WO2021085382A1 - 反射型マスクブランクおよび反射型マスク - Google Patents

反射型マスクブランクおよび反射型マスク Download PDF

Info

Publication number
WO2021085382A1
WO2021085382A1 PCT/JP2020/040115 JP2020040115W WO2021085382A1 WO 2021085382 A1 WO2021085382 A1 WO 2021085382A1 JP 2020040115 W JP2020040115 W JP 2020040115W WO 2021085382 A1 WO2021085382 A1 WO 2021085382A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
absorption layer
reflective mask
mask blank
reflective
Prior art date
Application number
PCT/JP2020/040115
Other languages
English (en)
French (fr)
Inventor
容由 田邊
博 羽根川
俊之 宇野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to KR1020247006841A priority Critical patent/KR20240033148A/ko
Priority to KR1020227013985A priority patent/KR102644109B1/ko
Priority to JP2021553606A priority patent/JP7363913B2/ja
Publication of WO2021085382A1 publication Critical patent/WO2021085382A1/ja
Priority to US17/658,763 priority patent/US11914283B2/en
Priority to JP2023162137A priority patent/JP7544222B2/ja
Priority to US18/417,352 priority patent/US20240176225A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/52Reflectors

Definitions

  • the present invention relates to a reflective mask utilizing the phase shift effect and a reflective mask blank from which the reflective mask can be obtained.
  • Etreme Ultra Violet as an exposure method alternative to the conventional exposure technique using visible light or ultraviolet light (wavelength 365 to 193 nm), “ It is called “EUV”.) Lithography is being considered.
  • EUV light having a shorter wavelength than ArF excimer laser light is used as the light source used for exposure.
  • the EUV light refers to light having a wavelength in the soft X-ray region or the vacuum ultraviolet region, and specifically, light having a wavelength of about 0.2 to 100 nm.
  • EUV light used for EUV lithography for example, EUV light having a wavelength ⁇ of about 13.5 nm is used.
  • EUV light is easily absorbed by many substances, so the refractive optics system used in conventional exposure technology cannot be used. Therefore, in EUV lithography, a reflective optical system such as a reflective mask or a mirror is used. In EUV lithography, a reflective mask is used as a transfer mask.
  • a reflective layer that reflects EUV light is formed on the substrate, and an absorption layer that absorbs EUV light is formed in a pattern on the reflective layer.
  • the reflective mask uses a reflective mask blank formed by laminating a reflective layer and an absorbent layer on a substrate in this order from the substrate side as a base plate, and removes a part of the absorbent layer to form a predetermined pattern. You can get it.
  • EUV light incident on the reflective mask is absorbed by the absorbing layer and reflected by the reflective layer.
  • the reflected EUV light is imaged on the surface of the exposure material (wafer coated with resist) by the optical system.
  • the opening of the absorption layer is transferred to the surface of the exposure material.
  • EUV lithography EUV light is usually incident on the reflective mask from a direction inclined by about 6 ° and is reflected obliquely as well.
  • TaN, TaBN shown in Patent Document 1, and the like have been used as the material of the absorption layer. These materials are usually used under the conditions of a reflectance of 2% or less and a film thickness of 60 nm or more under EUV light. Optically, it corresponds to the condition of a binary mask, and its effect as a phase shift mask is small.
  • the transmittance of the absorption layer By adjusting the transmittance of the absorption layer, it is possible to obtain a reflective mask that utilizes the phase shift effect.
  • the absorbing layer transmits light slightly, and the reflected light of the absorbing layer has a phase difference with the light reflected by the opening.
  • a reflective mask By using a reflective mask utilizing such a phase shift effect, the contrast of the optical image on the wafer is improved and the exposure margin is increased.
  • Patent Document 2 uses TaNb as the material of the absorbing layer.
  • the optimum value of the reflectance of the absorbing layer is set to 4 to 15% as a relative value with the reflectance of the opening. This value is close to the optimum value of the transmittance of the conventional ArF phase shift mask. Since the reflectance of the opening is usually about 65%, the optimum value of the reflectance of the absorption layer is 2.5 to 10% in absolute value.
  • the optimum value of the phase difference of the reflective mask using the phase shift is set to 175 to 185 degrees. This range includes 180 degrees, which is the optimum value of the phase difference of the conventional ArF phase shift mask.
  • FIG. 3A shows an example of the reflected light intensity distribution in the reflective mask using the phase shift effect
  • FIG. 3B shows an example of the reflected light phase distribution in the reflective mask. It is a figure.
  • the horizontal axes of FIGS. 3 (a) and 3 (b) indicate the positions in the width direction of the pattern when the position of the center of the pattern having a width of 64 nm is 0 nm.
  • the reflected light intensity is maximized at the center of the pattern and continuously decreases toward the end (pattern edge) in the width direction of the pattern.
  • the phase of the reflected light becomes a minimum at the center of the pattern, and the phase of the reflected light continuously changes toward the pattern edge. Due to this effect, the effective phase difference shifts. Therefore, in the case of the reflective mask, the optimum value of the phase difference of the absorbing layer is different from 180 degrees.
  • the optical image intensity at the time of exposure is high because the exposure time is shortened and the throughput is advantageous. Therefore, it is preferable that the peak light intensity at the time of exposure is high.
  • An object of the present invention is to provide a reflective mask for EUV lithography having a large phase shift effect and a high peak light intensity at the time of exposure, and a reflective mask blank for EUV lithography from which the reflective mask can be obtained.
  • the present inventor has found a condition for the thickness of an absorption layer having a large phase shift effect and a high peak light intensity at the time of exposure in a reflective mask for EUV lithography. It was.
  • NILS Normalized Image Log Slope, standardized image log slope
  • NILS corresponds to the contrast of the optical image on the wafer.
  • NILS is maximized when the absorption layer film thickness is 72 nm, and the phase shift effect is also maximized at this time.
  • FIG. 4B shows the result of simulating the absorption layer film thickness dependence of the phase difference under the same conditions as above.
  • the phase difference is about 210 degrees when the film thickness is 72 nm. This is because, as described above, the optimum value of the phase difference deviates from 180 degrees due to the influence of the continuous change of the phase of the reflected light toward the pattern edge. Since NILS is maximized at a film thickness of 72 nm, the effective phase difference is considered to be close to 180 degrees.
  • FIG. 4C shows the result of simulating the film thickness dependence of the reflectance of the absorbing layer under the same conditions as above.
  • the reflectance is maximized when the film thickness is 72 nm.
  • the condition for maximizing the phase shift effect is when the effective phase difference is about 180 degrees and at the same time the reflectance is maximized. Therefore, the maximum value of NILS and the maximum value of reflectance match.
  • NILS phase difference
  • reflectance vibrate as the film thickness of the absorbing layer increases.
  • the reason why such a phenomenon occurs is that, as shown in FIG. 5, interference occurs between the reflected light 100 from the reflecting layer 20 and the reflected light 200 on the surface of the absorbing layer 40.
  • the maximum value of the reflectance corresponds to a position where interference is strengthened, that is, when the phases of the reflected light 100 and the reflected light 200 are aligned.
  • the condition that the phases of the reflected light 100 and the reflected light 200 are aligned is obtained as follows. First, considering only the optical path length difference in the absorption layer 40, the condition that the phases of the reflected light 100 and the reflected light 200 are aligned is expressed by the following equation (1), where d is the film thickness of the absorption layer 40. .. In the above equation (1), N is an integer, ⁇ is the wavelength, n is the refractive index of the absorption layer 40, and ⁇ is the angle of incidence. In the case of the reflective mask for EUV lithography, the wavelength ⁇ is 13.53 nm and the incident angle ⁇ is 6 °.
  • the phase shift on each reflecting surface is considered.
  • the reflected light 100 is reflected inside the reflective layer 20.
  • the phase shift at this time is ⁇ 0.64 radians according to the numerical calculation.
  • the phase shift is tan -1 ( ⁇ k / (1-n)).
  • n is the refractive index of the absorption layer 40 at a wavelength of 13.53 nm
  • k is the absorption coefficient of the absorption layer 40 at the same wavelength.
