WO2021085423A1 - 含フッ素共重合体、含フッ素共重合体組成物および架橋ゴム物品 - Google Patents

含フッ素共重合体、含フッ素共重合体組成物および架橋ゴム物品 Download PDF

Info

Publication number
WO2021085423A1
WO2021085423A1 PCT/JP2020/040280 JP2020040280W WO2021085423A1 WO 2021085423 A1 WO2021085423 A1 WO 2021085423A1 JP 2020040280 W JP2020040280 W JP 2020040280W WO 2021085423 A1 WO2021085423 A1 WO 2021085423A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
containing copolymer
group
monomer
atom
Prior art date
Application number
PCT/JP2020/040280
Other languages
English (en)
French (fr)
Inventor
裕紀子 服部
剛 河合
武志 山田
邦昭 赤津
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021553628A priority Critical patent/JPWO2021085423A1/ja
Priority to EP20882464.9A priority patent/EP4053176A4/en
Priority to KR1020227009773A priority patent/KR20220094190A/ko
Priority to CN202080076473.3A priority patent/CN114630845A/zh
Publication of WO2021085423A1 publication Critical patent/WO2021085423A1/ja
Priority to US17/658,271 priority patent/US20220227908A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • C08K5/57Organo-tin compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages

Definitions

  • the present invention relates to a fluorine-containing copolymer, a fluorine-containing copolymer composition, and a crosslinked rubber article.
  • Cross-linked rubber articles obtained by cross-linking a fluorine-containing copolymer are excellent in heat resistance, chemical resistance, oil resistance, weather resistance, etc., and are therefore used in various environments.
  • Patent Document 1 describes a unit based on tetrafluoroethylene, a unit based on perfluoro (alkyl vinyl ether), and a nitrile group (cyano group). ) Is disclosed as a fluorine-containing copolymer having a unit based on the monomer.
  • the crosslinked rubber article is manufactured, for example, by supplying a fluorine-containing copolymer to a mold and heat-molding it.
  • a fluorine-containing copolymer to a mold and heat-molding it.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a fluorine-containing copolymer capable of producing a crosslinked rubber article having excellent releasability, a fluorine-containing copolymer composition, and a crosslinked rubber article using them. And.
  • a unit having a unit based on tetrafluoroethylene, a unit based on perfluoro (alkyl vinyl ether), a fluorine atom, and two or more polymerizable unsaturated bonds We have found that a crosslinked rubber article having excellent releasability can be obtained by using a fluorine-containing copolymer having a body-based unit and a monomer-based unit having a nitrile group and a fluorine atom. It led to the invention.
  • CF 2 CF- OR f1 (1)
  • R f1 represents a perfluoroalkyl group having 1 to 10 carbon atoms.
  • a perfluorohydrocarbon group having a valence of 1 to 10 carbon atoms or a group having an ethereal oxygen atom at the terminal of the perfluorohydrocarbon group or between carbon-carbon bonds is shown.
  • the plurality of R 21 , the plurality of R 22 and the plurality of R 23 may be the same as or different from each other.
  • the monomer represented by the formula (2) is a monomer represented by the following formula (3) or a monomer represented by the following formula (4). Fluorine-containing copolymer according to the above.
  • R 31 represents a divalent perfluorohydrocarbon group having 1 to 10 carbon atoms or a group having an ethereal oxygen atom at the terminal of the perfluorohydrocarbon group or between carbon-carbon bonds.
  • (CH 2 CH) 2 R 41 (4)
  • R 41 represents a divalent perfluorohydrocarbon group having 1 to 10 carbon atoms or a group having an ethereal oxygen atom at the terminal of the perfluorohydrocarbon group or between carbon-carbon bonds.
  • the content of the unit based on tetrafluoroethylene is 59 to 80 mol%, and the content of the unit based on perfluoro (alkyl vinyl ether) is 19 to 19 to all the units of the fluorine-containing copolymer.
  • the content of the unit based on a monomer having 40 mol% and a fluorine atom and two or more polymerizable unsaturated bonds is 0.01 to 1.0 mol%, and the nitrile group and the fluorine atom
  • the fluorine-containing copolymer according to any one of [1] to [7], wherein the content of the unit based on the monomer having is 0.05 to 5 mol%.
  • a fluorine-containing copolymer capable of producing a crosslinked rubber article having excellent releasability, a fluorine-containing copolymer composition, and a crosslinked rubber article using them.
  • the meanings of the terms in the present invention are as follows.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-” as the lower limit value and the upper limit value.
  • the “unit” is a general term for an atomic group derived from one molecule of the monomer, which is directly formed by polymerizing a monomer, and an atomic group obtained by chemically converting a part of the atomic group. is there.
  • the "unit based on a monomer” is also simply referred to as a “unit” below.
  • “Rubber” means rubber exhibiting properties as defined by JIS K 6200 (2008) and is distinguished from “resin”.
  • the fluorine-containing copolymer of the present invention has a unit based on tetrafluoroethylene (hereinafter, also referred to as “TFE”), a unit based on perfluoro (alkyl vinyl ether) (hereinafter, also referred to as “PAVE”), and fluorine.
  • TFE tetrafluoroethylene
  • PAVE perfluoro (alkyl vinyl ether)
  • DVE polymerizable unsaturated bond
  • R CN monomer having a nitrile group and a fluorine atom
  • the crosslinked rubber article obtained by using the fluorine-containing copolymer of the present invention is excellent in mold releasability from the mold. The details of this reason have not been clarified, but it is presumed to be due to the following reasons.
  • Fluorine-containing copolymer of the present invention has a DVE unit and R CN units. As a result, the crosslinked rubber article becomes rigid, and when the crosslinked rubber article is detached from the mold, it is considered that the crosslinked rubber becomes difficult to follow the mold and is easily detached.
  • fluorine-containing copolymer of the present invention as compared with the fluorine-containing copolymer comprising a DVE unit or R CN unit alone is estimated that crosslinkable groups are uniformly distributed throughout the polymer Fluorine. Therefore, it is considered that the releasability is improved by improving the hardness in the micro part of the crosslinked rubber article so that no difference can be found from the physical property values such as general rubber hardness.
  • the PAVE unit is a unit based on perfluoro (alkyl vinyl ether).
  • PAVE is preferably a monomer represented by the following formula (1) from the viewpoint of excellent polymerization reactivity and rubber physical characteristics.
  • CF 2 CF- OR f1 (1)
  • R f1 represents a perfluoroalkyl group having 1 to 10 carbon atoms.
  • the number of carbon atoms of R f1 is preferably 1 to 8, more preferably 1 to 6, further preferably 1 to 5, and particularly preferably 1 to 3 from the viewpoint of more excellent polymerization reactivity.
  • the perfluoroalkyl group may be linear or branched.
  • PAVE perfluoro (methyl vinyl ether) (hereinafter, also referred to as “PMVE”), perfluoro (ethyl vinyl ether) (hereinafter, also referred to as “PEVE”), and perfluoro (propyl vinyl ether) (hereinafter, also referred to as “PVE”).
  • PMVE perfluoro (methyl vinyl ether)
  • PEVE perfluoro (ethyl vinyl ether)
  • PVE perfluoro (propyl vinyl ether)
  • PPVE perfluoro (propyl vinyl ether)
  • the DVE unit is a unit based on a monomer having a fluorine atom and two or more polymerizable unsaturated bonds.
  • the number of polymerizable unsaturated bonds in DVE is preferably 2 to 6 which is more excellent in polymerization reactivity, more preferably 2 or 3, and particularly preferably 2.
  • DVE is preferably a monomer represented by the following formula (2) from the viewpoint of better releasability of the crosslinked rubber article.
  • (CR 21 R 22 CR 23 ) a2 R 24 (2)
  • R 21 , R 22 and R 23 independently represent a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group
  • a2 represents an integer of 2 to 6
  • R 24 represents a2.
  • a perfluorohydrocarbon group having a valence of 1 to 10 carbon atoms or a group having an ethereal oxygen atom at the terminal of the perfluorohydrocarbon group or between carbon-carbon bonds is shown.
  • the plurality of R 21 , the plurality of R 22 and the plurality of R 23 may be the same or different from each other, and it is particularly preferable that they are the same as each other. 2 or 3 is preferable for a2, and 2 is particularly preferable.
  • R 21 , R 22 , and R 23 are fluorine atoms or hydrogen atoms, and all of R 21 , R 22 , and R 23 are fluorine atoms or all of them. Is more preferably a hydrogen atom, and all of R 21 , R 22 , and R 23 are particularly preferably fluorine atoms from the viewpoint that the releasability of the crosslinked rubber article is more excellent.
  • R 24 may be linear, branched or cyclic, preferably linear or branched, and particularly preferably linear.
  • the carbon number of R 24 is preferably 2 to 8, more preferably 3 to 7, further preferably 3 to 6, and particularly preferably 3 to 5.
  • R 24 may or may not have an ethereal oxygen atom, but it preferably has an ethereal oxygen atom from the viewpoint of being more excellent in cross-linking reactivity and rubber physical characteristics.
  • the number of etheric oxygen atoms in R 24 is preferably 1 to 6, more preferably 1 to 3, and particularly preferably 1 or 2.
  • Etheric oxygen atom in R 24 is preferably present at the terminal of R 24.
  • R 31 represents a divalent perfluorohydrocarbon group having 1 to 10 carbon atoms or a group having an ethereal oxygen atom at the terminal of the perfluorohydrocarbon group or between carbon-carbon bonds.
  • CH 2 CH
  • R 41 represents a divalent perfluorohydrocarbon group having 1 to 10 carbon atoms or a group having an ethereal oxygen atom at the terminal of the perfluorohydrocarbon group or between carbon-carbon bonds.
  • the RCN unit is a unit based on a monomer having a nitrile group and a fluorine atom. Since the fluorine-containing copolymer has R CN units, the heat resistance of the crosslinked rubber article is excellent. From the viewpoint of polymerization reactivity, R CN preferably has a polymerizable unsaturated bond, and particularly preferably has one polymerizable unsaturated bond. Specific examples of the polymerizable unsaturated bond are as described above.
  • R CN is preferably a monomer represented by the following formula (5) from the viewpoint of being more excellent in releasability and heat resistance of the crosslinked rubber article.
  • CR 51 R 52 CR 53- R 54- CN (5)
  • R 51 , R 52 and R 53 each independently represent a hydrogen atom, a fluorine atom or a methyl group
  • R 54 is a divalent perfluorohydrocarbon group having 1 to 10 carbon atoms or the same. Indicates a group having an ethereal oxygen atom at the end of a perfluorohydrocarbon group or between carbon-carbon bonds.
  • R 51 , R 52 , and R 53 are fluorine atoms or hydrogen atoms, and all of R 51 , R 52 , and R 53 are fluorine atoms or all of them. Is more preferably a hydrogen atom, and all of R 51 , R 52 , and R 53 are particularly preferably fluorine atoms from the viewpoint that the crosslinked rubber article is more excellent in mold releasability and heat resistance.
  • R 54 may be linear, branched or cyclic, and is preferably linear or branched.
  • the carbon number of R 54 is preferably 2 to 8, more preferably 3 to 7, further preferably 3 to 6, and particularly preferably 3 to 5.
  • R 54 may or may not have an ethereal oxygen atom, but it preferably has an ethereal oxygen atom from the viewpoint of having more excellent rubber physical characteristics.
  • the number of etheric oxygen atoms in R 54 is preferably 1 to 3, and particularly preferably 1 or 2.
  • Fluorocopolymer may contain a unit based on a monomer other than the DVE and R CN.
  • TFE, PAVE a unit based on a monomer other than the DVE and R CN, may be collectively referred to as "other monomer”.
  • other monomers include a unit based on the monomer represented by the following formula (6) (hereinafter, also referred to as “formula (6) unit”) and vinylidene fluoride (hereinafter, “VdF”).
  • HFP hexafluoropropylene
  • CFE chlorotrifluoroethylene
  • ethylene units ethylene units, and, TFE, PAVE, DVE, R CN
  • Equation (6) is as follows.
  • CF 2 CF- OR f2 (6)
  • R f2 represents a perfluoroalkyl group containing 1 to 5 etheric oxygen atoms having 1 to 8 carbon atoms.
  • the carbon number of R f2 is preferably 1 to 6, and particularly preferably 1 to 5.
  • monomer represented by the formula (6) examples include perfluoro (3,6-dioxa-1-heptene), perfluoro (3,6-dioxa-1-octene), and perfluoro (5-). Methyl-3,6-dioxa-1-nonene).
  • the content of the TFE unit is preferably 59 to 80 mol%, more preferably 63 to 75 mol%, and 66 to 66 to all the units of the fluorine-containing copolymer from the viewpoint of more excellent heat resistance of the crosslinked rubber article. 72 mol% is particularly preferred.
  • the content of PAVE units is preferably 19 to 40 mol%, more preferably 24 to 36 mol%, and more preferably 27 to 33, based on all the units of the fluorine-containing copolymer, from the viewpoint of more excellent elasticity of the crosslinked rubber article. Mol% is particularly preferred.
  • the content of the DVE unit is preferably 0.01 to 1.0 mol%, preferably 0.03 to 0.%, based on all the units of the fluorine-containing copolymer, from the viewpoint of better releasability of the crosslinked rubber article. 6 mol% is more preferable, and 0.05 to 0.4 mol% is particularly preferable.
  • the content of R CN units is preferably 0.05 to 5 mol%, preferably 0.1 to 5 mol%, based on all the units of the fluorine-containing copolymer, from the viewpoint of better releasability and heat resistance of the crosslinked rubber article. 3 mol% is more preferable, and 0.2 to 1.5 mol% is particularly preferable.
  • the content of the other monomer units is 0 with respect to all the units of the fluorine-containing copolymer from the viewpoint of heat resistance of the crosslinked rubber article. It is preferably 0.01 to 20 mol%, more preferably 0.5 to 10 mol%, and particularly preferably 1 to 5 mol%. From the viewpoint of better releasability and heat resistance of the crosslinked rubber article, the content of TFE units is preferably 59 to 80 mol% with respect to all the units of the fluorine-containing copolymer, and the content of PAVE units is contained. The amount is 19 to 40 mol%, the content of DVE units is 0.01 to 1.0 mol%, and the content of RC N units is 0.05 to 5 mol%.
