(120)과 이동형 블록(200)은 상호간의 데이터 송수신이 가능하게 된다.
배터리 팩(290)은 각각의 구성요소에 전원을 공급한다. 이때, 배터리 팩(290)은 메인 프레임(210)에 장착된 각각의 구성요소뿐만 아니라 멀티커넥터(280)를 통해 연결된 베이스블록(120)의 각각의 구성요소에도 전원을 공급할 수 있다.
한편, 컨트롤러(240)는 현재 작업을 진행하고 있는 도중에 네트워크를 통해 이동요청 메시지가 수신되면, 현재 진행중인 작업 리스트가 모두 완료될 때까지 대기한 후, 진행중인 작업 리스트가 모두 완료된 후에 이동경로를 따라 이동을 시작한다.
특히, 컨트롤러(240)는 스마트 공장용 블록장치(100)가 도 2에서 설명한 바와 같이, 적어도 하나의 다른 스마트 공장용 블록장치(100-1, 100-2)와 결합되어 생산라인을 구축한 경우에 네트워크를 통해 이동요청 메시지가 수신되면, 현재 진행중인 작업 리스트가 모두 완료될 때까지 대기하며, 현재 진행중인 작업 리스트가 모두 완료된 후에 결합된 다른 스마트 공장용 블록장치(100-1, 100-2)와 도킹부(120a, 120b)를 분리하기 위한 분리명령을 베이스블록(120)에 전송한다. 이 경우, 베이스블록(120)은 컨트롤러(240)로부터 수신한 분리명령에 따라 다른 스마트 공장용 블록장치(100-1, 100-2)와 결합된 도킹부(120a, 120b)를 분리하며, 컨트롤러(240)는 베이스블록(120)이 다른 스마트 공장용 블록장치(100-1, 100-2)와 분리되었음을 확인한 후에 이동경로를 따라 이동을 시작한다. 이때, 컨트롤러(240)는 베이스블록(120)이 다른 스마트 공장용 블록장치(100-1, 100-2)와 분리되었음을 확인한 후에 네트워크를 통해 이동경로를 수신하도록 구현될 수도 있다.
도 6은 본 발명의 일 실시예에 따른 스마트 공장용 블록장치의 이동 제어방법을 나타낸 흐름도이다.
도 6을 참조하면, 스마트 공장용 블록장치(100)는 탈착이 가능한 이동형 블록(200)과 베이스 블록(120)의 인터페이스를 연결한다(S110).
베이스 블록(120)과 이동형 블록(200)의 인터페이스가 연결되면, 스마트 공장용 블록장치(100)는 네트워크를 통해 관리자단말기로부터 이동경로를 설정 받는다(S120).
스마트 공장용 블록장치(100)는 네트워크를 통해 이동경로가 설정되면, 설정된 이동경로를 따라 이동형 블록(200)의 휠(220)을 각각 개별적으로 구동 제어한다(S130).
스마트 공장용 블록장치(100)는 이동경로를 따라 이동하는 도중에 라이다 센서(250)를 이용하여 이동경로 중의 장애물을 감지할 수 있다(S140). 이 경우, 스마트 공장용 블록장치(100)는 라이다 센서(250)로부터 수신되는 감지신호에 따라 휠(220)의 구동을 개별적으로 제어함으로써 장애물을 회피하여 진행할 수 있다.
도 7은 본 발명의 다른 실시예에 따른 스마트 공장용 블록장치의 이동 제어방법을 나타낸 흐름도이다.
도 7을 참조하면, 스마트 공장용 블록장치(100)는 다른 스마트 공장용 블록장치(100-1, 100-2)와 모듈 결합되어 생산라인을 구축하여 작업을 진행하는 도중에 네트워크를 통하여 이동요청 메시지가 수신되는 경우, 현재 진행중인 작업 리스트가 모두 완료될 때까지 대기한다(S210).
스마트 공장용 블록장치(100)는 현재 진행중인 작업 리스트가 모두 완료되면 이동형 블록(200)이 베이스 블록(120)에 다른 스마트 공장용 블록장치(100-1, 100-2)와 연결된 도킹부(120a, 120b)를 분리하도록 분리명령을 전송한다(S220).
베이스 블록(120)은 이동형 블록(200)으로부터 수신되는 분리명령에 따라 다른 스마트 공장용 블록장치(100-1, 100-2)와 연결된 도킹부(120a, 120b)를 분리한다(S230).
스마트 공장용 블록장치(100)는 다른 스마트 공장용 블록장치(100-1, 100-2)와 연결된 도킹부(120a, 120b)가 분리된 후에, 네트워크를 통하여 이동경로를 설정 받을 수 있다(S240).
또한, 스마트 공장용 블록장치(100)는 다른 스마트 공장용 블록장치(100-1,100-2)와 연결된 도킹부(120a, 120b)가 분리된 후에, 설정된 이동경로를 따라 이동형 블록(200)의 휠(220)을 개별적으로 구동 제어할 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 보호 범위는 다음의 특허청구범위뿐만 아니라 이와 균등한 것들에 의해 정해져야 한다.