  • the condition for aligning the phases of the reflected light 100 and the reflected light 200 is given by the following equation (2) in consideration of the phase shift on the reflecting surface.
  • the above equation (2) is a condition in which the reflected light 100 and the reflected light 200 are in phase with each other, that is, a condition in which the reflectance has a maximum value.
  • the more effective phase difference needs to be about 180 degrees.
  • the phase difference of the absorption layer 40 is about 210 degrees as shown in FIG. 4 (b).
  • the difference in optical path length from that in vacuum when light reciprocates in the absorption layer 40 is 2 (1-n) d.
  • Equation (3) the film thickness of the absorption layer having the maximum value of NILS is approximately the following equation (3).
  • Equation (4) is a condition that the film thickness of the absorption layer should be satisfied in order to maximize the phase shift effect.
  • FIG. 7 (a) shows the result of calculating the film thickness dependence of NILS by simulation
  • FIG. 7 (b) shows the result of obtaining the film thickness dependence of peak light intensity by simulation
  • FIG. 7 (c) shows the result. The result of simulating the film thickness dependence of the phase difference is shown.
  • the thickness d MAX of the absorber layer NILS which is obtained by the above becomes the maximum value.
  • the exposure conditions are the same as in FIG. Thickness d MAX of the absorber layer becomes 72.3nm than (4).
  • the peak light intensity at the time of exposure increases as the film thickness becomes thinner.
  • NILS reaches its maximum when the film thickness of the absorption layer is d MAX , and has a peak at d MAX -6 nm.
  • the light intensity at the film thickness d MAX -6 nm is 6% higher than the light intensity at the film thickness d MAX.
  • the optimum value of the film thickness of the absorption layer is either d MAX or d MAX -6 nm.
  • the phase difference at the film thickness d MAX is 210 degrees
  • the phase difference at the film thickness d MAX -6 nm is 203 degrees, both of which are far from 180 degrees.
  • the optimum value of the phase difference is 190 to 220 degrees.
  • NILS at a film thickness with a phase difference of 180 degrees is off the peak, and it can be seen that the phase difference of 180 degrees is not the optimum value for the film thickness of the absorption layer.
  • the film thickness varies by about + -1 nm.
  • the variation in the peak wavelength of the reflected light spectrum is about + ⁇ 0.1 nm. Therefore, if the film thickness d (nm) of the absorption layer satisfies d MAX -1 nm ⁇ d ⁇ d MAX + 1 nm, or (d MAX -6 nm) -1 nm ⁇ d ⁇ (d MAX -6 nm) + 1 nm, the phase shift The effect is large and the peak light intensity during exposure is high.
  • equations can be summarized as the following equation (5).
  • the integer i is 0 or 1.
  • the absorption layer 40 is composed of two layers, a lower absorption layer 41 and an upper absorption layer 42.
  • interference occurs between the reflected light 100 from the reflecting layer 20 and the reflected light 202 on the surface of the upper absorbing layer 42. Since the reflected light 202 is reflected on the surface of the upper absorption layer 42, the phase shift is tan -1 ( ⁇ k 2 / (1-n 2 )).
  • k 2 is the absorption coefficient of the upper absorption layer 42 at a wavelength of 13.53 nm
  • n 2 is the refractive index of the upper absorption layer at the same wavelength.
  • the condition that the phases of the reflected light 100 and the reflected light 200 are aligned is given by the following equation (6), where the film thickness of the absorbing layer 40 composed of two layers is d bi and the phase shift on the reflecting surface is taken into consideration.
  • the maximum value of the film thickness d bi MAX is approximately the following equation (7).
  • the film thickness d bi (nm) of the absorption layer 40 composed of two layers is d bi MAX -1 nm ⁇ d bi ⁇ d bi MAX + 1 nm, or (d bi MAX -6 nm) -1 nm ⁇ d bi ⁇ (d). If bi MAX -6 nm) + 1 nm is satisfied, the phase shift effect is large and the peak light intensity during exposure is high.
  • the integer i is 0 or 1.
  • d MAX is highly dependent on the refractive index n of the absorbing layer.
  • d bi MAX largely depends on the refractive index n 1 of the lower absorption layer and the refractive index n 2 of the upper absorption layer.
  • n, n 1 , and n 2 it is difficult to frequently measure n, n 1 , and n 2 as a control during the production of mask blanks.
  • a method using a spectrum of reflected light can be considered. The spectrum of reflected light can be measured using a commercially available device.
  • the peak wavelength ⁇ MAX is 13.53 nm and 13.63 nm, respectively.
  • the peak wavelength ⁇ MAX of the reflected light can be used as a reference for controlling the film thickness of the absorption layer.
  • the peak wavelength ⁇ MAX is (13.53-0.1) nm ⁇ ⁇ MAX ⁇ (13.53 + 0.1) nm, or (13.63-0.1) nm ⁇ ⁇ MAX ⁇ (13.63 + 0). .1) If nm is satisfied, the phase shift effect is large and the peak light intensity at the time of exposure is high.
  • phase shift effect is improved by using the reflective mask of the present invention. Further, by using the reflective mask of the present invention, the peak light intensity at the time of exposure is increased, the contrast of the optical image on the wafer is improved while ensuring the throughput, and the exposure margin is increased.
  • (A) is a diagram showing an example of the intensity distribution of the reflected light in the reflective mask using the phase shift effect
  • (b) is a diagram showing an example of the phase distribution of the reflected light in the reflective mask.
  • (A) is a diagram simulating the absorption layer film thickness dependence of NILS
  • (b) is a diagram simulating the absorption layer film thickness dependence of the phase difference
  • (c) is a diagram simulating the absorption layer film thickness of the reflectance. It is the figure which simulated the dependency.
  • (A) is a diagram showing the relationship between the absorption layer film thickness and the reflectance
  • (b) is a diagram showing the reflected light spectrum when the absorption layer film thickness is d MAX
  • (c) is a diagram showing the reflected light spectrum. It is a figure which showed the reflected light spectrum when the film thickness of the absorption layer is d MAX -6 nm.
  • (A) is a diagram showing the relationship between the absorption layer film thickness ⁇ d MAX and NILS for Examples 1 and 2
  • (b) is a diagram showing the relationship between the absorption layer film thickness ⁇ d MAX and the peak for Examples 1 and 2. It is a figure which showed the relationship with light intensity.
  • (A) is a diagram showing the relationship between the absorption layer film thickness ⁇ d MAX and NILS for Example 1, Example 3, and Example 4, and (b) is a diagram showing the relationship between the absorption layer film thickness ⁇ d MAX and NILS for Example 1, Example 3, and Example 4. It is a figure which showed the relationship between the thickness
  • (A) is a diagram showing the reflected light spectrum when the thickness of the absorption layer is dMAX for Examples 1, 3 and 4, and (b) is the absorption layer for Example 1, Example 3 and Example 4. It is a figure which showed the reflected light spectrum at the film thickness of d MAX -6 nm.
  • FIG. 1 is a schematic cross-sectional view of a configuration example of a reflective mask blank according to an embodiment of the present invention.
  • the reflective mask blank is configured by laminating a reflective layer 20, a protective layer 30, and an absorbing layer 40 in this order on a substrate 10.
  • FIG. 2 is a schematic cross-sectional view of another configuration example of the reflective mask blank according to the embodiment of the present invention.
  • the reflective mask blank is configured by laminating a reflective layer 20, a protective layer 30, a lower absorption layer 41, and an upper absorption layer 42 on a substrate 10 in this order.
  • the absorption layer 40 is composed of two layers, a lower absorption layer 41 and an upper absorption layer 42.
  • the substrate 10 preferably has a small coefficient of thermal expansion.
  • the coefficient of thermal expansion of the substrate 10 is preferably 0 ⁇ 1.0 ⁇ 10 -7 / ° C., more preferably 0 ⁇ 0.3 ⁇ 10 -7 / ° C. at 20 ° C.
  • SiO 2- TiO 2 glass As a material having a small coefficient of thermal expansion, for example, SiO 2- TiO 2 glass or the like can be used.