  • the molar ratio of the content of DVE unit is preferably 0.002 to 20, more preferably from 0.03 to 2, 0.1 to 1 and more It is preferable, and 0.35 to 0.59 is particularly preferable.
  • the molar ratio is within the above range, the releasability and heat resistance of the crosslinked rubber article can be compatible at a high level.
  • the DVE unit with respect to all the units in the fluorine-containing copolymer is calculated based on the amount of DVE used in the production of the fluorine-containing copolymer (the amount of DVE used).
  • the "amount of DVE used” is a value obtained by subtracting the amount of non-polymerized DVE from the amount of DVE added to the polymerization vessel (the amount of DVE charged).
  • the unpolymerized DVE is considered to be contained in the filtrate after taking out the fluorine-containing copolymer by aggregating the latex after polymerization and in the filtrate remaining after washing the latex, for example, ion chromatograph. The amount can be measured by measuring the fluoride ion with a graph measuring device.
  • TFE units to total units in the fluorine-containing copolymer, PAVE units and R CN units, 19 F- calculated by nuclear magnetic resonance (NMR) analysis Specifically, the 19 F- nuclear magnetic resonance (NMR) analysis, TFE units in the fluoropolymer: PAVE units: Request R CN unit (molar ratio). Then, the value obtained by subtracting from 100 mole% content of DVE units (mol%), 19 F- nuclear magnetic resonance (NMR) TFE units of the fluorine-containing polymer as determined by analysis: PAVE units: R CN units ( The molar ratio) is applied to determine the content of each unit.
  • NMR nuclear magnetic resonance
  • the fluorine-containing copolymer may have an iodine atom.
  • the iodine atom is a unit based on an iodine atom derived from an iodine compound that functions as a chain transfer agent described later, or a monomer having an iodine atom among the above-mentioned monomers having an iodine atom such as iodotrifluoroethylene.
  • the iodine atom in the above is mentioned, and it is preferable that the iodine atom is derived from an iodine compound that functions as a chain transfer agent.
  • the fluorine-containing copolymer has an iodine atom, the content thereof is preferably 0.01 to 5.0% by mass, preferably 0.05 to 2.0% by mass, based on the total mass of the fluorine-containing copolymer. Is more preferable, and 0.05 to 1.0% by mass is particularly preferable.
  • the iodine atom content is in the above range, the cross-linking reactivity of the fluorine-containing copolymer is improved, and the mechanical properties of the cross-linked rubber article are excellent.
  • the storage elastic modulus G'of the fluorine-containing copolymer is preferably 450 kPa or more, and particularly preferably 470 kPa or more. Although the details of the reason are unknown, when the storage elastic modulus G'is 470 kPa or more, the compression set of the crosslinked rubber article at high temperature can be made smaller.
  • the storage elastic modulus G'of the fluorine-containing copolymer is preferably 650 kPa or less, more preferably 630 kPa or less, and particularly preferably 600 kPa or less, from the viewpoint of excellent processability.
  • the storage elastic modulus G' is a guideline for the average molecular weight, and when it is high, it indicates that the molecular weight is large, and when it is low, it indicates that the molecular weight is small.
  • the storage elastic modulus G'of the fluorine-containing copolymer in the present invention is a value measured according to ASTM D6204, and detailed measurement conditions are as shown in Examples.
  • Storage modulus G '1 and the storage modulus G' 0.1 of the fluorocopolymer in the present invention is a value measured according to ASTM D4440, detailed measurement conditions were as shown in Example is there.
  • Method for producing fluorine-containing copolymer there is a method of copolymerizing the above-mentioned monomers in the presence of a radical polymerization initiator.
  • a water-soluble polymerization initiator and a redox polymerization initiator are preferable.
  • the water-soluble polymerization initiator include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate, and organic polymerization initiators such as disuccinic acid peroxide and azobisisobutylamidine dihydrochloride. Of these, persulfates are preferable, and ammonium persulfate is more preferable.
  • the redox polymerization initiator include a polymerization initiator that is a combination of persulfates and a reducing agent.
  • a polymerization initiator capable of polymerizing each monomer in a polymerization temperature range of 0 to 60 ° C. is preferable.
  • the persulfate constituting the redox polymerization initiator include alkali metal salts of persulfate such as ammonium persulfate, sodium persulfate, and potassium persulfate, and ammonium persulfate is preferable.
  • the reducing agent to be combined with persulfates include thiosulfate, sulfite, hydrogen sulfite, pyrosulfite, and hydroxymethanesulfinate, preferably hydroxymethanesulfinate, and sodium hydroxymethanesulfinate. Salt is particularly preferred.
  • the above-mentioned monomer may be copolymerized in the presence of a chain transfer agent together with a radical polymerization initiator.
  • a chain transfer agent an iodine compound is preferable, and an iodine compound represented by the formula RI 2 is particularly preferable.
  • R represents an alkylene group or a perfluoroalkylene group having 3 or more carbon atoms (preferably 3 to 8 carbon atoms).
  • iodine compound represented by the formula RI 2 examples include 1,3-diiodopropane, 1,4-diiodobutane, 1,6-diiodohexane, 1,8-diiodooctane, and 1,3-di. Examples thereof include iodoperfluoropropane, 1,4-diiodoperfluorobutane, 1,6-diiodoperfluorohexane, and 1,8-diiodoperfluorooctane.
  • an iodine compound having a perfluoroalkylene group is preferable, and 1,4-diiodoperfluorobutane is particularly preferable.
  • an iodine atom can be introduced into the fluorine-containing copolymer.
  • the fluorine-containing copolymer composition of the present invention contains the above-mentioned fluorine-containing copolymer and at least one of a cross-linking agent and a catalyst.
  • the fluorine-containing copolymer composition may contain only one of the cross-linking agent and the catalyst, or may contain both.
  • the cross-linking agent include organic peroxides, polyols, amines and triazines, and organic peroxides are preferable from the viewpoint of excellent productivity, heat resistance and chemical resistance of the cross-linked rubber articles.
  • organic peroxides include dialkyl peroxides, ⁇ , ⁇ '-bis (tert-butylperoxy) -p-diisopropylbenzene, ⁇ , ⁇ '-bis (tert-butylperoxy) -m-. Examples thereof include diisopropylbenzene, benzoyl peroxide, tert-butylperoxybenzene and 2,5-dimethyl-2,5-di (benzoylperoxy) hexane.
  • dialkyl peroxides include 1,1-di (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroxyperoxide, and tert-butyl.
  • Cumylperoxide, dicumylperoxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) -3- Hexane, tert-butylperoxymaleic acid, tert-butylperoxysopropyl carbonate can be mentioned.
  • Examples of amines include compounds having two or more amino groups (hereinafter, also referred to as “polyamine compounds”).
  • the polyamine compound may be a compound in which a hydrogen atom of an aliphatic hydrocarbon is substituted with an amino group, or a compound in which a hydrogen atom of an aromatic hydrocarbon is substituted with an amino group.
  • a compound in which the hydrogen atom of the aromatic hydrocarbon is replaced with an amino group is preferable because of the above-mentioned advantage.
  • the polyamine compound preferably contains a fluorine atom. As a result, the compatibility with the specific fluorine-containing copolymer is improved, so that a crosslinked rubber article having a smaller compression set at a high temperature can be obtained.
  • polyamine compound examples include hexamethylenediamine, hexamethylenediamine carbamate, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, and 2,2-bis (3-amino-4-hydroxyphenyl).
  • BOAP 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane
  • BOAP also known as bisaminophenol AF
  • Examples thereof include dianiline, m-phenylenediamine, dihydrazide adipate, and a compound represented by the formula (XII) of Patent No. 5833657.
  • BOAP is preferable because it is superior to compression set.
  • the content of the cross-linking agent is preferably 0.3 to 10 parts by mass, preferably 0.3 to 5 parts by mass, based on 100 parts by mass of the fluorine-containing copolymer. Parts are more preferable, and 0.5 to 3 parts by mass are particularly preferable.
  • the content of the cross-linking agent is within the above range, the balance between the strength and elongation of the cross-linked rubber article is excellent.
  • the catalyst include organotin compounds.
  • the organotin compound is preferable because it is excellent in productivity, heat resistance, and chemical resistance of the crosslinked rubber article.
  • Specific examples of the organic tin compound include tetramethyltin, tetra (n-butyl) tin, and tetraphenyltin.
  • the content of the catalyst is preferably 0.3 to 10 parts by mass, preferably 0.3 to 5 parts by mass, based on 100 parts by mass of the fluorine-containing copolymer. More preferably, 0.5 to 3 parts by mass is particularly preferable.
  • the content of the catalyst is within the above range, the balance between the strength and elongation of the crosslinked rubber article is excellent.
  • the fluorine-containing copolymer composition may contain components other than the above as long as the effects of the present invention are not impaired.
  • Other components include cross-linking aids (eg, triallyl cyanurate, triallyl isocyanurate, trimetalyl isocyanurate), acid acceptors (eg, fatty acid esters, fatty acid metal salts, and divalent metal oxides (magnesium oxide).
  • fillers and reinforcements eg carbon black, barium sulfate, calcium metasilicate, calcium carbonate, titanium oxide, silicon dioxide, clay, talc
  • scorch retarders eg carbon black, clay, talc
  • Phenolic hydroxyl group-containing compounds such as bisphenol A, quinones such as hydroquinone, ⁇ -methylstyrene dimers such as 2,4-di (3-isopropylphenyl) -4-methyl-1-pentene
  • crown ether For example, 18-crown-6
  • a release agent eg, sodium stearate
  • the fluorine-containing copolymer composition may contain a release agent, but the release agent may bleed out from the surface of the crosslinked rubber article obtained by using the release agent, which may cause contamination. .. Therefore, from the viewpoint of being suitably used as a member (for example, an O-ring) included in the semiconductor manufacturing apparatus, it is preferable that the fluorine-containing copolymer composition does not substantially contain a release agent.
  • the fluorine-containing copolymer composition does not substantially contain a release agent means that the content of the release agent is 0.1% by mass with respect to 100 parts by mass of the fluorine-containing copolymer. It means that it is not more than a part, preferably 0.01 part by mass or less, and particularly preferably 0 part by mass.
  • the total content of the other components is preferably more than 0 parts by mass and 30 parts by mass or less with respect to 100 parts by mass of the fluorine-containing copolymer. 1 to 25 parts by mass is more preferable, and 5 to 15 parts by mass is particularly preferable.
  • Examples of the method for preparing the fluorine-containing copolymer composition include a method of mixing the above-mentioned components. Mixing of each component can be carried out using a rubber mixing device such as a roll, a kneader, a Banbury mixer or an extruder. Further, after obtaining a mixture in which each of the above components is mixed, the mixture may be molded. Specific examples of the method for molding the mixture include compression molding, injection molding, extrusion molding, calender molding, or a method of dissolving the mixture in a solvent and dipping or coating it on a substrate or the like.
  • MH - ML As an index of the cross-linking property of the fluorine-containing copolymer composition, MH - ML (hereinafter, also referred to as “cross-linking degree”) measured by the method of Examples described later can be mentioned.
  • the degree of cross-linking of the cross-linked rubber is preferably 80 dNm or less, more preferably 60 dN m or less, and particularly preferably 40 dN m or less. When the degree of cross-linking of the cross-linked rubber is within the above range, the flexibility of the cross-linked rubber is excellent.
  • the degree of cross-linking of the cross-linked rubber is preferably 3 dNm or more, more preferably 5 dN m or more, and particularly preferably 10 dN m or more.
  • the degree of cross-linking of the cross-linked rubber is in the above range, the cross-linked rubber is excellent in excellent compression set.
  • the crosslinked rubber article of the present invention is a rubber article obtained by cross-linking the fluorine-containing copolymer in the above-mentioned fluorine-containing copolymer composition.
  • a method for cross-linking the fluorine-containing copolymer in the fluorine-containing copolymer composition a method for cross-linking by heating the fluorine-containing copolymer composition is preferable.
  • Specific examples of the crosslinking method by heating include heating press crosslinking, steam crosslinking, and hot air crosslinking. From these methods, a fluorine-containing copolymer or a fluorine-containing copolymer composition may be appropriately selected in consideration of the shape and use.
  • the heating conditions are preferably 100 to 400 ° C. for 1 second to 24 hours.
  • the crosslinked rubber obtained by heating (primary cross-linking) the fluorine-containing copolymer composition may be further heated for secondary cross-linking.
  • the heating conditions for the secondary cross-linking are preferably 80 to 350 ° C. for 30 minutes to 48 hours.
  • Examples of the cross-linking method other than cross-linking the fluorine-containing copolymer by heating include a method of cross-linking the fluorine-containing copolymer by irradiating the fluorine-containing copolymer composition with radiation.