Claims (12)

  1. 스마트 공장용 블록장치에 있어서,
    제품 생산을 위한 기구가 장착되는 기구부; 및
    상기 기구부에 의해 수행되는 공정을 제어하며, 공정 데이터를 수집하는 베이스블록;을 포함하며,
    상기 베이스블록은 하단부에 탈착이 가능하게 부착되는 이동형 블록을 포함하고,
    상기 이동형 블록은 네트워크를 통해 이동경로를 설정 받으며, 설정된 상기 이동경로를 따라 이동하는 것을 특징으로 하는 스마트 공장용 블록장치.
  2. 제1항에 있어서,
    상기 이동형 블록은,
    메인 프레임;
    상기 메인 프레임에 장착되는 복수의 휠;
    복수의 상기 휠을 구동하는 구동모터; 및
    상기 메인 프레임에 장착되며, 네트워크를 통해 상기 이동경로를 수신하고, 수신되는 상기 이동경로에 따라 상기 구동모터의 구동을 제어하는 컨트롤러;를 포함하는 것을 특징으로 하는 스마트 공장용 블록장치.
  3. 제2항에 있어서,
    상기 이동형 블록은,
    상기 메인 프레임에 장착되며, 상기 이동경로를 따라 이동하는 도중의 장애물을 감지하는 라이다 센서(Lidar sensor);를 더 포함하고,
    상기 라이다 센서에 의해 감지되는 장애물을 회피하여 이동하는 것을 특징으로 하는 스마트 공장용 블록장치.
  4. 제2항에 있어서,
    상기 이동형 블록은,
    상기 메인 프레임과 상기 베이스블록을 탈착이 가능하게 부착시키는 브라켓(bracket); 을 더 포함하는 것을 특징으로 하는 스마트 공장용 블록장치.
  5. 제2항에 있어서,
    상기 이동형 블록은,
    상기 메인 프레임과 상기 베이스블록의 사이에서 충격을 완충시키는 완충유닛;을 더 포함하는 것을 특징으로 하는 스마트 공장용 블록장치.
  6. 제2항에 있어서,
    상기 이동형 블록은,
    상기 베이스블록과 통신 및 전원을 연결하는 멀티커넥터; 및
    각각의 구성요소에 전원을 공급하는 배터리 팩;을 더 포함하는 것을 특징으로 하는 스마트 공장용 블록장치.
  7. 다른 스마트 공장용 블록장치와 모듈 단위로 결합하기 위한 도킹부가 마련된 베이스 블록; 및
    네트워크를 통하여 이동요청 메시지가 수신되는 경우, 현재 진행중인 작업 리스트가 모두 완료될 때까지 대기하며, 현재 진행중인 상기 작업 리스트가 모두 완료되면 상기 베이스 블록에 분리명령을 전송하는 이동형 블록;을 포함하며,
    상기 베이스 블록은 상기 분리명령에 따라 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부를 분리하고,
    상기 이동형 블록은 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부가 분리된 후에, 설정된 이동경로를 따라 이동하는 것을 특징으로 하는 스마트 공장용 블록장치.
  8. 제7항에 있어서,
    상기 이동형 블록은 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부가 분리된 후에, 네트워크를 통하여 상기 이동경로를 설정받는 것을 특징으로 하는 스마트 공장용 블록장치.