  • the SiO 2 -TiO 2 type glass a SiO 2 90 ⁇ 95 wt%, it is preferable to use a quartz glass containing TiO 2 5 ⁇ 10% by weight.
  • the coefficient of linear expansion near room temperature is substantially zero, and there is almost no dimensional change near room temperature.
  • the SiO 2- TiO 2 system glass may contain trace components other than SiO 2 and TiO 2.
  • the surface of the substrate 10 on which the reflective layer 20 is laminated (hereinafter referred to as "main surface") preferably has high smoothness.
  • the smoothness of the main surface can be measured with an atomic force microscope and evaluated by the surface roughness.
  • the surface roughness of the main surface is a root mean square roughness Rq, preferably 0.15 nm or less.
  • the main surface is surface-processed so as to have a predetermined flatness. This is because the reflective mask obtains high pattern transfer accuracy and position accuracy.
  • the flatness of the substrate 10 is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less in a predetermined region (for example, a region of 132 mm ⁇ 132 mm) on the main surface.
  • the substrate 10 has resistance to a cleaning liquid used for cleaning a reflective mask blank, a reflective mask blank after pattern formation, or a reflective mask.
  • the substrate 10 preferably has high rigidity in order to prevent deformation of the film (reflection layer 20, etc.) formed on the substrate 10 due to film stress.
  • the substrate 10 preferably has a high Young's modulus of 65 GPa or more.
  • the reflective layer 20 has a high reflectance for EUV light. Specifically, when EUV light is incident on the surface of the reflective layer at an incident angle of 6 °, the maximum value of the reflectance of EUV light near a wavelength of 13.5 nm is preferably 60% or more, more preferably 65% or more. .. Similarly, even when the protective layer is laminated on the reflective layer, the maximum value of the reflectance of EUV light having a wavelength of around 13.5 nm is preferably 60% or more, more preferably 65% or more.
  • the reflective layer 20 is preferably a multilayer reflective film in which a plurality of layers containing elements having different refractive indexes as main components with respect to EUV light are periodically laminated.
  • the reflective layer is a multilayer reflective film.
  • the multilayer reflective film may be laminated for a plurality of cycles with a laminated structure in which a high refractive index layer and a low refractive index layer are laminated in this order from the substrate 10 side as one cycle, or may be a low refractive index layer and a high refractive index layer. May be laminated in a plurality of cycles with the laminated structure in which the above is laminated in this order as one cycle.
  • the high refractive index layer a layer containing Si can be used. By using a high refractive index layer containing Si, a reflective mask having excellent reflectance of EUV light can be obtained.
  • a metal selected from the group consisting of Mo, Ru, Rh and Pt or an alloy thereof can be used. In the present embodiment, it is preferable that the low refractive index layer is a layer containing Mo and the high refractive index layer is a layer containing Si.
  • the multilayer reflective film includes a plurality of high refractive index layers and a plurality of low refractive index layers, but the film thickness of the high refractive index layers or the film thickness of the low refractive index layers does not necessarily have to be the same.
  • the film thickness and period of each layer constituting the multilayer reflective film can be appropriately selected depending on the film material used, the reflectance of EUV light required for the reflective layer, the wavelength of EUV light (exposure wavelength), and the like. For example, when the maximum value of the reflectance of EUV light having a wavelength of about 13.5 nm is 60% or more, the low refractive index layer (layer containing Mo) and the high refractive index layer (layer containing Si) are used. Mo / Si multilayer reflective films laminated alternately for 30 to 60 cycles are preferably used.
  • Each layer constituting the multilayer reflective film can be formed into a desired thickness by using a known film forming method such as a magnetron sputtering method or an ion beam sputtering method.
  • a known film forming method such as a magnetron sputtering method or an ion beam sputtering method.
  • ion particles are supplied from an ion source to a target of a high refractive index material and a target of a low refractive index material.
  • the protective layer 30 etches (usually dry-etches) the absorption layer 40 (lower absorption layer 41, upper absorption layer 42) to apply the absorber pattern 60 to the absorption layer 40 at the time of manufacturing the reflective mask shown in FIG. When formed, it protects the surface of the reflective layer 20 from damage due to etching. Further, the resist remaining on the reflective mask blank after etching is peeled off with a cleaning liquid to protect the reflective layer 20 from the cleaning liquid when cleaning the reflective mask blank. Therefore, the reflectance of the obtained reflective mask to EUV light is good.
  • FIGS. 1 and 2 show the case where the protective layer 30 is one layer
  • the protective layer 30 may be a plurality of layers.
  • the material for forming the protective layer 30 a substance that is not easily damaged by etching when the absorbing layer 40 is etched is selected.
  • one or more metals selected from the group consisting of elemental Ru metal, Ru, B, Si, Ti, Nb, Mo, Zr, Y, La, Co, and Re can be used.
  • Ru metal and Ru alloy CrN and SiO 2 are preferable.
  • the Ru metal simple substance and the Ru alloy are particularly preferable because they are difficult to be etched with respect to a gas containing no oxygen and function as an etching stopper during processing of the reflective mask.
  • the film thickness of the protective layer 30 is not particularly limited as long as it can function as the protective layer 30.
  • the film thickness of the protective layer 30 is preferably 1 to 8 nm, more preferably 1.5 to 6 nm, and even more preferably 2 to 5 nm from the viewpoint of maintaining the reflectance of the EUV light reflected by the reflective layer 20.
  • a known film forming method such as a sputtering method or an ion beam sputtering method can be used.
  • the absorption layer 40 preferably has characteristics such as a high absorption coefficient of EUV light, easy etching, and high cleaning resistance to a cleaning liquid for use in a reflective mask for EUV lithography.
  • the absorption layer 40 absorbs EUV light, and the reflectance of EUV light is extremely low. However, if the reflectance of EUV light is too low, the phase shift effect is reduced. Therefore, when the surface of the absorption layer 40 is irradiated with EUV light, the reflectance of EUV light having a wavelength of around 13.53 nm is 2. It is 5 to 10%.
  • the reflectance can be measured using an EUV reflectance meter for mask blanks (MBR, manufactured by AIXUV).
  • the absorption layer 40 is processed by etching by dry etching using Cl-based gas or CF-based gas. Therefore, it is preferable that the absorption layer 40 can be easily etched.
  • the absorption layer 40 is exposed to the cleaning liquid when the resist pattern remaining on the reflective mask blank after etching is removed by the cleaning liquid at the time of manufacturing the reflective mask described later.
  • the cleaning liquid sulfuric acid hydrogen peroxide (SPM), sulfuric acid, ammonia, ammonia hydrogen peroxide (APM), OH radical cleaning water, ozone water and the like are used.
  • a Ta-based material is preferably used as the material of the absorption layer 40.
  • N, O, or B By adding N, O, or B to Ta, resistance to oxidation can be improved and stability over time can be improved.
  • the absorption layer 40 is laminated with a two-layer structure, for example, a TaON film as a lower absorption layer 41 and a TaON film as an upper absorption layer 42. It is also preferable to have a structure in which the structure is formed.
  • the absorption layer 40 in the present invention contains one or more elements selected from the group consisting of Ta, Nb, Mo, Ti, Zr, Re, Ru, Au, Pt, Pd, Rh, B, N, and O. It is preferable to contain it.
  • the thin film can be thinned when used as a phase shift mask. Further, by adding Ta, N, O, and B to these materials, cleaning resistance and stability over time can be improved.
  • the absorption layer 40 is preferably amorphous in crystal state. Thereby, the absorption layer 40 can have excellent smoothness and flatness. Further, by improving the smoothness and flatness of the absorbent layer 40, the edge roughness of the absorbent pattern 60 can be reduced during the production of the reflective mask shown in FIG. 9, and the dimensional accuracy of the absorbent pattern 60 can be improved. ..
  • the absorption layer 40 is a single layer as in the reflective mask blank shown in FIG. 1, the number of steps during mask blank manufacturing can be reduced and the production efficiency can be improved.