  • Specific examples of the radiation to be irradiated include electron beams and ultraviolet rays.
  • the tensile strength (tensile breaking strength) of the crosslinked rubber article is preferably 1 to 50 MPa, particularly preferably 10 to 35 MPa from the viewpoint of excellent rubber properties.
  • the 100% modulus (tensile stress at 100% elongation) of the crosslinked rubber article is preferably 0.2 to 15 MPa, particularly preferably 0.5 to 9 MPa from the viewpoint of excellent rubber properties.
  • the tensile elongation (elongation rate at the time of cutting) of the crosslinked rubber article is preferably 100 to 1000%, particularly preferably 120 to 600% from the viewpoint of excellent rubber properties.
  • the tensile strength, 100% modulus, and elongation at cutting of the crosslinked rubber article are values measured by a method conforming to JIS K 6251: 2010 (corresponding international standard ISO 37: 2005).
  • the hardness (Shore-A) of the crosslinked rubber article is preferably 65 to 100, more preferably 68 to 90, and particularly preferably 70 to 85, from the viewpoint of excellent rubber properties.
  • the hardness (Shore-A) of the crosslinked rubber article is a value measured using a plate-shaped molded product (thickness 1 mm) of the crosslinked rubber article using a type A durometer in accordance with JIS K6253-1: 2012. Is.
  • the compression set of the crosslinked rubber article at 250 ° C. is preferably 65% or less, and 60% or less because the fluorine-containing copolymer is well crosslinked and the shape recovery of the crosslinked rubber article after pressurization is excellent. More preferably, 50% or less is further preferable, and 40% or less is particularly preferable.
  • the lower limit of the compression set of the crosslinked rubber article at 250 ° C. is preferably 0%, and most preferably the crosslinked rubber article has a compression set of 0% at 250 ° C.
  • the compression set of the crosslinked rubber article at 250 ° C. is a value measured according to JIS K6262 using a plate-shaped molded product (thickness 1 mm) of the crosslinked rubber article.
  • the above-mentioned physical characteristics of the crosslinked rubber article are, for example, the above-mentioned production conditions of the fluorine-containing copolymer (for example, the order of addition of each monomer, the number of additions, the amount of addition), and the above-mentioned fluorine-containing copolymer composition. It can be adjusted according to the type and content of each component contained, and the manufacturing conditions (for example, cross-linking conditions) of the cross-linked rubber article.
  • Crosslinked rubber articles are suitable for materials such as O-rings, sheets, gaskets, oil seals, diaphragms, V-rings and the like.
  • materials such as O-rings, sheets, gaskets, oil seals, diaphragms, V-rings and the like.
  • heat-resistant and chemical-resistant sealing materials heat-resistant and oil-resistant sealing materials, wire coating materials, sealing materials for semiconductor devices, corrosion-resistant rubber paints, sealing materials for urea-based greases, rubber paints, adhesive rubbers, hoses, tubes, etc.
  • Calendar sheet (roll), sponge, rubber roll, oil drilling member, heat dissipation sheet, solution cross-linking body, rubber sponge, bearing seal (urea grease resistant, etc.), lining (chemical resistant), automotive insulating sheet, insulation for electronic devices Sheets, rubber bands for watches, packing for endoscopes (amine resistant), bellows hose (processed from calendar sheets), water heater packing / valves, fenders (marine civil engineering, ships), fibers / non-woven fabrics (protective clothing, etc.) ), Base sealant, rubber gloves, uniaxial eccentric screw pump stator, urea SCR system parts, anti-vibration agent, anti-vibration agent, sealant, additive to other materials, toy applications.
  • Examples 1 to 6 are examples, and examples 7 and 8 are comparative examples. However, the present invention is not limited to these examples.
  • the content of each component in the table described later is based on mass unless otherwise specified.
  • the amount of DVE used is determined from the amount of DVE added to the reactor (the amount of DVE charged) in the above ion chromatograph. The value obtained by subtracting the amount of DVE in the liquid calculated based on the measurement result was used.
  • the amount of DVE charged is used as the amount of DVE charged. There was. Based on the amount of DVE units used thus obtained, the content (mol%) of DVE units with respect to all the units of the fluorine-containing copolymer was calculated.
  • the storage elastic modulus of the polymer was G'.
  • the storage elastic modulus G'of the fluorine-containing copolymer serves as a measure of the fluidity during molding of the crosslinked rubber article.
  • the fluorine-containing copolymer composition was subjected to cross-linking characteristics using a cross-linking property measuring machine (manufactured by Alpha Technologies, trade name "RPA2000") according to ASTM D5289 at 177 ° C. for 12 minutes under the condition of an amplitude of 3 degrees. It was measured.
  • the measured M H represents the maximum torque
  • M L represents the minimum value of the torque
  • M H -M L is the degree of crosslinking (Unit: DNM) shows a.
  • the cross-linking property is a measure of the cross-linking reactivity of the fluorine-containing copolymer, and the larger the value of MH - ML , the better the cross-linking reactivity.
  • Specific gravity of fluorine-containing copolymer and crosslinked rubber article The specific gravity of the fluorine-containing copolymer and the crosslinked rubber article was measured using a hydrometer (manufactured by Shinko Denshi Co., Ltd.) according to JIS K 6220-1: 2015.
  • ⁇ hardness ⁇ Hardness was measured using a type A durometer according to JIS K6253-3: 2012 using a test piece of a crosslinked rubber article.
  • An automatic rubber hardness tester (Digitest Shore A, manufactured by H. Burleys Testing Machine Co., Ltd.) was used as the measuring device.
  • the test was carried out using three test pieces, and the value obtained by arithmetically averaging the measured values of the three test pieces was recorded.
  • Test aging test After measuring the thickness of the test piece of the crosslinked rubber article with a thickness gauge, the test piece was heated at 300 ° C. for 70 hours in an air atmosphere (heat aging). After cooling the test piece after heat aging to room temperature, the tensile strength, 100% modulus and tensile elongation after heat aging were measured using the cooled test piece under the same conditions as the above-mentioned test method. .. The test was carried out using three test pieces, and the measured values of the three test pieces were recorded as arithmetic mean values.
  • a fluorinated copolymer composition is introduced into a sheet-shaped mold, the fluorinated copolymer composition is crosslinked at 180 ° C. for 20 minutes, and a crosslinked rubber article (length 100 mm ⁇ ) in a state of being attached to the mold. Width 60 mm x thickness 1 mm) was obtained.
  • air is injected into the interface between the cross-linked rubber article and the mold using an air gun (product name: Cyclone Star, manufactured by Chuo Koki Co., Ltd.), and the mold is released according to the following evaluation criteria. Sexual evaluation was performed.
  • Example 1 ⁇ Production of Fluorine-Containing Copolymer 1> After degassing a stainless steel pressure reactor with an internal volume of 20 L equipped with anchor blades, 7.2 L of ultrapure water and 880 g of a 30 mass% solution of C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 which is an emulsifier. , 7.3 g of 8CNVE, 17.7 g of C3DVE, and 15.9 g of a 5% by mass aqueous solution of disodium hydrogen phosphate / 12hydrate were charged, and the gas phase was replaced with nitrogen.
  • the monomer was press-fitted as follows.
  • press-fitting the monomer after the start of polymerization is also referred to as “post-addition”
  • the monomer press-fitting after the start of polymerization is also referred to as “post-addition monomer”.
  • TFE was press-fitted to increase the reactor internal pressure to 0.90 MPa [gauge]. This was repeated, and each time 119.3 g of TFE was press-fitted, 3.6 g of 8CNVE, 74 g of PMVE, and 3.6 g of 8CNVE were press-fitted in this order.
  • the filtrate after agglomerating the polymerized latex to take out the fluorine-containing copolymer and the filtrate remaining after washing the latex are filtered with a disk filter, and the obtained liquid is filtered by an ion chromatograph measuring device.
  • no fluoride ion of 3% by mass or more was detected with respect to the charged amount of C3DVE. Therefore, assuming that all the C3DVE used for the charging was polymerized, the content of the C3DVE unit with respect to all the units in the polymer was calculated based on the charged amount of the C3DVE.
  • Fluorine-Containing Copolymer Composition 1 100 parts by mass of fluoropolymer 1, 8 parts by mass of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast 9), 3 parts by mass of tetraphenyltin (manufactured by Tokyo Chemical Industry Co., Ltd.), and 18-crown-6 (manufactured by Tokyo Chemical Industry Co., Ltd.) Each component was mixed at a ratio of 0.1 parts by mass of (Fuji Film Wako Pure Chemical Industries, Ltd.) and kneaded with two rolls to obtain a fluorine-containing copolymer composition 1.
  • the fluorine-containing copolymer composition 1 was crosslinked and molded at 180 ° C. for 20 minutes to obtain a crosslinked rubber sheet having a length of 100 mm, a width of 60 mm and a thickness of 1 mm (primary crosslink). Then, in a nitrogen atmosphere, the crosslinked rubber sheet was heated at 90 ° C. for 3 hours, then heated to 305 ° C. over 5 hours, and further heated for 13 hours while maintaining 305 ° C. (secondary crosslinking). The obtained crosslinked rubber sheet after the secondary crosslinking was cooled to room temperature and then punched into a No. 4 dumbbell shape defined by JIS K 6251 to obtain three test pieces of the crosslinked rubber article 1.
  • Example 2 to 7 Type of monomer used, addition ratio of initial addition monomer, addition ratio of post-addition monomer, addition order of post-addition monomer, number of repetitions of addition order of post-addition monomer, polymerization initiator
  • the fluorine-containing copolymers 2 to 7 in Examples 2 to 7 are the same as in Example 1 except that the amount of additional addition and the polymerization conditions and the like are changed as shown in Table 1-1 and Table 1-2. , Fluorine-containing copolymer compositions 2 to 7, and crosslinked rubber articles 2 to 7 were obtained.
  • Example 8 ⁇ Production of Fluorine-Containing Copolymer 8> After degassing a stainless steel pressure reactor with an internal volume of 20 L equipped with anchor blades, 7.2 L of ultrapure water and 880 g of a 30 mass% solution of C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 which is an emulsifier. , 17.5 g of C3DVE and 15.9 g of a 5% by mass aqueous solution of disodium hydrogen phosphate / 12hydrate were charged, and the gas phase was replaced with nitrogen.
  • TFE was press-fitted to increase the reactor internal pressure to 0.90 MPa [gauge]. This was repeated, and 90 g of PMVE was press-fitted each time 110 g of TFE was press-fitted. Further, 7.0 g of 1,4-diiodoperfluorobutane was press-fitted into the reactor from an ampoule tube together with 50 mL of ultrapure water when 30 g of TFE was press-fitted. When the polymerization rate had decreased, a 3% by mass aqueous solution of APS was appropriately added.
  • the total amount of the 3% by mass aqueous solution of APS added after the start of polymerization was 45 mL.
  • the total mass of TFE added was 990 g, 110 g of TFE was press-fitted.
  • the total addition mass of the post-added TFE reached 1100 g, the addition of the post-added monomer was stopped, the temperature inside the reactor was cooled to 10 ° C., the polymerization reaction was stopped, and the fluorine-containing copolymer was stopped. A latex containing 8 was obtained.
  • the polymerization time was 396 minutes.
  • the content of iodine atoms in the fluorine-containing copolymer 8 calculated by a device that combines an automatic sample combustion device, a pretreatment device for ion chromatography fluff (manufactured by Mitsubishi Chemical Analytech Co., Ltd., AQF-100 type) and an ion chromatograph.
  • the amount was 0.20% by mass.
  • the filtrate after agglomerating the polymerized latex to take out the fluorine-containing copolymer and the filtrate remaining after washing the latex are filtered with a disk filter, and the obtained liquid is filtered by an ion chromatograph measuring device.
  • Fluorine-Containing Copolymer Composition 8 100 parts by mass of fluorine-containing copolymer 8, 15 parts by mass of carbon black (Thermax N990 manufactured by cancarb), 3 parts by mass of triallyl isocyanurate (TAIC WH-60 manufactured by Mitsubishi Chemical Co., Ltd.), 2,5- Each component was prepared in a proportion of 1 part by mass of dimethyl-2,5-di (tert-butylperoxy) hexane (manufactured by Nichiyu Co., Ltd., Perhexa 25B) and 1 part by mass of calcium stearate (manufactured by Kanto Chemical Co., Inc.). The mixture was kneaded with two rolls to obtain a fluorine-containing copolymer composition 8.
  • the fluorine-containing copolymer composition 8 is heat-pressed (primary crosslinked) at 150 ° C. for 20 minutes and then secondarily crosslinked in an oven at 250 ° C. for 4 hours to obtain a crosslinked rubber sheet having a thickness of 1 mm. Obtained.
  • the obtained crosslinked rubber sheet after the secondary crosslinking was cooled to room temperature and then punched into a No. 4 dumbbell shape defined by JIS K 6251 to obtain three test pieces of the crosslinked rubber article 8.
  • the DVE unit, the use of the fluorine-containing copolymer having a R CN units, crosslinked rubber article having excellent releasability was confirmed to be obtained (Examples 1 to 6). Further, it was confirmed that the compression set of the crosslinked rubber article can be further reduced by using a fluorine-containing copolymer having a storage elastic modulus G'of 470 kPa or more (Examples 1 to 6). In contrast, in the case of using no fluorocopolymer DVE unit or R CN unit, it was confirmed releasability of crosslinked rubber article is insufficient (Examples 7 and 8).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