  9. 스마트 공장용 블록장치의 이동 제어방법에 있어서,
    탈착이 가능한 이동형 블록과 인터페이스를 연결하는 단계;
    네트워크를 통해 이동경로를 설정 받는 단계; 및
    설정된 상기 이동경로를 따라 상기 이동형 블록의 휠의 구동을 제어하는 단계;를 포함하는 것을 특징으로 하는 스마트 공장용 블록장치의 이동 제어방법.
  10. 제9항에 있어서,
    라이다 센서를 이용하여 상기 이동경로 중의 장애물을 감지하는 단계;를 더 포함하며,
    상기 휠의 구동을 제어하는 단계는 감지되는 상기 장애물을 회피하도록 상기 휠의 구동을 제어하는 것을 특징으로 하는 스마트 공장용 블록장치의 이동 제어방법.
  11. 다른 스마트 공장용 블록장치와 모듈 단위로 결합된 스마트 공장용 블록장치의 이동 제어방법에 있어서,
    네트워크를 통하여 이동요청 메시지가 수신되는 경우, 현재 진행중인 작업 리스트가 모두 완료될 때까지 대기하는 단계;
    현재 진행중인 상기 작업 리스트가 모두 완료되면 베이스 블록에 상기 다른 스마트 공장용 블록장치와 연결된 도킹부를 분리하도록 분리명령을 전송하는 단계;
    상기 베이스 블록이 상기 분리명령에 따라 상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부를 분리하는 단계; 및
    상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부가 분리된 후에, 설정된 이동경로를 따라 휠을 구동 제어하는 단계;
    를 포함하는 것을 특징으로 하는 스마트 공장용 블록장치의 이동 제어방법.
  12. 제11항에 있어서,
    상기 다른 스마트 공장용 블록장치와 연결된 상기 도킹부가 분리된 후에, 네트워크를 통하여 상기 이동경로를 설정 받는 단계;
    를 더 포함하는 것을 특징으로 하는 스마트 공장용 블록장치의 이동 제어방법.
PCT/KR2019/015444 2019-11-01 2019-11-13 스마트 공장용 블록장치 및 그 이동 제어방법 WO2021085715A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190138837A KR102378633B1 (ko) 2019-11-01 2019-11-01 스마트 공장용 블록장치 및 그 이동 제어방법
KR10-2019-0138837 2019-11-01

Publications (1)

Publication Number Publication Date
WO2021085715A1 true WO2021085715A1 (ko) 2021-05-06

Family

ID=75716385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015444 WO2021085715A1 (ko) 2019-11-01 2019-11-13 스마트 공장용 블록장치 및 그 이동 제어방법

Country Status (2)