  • the absorption layer 40 is composed of two layers, the lower absorption layer 41 and the upper absorption layer 42, as in the reflective mask blank shown in FIG. 2, the optical constant and the film thickness of the upper absorption layer 42 are appropriately set. Therefore, it can be used as an antireflection film when inspecting the absorber pattern 60 using the inspection light at the time of manufacturing the reflective mask shown in FIG. Thereby, the inspection sensitivity at the time of inspection of the absorber pattern can be improved. Further, when a material containing oxygen is used for the upper absorption layer 42, cleaning resistance and stability are improved.
  • the reflective mask blank of the present invention may have a hard mask layer on the absorption layer 40.
  • the hard mask layer in the present invention preferably contains at least one element of Cr and Si.
  • a material having high resistance to etching such as a Cr-based film containing Cr or a Si-based film containing Si, specifically, for dry etching using Cl-based gas or CF-based gas.
  • a material with high resistance is used.
  • the Cr-based film include Cr and a material obtained by adding O or N to Cr. Specific examples thereof include CrO, CrN, and CrON.
  • the Si-based film include Si and a material obtained by adding one or more selected from the group consisting of O, N, C, and H to Si.
  • the Si-based film is preferable because the side wall is unlikely to recede when the absorption layer 40 is dry-etched.
  • dry etching can be performed even when the minimum line width of the absorber pattern 60 is reduced during the production of the reflective mask shown in FIG. Therefore, it is effective for miniaturization of the absorber pattern 60.
  • the reflective mask blank of the present invention can be provided with a back surface conductive layer for an electrostatic chuck on a main surface (hereinafter, referred to as a back surface) opposite to the side on which the reflection layer 20 of the substrate 10 is laminated.
  • the back surface conductive layer is required to have a low sheet resistance value as a characteristic.
  • the sheet resistance value of the back surface conductive layer is, for example, 250 ⁇ / ⁇ or less, preferably 200 ⁇ / ⁇ or less.
  • a metal such as Cr or Ta, or an alloy thereof can be used.
  • a Cr compound containing one or more selected from the group consisting of B, N, O, and C in Cr can be used.
  • a Ta compound containing one or more selected from the group consisting of B, N, O, and C in Ta can be used.
  • the film thickness of the back surface conductive layer is not particularly limited as long as it satisfies the function for the electrostatic chuck, but is, for example, 10 to 400 nm.
  • the back surface conductive layer can also be provided with stress adjustment on the back surface side of the reflective mask blank. That is, the back surface conductive layer can be adjusted so as to flatten the reflective mask blank by balancing the stress from various layers formed on the main surface side.
  • a known film forming method such as a magnetron sputtering method or an ion beam sputtering method can be used.
  • the back surface conductive layer can be formed on the back surface of the substrate, for example, before the reflection layer is formed.
  • FIG. 9 is a schematic cross-sectional view showing an example of the configuration of the reflective mask.
  • the reflective mask shown in FIG. 9 has a desired absorber pattern 60 formed on the absorption layer 40 (lower absorption layer 41, upper absorption layer 42) of the reflection type mask blank shown in FIG.
  • the absorber pattern is formed by a usual processing method, that is, resist coating, exposure, development, and etching on a reflective mask blank.
  • an absorber pattern is formed in the single absorbent layer.
  • Examples 1, 3 and 4 are examples, and example 2 is a comparative example.
  • Example 1 As a substrate for film formation, a SiO 2- TiO 2 system glass substrate (outer shape: about 152 mm square, thickness: about 6.3 mm) was used. The coefficient of thermal expansion of the glass substrate is 0.02 ⁇ 10 -7 / ° C or less. The glass substrate was polished to process a smooth surface having a surface roughness of 0.15 nm or less in a root mean square roughness Rq and a flatness of 100 nm or less. A Cr layer having a thickness of about 100 nm was formed on the back surface of the glass substrate by using a magnetron sputtering method to form a back surface conductive layer for an electrostatic chuck. The sheet resistance value of the Cr layer was about 100 ⁇ / ⁇ .
  • the Si film and the Mo film are alternately formed on the front surface of the substrate by an ion beam sputtering method for 40 cycles.
  • the film thickness of the Si film is about 4.0 nm
  • the film thickness of the Mo film is about 3.0 nm.
  • a reflective layer multilayer reflective film having a total film thickness of about 280 nm ((Si film: 4.0 nm + Mo film: 3.0 nm) ⁇ 40) was formed.
  • a Ru layer thickness: about 2.5 nm
  • the reflectance at a wavelength of 13.53 nm was 64%.
  • a TaNb film was formed as an absorption layer on the protective layer.
  • XRR X-ray reflectivity method
  • SmartLab HTP manufactured by Rigaku Co., Ltd.
  • the relationship between the thickness of the absorbent layer of the reflective mask blank and the reflectance was measured.
  • the reflectance was measured using an EUV reflectance meter for mask blanks (MBR, manufactured by AIXUV).
  • the wavelength of EUV light was 13.53 nm.
  • the relationship between the thickness of the absorbing layer and the reflectance is shown in FIG. 10 (a).
  • the absorption layer has a peak reflectance of 3.2% near a film thickness of 72 nm. This reflectance satisfies the condition of 2.5% or more and 10% or less as a phase shift mask.
  • FIG. 10A shows the simulation results together with the measured values.
  • the refractive index n at a wavelength of 13.53 nm was 0.945
  • the absorption coefficient k at the same wavelength was 0.0236.
  • FIG. 10 (b) shows the reflected light spectrum when the film thickness is d MAX
  • FIG. 10 (c) shows the reflected light spectrum when the film thickness is d MAX -6 nm. It can be seen that the measured values and the simulation results are in good agreement.
  • the reflected light spectrum can be used to control the film thickness of the phase shift mask.
  • Example 2 As the absorption layer, a TaN film was used instead of the TaNb film. If the refractive index n at a wavelength of 13.53nm 0.947, and 0.031 for the absorption coefficient k in the same wavelength, d MAX became 72.0nm than (4). The reflectance at this time is 1.2% from the simulation, and does not satisfy the condition of 2.5% or more and 10% or less as a phase shift mask. Regarding Examples 1 and 2, the simulation results when the isolated hole pattern of 22 nm on the wafer is exposed under the exposure conditions where the numerical aperture NA of the projection optical system is 0.33 and the ⁇ value is 0.5 are shown in FIGS. Shown in b). FIG.
  • FIG. 11A shows the result of obtaining the film thickness dependence of NILS by simulation
  • FIG. 11B shows the result of obtaining the film thickness dependence of the peak light intensity of the optical image by simulation.
  • FIG. 11A it can be seen that in Example 2 in which the absorption layer is a TaN film, NILS is much smaller and the phase shift effect is smaller than in Example 1 in which the absorption layer is a TaNb film.
  • FIG. 11B it can be seen that the peak light intensity at the time of exposure is lower in Example 2 in which the absorption layer is a TaN film than in Example 1 in which the absorption layer is a TaNb film.
  • Example 3 As the absorption layer, a Re film was used instead of the TaNb film. If the refractive index n at a wavelength of 13.53nm 0.933, the absorption coefficient k in the same wavelength is 0.0405, d MAX is much thinner than Example 1 using the 44.8nm next, TaNb film from (4) .. This is because the n value is small. The reflectance at this time is 3.7% from the simulation, which satisfies the condition of 2.5% or more and 10% or less as a phase shift mask.
  • Figures 12 (a) and 12 (b) show the simulation results when an isolated hole pattern of 22 nm is exposed on the wafer under the exposure conditions where the numerical aperture NA of the projection optical system is 0.33 and the ⁇ value is 0.5.
  • FIG. 12 (a) shows the result of calculating the film thickness dependence of NILS by simulation
  • FIG. 12 (b) shows the result of obtaining the film thickness dependence of the peak light intensity of the optical image by simulation.
  • the NILS of Example 3 in which the Re film was used as the absorption layer had an absorption layer film thickness of around d MAX and d MAX -6 nm, as in Example 1 in which the TaNb film was used as the absorption layer.
  • the light intensity of the optical image increases as the film thickness decreases.