離型性に優れた架橋ゴム物品を製造できる含フッ素共重合体の提供。 本発明の含フッ素共重合体は、テトラフルオロエチレンに基づく単位と、パーフルオロ(アルキルビニルエーテル)に基づく単位と、フッ素原子と2個以上の重合性不飽和結合とを有する単量体に基づく単位と、ニトリル基とフッ素原子とを有する単量体に基づく単位と、を有する。

Description

含フッ素共重合体、含フッ素共重合体組成物および架橋ゴム物品
 本発明は、含フッ素共重合体、含フッ素共重合体組成物および架橋ゴム物品に関する。
 含フッ素共重合体を架橋して得られる架橋ゴム物品は、耐熱性、耐薬品性、耐油性、耐候性等に優れるので、多様な環境下で使用される。
 このような架橋ゴム物品を得るために使用される含フッ素共重合体として、特許文献1には、テトラフルオロエチレンに基づく単位、パーフルオロ(アルキルビニルエーテル)に基づく単位、および、ニトリル基(シアノ基)を有する単量体に基づく単位を有する含フッ素共重合体が開示されている。
特開平6-263952号公報
 架橋ゴム物品は、例えば、含フッ素共重合体を金型に供給して、加熱成型することによって製造される。本発明者らが特許文献1に記載された含フッ素共重合体を用いて架橋ゴム物品を製造したところ、架橋ゴム物品の金型からの離型性について改善の余地があることを知見した。
 本発明は、上記問題に鑑みてなされ、離型性に優れた架橋ゴム物品を製造できる含フッ素共重合体、および含フッ素共重合体組成物、ならびにそれらを用いた架橋ゴム物品の提供を課題とする。
 本発明者らは、上記課題について鋭意検討した結果、テトラフルオロエチレンに基づく単位と、パーフルオロ(アルキルビニルエーテル)に基づく単位と、フッ素原子と2個以上の重合性不飽和結合とを有する単量体に基づく単位と、ニトリル基とフッ素原子とを有する単量体に基づく単位と、を有する含フッ素共重合体を用いれば、離型性に優れた架橋ゴム物品を得られることを見出し、本発明に至った。
 すなわち、発明者らは、以下の構成により上記課題が解決できることを見出した。
 [1] テトラフルオロエチレンに基づく単位と、パーフルオロ(アルキルビニルエーテル)に基づく単位と、フッ素原子と2個以上の重合性不飽和結合とを有する単量体に基づく単位と、ニトリル基とフッ素原子とを有する単量体に基づく単位と、を有する、含フッ素共重合体。
 [2] 貯蔵弾性率G’が470kPa以上である、[1]に記載の含フッ素共重合体。
 [3] 前記ニトリル基とフッ素原子とを有する単量体に基づく単位の含有量に対する、前記フッ素原子と2個以上の重合性不飽和結合とを有する単量体に基づく単位の含有量のモル比が、0.002~20である、[1]または[2]に記載の含フッ素共重合体。
 [4] パーフルオロ(アルキルビニルエーテル)が、下記式(1)で表される単量体である、[1]~[3]のいずれか1項に記載の含フッ素共重合体。
 CF=CF-O-Rf1   (1)
 式(1)中、Rf1は、炭素数1~10のパーフルオロアルキル基を示す。
 [5] 前記フッ素原子と2個以上の重合性不飽和結合とを有する単量体が、下記式(2)で表される単量体である、[1]~[4]のいずれか1項に記載の含フッ素共重合体。
 (CR2122=CR23a224   (2)
 式(2)中、R21、R22およびR23はそれぞれ独立に、水素原子、フッ素原子、メチル基またはトリフルオロメチル基を示し、a2は2~6の整数を示し、R24は、a2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。複数のR21、複数のR22および複数のR23はそれぞれ、互いに同一であっても異なっていてもよい。
 [6] 前記式(2)で表される単量体が、下記式(3)で表される単量体、または下記式(4)で表される単量体である、[5]に記載の含フッ素共重合体。
 (CF=CF)31   (3)
 式(3)中、R31は、2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
 (CH=CH)41   (4)
 式(4)中、R41は、2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
 [7] 前記ニトリル基とフッ素原子とを有する単量体が、下記式(5)で表される単量体である、[1]~[6]のいずれか1項に記載の含フッ素共重合体。
 CR5152=CR53-R54-CN   (5)
 式(5)中、R51、R52およびR53はそれぞれ独立に、水素原子、フッ素原子またはメチル基を示し、R54は、2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
 [8] 含フッ素共重合体の全単位に対して、テトラフルオロエチレンに基づく単位の含有量が、59~80モル%であり、パーフルオロ(アルキルビニルエーテル)に基づく単位の含有量が、19~40モル%であり、フッ素原子と2個以上の重合性不飽和結合とを有する単量体に基づく単位の含有量が、0.01~1.0モル%であり、ニトリル基とフッ素原子とを有する単量体に基づく単位の含有量が、0.05~5モル%である、[1]~[7]のいずれか1項に記載の含フッ素共重合体。
 [9] 含フッ素共重合体が、ヨウ素原子を有する、[1]~[8]のいずれか1項に記載の含フッ素共重合体。
 [10] [1]~[9]のいずれか1項に記載の含フッ素共重合体と、架橋剤および触媒のうち少なくとも一方を含む、含フッ素共重合体組成物。
 [11] 離型剤を実質的に含まない、[10]に記載の含フッ素共重合体組成物。
 [12] [10]または[11]に記載の含フッ素共重合体組成物中の含フッ素共重合体を架橋してなる、架橋ゴム物品。
 本発明によれば、離型性に優れた架橋ゴム物品を製造できる含フッ素共重合体、および含フッ素共重合体組成物、ならびにそれらを用いた架橋ゴム物品を提供できる。
 本発明における用語の意味は以下の通りである。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 「単位」とは、単量体が重合して直接形成された、上記単量体1分子に由来する原子団と、上記原子団の一部を化学変換して得られる原子団との総称である。「単量体に基づく単位」は、以下、単に「単位」ともいう。
 「ゴム」とは、JIS K 6200(2008)により定義される性質を示すゴムを意味し、「樹脂」とは区別される。
〔含フッ素共重合体〕
 本発明の含フッ素共重合体は、テトラフルオロエチレン(以下、「TFE」ともいう。)に基づく単位と、パーフルオロ(アルキルビニルエーテル)(以下、「PAVE」ともいう。)に基づく単位と、フッ素原子と2個以上の重合性不飽和結合とを有する単量体(以下、「DVE」ともいう。)に基づく単位と、ニトリル基とフッ素原子とを有する単量体(以下、「RCN」ともいう。)に基づく単位と、を有する。
 本発明の含フッ素共重合体を用いて得られた架橋ゴム物品は、金型からの離型性に優れる。この理由の詳細は明らかになっていないが、以下の理由によると推測される。
 本発明の含フッ素共重合体はDVE単位とRCN単位とを有する。これにより、架橋ゴム物品が剛直になるので、架橋ゴム物品を金型から脱離する際において、架橋ゴムが金型に追従しにくくなって、容易に脱離すると考えられる。特に、本発明の含フッ素共重合体は、DVE単位またはRCN単位を単独で含む含フッ素共重合体と比較して、架橋可能な基が重合体全体に均一に分布していると推測される。そのため、一般的なゴム硬度等の物性値からは差異が見出せないような、架橋ゴム物品のミクロな部分における硬度の向上によって、離型性が向上したと考えられる。
 PAVE単位は、パーフルオロ(アルキルビニルエーテル)に基づく単位である。
 PAVEは、重合反応性およびゴム物性に優れる点から、下記式(1)で表される単量体が好ましい。
 CF=CF-O-Rf1   (1)
 式(1)中、Rf1は、炭素数1~10のパーフルオロアルキル基を示す。Rf1の炭素数は、重合反応性がより優れる点から、1~8が好ましく、1~6がより好ましく、1~5がさらに好ましく、1~3が特に好ましい。
 パーフルオロアルキル基は、直鎖状であっても分岐鎖状であってもよい。
 PAVEの具体例としては、パーフルオロ(メチルビニルエーテル)(以下、「PMVE」ともいう。)、パーフルオロ(エチルビニルエーテル)(以下、「PEVE」ともいう。)、パーフルオロ(プロピルビニルエーテル)(以下、「PPVE」ともいう。)が挙げられ、これらの中でも、PMVE、PPVEが好ましい。
 DVE単位は、フッ素原子と2個以上の重合性不飽和結合とを有する単量体に基づく単位である。
 重合性不飽和結合の具体例としては、炭素原子-炭素原子の二重結合(C=C)、炭素原子-炭素原子の三重結合(C≡C)が挙げられる。
 DVEにおける重合性不飽和結合の数は、重合反応性がより優れる、2~6個が好ましく、2または3個がより好ましく、2個が特に好ましい。
 DVEは、架橋ゴム物品の離型性がより優れる点から、下記式(2)で表される単量体であることが好ましい。
 (CR2122=CR23a224   (2)
 式(2)中、R21、R22およびR23はそれぞれ独立に、水素原子、フッ素原子、メチル基またはトリフルオロメチル基を示し、a2は2~6の整数を示し、R24は、a2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。複数のR21、複数のR22および複数のR23はそれぞれ、互いに同一であっても異なっていてもよく、互いに同一であるのが特に好ましい。
 a2は2または3が好ましく、2が特に好ましい。
 DVEの重合反応性がより優れる点から、R21、R22、R23がフッ素原子または水素原子であるのが好ましく、R21、R22、R23の全てがフッ素原子であるかまたはそれら全てが水素原子であるのがより好ましく、架橋ゴム物品の離型性がより優れる点から、R21、R22、R23の全てがフッ素原子であるのが特に好ましい。
 R24は、直鎖状、分岐鎖状、環状のいずれであってもよく、直鎖状または分岐鎖状が好ましく、直鎖状が特に好ましい。R24の炭素数は、2~8が好ましく、3~7がより好ましく、3~6がさらに好ましく、3~5が特に好ましい。
 R24は、エーテル性酸素原子を有していても、有していなくてもよいが、架橋反応性やゴム物性がより優れる点から、エーテル性酸素原子を有しているのが好ましい。
 R24におけるエーテル性酸素原子の数は1~6が好ましく、1~3がより好ましく、1または2が特に好ましい。R24におけるエーテル性酸素原子は、R24の末端に存在していることが好ましい。
 式(2)で表される単量体のうち、好適な単量体の具体例としては、下記式(3)で表される単量体、下記式(4)で表される単量体が挙げられる。
 (CF=CF)31   (3)
 式(3)中、R31は、2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
 (CH=CH)41   (4)
 式(4)中、R41は、2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
 式(3)で表される単量体の具体例としては、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CF2、CF=CFO(CFOCF=CF、CF=CFO(CFOCF(CF)CFOCF=CF、CF=CFO(CFO(CF(CF)CFO)CF=CF、CF=CFOCFO(CFCFO)CF=CF、CF=CFO(CFO)O(CF(CF)CFO)CF=CF、CF=CFOCFCF(CF)O(CFOCF(CF)CFOCF=CF、CF=CFOCFCFO(CFO)CFCFOCF=CFが挙げられる。
 式(3)で表される単量体のうち、より好適な単量体の具体例としては、CF=CFO(CFOCF=CF(以下、「C3DVE」ともいう。)、CF=CFO(CFOCF=CF(以下、「C4DVE」または「PBDVE」ともいう。)が挙げられる。
 式(4)で表される単量体の具体例としては、CH=CH(CFCH=CH、CH=CH(CFCH=CH、CH=CH(CFCH=CHが挙げられる。
 式(4)で表される単量体のうち、より好適な単量体の具体例としては、CH=CH(CFCH=CH(以下、「C6DV」ともいう。)が挙げられる。
 DVEを共重合させると、重合中にDVEの末端にある重合性二重結合の一部が反応して、分岐鎖を有する含フッ素共重合体が得られる。
 RCN単位は、ニトリル基とフッ素原子とを有する単量体に基づく単位である。含フッ素共重合体がRCN単位を有することで、架橋ゴム物品の耐熱性が優れる。
 RCNは、重合反応性の点から、重合性不飽和結合を有するのが好ましく、重合性不飽和結合を1個有するのが特に好ましい。重合性不飽和結合の具体例は、上述の通りである。
 RCNは、架橋ゴム物品の離型性および耐熱性がより優れる点から、下記式(5)で表される単量体であるのが好ましい。
 CR5152=CR53-R54-CN   (5)
 式(5)中、R51、R52およびR53はそれぞれ独立に、水素原子、フッ素原子またはメチル基を示し、R54は、2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
 RCNの重合反応性が優れる点から、R51、R52、R53がフッ素原子または水素原子であるのが好ましく、R51、R52、R53の全てがフッ素原子であるかまたはそれら全てが水素原子であるのがより好ましく、架橋ゴム物品の離型性および耐熱性がより優れる点から、R51、R52、R53の全てがフッ素原子であるのが特に好ましい。
 R54は、直鎖状、分岐鎖状、環状のいずれであってもよく、直鎖状または分岐鎖状が好ましい。R54の炭素数は、2~8が好ましく、3~7がより好ましく、3~6がさらに好ましく、3~5が特に好ましい。