Country Link
KR (1) KR102378633B1 (ko)
WO (1) WO2021085715A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102348545B1 (ko) 2021-10-27 2022-01-10 이대성 스마트 팩토리의 이종 프로토콜 게이트웨이 시스템
KR102523110B1 (ko) * 2022-05-03 2023-04-19 울랄라랩 주식회사 모듈화된 워크스테이션 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101687248B1 (ko) * 2015-08-31 2016-12-19 대우조선해양 주식회사 블록탑재 위치 측정장치 및 이를 이용한 블록 탑재 자동화 시스템
KR101937539B1 (ko) * 2016-12-15 2019-01-11 전자부품연구원 스마트 공장을 위한 모듈 조합형 표준 블록 장치
KR101979846B1 (ko) * 2017-08-17 2019-05-20 유라하 지능형 라인 트레이싱 이동 시스템 및 워킹로봇
JP2019109879A (ja) * 2017-12-18 2019-07-04 ザ・ボーイング・カンパニーThe Boeing Company 自律車両のためのマルチセンサ安全経路システム
KR20190118758A (ko) * 2018-04-11 2019-10-21 전자부품연구원 스마트 공장을 위한 모듈 조합형 생산 설비 시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160303A (en) * 1981-03-27 1982-10-02 Mitsubishi Electric Corp Unmanned carrier
KR20190076544A (ko) 2017-12-22 2019-07-02 (주)에이시에스 스마트 공장의 생산 혁신을 지원하는 시스템
JP2019133404A (ja) * 2018-01-31 2019-08-08 トヨタ自動車株式会社 無人搬送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101687248B1 (ko) * 2015-08-31 2016-12-19 대우조선해양 주식회사 블록탑재 위치 측정장치 및 이를 이용한 블록 탑재 자동화 시스템
KR101937539B1 (ko) * 2016-12-15 2019-01-11 전자부품연구원 스마트 공장을 위한 모듈 조합형 표준 블록 장치
KR101979846B1 (ko) * 2017-08-17 2019-05-20 유라하 지능형 라인 트레이싱 이동 시스템 및 워킹로봇
JP2019109879A (ja) * 2017-12-18 2019-07-04 ザ・ボーイング・カンパニーThe Boeing Company 自律車両のためのマルチセンサ安全経路システム
KR20190118758A (ko) * 2018-04-11 2019-10-21 전자부품연구원 스마트 공장을 위한 모듈 조합형 생산 설비 시스템

Also Published As

Publication number Publication date
KR20210053046A (ko) 2021-05-11
KR102378633B1 (ko) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2021085715A1 (ko) 스마트 공장용 블록장치 및 그 이동 제어방법
US7412548B2 (en) Intelligent self-determining I/O device
US5493194A (en) Control signal and power bus connector arrangement for a multi-axis motor control
US8169302B2 (en) Sight-line non contact coupled wireless technology
US20060161302A1 (en) Robotic tool coupler rapid-connect bus
WO2015167030A1 (ko) 탈착식 산업용 네트워크 모듈
WO2016088918A1 (ko) 서비스 로봇
CN105263670B (zh) 自动处理装置、自动处理方法及托盘
US11452203B2 (en) Wiring assembly board
CN107005324A (zh) 多路复用通信系统及作业机
CN106760823A (zh) 一种停车设备的1+n个单片机构成的控制系统
KR101937539B1 (ko) 스마트 공장을 위한 모듈 조합형 표준 블록 장치
WO2012102442A1 (ko) Pc 기반의 모듈형 휴머노이드 로봇 플랫폼
US20050094343A1 (en) Decentralized control of motors
KR102351830B1 (ko) 스마트 공장을 위한 모듈 조합형 생산 설비 시스템
WO2011087317A2 (ko) 병렬 옵셋 인쇄 장치
WO2013115551A1 (en) Centralized and distributed type controller apparatus
WO2022137218A1 (ko) 반도체 후공정용 표준협업 이동체 장치
CN207390302U (zh) 生产线的自由式模块化积放单元及模块化拼装传送系统
WO2022092344A1 (ko) 모듈형 센서 교체형 다족보행 로봇
KR100348226B1 (ko) 차량 네트웍 시스템 및 그 수정방법
CN219255579U (zh) 用于机械臂的驱动板、驱动模块、驱动控制电路及机械臂
JPH02208704A (ja) プログラマブルコントローラのi/oバス拡張装置
JP2611773B2 (ja) 搬送設備
JP7134893B2 (ja) 基板処理システム及び基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950423

Country of ref document: EP

Kind code of ref document: A1