  • NILS reaches its maximum when the film thickness of the absorption layer is d MAX , and has a peak at d MAX -6 nm.
  • the light intensity at the film thickness d MAX -6 nm is 6% higher than the light intensity at the film thickness d MAX.
  • the optimum value of the film thickness of the absorption layer is either d MAX or d MAX -6 nm.
  • Example 4 As the absorption layer, instead of the TaNb film, a TaNb film of the lower absorption layer and a two-layer film (TaNO (4 nm) / TaNb film) of the TaNO film (thickness 4 nm) of the upper absorption layer were used.
  • the refractive index n 1 of TaNb as the lower absorption layer at a wavelength of 13.53 nm is 0.945
  • the refractive index n 2 of TaON as the upper absorption layer at a wavelength of 13.53 nm is 0.968
  • the absorption coefficient k 2 at the same wavelength is 0.968. If it is 0.0512, the d bi MAX is 71.6 nm from the equation (6).
  • FIG. 12 (a) shows the simulation results when an isolated hole pattern of 22 nm is exposed on the wafer under the exposure conditions where the numerical aperture NA of the projection optical system is 0.33 and the ⁇ value is 0.5.
  • the NILS of Example 4 using the TaNb film of the lower absorption layer and the TaNO film (thickness of 4 nm) of the upper absorption layer is an example of using the TaNb film as the absorption layer. Similar to No.
  • the absorption layer film thickness has a peak near d bi MAX and d bi MAX -6 nm.
  • the light intensity of the optical image increases as the film thickness decreases.
  • NILS is maximized when the film thickness of the absorption layer is d bi MAX , and has a peak at d bi MAX -6 nm.
  • the light intensity at the film thickness d bi MAX -6 nm is 6% higher than the light intensity at the film thickness d bi MAX.
  • the optimum value of the film thickness of the absorption layer is either d bi MAX or d bi MAX -6 nm.
  • FIGS. 13 (a) and 13 (b) show the reflected light spectra of the TaNb film, the Re film, and the TaON film (4 nm) / TaNb film described in Examples 1, 3 and 4.
  • FIG. 13A shows a case where the film thickness is d MAX or d bi MAX , and the peak wavelength of the reflectance is around 13.53 nm.
  • FIG. 13B shows a case where the film thickness is d MAX -6 nm or d bi MAX -6 nm, and the peak wavelength of the reflectance is around 13.63 nm.
  • the peak wavelength of the reflected light can be used as a reference for controlling the film thickness of the absorbing layer, regardless of the film type.
  • the present invention provides the following reflective mask blanks and reflective masks.
  • a reflective mask blank having a reflective layer that reflects EUV light, a protective layer that protects the reflective layer, and an absorbing layer that absorbs EUV light on the substrate in this order.
  • the reflectance of the absorption layer at a wavelength of 13.53 nm is 2.5 to 10%.
  • the film thickness d of the absorption layer is A reflective mask blank characterized by satisfying the above relationship.
  • the integer i is 0 or 1 and d MAX is Is.
  • the refractive index of the absorption layer is n
  • the absorption coefficient of the absorption layer is k.
  • INT (x) is a function that returns an integer value with the decimal part truncated.
  • a reflective mask blank having a reflective layer that reflects EUV light, a protective layer that protects the reflective layer, and an absorbing layer that absorbs EUV light on the substrate in this order.
  • the reflectance of the absorption layer at a wavelength of 13.53 nm is 2.5 to 10%.
  • the absorption layer is composed of two layers, a lower absorption layer and an upper absorption layer.
  • the film thickness d bi of the absorption layer composed of the two layers is A reflective mask blank characterized by satisfying the above relationship. Where the integer i is 0 or 1 and d bi MAX is Is.
  • the refractive index of the lower absorption layer is n 1
  • the refractive index of the upper absorption layer is n 2
  • the absorption coefficient of the upper absorption layer is k 2
  • INT (x) is a function that returns an integer value with the decimal part truncated.
  • the absorption layer contains one or more elements selected from the group consisting of Ta, Nb, Mo, Ti, Zr, Re, Ru, Au, Pt, Pd, Rh, B, N, and O.