 R54は、エーテル性酸素原子を有していても、有していなくてもよいが、ゴム物性がより優れる点から、エーテル性酸素原子を有しているのが好ましい。
 R54におけるエーテル性酸素原子の数は1~3が好ましく、1または2が特に好ましい。
 式(5)で表される単量体の具体例としては、CF=CFOCFCF(CF)OCFCFCN(以下、「8CNVE」ともいう。)CF=CFO(CFCN(以下、「MV5CN」ともいう。)、CF=CFOCFCFCFOCF(CF)CN、CF=CFO(CFCN、が挙げられ、架橋ゴム物品の離型性および耐熱性がより優れる点から、8CNVE、MV5CNが好ましい。
 含フッ素共重合体は、TFE、PAVE、DVEおよびRCN以外の単量体に基づく単位を有していてもよい。以下、TFE、PAVE、DVEおよびRCN以外の単量体に基づく単位を、「他の単量体」と総称する場合がある。
 他の単量体の具体例としては、下式(6)で表される単量体に基づく単位(以下、「式(6)単位」ともいう。)、フッ化ビニリデン(以下、「VdF」ともいう。)単位、ヘキサフルオロプロピレン(以下、「HFP」ともいう。)単位、クロロトリフルオロエチレン(以下、「CTFE」ともいう。)単位、エチレン単位、ならびに、TFE、PAVE、DVE、RCN、式(6)で表される単量体、VdF、HFPおよびCTFE以外のハロゲン原子を有する単量体(以下、他のハロゲン原子を有する単量体ともいう。)(例えば、ブロモトリフルオロエチレン、ヨードトリフルオロエチレン)が挙げられる。
 式(6)は下記の通りである。
 CF=CF-O-Rf2   (6)
 式(6)中、Rf2は、炭素数1~8のエーテル性酸素原子を1~5個含むパーフルオロアルキル基を示す。Rf2の炭素数は、1~6が好ましく、1~5が特に好ましい。
 式(6)で表される単量体の具体例としては、パーフルオロ(3,6-ジオキサ-1-ヘプテン)、パーフルオロ(3,6-ジオキサ-1-オクテン)、パーフルオロ(5-メチル-3,6-ジオキサ-1-ノネン)が挙げられる。
 TFE単位の含有量は、架橋ゴム物品の耐熱性がより優れる点から、含フッ素共重合体の全単位に対して、59~80モル%が好ましく、63~75モル%がより好ましく、66~72モル%が特に好ましい。
 PAVE単位の含有量は、架橋ゴム物品の弾性がより優れる点から、含フッ素共重合体の全単位に対して、19~40モル%が好ましく、24~36モル%がより好ましく、27~33モル%が特に好ましい。
 DVE単位の含有量は、架橋ゴム物品の離型性がより優れる点から、含フッ素共重合体の全単位に対して、0.01~1.0モル%が好ましく、0.03~0.6モル%がより好ましく、0.05~0.4モル%が特に好ましい。
 RCN単位の含有量は、架橋ゴム物品の離型性および耐熱性がより優れる点から、含フッ素共重合体の全単位に対して、0.05~5モル%が好ましく、0.1~3モル%がより好ましく、0.2~1.5モル%が特に好ましい。
 含フッ素共重合体が他の単量体単位を含む場合、他の単量体単位の含有量は、架橋ゴム物品の耐熱性の点から、含フッ素共重合体の全単位に対して、0.01~20モル%が好ましく、0.5~10モル%がより好ましく、1~5モル%が特に好ましい。
 架橋ゴム物品の離型性および耐熱性がより優れる点から、好ましくは、含フッ素共重合体の全単位に対して、TFE単位の含有量は、59~80モル%であり、PAVE単位の含有量は、19~40モル%であり、DVE単位の含有量は、0.01~1.0モル%であり、RCN単位の含有量は、0.05~5モル%である。
 RCN単位の含有量に対する、DVE単位の含有量のモル比(DVE単位/RCN単位)は、0.002~20が好ましく、0.03~2がより好ましく、0.1~1がさらに好ましく、0.35~0.59が特に好ましい。モル比が上記範囲内にあれば、架橋ゴム物品の離型性および耐熱性を高いレベルで両立できる。
 なお、含フッ素共重合体中の全単位に対するDVE単位は、含フッ素共重合体の製造に際して使用されたDVEの量(DVEの使用量)に基づいて算出される。ここで、「DVEの使用量」とは、重合容器に添加したDVEの量(DVEの仕込み量)から、重合されなかったDVEの量を引いた値である。重合されなかったDVEは、重合後のラテックスを凝集して、含フッ素共重合体を取り出した後のろ液およびラテックスの洗浄のあとに残ったろ液の中に含まれると考えられ、例えばイオンクロマトグラフ測定装置でフッ化物イオンを測定することでその量を測定できる。
 また、含フッ素共重合体中の全単位に対するTFE単位、PAVE単位およびRCN単位は、19F-核磁気共鳴(NMR)分析によって算出する。具体的には、19F-核磁気共鳴(NMR)分析によって、含フッ素重合体中のTFE単位:PAVE単位:RCN単位(モル比)を求める。そして、100モル%からDVE単位の含有量(モル%)を引いた値に、19F-核磁気共鳴(NMR)分析によって求めた含フッ素重合体中のTFE単位:PAVE単位:RCN単位(モル比)を当てはめ、各単位の含有量を求める。
 含フッ素共重合体は、ヨウ素原子を有していてもよい。この場合、含フッ素共重合体(高分子鎖)の末端にヨウ素原子を有するのが好ましい。
 ヨウ素原子としては、後述の連鎖移動剤として機能するヨード化合物に由来するヨウ素原子、上述のヨードトリフルオロエチレン等の他のハロゲン原子を有する単量体のうちヨウ素原子を有する単量体に基づく単位中のヨウ素原子が挙げられ、連鎖移動剤として機能するヨード化合物に由来するヨウ素原子であるのが好ましい。
 含フッ素共重合体がヨウ素原子を有する場合、その含有量は、含フッ素共重合体の全質量に対して、0.01~5.0質量%が好ましく、0.05~2.0質量%がより好ましく、0.05~1.0質量%が特に好ましい。ヨウ素原子の含有量が上記範囲にあると、含フッ素共重合体の架橋反応性が向上して、架橋ゴム物品の機械特性が優れる。
<物性>
 含フッ素共重合体の貯蔵弾性率G’は、450kPa以上が好ましく、470kPa以上が特に好ましい。その理由の詳細は不明であるが、貯蔵弾性率G’が470kPa以上であれば、架橋ゴム物品の高温下での圧縮永久歪をより小さくできる。
 含フッ素共重合体の貯蔵弾性率G’は、加工性に優れる点から、650kPa以下が好ましく、630kPa以下がより好ましく、600kPa以下が特に好ましい。
 貯蔵弾性率G’が470kPa以上である含フッ素共重合体を得る方法の一例としては、含フッ素共重合体の製造時において、各単量体の添加順序や添加回数等を調節する方法が挙げられる。
 ここで、貯蔵弾性率G’は、平均分子量の目安であり、高いと分子量が大きいことを示し、低いと分子量が小さいことを示す。
 本発明における含フッ素共重合体の貯蔵弾性率G’は、ASTM D6204に準拠して測定される値であり、詳細な測定条件は実施例に示す通りである。
 本発明における含フッ素共重合体の貯蔵弾性率G’と貯蔵弾性率G’0.1は、ASTM D4440に準拠して測定される値であり、詳細な測定条件は実施例に示す通りである。
<含フッ素共重合体の製造方法>
 本発明の含フッ素共重合体の製造方法の一例としては、ラジカル重合開始剤の存在下、上記単量体を共重合する方法が挙げられる。
 ラジカル重合開始剤としては、水溶性重合開始剤、レドックス重合開始剤が好ましい。
 水溶性重合開始剤の具体例としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸類、ジコハク酸過酸化物、アゾビスイソブチルアミジン二塩酸塩等の有機系重合開始剤類が挙げられ、これらの中でも、過硫酸類が好ましく、過硫酸アンモニウムがより好ましい。
 レドックス重合開始剤としては、過硫酸類と還元剤を組み合せた重合開始剤が挙げられる。このうち、重合温度が0~60℃の範囲で各単量体を重合可能な重合開始剤が好ましい。レドックス重合開始剤を構成する過硫酸塩の具体例としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸のアルカリ金属塩が挙げられ、過硫酸アンモニウムが好ましい。過硫酸類と組み合わせる還元剤の具体例としては、チオ硫酸塩、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、ヒドロキシメタンスルフィン酸塩が挙げられ、ヒドロキシメタンスルフィン酸塩が好ましく、ヒドロキシメタンスルフィン酸ナトリウム塩が特に好ましい。
 本発明の含フッ素共重合体の製造方法において、ラジカル重合開始剤とともに、連鎖移動剤の存在下で上記単量体を共重合してもよい。
 連鎖移動剤は、ヨード化合物が好ましく、式RIで表されるヨード化合物が特に好ましい。上記式中、Rは炭素数3以上(好ましくは、炭素数3~8)のアルキレン基またはパーフルオロアルキレン基を示す。
 式RIで表されるヨード化合物の具体例としては、1,3-ジヨードプロパン、1,4-ジヨードブタン、1,6-ジヨードヘキサン、1,8-ジヨードオクタン、1,3-ジヨードパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタンが挙げられる。
 ヨード化合物としては、パーフルオロアルキレン基を有するヨード化合物が好ましく、1,4-ジヨードパーフルオロブタンが特に好ましい。
 これらのヨード化合物の存在下に上記単量体を共重合させると、含フッ素共重合体にヨウ素原子を導入できる。
 含フッ素共重合体の製造時に使用する上記以外の成分、製造方法の詳細については、国際公開第2010/082633号の段落0019~0034に記載の方法を参照できる。
〔含フッ素共重合体組成物〕
 本発明の含フッ素共重合体組成物は、上述の含フッ素共重合体と、架橋剤および触媒のうち少なくとも一方を含む。含フッ素共重合体組成物は、架橋剤および触媒のうち、一方のみを含んでいてもよく、両方を含んでいてもよい。
 架橋剤の具体例としては、有機過酸化物、ポリオール、アミン、トリアジンが挙げられ、架橋ゴム物品の生産性、耐熱性、耐薬品に優れる点から、有機過酸化物が好ましい。
 有機過酸化物の具体例としては、ジアルキルパーオキシド類、α,α’-ビス(tert-ブチルパーオキシ)-p-ジイソプロピルベンゼン、α,α’-ビス(tert-ブチルパーオキシ)-m-ジイソプロピルベンゼン、ベンゾイルパーオキシド、tert-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサンが挙げられる。
 ジアルキルパーオキシド類の具体例としては、1,1-ジ(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロキシパーオキシド、tert-ブチルクミルパーオキシド、ジクミルパーオキシド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)-3-ヘキシン、tert-ブチルパーオキシマレイン酸、tert-ブチルパーオキシソプロピルカーボネートが挙げられる。
 アミンとしては、2個以上のアミノ基を有する化合物(以下、「ポリアミン化合物」ともいう。)が挙げられる。
 ポリアミン化合物は、脂肪族炭化水素の水素原子をアミノ基で置換した化合物であってもよいし、芳香族炭化水素の水素原子をアミノ基で置換した化合物であってもよいが、本発明の効果がより優れる点から、芳香族炭化水素の水素原子をアミノ基で置換した化合物が好ましい。
 ポリアミン化合物は、フッ素原子を含むことが好ましい。これにより、特定含フッ素共重合体との相溶性が良好になるので、高温下での圧縮永久歪がより小さい架橋ゴム物品が得られる。
 ポリアミン化合物の具体例としては、ヘキサメチレンジアミン、ヘキサメチレンジアミンカルバメート、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(以下、「BOAP」ともいう。別名、ビスアミノフェノールAF。)、2,2-ビス(3,4-ジアミノフェニル)プロパン、2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-(N-フェニルアミノ)フェニル)ヘキサフルオロプロパン、4,4’-メチレンジアニリン、m-フェニレンジアミン、アジピン酸ジヒドラジド、特許第5833657号の式(XII)で表される化合物が挙げられる。中でも、圧縮永久歪より優れる点から、BOAPが好ましい。
 含フッ素共重合体組成物が架橋剤を含む場合、架橋剤の含有量は、含フッ素共重合体の100質量部に対して、0.3~10質量部が好ましく、0.3~5質量部がより好ましく、0.5~3質量部が特に好ましい。架橋剤の含有量が上記範囲内にあれば、架橋ゴム物品の強度と伸びのバランスに優れる。
 触媒の具体例としては、有機スズ化合物が挙げられる。有機スズ化合物は、架橋ゴム物品の生産性、耐熱性、耐薬品により優れる点から好ましい。
 有機スズ化合物の具体例としては、テトラメチルスズ、テトラ(n-ブチル)スズ、テトラフェニルスズが挙げられる。
 含フッ素共重合体組成物が触媒を含む場合、触媒の含有量は、含フッ素共重合体の100質量部に対して、0.3~10質量部が好ましく、0.3~5質量部がより好ましく、0.5~3質量部が特に好ましい。触媒の含有量が上記範囲内にあれば、架橋ゴム物品の強度と伸びのバランスに優れる。
<他の成分>
 含フッ素共重合体組成物は、本発明の効果が損なわれない範囲で、上記以外の他の成分を含んでいてもよい。他の成分としては、架橋助剤(例えば、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタリルイソシアヌレート)、受酸剤(例えば、脂肪酸エステル、脂肪酸金属塩、2価金属の酸化物(酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化鉛等))、充填剤および補強材(例えば、カーボンブラック、硫酸バリウム、メタケイ酸カルシウム、炭酸カルシウム、酸化チタン、二酸化珪素、クレー、タルク)、スコーチ遅延剤(例えば、ビスフェノールA等のフェノール性水酸基含有化合物類、ハイドロキノン等のキノン類、2,4-ジ(3-イソプロピルフェニル)-4-メチル-1-ペンテン等のα-メチルスチレンダイマー類)、クラウンエーテル(例えば、18-クラウン-6)、離型剤(例えば、ステアリン酸ナトリウム)が挙げられる。
 含フッ素共重合体組成物は離型剤を含んでいてもよいが、これを用いて得られた架橋ゴム物品の表面から、離型剤がブリードアウトして、汚染の原因となる場合がある。そのため、半導体製造装置が有する部材(例えば、Oリング)として好適に使用する点からは、含フッ素共重合体組成物は離型剤を実質的に含まないのが好ましい。
 ここで、「含フッ素共重合体組成物が離型剤を実質的に含まない」とは、離型剤の含有量が、含フッ素共重合体の100質量部に対して、0.1質量部以下であるのを意味し、0.01質量部以下であるのが好ましく、0質量部であるのが特に好ましい。
 含フッ素共重合体組成物が他の成分を含有する場合、他の成分の含有量の合計は、含フッ素共重合体の100質量部に対して、0質量部超30質量部以下が好ましく、1~25質量部がより好ましく、5~15質量部が特に好ましい。
 含フッ素共重合体組成物の調製方法としては、上記各成分を混合する方法が挙げられる。各成分の混合は、ロール、ニーダー、バンバリーミキサーまたは押し出し機等のゴム用混合装置を用いて実施できる。
 また、上記各成分を混合した混合物を得た後、混合物を成形してもよい。混合物の成形方法の具体例としては、圧縮成形、射出成形、押し出し成形、カレンダー成形、または、溶剤に溶かして基板等にディッピングもしくはコーティングして成形する方法が挙げられる。
<物性>
 含フッ素共重合体組成物の架橋特性の指標として、後述する実施例の方法で測定されるM-M(以下、「架橋度」ともいう。)が挙げられる。架橋度の数値が大きいほど、架橋ゴムの架橋構造が多いことを示す。
 架橋ゴムの架橋度は、80dNm以下が好ましく、60dNm以下がより好ましく、40dNm以下が特に好ましい。架橋ゴムの架橋度が上記範囲であると、架橋ゴムの柔軟性に優れる。
 架橋ゴムの架橋度は、3dNm以上が好ましく、5dNm以上がより好ましく、10dNm以上が特に好ましい。架橋ゴムの架橋度が上記範囲であると、架橋ゴムの圧縮永久歪に優れるに優れる。
〔架橋ゴム物品〕
 本発明の架橋ゴム物品は、上述の含フッ素共重合体組成物中の含フッ素共重合体を架橋したゴム物品である。
 含フッ素共重合体組成物中の含フッ素共重合体の架橋方法としては、含フッ素共重合体組成物を加熱することによって架橋する方法が好ましい。
 加熱による架橋方法の具体例としては、加熱プレス架橋、スチーム架橋、熱風架橋が挙げられる。これらの方法から、含フッ素共重合体または含フッ素共重合体組成物の形状や用途を考慮して適宜選択すればよい。
 加熱条件は、100~400℃で1秒~24時間が好ましい。
 含フッ素共重合体組成物を加熱して(1次架橋して)なる架橋ゴムを、さらに加熱して2次架橋してもよい。2次架橋を行うことにより、架橋ゴムの機械特性、圧縮永久歪、その他の特性を安定化または向上できる。
 2次架橋を行う際の加熱条件は、80~350℃で30分間~48時間が好ましい。
 含フッ素共重合体を加熱によって架橋する以外の架橋方法としては、含フッ素共重合体組成物に放射線を照射して含フッ素共重合体を架橋する方法が挙げられる。照射する放射線の具体例としては、電子線、紫外線が挙げられる。
<物性>
 架橋ゴム物品の引張強度(引張破断強度)は、ゴム特性に優れる点から、1~50MPaが好ましく、10~35MPaが特に好ましい。
 架橋ゴム物品の100%モジュラス(100%伸びでの引張応力)は、ゴム特性に優れる点から、0.2~15MPaが好ましく、0.5~9MPaが特に好ましい。
 架橋ゴム物品の引張伸度(切断時伸び率)は、ゴム特性に優れる点から、100~1000%が好ましく、120~600%が特に好ましい。
 架橋ゴム物品の引張強度、100%モジュラスおよび切断時伸び率は、JIS K 6251:2010(対応国際規格ISO 37:2005)に準拠する方法にて測定される値である。
 架橋ゴム物品の硬度(Shore-A)は、ゴム特性に優れる点から、65~100が好ましく、68~90がより好ましく、70~85が特に好ましい。
 架橋ゴム物品の硬度(Shore-A)は、架橋ゴム物品の板状の成形物(厚み1mm)を用いて、JIS K6253-1:2012に準拠して、タイプAデュロメータを用いて測定される値である。
 架橋ゴム物品の250℃における圧縮永久歪は、65%以下が好ましく、含フッ素共重合体が良好に架橋しており、架橋ゴム物品の加圧後の形状回復が優れる点から、60%以下がより好ましく、50%以下がさらに好ましく、40%以下が特に好ましい。
 架橋ゴム物品の250℃における圧縮永久歪の下限値は、0%が好ましく、架橋ゴム物品の250℃における圧縮永久歪が0%であることが最も好ましい。
 架橋ゴム物品の250℃における圧縮永久歪は、架橋ゴム物品の板状の成形物(厚み1mm)を用いて、JIS K6262に準拠して測定される値である。
 架橋ゴム物品の上述の各物性は、例えば、上述の含フッ素共重合体の製造条件(例えば、各単量体の添加順序、添加回数、添加量)、上述の含フッ素共重合体組成物に含まれる各成分の種類および含有量、ならびに、架橋ゴム物品の製造条件(例えば、架橋条件)等によって調節できる。
<用途>
 架橋ゴム物品は、O-リング、シート、ガスケット、オイルシール、ダイヤフラム、V-リング等の材料に好適である。また、耐熱性耐薬品性シール材、耐熱性耐油性シール材、電線被覆材、半導体装置用シール材、耐蝕性ゴム塗料、耐ウレア系グリース用シール材等、ゴム塗料、接着ゴム、ホース、チューブ、カレンダーシート(ロール)、スポンジ、ゴムロール、石油掘削用部材、放熱シート、溶液架橋体、ゴムスポンジ、ベアリングシール(耐ウレアグリース等)、ライニング(耐薬品)、自動車用絶縁シート、電子機器向け絶縁シート、時計向けゴムバンド、内視鏡用パッキン(耐アミン)、蛇腹ホース(カレンダーシートからの加工)、給湯器パッキン/弁、防舷材(海洋土木、船舶)、繊維・不織布(防護服等)、基盤シール材、ゴム手袋、一軸偏心ねじポンプのステータ、尿素SCRシステム用部品、防振剤、制振剤、シーリング剤、他材料への添加剤、玩具の用途にも適用できる。
 以下、例を挙げて本発明を詳細に説明する。例1~例6は実施例であり、例7および例8は比較例である。ただし本発明はこれらの例に限定されない。なお、後述する表中における各成分の含有量は、特に断りのない限り質量基準を示す。
〔含フッ素共重合体における各単量体に基づく単位の含有量〕
 含フッ素共重合体の全単位に対するDVE単位の含有量(モル%)は、含フッ素共重合体の製造に際して使用されたDVEの量(DVEの使用量)に基づいて算出した。
 また、含フッ素共重合体の全単位に対する、TFE単位、PAVE単位、RCN単位の含有量(モル%)は、19F-核磁気共鳴(NMR)分析に基づいて算出した。
<含フッ素共重合体の全単位に対するDVE単位の含有量の算出>
 重合後のラテックスを凝集して含フッ素共重合体を取り出した後のろ液およびラテックスの洗浄のあとに残ったろ液をディスクフィルターでろ過し、得られた液体をイオンクロマトグラフ測定装置(ダイアインスツルメンツ社製、自動試料燃焼装置イオンクロマトグラフ用前処理装置AQF-100型とイオンクロマトグラフを組み合わせた装置)で分析した。
 DVEの仕込み量に対して3質量%以上のフッ化物イオンが検出された場合は、DVEの使用量には、反応器に添加したDVEの量(DVEの仕込み量)から、上記イオンクロマトグラフの測定結果に基づいて算出した液体中のDVEの量を差し引いた値を用いた。
 一方で、DVEの仕込み量に対して3質量%以上のフッ化物イオンが検出されない場合は、仕込みに使用したDVEはすべて重合されたものとして、DVEの使用量には、DVEの仕込み量を用いた。
 このようにして得られたDVE単位の使用量に基づいて、含フッ素共重合体の全単位に対するDVE単位の含有量(モル%)を算出した。
〔含フッ素共重合体の貯蔵弾性率G’〕
 ゴム加工解析装置(Alpha Technologies社製、RPA2000)を用いて、ASTM D6204にしたがい、温度:100℃、振幅:0.5度、振動数:50回/分の条件で測定した値を含フッ素共重合体の貯蔵弾性率G’とした。含フッ素共重合体の貯蔵弾性率G’は、架橋ゴム物品の成形時における流動性の目安となる。
〔含フッ素共重合体の貯蔵弾性率G’0.1、G’
ゴム加工解析装置(Alpha Technologies社製、RPA2000)を用いて、ASTM D4440にしたがい、温度:140℃、せん断速度:0.1度/秒、および1度/秒の条件で測定した値を含フッ素共重合体の貯蔵弾性率G’0.1、およびG’とした。
〔含フッ素共重合体組成物における架橋度〕
 含フッ素共重合体組成物について、架橋特性測定機(アルファーテクノロジーズ社製、商品名「RPA2000」)を用いて、ASTM D5289にしたがい、177℃で12分間、振幅3度の条件にて架橋特性を測定した。
 測定されるMはトルクの最大値を示し、Mはトルクの最小値を示し、M-M(MからMを差し引いた値)は架橋度(単位:dNm)を示す。架橋特性は、含フッ素共重合体の架橋反応性の目安となり、M-Mの値が大きいほど、架橋反応性に優れることを示す。
〔含フッ素共重合体および架橋ゴム物品の比重〕
 含フッ素共重合体および架橋ゴム物品について、比重計(新光電子社製)を用いて、JIS K 6220-1:2015に準じて比重を測定した。
〔架橋ゴム物品の引張強度、100%モジュラス、引張伸度〕
 板状の架橋ゴム物品(厚み1mm)を4号ダンベルで打ち抜いた試験片を用いて、JIS K6251:2010(対応国際規格ISO 37:2005)に準拠して、引張強度、100%モジュラスおよび引張伸度を測定した。
 なお、測定装置には、データ処理付引張試験機(クイックリーダー TS-2530、上島製作所社製)を用いた。
 また、各試験はそれぞれ3枚の試験片を用いて実施して、3枚の試験片の測定値を算術平均した値を記録した。
〔硬度〕
 架橋ゴム物品の試験片を用いて、JIS K6253-3:2012に準拠して、タイプAデュロメータを用いて硬度(Shore-A)を測定した。
 なお、測定装置には、ゴム用自動硬度計(デジテスト ショアーA、H・バーレイス試験機社製)を用いた。
 また、試験は3枚の試験片を用いて実施して、3枚の試験片の測定値を算術平均した値を記録した。
〔圧縮永久歪〕
 架橋ゴム物品の試験片を用いて、JIS K 6262に準拠して、試験片を250℃、70時間保持した際の圧縮永久歪(%)を測定した。圧縮永久歪の値が小さいほど、架橋ゴム物品の回復性が優れること、つまり、良好に架橋していることを示す。
 また、試験は3枚の試験片を用いて実施して、3枚の試験片の測定値を算術平均した値を記録した。
〔熱老化試験〕
 架橋ゴム物品の試験片の厚みをシックネスゲージによって測定した後、試験片を空気雰囲気下において300℃で70時間加熱した(熱老化)。
 熱老化後の試験片を室温まで冷却した後、冷却後の試験片を用いて、上述の試験方法と同様の条件にて、熱老化後における引張強度、100%モジュラスおよび引張伸度を測定した。
 試験は3枚の試験片を用いて実施して、3枚の試験片の測定値を算術平均した値を記録した。
 熱老化を行っていない試験片の測定値(常態試験値)と、熱老化後の試験片の測定値(熱老化後の試験値)と、に基づいて、以下の式にしたがって熱老化試験前後における変化率(熱老化試験変化率)を算出した。変化率が0%に近いほど、耐熱性に優れることを示す。
 熱老化試験変化率(%)=100×{(常態試験値)-(熱老化後の試験値)}/(常態試験値)
〔離型性試験〕
 シート状の金型に、含フッ素共重合体組成物を導入して、含フッ素共重合体組成物を180℃で20分間架橋して、金型に付着した状態の架橋ゴム物品(縦100mm×横60mm×厚み1mm)を得た。架橋反応終了後、直ちに、エアーガン(製品名サイクロンダスター、中央空機株式会社製)を用いて、架橋ゴム物品と金型との界面に空気を噴射して、以下の評価基準にて、離型性の評価を行った。
 なお、架橋反応終了後、直ちに空気を噴射しているため、空気噴射時の架橋物品の温度は180℃に近い温度であると考えられる。
<エアーガンによる空気の噴射条件>
圧力:0.5MPa
空気の噴射時間:3秒
<評価基準>
○:架橋ゴム物品が金型から脱離した。
×:架橋ゴム物品が金型から脱離しなかった。
〔例1〕
<含フッ素共重合体1の製造>
 アンカー翼を備えた内容積20Lのステンレス製耐圧反応器を脱気した後、超純水の7.2L、乳化剤であるCOCFCFOCFCOONHの30質量%溶液の880g、8CNVEの7.3g、C3DVEの17.7g、リン酸水素二ナトリウム・12水和物の5質量%水溶液の15.9gを仕込み、気相を窒素置換した。アンカー翼を用いて375rpmの速度で撹拌しながら、TFEの137g、PMVEの635gを容器内に圧入した後、内温を80℃まで昇温した。反応器内圧は0.90MPa[gauge]であった。過硫酸アンモニウム(APS)の3質量%水溶液の40mLを添加し、重合を開始した。重合開始前に圧入する単量体(以下、「初期添加単量体」ともいう。)の添加比をモル比で表すと、TFE:PMVE:8CNVE:C3DVE=26.0:72.6:0.4:1.0であった。
 重合開始後、重合の進行に伴い、以下の通り単量体を圧入した。以下、重合開始後に単量体を圧入することを「後添加」、重合開始後に圧入する単量体を「後添加単量体」ともいう。
 反応器内圧が0.89MPa[gauge]に低下した時点でTFEを圧入し、反応器内圧を0.90MPa[gauge]に昇圧させた。これを繰り返し、TFEの119.3gを圧入するたびに、8CNVEの3.6g、PMVEの74g、および、8CNVEの3.6gをこの順に圧入した。
 重合速度が低下してきたところで、APSの3質量%水溶液を適宜加えた。重合開始後に加えたAPSの3質量%水溶液の合計は、51mLであった。