  • the reflective mask blank according to any one of (1) to (7) above which has a back surface conductive layer on the back surface of the substrate.
  • Substrate 20 Reflective layer 30
  • Protective layer 40 Absorbing layer 41
  • Upper absorbing layer 60 Absorber pattern

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

基板上に、EUV光を反射する反射層と、反射層を保護する保護層と、EUV光を吸収する吸収層をこの順に有する反射型マスクブランクであって、吸収層の波長13.53nmにおける反射率が2.5~10%であり、吸収層の膜厚dは式(A)という関係を満たすことを特徴とする反射型マスクブランク。ここで、整数iは0または1であり、dMAXは式(B)である。上式中、吸収層の屈折率をn、吸収係数をkとする。INT(x)は小数部を切り捨てた整数値を返す関数である。

Description

反射型マスクブランクおよび反射型マスク
 本発明は、位相シフト効果を利用した反射型マスク、および該反射型マスクが得られる反射型マスクブランクに関する。
 近年、半導体デバイスを構成する集積回路の微細化に伴い、可視光や紫外光(波長365~193nm)を用いた従来の露光技術に代わる露光方法として、極端紫外光(Etreme Ultra Violet:以下、「EUV」と呼ぶ。)リソグラフィが検討されている。
 EUVリソグラフィでは、露光に用いる光源として、ArFエキシマレーザ光よりも短波長のEUV光が用いられる。なお、EUV光とは、軟X線領域または真空紫外線領域の波長の光をいい、具体的には、波長が0.2~100nm程度の光である。EUVリソグラフィに用いられるEUV光としては、例えば、波長λが13.5nm程度のEUV光が使用される。
 EUV光は、多くの物質に対して吸収され易いため、従来の露光技術で用いられていた屈折光学系を使用できない。そのため、EUVリソグラフィでは、反射型マスクやミラーなどの反射光学系が用いられる。EUVリソグラフィにおいては、反射型マスクが転写用マスクとして用いられる。
 反射型マスクは、基板上にEUV光を反射する反射層が形成され、該反射層の上にEUV光を吸収する吸収層がパターン状に形成されている。反射型マスクは、基板上に反射層および吸収層を基板側からこの順に積層して構成された反射型マスクブランクを原板として用いて、吸収層の一部を除去して所定のパターンに形成することで得られる。
 反射型マスクに入射したEUV光は、吸収層で吸収され、反射層で反射される。反射されたEUV光は、光学系によって露光材料(レジストを塗布したウエハ)の表面に結像される。これにより、吸収層の開口部が露光材料の表面に転写される。EUVリソグラフィにおいては、EUV光は、通常、約6°傾斜した方向から反射型マスクに入射し、同様に斜めに反射される。
 従来、吸収層の材料としては、TaNや特許文献1に示すTaBNなどが用いられている。これら材料は、通常EUV光での反射率2%以下、膜厚60nm以上の条件で用いられている。光学的にはバイナリマスクの条件に相当し、位相シフトマスクとしての効果は小さい。
 吸収層の透過率を調節することにより、位相シフト効果を利用した反射型マスクを得ることができる。吸収層は光を僅かに透過するとともに、吸収層の反射光は、開口部で反射される光と位相差を持つ。このような位相シフト効果を利用した反射型マスクを用いることにより、ウエハ上の光学像のコントラストが向上し、露光マージンが増加する。
 位相シフト効果を利用した反射型マスクの一例として、特許文献2では吸収層の材料としてTaNbを用いている。特許文献2では、吸収層の反射率の最適値を、開口部の反射率との相対値として4~15%としている。この値は従来のArF位相シフトマスクの透過率の最適値と近い。開口部の反射率は通常65%程度なので、吸収層の反射率の最適値は、絶対値で2.5~10%となる。
 特許文献2では、位相シフトを利用した反射型マスクの位相差の最適値を175~185度としている。この範囲は従来のArF位相シフトマスクの位相差の最適値である180度を含んでいる。
 ArF位相シフトマスクの場合には、吸収層の膜厚を無視した薄膜近似が成り立つので、位相差の最適値が180度となる。しかし、EUVリソグラフィで用いられる反射型マスクの場合、吸収層の膜厚がパターンサイズと同程度になるため薄膜近似が使えない。図3(a)は、位相シフト効果を利用した反射型マスクにおける反射光強度分布の一例を示した図であり、図3(b)は当該反射型マスクにおける反射光位相分布の一例を示した図である。図3(a),(b)の横軸は、幅64nmのパターンの中心の位置を0nmとした場合の該パターンの幅方向における位置を示している。図3(a)に示すように、反射光強度はパターンの中心で極大となり、パターンの幅方向における端部(パターンエッジ)に向けて連続的に低くなる。図3(b)に示すように反射光の位相は、パターンの中心で極小となり、パターンエッジに向けて、反射光の位相が連続的に変化する。この影響により実効的な位相差がずれてしまう。そのため、反射型マスクの場合、吸収層の位相差の最適値は180度と異なる。
 一方、露光時の光学像強度が高いことが、露光時間が短くなり、スループットに有利となるため好ましい。そのため、露光時のピーク光強度は高いことが好ましい。
日本国特許4163038号明細書 日本国特許5266988号明細書
 本発明は、位相シフト効果が大きく、かつ露光時のピーク光強度が高いEUVリソグラフィ用反射型マスク、および該反射型マスクが得られるEUVリソグラフィ用反射型マスクブランクを提供することを目的とする。
 本発明者は、上記目的を達成するため鋭意研究を重ねた結果、EUVリソグラフィ用反射型マスクにおいて、位相シフト効果が大きく、かつ露光時のピーク光強度が高い吸収層の膜厚の条件を見出した。
 図4(a)に吸収層をTaNb(屈折率n=0.945、吸収係数k=0.0236)の単層膜として、波長13.53nm、投影光学系の開口数NAが0.33、σ値が0.5の露光条件でウエハ上の22nmのホールパターンを露光した場合のNILS(Normalized Image Log Slope、規格化イメージログスロープ)の吸収層膜厚依存性をシミュレーションにより求めた結果を示す。NILSはウエハ上の光学像のコントラストに対応している。図4(a)では、吸収層膜厚が72nmのときにNILSが最大となり、このとき位相シフト効果も最大となる。
 図4(b)には、上記と同じ条件で、位相差の吸収層膜厚依存性をシミュレーションにより求めた結果を示す。図4(b)では、膜厚72nmのときに位相差は約210度となっている。これは、前述したように、パターンエッジに向けて、反射光の位相が連続的に変化する影響で、位相差の最適値が180度からずれていることが原因である。膜厚72nmでNILSが最大になっていることから、実効的な位相差は180度に近いと考えられる。
 図4(c)には、上記と同じ条件で、吸収層の反射率の膜厚依存性をシミュレーションにより求めた結果を示す。膜厚72nmのときに反射率は極大になっている。位相シフト効果が最大になる条件は、実効的な位相差が約180度であり、同時に反射率が極大になる場合である。このため、NILSの最大値と反射率の極大値は一致する。
 図4(a)~(c)に見られるように、NILS、位相差、反射率は吸収層の膜厚増加とともに振動している。このような現象が生じる原因は、図5に示すように、反射層20からの反射光100と、吸収層40表面での反射光200との間に干渉が生じるためである。吸収層の膜厚が増加すると、干渉が強め合う位置と弱め合う位置が交互に発生する。反射率の極大値は干渉が強め合う位置、すなわち反射光100と反射光200の位相が揃う場合に相当する。
 反射光100と反射光200の位相が揃う条件は以下のように求められる。最初に、吸収層40中での光路長差だけを考えると、反射光100と反射光200の位相の揃う条件は、吸収層40の膜厚をdとして、下記(1)式で表される。
Figure JPOXMLDOC01-appb-M000006
 上記(1)式中、Nは整数、λは波長、nは吸収層40の屈折率、θは入射角である。EUVリソグラフィ用反射型マスクの場合、波長λは13.53nm、入射角θは6°である。
 次に、反射光100と反射光200について、それぞれの反射面での位相のずれを考える。反射光100は反射層20内部で反射が生じている。このときの位相のずれは、数値計算によると-0.64ラジアンとなっている。一方、反射光200は吸収層40表面で反射が生じるため、位相のずれはtan-1(-k/(1-n))となる。ここでnは波長13.53nmにおける吸収層40の屈折率、kは吸収層40の同波長における吸収係数である。反射光100と反射光200の位相の揃う条件は、反射面での位相のずれを考慮して下記(2)式で与えられる。
Figure JPOXMLDOC01-appb-M000007