 TFEの総添加質量が1073.7gとなるサイクルが終了したところで、TFEの119.3gを圧入した。後添加されたTFEの総添加質量が1193gとなった時点で、後添加単量体の添加を停止し、反応器内温を10℃に冷却させ、重合反応を停止させ、含フッ素共重合体を含むラテックスを得た。重合時間は375分間であった。また、各後添加単量体の総添加質量は、TFEが1193g、PMVEが666g、8CNVEが64.8gであり、これをモル比に換算すると、TFE:PMVE:8CNVE=74.1:24.9:1.0であった。
 ラテックスを硫酸アルミニウムカリウムの5質量%水溶液に添加して、含フッ素共重合体を凝集、分離した。含フッ素共重合体を濾過し、超純水によって洗浄し、50℃で真空乾燥させ、白色の含フッ素共重合体1を得た。得られた含フッ素共重合体1における各単位の含有量(モル比)はTFE単位/PMVE単位/8CNVE単位/C3DVE単位=68.9/30.3/0.5/0.3であった。
 なお、重合後のラテックスを凝集して含フッ素共重合体を取り出した後のろ液およびラテックスの洗浄のあとに残ったろ液をディスクフィルターでろ過し、得られた液体をイオンクロマトグラフ測定装置で分析したところ、C3DVEの仕込み量に対して3質量%以上のフッ化物イオンは検出されなかった。よって、仕込みに使用したC3DVEはすべて重合されたものとして、C3DVEの仕込み量に基づいて、重合体中の全単位に対するC3DVE単位の含有量を算出した。
<含フッ素共重合体組成物1の製造>
 含フッ素共重合体1の100質量部、カーボンブラック(東海カーボン社製、シースト9)の8質量部、テトラフェニルスズ(東京化成工業社製)の3質量部、および、18-クラウン-6(富士フィルム和光純薬社製)の0.1質量部の割合で各成分を調合して、2本ロールで混練し、含フッ素共重合体組成物1を得た。
<架橋ゴム物品1の製造>
 含フッ素共重合体組成物1を180℃で20分間架橋および成型して、縦100mm×横60mm×厚み1mmの架橋ゴムシートを得た(1次架橋)。そして、窒素雰囲気下において、架橋ゴムシートを90℃で3時間加熱した後、5時間かけて305℃まで昇温し、305℃を保ったまま、さらに13時間加熱した(2次架橋)。
 得られた2次架橋後の架橋ゴムシートを室温まで冷却した後、JIS K 6251で規定された4号ダンベル状に打ち抜いて、架橋ゴム物品1の試験片を3枚得た。
〔例2~例7〕
 使用した単量体の種類、初期添加単量体の添加比、後添加単量体の添加比、後添加単量体の添加順序、後添加単量体の添加順序の繰り返し回数、重合開始剤の追加添加量、および、重合条件等を表1-1および表1-2に示す通りに変更した以外は、例1と同様にして、例2~例7における含フッ素共重合体2~7、含フッ素共重合体組成物2~7、および、架橋ゴム物品2~7の試験片を得た。
〔例8〕
<含フッ素共重合体8の製造>
 アンカー翼を備えた内容積20Lのステンレス製耐圧反応器を脱気した後、超純水の7.2L、乳化剤であるCOCFCFOCFCOONHの30質量%溶液の880g、C3DVEの17.5g、リン酸水素二ナトリウム・12水和物の5質量%水溶液の15.9gを仕込み、気相を窒素置換した。アンカー翼を用いて375rpmの速度で撹拌しながら、TFEの140g、PMVEの631gを容器内に圧入した後、内温を80℃まで昇温した。反応器内圧は0.90MPa[gauge]であった。過硫酸アンモニウム(APS)の3質量%水溶液の40mLを添加し、重合を開始した。重合開始前に圧入する単量体(以下、「初期添加単量体」ともいう。)の添加比をモル比で表すと、TFE:PMVE:C3DVE=26.7:72.4:1.0であった。
 重合の進行に伴い反応器内圧が0.89MPa[gauge]に低下した時点でTFEを圧入し、反応器内圧を0.90MPa[gauge]に昇圧させた。これを繰り返し、TFEの110gを圧入するたびに、PMVEの90gも圧入した。また、1,4-ジヨードペルフルオロブタンの7.0gを、TFEを30g圧入した時点で、超純水50mLとともにアンプル管より反応器に圧入した。重合速度が低下してきたところで、APSの3質量%水溶液を適宜加えた。重合開始後に加えたAPSの3質量%水溶液の合計は、45mLであった。
 TFEの総添加質量が990gとなるサイクルが終了したところで、TFEの110gを圧入した。後添加されたTFEの総添加質量が1100gとなった時点で、後添加単量体の添加を停止し、反応器内温を10℃に冷却させ、重合反応を停止させ、含フッ素共重合体8を含むラテックスを得た。重合時間は396分間であった。また、各後添加単量体の総添加質量は、TFEが1100g、PMVEが810gであり、これをモル比に換算すると、TFE:PMVE=69.3:30.7であった。
 例1にならい、重合後のラテックスを硫酸アルミニウムカリウムの5質量%水溶液で凝集して得られた含フッ素共重合体8における各単位のモル比は、TFE単位:PMVE単位:C3DVE単位=68.5:31.2:0.3であった。また、自動試料燃焼装置イオンクロマトフラフ用前処理装置(三菱ケミカルアナリテック社製、AQF-100型)とイオンクロマトグラフを組み合わせた装置により算出した、含フッ素共重合体8中のヨウ素原子の含有量は、0.20質量%であった。
 なお、重合後のラテックスを凝集して含フッ素共重合体を取り出した後のろ液およびラテックスの洗浄のあとに残ったろ液をディスクフィルターでろ過し、得られた液体をイオンクロマトグラフ測定装置で分析したところ、C3DVEの仕込み量に対して3質量%以上のフッ化物イオンは検出されなかった。よって、仕込みに使用したC3DVEはすべて重合されたものとして、C3DVEの仕込み量に基づいて、重合体中の全単位に対するC3DVE単位の含有量を算出した。
<含フッ素共重合体組成物8の製造>
 含フッ素共重合体8の100質量部、カーボンブラック(cancarb社製、Thermax N990)の15質量部、トリアリルイソシアヌレート(三菱ケミカル社製、TAIC WH-60)の3質量部、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキサン(日油社製、パーヘキサ25B)の1質量部、ステアリン酸カルシウム(関東化学社製)の1質量部の割合で各成分を調合して、2本ロールで混練し、含フッ素共重合体組成物8を得た。
<架橋ゴム物品8の製造>
 含フッ素共重合体組成物8について、150℃で20分間の熱プレス(一次架橋)を行った後、250℃のオーブン内で4時間の二次架橋を行い、厚さ1mmの架橋ゴムシートを得た。得られた2次架橋後の架橋ゴムシートを室温まで冷却した後、JIS K 6251で規定された4号ダンベル状に打ち抜いて、架橋ゴム物品8の試験片を3枚得た。
 各例における評価結果を表1-1および表1-2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1-1および表1-2に示す通り、TFE単位と、PAVE単位と、DVE単位と、RCN単位と、を有する含フッ素共重合体を用いれば、離型性に優れた架橋ゴム物品が得られることが確認された(例1~例6)。また、貯蔵弾性率G’が470kPa以上である含フッ素共重合体を用いれば、架橋ゴム物品の圧縮永久歪をより小さくできることが確認された(例1~例6)。
 これに対して、DVE単位またはRCN単位を有しない含フッ素共重合体を用いた場合、架橋ゴム物品の離型性が不十分であることが確認された(例7および例8)。また、DVE単位またはRCN単位を有しない含フッ素共重合体を用いて得られた架橋ゴムは、熱老化試験のために300℃に加熱すると試験片が変形したため、引張強度、100%モジュラス、引張伸度の測定ができなかった。
 なお、2019年10月30日に出願された日本特許出願2019-197115号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1.  テトラフルオロエチレンに基づく単位と、パーフルオロ(アルキルビニルエーテル)に基づく単位と、フッ素原子と2個以上の重合性不飽和結合とを有する単量体に基づく単位と、ニトリル基とフッ素原子とを有する単量体に基づく単位と、を有する、含フッ素共重合体。
  2.  貯蔵弾性率G’が470kPa以上である、請求項1に記載の含フッ素共重合体。
  3.  前記ニトリル基とフッ素原子とを有する単量体に基づく単位の含有量に対する、前記フッ素原子と2個以上の重合性不飽和結合とを有する単量体に基づく単位の含有量のモル比が、0.002~20である、請求項1または2に記載の含フッ素共重合体。
  4.  パーフルオロ(アルキルビニルエーテル)が、下記式(1)で表される単量体である、請求項1~3のいずれか1項に記載の含フッ素共重合体。
     CF=CF-O-Rf1   (1)
     式(1)中、Rf1は、炭素数1~10のパーフルオロアルキル基を示す。
  5.  前記フッ素原子と2個以上の重合性不飽和結合とを有する単量体が、下記式(2)で表される単量体である、請求項1~4のいずれか1項に記載の含フッ素共重合体。
     (CR2122=CR23a224   (2)
     式(2)中、R21、R22およびR23はそれぞれ独立に、水素原子、フッ素原子、メチル基またはトリフルオロメチル基を示し、a2は2~6の整数を示し、R24は、a2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。複数のR21、複数のR22および複数のR23はそれぞれ、互いに同一であっても異なっていてもよい。
  6.  前記式(2)で表される単量体が、下記式(3)で表される単量体、または下記式(4)で表される単量体である、請求項5に記載の含フッ素共重合体。
     (CF=CF)31   (3)
     式(3)中、R31は、2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
     (CH=CH)41   (4)
     式(4)中、R41は、2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
  7.  前記ニトリル基とフッ素原子とを有する単量体が、下記式(5)で表される単量体である、請求項1~6のいずれか1項に記載の含フッ素共重合体。
     CR5152=CR53-R54-CN   (5)
     式(5)中、R51、R52およびR53はそれぞれ独立に、水素原子、フッ素原子またはメチル基を示し、R54は、2価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
  8.  含フッ素共重合体の全単位に対して、テトラフルオロエチレンに基づく単位の含有量が、59~80モル%であり、パーフルオロ(アルキルビニルエーテル)に基づく単位の含有量が、19~40モル%であり、フッ素原子と2個以上の重合性不飽和結合とを有する単量体に基づく単位の含有量が、0.01~1.0モル%であり、ニトリル基とフッ素原子とを有する単量体に基づく単位の含有量が、0.05~5モル%である、請求項1~7のいずれか1項に記載の含フッ素共重合体。
  9.  含フッ素共重合体が、ヨウ素原子を有する、請求項1~8のいずれか1項に記載の含フッ素共重合体。
  10.  請求項1~9のいずれか1項に記載の含フッ素共重合体と、架橋剤および触媒のうち少なくとも一方を含む、含フッ素共重合体組成物。
  11.  離型剤を実質的に含まない、請求項10に記載の含フッ素共重合体組成物。
  12.  請求項10または11に記載の含フッ素共重合体組成物中の含フッ素共重合体を架橋してなる、架橋ゴム物品。
PCT/JP2020/040280 2019-10-30 2020-10-27 含フッ素共重合体、含フッ素共重合体組成物および架橋ゴム物品 WO2021085423A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021553628A JPWO2021085423A1 (ja) 2019-10-30 2020-10-27
EP20882464.9A EP4053176A4 (en) 2019-10-30 2020-10-27 FLUORINE-CONTAINING COPOLYMER, FLUORINE-CONTAINING COPOLYMER COMPOSITION, AND CROSS-LINKED RUBBER ARTICLE
KR1020227009773A KR20220094190A (ko) 2019-10-30 2020-10-27 함불소 공중합체, 함불소 공중합체 조성물 및 가교 고무 물품
CN202080076473.3A CN114630845A (zh) 2019-10-30 2020-10-27 含氟共聚物、含氟共聚物组合物及交联橡胶物品
US17/658,271 US20220227908A1 (en) 2019-10-30 2022-04-07 Fluorinated copolymer, fluorinated copolymer composition, and crosslinked rubber article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-197115 2019-10-30
JP2019197115 2019-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/658,271 Continuation US20220227908A1 (en) 2019-10-30 2022-04-07 Fluorinated copolymer, fluorinated copolymer composition, and crosslinked rubber article

Publications (1)

Publication Number Publication Date
WO2021085423A1 true WO2021085423A1 (ja) 2021-05-06

Family

ID=75716007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040280 WO2021085423A1 (ja) 2019-10-30 2020-10-27 含フッ素共重合体、含フッ素共重合体組成物および架橋ゴム物品

Country Status (7)

Country Link
US (1) US20220227908A1 (ja)
EP (1) EP4053176A4 (ja)
JP (1) JPWO2021085423A1 (ja)
KR (1) KR20220094190A (ja)
CN (1) CN114630845A (ja)
TW (1) TW202124475A (ja)
WO (1) WO2021085423A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220180A1 (ja) * 2021-04-12 2022-10-20 Agc株式会社 含フッ素共重合体、含フッ素共重合体の製造方法、含フッ素共重合体組成物および架橋ゴム物品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833657B2 (ja) 1976-08-11 1983-07-21 富士通株式会社 走査型電子顕微鏡
JPH06263952A (ja) 1993-01-14 1994-09-20 Nippon Mektron Ltd 含フッ素エラストマ−組成物
JPH11510495A (ja) * 1995-07-26 1999-09-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フッ素化アルケニルトリアジン類及び架橋剤としてのそれらの使用
JP2008031195A (ja) * 2006-07-26 2008-02-14 Yunimatekku Kk 接着剤塗布金属積層用含フッ素エラストマー
JP2009529070A (ja) * 2006-03-03 2009-08-13 スリーエム イノベイティブ プロパティズ カンパニー フルオロポリマー硬化組成物
WO2010082633A1 (ja) 2009-01-16 2010-07-22 旭硝子株式会社 含フッ素弾性共重合体およびその製造方法、架橋ゴム物品
JP2019500469A (ja) * 2015-12-30 2019-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company ペルフルオロトリビニルトリアジン化合物のコポリマー及び該コポリマーの合成方法
JP2019197115A (ja) 2018-05-08 2019-11-14 Necディスプレイソリューションズ株式会社 マルチ映像システム、表示装置、及び表示方法
WO2020114972A1 (en) * 2018-12-06 2020-06-11 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomer composition for high thermal rating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3650476A4 (en) * 2017-07-05 2021-03-24 AGC Inc. ELASTIC COPOLYMER CONTAINING FLUORINE, COMPOSITION OF IT AND CROSS-LINKED RUBBER ITEMS

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833657B2 (ja) 1976-08-11 1983-07-21 富士通株式会社 走査型電子顕微鏡
JPH06263952A (ja) 1993-01-14 1994-09-20 Nippon Mektron Ltd 含フッ素エラストマ−組成物
JPH11510495A (ja) * 1995-07-26 1999-09-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フッ素化アルケニルトリアジン類及び架橋剤としてのそれらの使用
JP2009529070A (ja) * 2006-03-03 2009-08-13 スリーエム イノベイティブ プロパティズ カンパニー フルオロポリマー硬化組成物
JP2008031195A (ja) * 2006-07-26 2008-02-14 Yunimatekku Kk 接着剤塗布金属積層用含フッ素エラストマー
WO2010082633A1 (ja) 2009-01-16 2010-07-22 旭硝子株式会社 含フッ素弾性共重合体およびその製造方法、架橋ゴム物品
JP2019500469A (ja) * 2015-12-30 2019-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company ペルフルオロトリビニルトリアジン化合物のコポリマー及び該コポリマーの合成方法
JP2019197115A (ja) 2018-05-08 2019-11-14 Necディスプレイソリューションズ株式会社 マルチ映像システム、表示装置、及び表示方法
WO2020114972A1 (en) * 2018-12-06 2020-06-11 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomer composition for high thermal rating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053176A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220180A1 (ja) * 2021-04-12 2022-10-20 Agc株式会社 含フッ素共重合体、含フッ素共重合体の製造方法、含フッ素共重合体組成物および架橋ゴム物品

Also Published As

Publication number Publication date
TW202124475A (zh) 2021-07-01
EP4053176A1 (en) 2022-09-07
JPWO2021085423A1 (ja) 2021-05-06
CN114630845A (zh) 2022-06-14
US20220227908A1 (en) 2022-07-21
EP4053176A4 (en) 2023-12-06
KR20220094190A (ko) 2022-07-05

Similar Documents

Publication Publication Date Title
JP5321580B2 (ja) 含フッ素弾性共重合体及び製造方法
TWI815105B (zh) 含氟共聚物組成物及交聯橡膠物品
WO2010053056A1 (ja) 含フッ素弾性共重合体、その製造方法および架橋ゴム
US20220356339A1 (en) Fluorinated copolymer composition and crosslinked rubber article
WO2021085423A1 (ja) 含フッ素共重合体、含フッ素共重合体組成物および架橋ゴム物品
KR102571309B1 (ko) 옥사졸을 포함하는 퍼플루오로탄성중합체 조성물
WO2021166664A1 (ja) 含フッ素共重合体組成物及びその架橋体、並びに化合物
WO2020184429A1 (ja) 組成物、架橋ゴムおよびその製造方法
WO2020184432A1 (ja) 架橋ゴム
JP7400805B2 (ja) 含フッ素共重合体組成物、架橋ゴムおよびその製造方法
US20200109226A1 (en) Fluorinated elastic copolymer composition and crosslinked rubber article
US20240026048A1 (en) Fluorinated copolymer, method for producing fluorinated copolymer, fluorinated copolymer composition and cross-linked rubber article
JP2009029892A (ja) 含フッ素弾性共重合体組成物およびその架橋ゴム部材
WO2024143284A1 (ja) 含フッ素共重合体組成物及びその架橋物
WO2021079849A1 (ja) 含フッ素共重合体組成物および架橋ゴム物品
JP2022165790A (ja) 含フッ素共重合体組成物、架橋ゴム物品、及び架橋ゴム物品の製造方法
WO2023149500A1 (ja) 積層体及び前駆体積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020882464

Country of ref document: EP

Effective date: 20220530