 上記(2)式が反射光100と反射光200の位相の揃う条件、すなわち反射率が極大値を持つ条件である。NILSが最大値になるためには、さらに実効的な位相差が約180度になる必要がある。このとき、吸収層40の位相差は、図4(b)に示すように約210度となる。吸収層40の膜厚をdとすると、吸収層40を光が往復する場合の真空中との光路長差は、2(1-n)dとなる。このときの位相差が210度に相当するのは、2(1-n)d=210/360・λの場合である。ここから、NILSが最大値となる吸収層の膜厚dMAXは、おおよそ下記(3)式となる。
Figure JPOXMLDOC01-appb-M000008
最終的に、(2)式と(3)式を組み合わせて、ncos6°≒1であることを考慮すると、(4)式が得られる。
Figure JPOXMLDOC01-appb-M000009
ここでINT(x)は小数部を切り捨てた整数値を返す関数である。(4)式が位相シフト効果を最大にするために、吸収層の膜厚が満たすべき条件である。
 ここまで、位相シフト効果によるNILSの最大化だけを考慮してきた。露光時に考慮すべきもう一つの重要な性質として、光学像の強度がある。光学像の強度が高いほど露光時間は短くて済み、スループットが向上する。本明細書では、露光時の光学像の強度の指標として、露光時のピーク光強度を用いる。図7(a)にNILSの膜厚依存性をシミュレーションにより求めた結果を示し、図7(b)にピーク光強度の膜厚依存性をシミュレーションにより求めた結果を示し、図7(c)に位相差の膜厚依存性をシミュレーションにより求めた結果を示す。図7(a),(b),(c)では、横軸を吸収層の膜厚と、上記で求まるNILSが最大値となる吸収層の膜厚dMAXとの差としている。露光条件は図4の場合と同じである。吸収層の膜厚dMAXは(4)式より72.3nmとなる。
 図7(b)から判るように、露光時のピーク光強度は膜厚が薄いほど大きくなる。一方、NILSは、吸収層の膜厚がdMAXのとき最大になり、dMAX-6nmにもピークを持っている。膜厚dMAX-6nmでの光強度は、膜厚dMAXでの光強度より6%高い。NILSと光強度のバランスを考慮すると、吸収層の膜厚の最適値はdMAXあるいはdMAX-6nmのどちらかになる。
 図7(c)に示すように、膜厚dMAXでの位相差は210度、膜厚dMAX-6nmでの位相差は203度となり、どちらも180度からは大きく外れている。膜厚のバラツキ+-1nmを考慮すると、位相差の最適値は190~220度となる。位相差が180度となる膜厚でのNILSはいずれもピークを外しており、位相差180度が吸収層の膜厚の最適値では無いことが判る。
 実際に吸収層を成膜する際には、膜厚に+-1nm程度のバラツキが生じる。図7(a)~(c)から判るように、この程度のバラツキが生じても、NILSの低下は僅かであり許容できる。このとき、反射光スペクトルのピーク波長のバラツキは+-0.1nm程度になる。したがって、吸収層の膜厚d(nm)がdMAX-1nm≦d≦dMAX+1nm、あるいは(dMAX-6nm)-1nm≦d≦(dMAX-6nm)+1nmを満たしていれば、位相シフト効果が大きく、かつ露光時のピーク光強度が高くなる。これらの式をまとめると下記(5)式となる。
Figure JPOXMLDOC01-appb-M000010
ここで整数iは0または1である。
 図2に示す反射型マスクブランクは、吸収層40が下部吸収層41と上部吸収層42の二層からなる。この場合、図6に示すように、反射層20からの反射光100と、上部吸収層42表面での反射光202との間に干渉が生じる。反射光202は上部吸収層42表面で反射が生じるため、位相のずれはtan-1(-k2/(1-n2))となる。ここで、k2は波長13.53nmにおける上部吸収層42の吸収係数、n2は同波長における上部吸収層の屈折率である。
 反射光100と反射光200の位相の揃う条件は、二層からなる吸収層40の膜厚をdbiとして、反射面での位相のずれを考慮して下記(6)式で与えられ、NILSが最大値となる膜厚dbi MAXは、おおよそ下記(7)式となる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 この場合も、二層からなる吸収層40の膜厚dbi(nm)がdbi MAX-1nm≦dbi≦dbi MAX+1nm、あるいは(dbi MAX-6nm)-1nm≦dbi≦(dbi MAX-6nm)+1nmを満たしていれば、位相シフト効果が大きく、かつ露光時のピーク光強度が高くなる。
これらの式をまとめると下記式となる。
Figure JPOXMLDOC01-appb-M000013
ここで整数iは0または1である。
 (4)式から判るように、dMAXは吸収層の屈折率nに大きく依存する。(7)式から判るように、dbi MAXは下部吸収層の屈折率n1および上部吸収層の屈折率n2に大きく依存する。しかし、マスクブランク製造時の管理として、n,n1,n2を頻繁に測定することは困難である。
 吸収層の膜厚のより現実的な管理方法として、反射光のスペクトルを使用する方法が考えられる。反射光のスペクトルは市販の装置を使用して測定可能である。図8に吸収層の膜厚がdMAXおよびdMAX-6nmの際の反射光スペクトルを示す。ピーク波長λMAXは、それぞれ13.53nm、13.63nmとなっている。吸収層の膜厚管理の基準として、反射光のピーク波長λMAXを用いることができる。
 この場合、ピーク波長λMAXが(13.53-0.1)nm≦λMAX≦(13.53+0.1)nm、あるいは(13.63-0.1)nm≦λMAX≦(13.63+0.1)nmを満たしていれば、位相シフト効果が大きく、かつ露光時のピーク光強度が高くなる。
 本発明の反射型マスクを用いることにより位相シフト効果が向上する。また、本発明の反射型マスクを用いることにより、露光時のピーク光強度が高くなり、スループットを確保しつつ、ウエハ上の光学像のコントラストが向上し、露光マージンが増加する。
本発明の実施形態に係る反射型マスクブランクの一構成例の概略断面図である。 本発明の実施形態に係る反射型マスクブランクの別の一構成例の概略断面図である。 (a)は位相シフト効果を利用した反射型マスクにおける反射光の強度分布の一例を示した図であり、(b)は該反射型マスクにおける反射光の位相分布の一例を示した図である。 (a)はNILSの吸収層膜厚依存性をシミュレーションした図であり、(b)は位相差の吸収層膜厚依存性をシミュレーションした図であり、(c)は反射率の吸収層膜厚依存性をシミュレーションした図である。 反射層からの反射光と、吸収層表面からの反射光との干渉を説明するための図である。 反射層からの反射光と、上部吸収層表面からの反射光との干渉を説明するための図である。 (a)は吸収層膜厚-dMAXとNILSとの関係を示した図であり、(b)は吸収層膜厚-dMAXとピーク光強度との関係を示した図であり、(c)は吸収層膜厚-dMAXと位相差との関係を示した図である。 吸収層膜厚がdMAXおよびdMAX-6nmの際の反射光スペクトルを示した図である。 反射型マスクの一構成例を示す概略断面図である。 (a)は吸収層膜厚と、反射率との関係を示した図であり、(b)は吸収層の膜厚がdMAXでの反射光スペクトルを示した図であり、(c)は吸収層の膜厚がdMAX-6nmでの反射光スペクトルを示した図である。 (a)は例1、例2について、吸収層膜厚-dMAXとNILSとの関係を示した図であり、(b)は例1、例2について、吸収層膜厚-dMAXとピーク光強度との関係を示した図である。 (a)は例1、例3、例4について、吸収層膜厚-dMAXとNILSとの関係を示した図であり、(b)は例1、例3、例4について、吸収層膜厚-dMAXとピーク光強度との関係を示した図である。 (a)は例1、例3、例4について、吸収層の膜厚がdMAXでの反射光スペクトルを示した図であり、(b)は例1、例3、例4について、吸収層の膜厚がdMAX-6nmでの反射光スペクトルを示した図である。
 以下、本発明の実施形態について詳細に説明する。
<反射型マスクブランク>
 本発明の実施形態に係る反射型マスクブランクについて説明する。図1は、本発明の実施形態に係る反射型マスクブランクの一構成例の概略断面図である。図1に示すように、反射型マスクブランクは、基板10の上に、反射層20、保護層30、および吸収層40をこの順に積層して構成している。
 図2は、本発明の実施形態に係る反射型マスクブランクの別の一構成例の概略断面図である。図2に示すように、反射型マスクブランクは、基板10の上に、反射層20、保護層30、下部吸収層41および上部吸収層42をこの順に積層して構成している。図2に示す反射型マスクブランクは、吸収層40が下部吸収層41と上部吸収層42の二層からなる。
(基板)
 基板10は、熱膨張係数が小さいことが好ましい。基板10の熱膨張係数が小さい方が、EUV光による露光時の熱により吸収層40に形成されるパターンに歪みが生じるのを抑制できる。基板10の熱膨張係数は、具体的には、20℃において、0±1.0×10-7/℃が好ましく、0±0.3×10-7/℃がより好ましい。
 熱膨張係数が小さい材料としては、例えば、SiO2-TiO2系ガラスなどを用いることができる。SiO2-TiO2系ガラスとしては、SiO2を90~95質量%、TiO2を5~10質量%含む石英ガラスを用いることが好ましい。TiO2の含有量が5~10質量%であると、室温付近での線膨張係数が略ゼロであり、室温付近での寸法変化がほとんど生じない。なお、SiO2-TiO2系ガラスは、SiO2およびTiO2以外の微量成分を含んでもよい。
 基板10の反射層20が積層される側の面(以下、「主面」という。)は、高い平滑性を有することが好ましい。主面の平滑性は、原子間力顕微鏡で測定でき、表面粗さで評価できる。主面の表面粗さは、二乗平均平方根粗さRqで、0.15nm以下が好ましい。   
 主面は、所定の平坦度となるように表面加工されることが好ましい。これは、反射型マスクが高いパターン転写精度および位置精度を得るためである。基板10は、主面の所定の領域(例えば、132mm×132mmの領域)において、平坦度が100nm以下であることが好ましく、より好ましくは50nm以下であり、さらに好ましくは30nm以下である。
 また、基板10は、反射型マスクブランク、パターン形成後の反射型マスクブランク、または反射型マスクの洗浄などに用いる洗浄液に対して耐性を有することが好ましい。
 さらに、基板10は、基板10上に形成される膜(反射層20など)の膜応力による変形を防止するために、高い剛性を有することが好ましい。例えば、基板10は、65GPa以上の高いヤング率を有していることが好ましい。
(反射層)
 反射層20は、EUV光に対して高い反射率を有する。具体的には、EUV光が入射角6°で反射層の表面に入射した際、波長13.5nm付近のEUV光の反射率の最大値は、60%以上が好ましく、65%以上がより好ましい。また、反射層の上に、保護層が積層されている場合でも、同様に、波長13.5nm付近のEUV光の反射率の最大値は、60%以上が好ましく、65%以上がより好ましい。
 反射層20は、EUV光に対して屈折率の異なる元素を主成分とする各層が周期的に複数積層された多層反射膜であることが好ましい。以下、反射層が多層反射膜の場合について記載する。
 上記多層反射膜は、高屈折率層と低屈折率層とを基板10側からこの順に積層した積層構造を1周期として複数周期積層してもよいし、低屈折率層と高屈折率層とをこの順に積層した積層構造を1周期として複数周期積層してもよい。
 高屈折率層としては、Siを含む層を用いることができる。Siを含む高屈折率層を用いることによって、EUV光の反射率に優れた反射型マスクが得られる。低屈折率層としては、Mo、Ru、RhおよびPtからなる群から選択される金属またはこれらの合金を用いることができる。本実施形態では、低屈折率層がMoを含む層であり、高屈折率層がSiを含む層であることが好ましい。
 多層反射膜は、高屈折率層および低屈折率層をそれぞれ複数備えているが、高屈折率層同士の膜厚または低屈折率層同士の膜厚は、必ずしも同じでなくてもよい。
 多層反射膜を構成する各層の膜厚および周期は、使用する膜材料、反射層に要求されるEUV光の反射率またはEUV光の波長(露光波長)などにより適宜選択できる。例えば、反射層が波長13.5nm付近のEUV光の反射率の最大値を60%以上とする場合、低屈折率層(Moを含む層)と高屈折率層(Siを含む層)とを交互に30周期~60周期積層したMo/Si多層反射膜が好ましく用いられる。
 なお、多層反射膜を構成する各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法などの公知の成膜方法を用いて所望の厚さになるように成膜することができる。例えば、イオンビームスパッタリング法を用いて多層反射膜を作製する場合、高屈折率材料のターゲットおよび低屈折率材料のターゲットに対して、イオン源からイオン粒子を供給することにより行う。
(保護層)
 保護層30は、図9に示す反射型マスクの製造時において、吸収層40(下部吸収層41、上部吸収層42)をエッチング(通常、ドライエッチング)して吸収層40に吸収体パターン60を形成する際、反射層20の表面をエッチングによるダメージから保護する。また、エッチング後の反射型マスクブランクに残っているレジストを洗浄液を用いて剥離して、反射型マスクブランクを洗浄する際に、反射層20を洗浄液から保護する。そのため、得られる反射型マスクのEUV光に対する反射率は良好となる。
 図1、2では、保護層30が1層の場合を示しているが、保護層30は複数層でもよい。
 保護層30を形成する材料としては、吸収層40のエッチングの際に、エッチングによる損傷を受け難い物質が選択される。この条件を満たす物質としては、例えば、Ru金属単体、Ruに、B、Si、Ti、Nb、Mo、Zr、Y、La、Co、およびReからなる群から選択される1種以上の金属を含有したRu合金、上記Ru合金に窒素を含む窒化物などのRu系材料;Cr、Al、Taおよびこれらに窒素を含む窒化物;SiO2、Si34、Al23またはこれらの混合物;などが例示される。これらの中でも、Ru金属単体およびRu合金、CrNおよびSiO2が好ましい。Ru金属単体およびRu合金は、酸素を含まないガスに対してエッチングされ難く、反射型マスクの加工時のエッチングストッパとして機能する点から、特に好ましい。
 保護層30の膜厚は、保護層30としての機能を果たすことができる限り特に制限されない。反射層20で反射されたEUV光の反射率を保つ点から、保護層30の膜厚は、1~8nmが好ましく、1.5~6nmがより好ましく、2~5nmがさらに好ましい。
 保護層30の形成方法としては、スパッタリング法、イオンビームスパッタリング法などの公知の膜形成方法を用いることができる。
(吸収層)
 吸収層40は、EUVリソグラフィの反射型マスクに使用するためには、EUV光の吸収係数が高いこと、容易にエッチングできること、および洗浄液に対する洗浄耐性が高いことなどの特性を有することが好ましい。
 吸収層40は、EUV光を吸収し、EUV光の反射率が極めて低い。但し、EUV光の反射率が低すぎると、位相シフト効果が低下するため、EUV光が吸収層40の表面に照射された際の、波長13.53nm付近のEUV光の反射率は、2.5~10%である。反射率の測定は、マスクブランク用EUV反射率計(AIXUV社製、MBR)を用いて行うことができる。
 さらに、吸収層40は、Cl系ガスやCF系ガスを用いたドライエッチングなどによりエッチングして加工される。そのため、吸収層40は、容易にエッチングできることが好ましい。
 また、吸収層40は、後述する反射型マスクの製造時において、エッチング後の反射型マスクブランクに残っているレジストパターンを洗浄液で除去する際に洗浄液に晒される。その際、洗浄液としては、硫酸過水(SPM)、硫酸、アンモニア、アンモニア過水(APM)、OHラジカル洗浄水、およびオゾン水などが用いられる。
 吸収層40の材料にはTa系材料が好ましく用いられる。TaにNやOやBを加えれば、酸化に対する耐性が向上し、経時的な安定性を向上させることができる。マスク加工後のパターン欠陥検査を容易にするため、図2に示すように、吸収層40を、2層構造、例えば下部吸収層41としてのTaN膜上に上部吸収層42としてのTaON膜を積層させた構造とすることも好ましい。
 本発明における吸収層40は、Ta、Nb、Mo、Ti、Zr、Re、Ru、Au、Pt、Pd、Rh、B、N、および、Oからなる群から選択される1種以上の元素を含有することが好ましい。
 Taを吸収層として用いても、位相シフト効果は発生するが、反射率は2%以下になるため、その効果は小さい。Nb、Mo、Ti、Zrなどの吸収係数の小さな材料を用いれば、反射率を上げて位相シフト効果を大きくすることができる。また、これらの材料にTa、N、O、Bを加えると洗浄耐性や経時的な安定性を向上させることができる。
 また、Re、Ru、Au、Pt、Pd、Rhなどの屈折率の小さな材料を用いれば、位相シフトマスクとして用いた場合に、薄膜化が可能になる。また、これらの材料にTa、N、O、Bを加えると洗浄耐性や経時的な安定性を向上させることができる。
 吸収層40は、結晶状態がアモルファスであることが好ましい。これにより、吸収層40は、優れた平滑性および平坦度を有することできる。また、吸収層40の平滑性および平坦度が向上することで、図9に示す反射型マスクの製造時において、吸収体パターン60のエッジラフネスが小さくなり、吸収体パターン60の寸法精度を高くできる。
 図1に示す反射型マスクブランクのように、吸収層40が単層である場合は、マスクブランク製造時の工程数を削減できて生産効率を向上できる。
 図2に示す反射型マスクブランクのように、吸収層40が下部吸収層41および上部吸収層42の二層で構成されている場合、上部吸収層42の光学定数や膜厚を適切に設定することで、図9に示す反射型マスクの製造時において、検査光を用いて吸収体パターン60を検査する際の反射防止膜として使用できる。これにより、吸収体パターンの検査時における検査感度を向上できる。また、上部吸収層42に酸素を含む材料を用いると、洗浄耐性や安定性が向上する。
(その他の層)
 本発明の反射型マスクブランクは、吸収層40上にハードマスク層を備えていてもよい。本発明におけるハードマスク層は、CrおよびSiの少なくとも一方の元素を含むことが好ましい。ハードマスク層としては、Crを含むCr系膜、またはSiを含むSi系膜など、エッチングに対して耐性の高い材料、具体的には、Cl系ガスやCF系ガスを用いたドライエッチングに対して耐性の高い材料が用いられる。Cr系膜としては、例えば、Cr、およびCrにOまたはNを加えた材料などが挙げられる。具体的には、CrO、CrN、CrONが挙げられる。Si系膜としては、Si、並びにSiにO、N、C、およびHからなる群から選択される一種以上を加えた材料などが挙げられる。具体的には、SiO2、SiON、SiN、SiO、Si、SiC、SiCO、SiCN、SiCONが挙げられる。中でも、Si系膜は、吸収層40をドライエッチングする際に側壁の後退が生じ難いため好ましい。吸収層40上にハードマスク層を形成することで、図9に示す反射型マスクの製造時において、吸収体パターン60の最小線幅が小さくなっても、ドライエッチングを実施できる。そのため、吸収体パターン60の微細化に対して有効である。
 本発明の反射型マスクブランクは、基板10の反射層20が積層される側とは反対側の主面(以下、裏面という。)に、静電チャック用の裏面導電層を備えることができる。裏面導電層には、特性として、シート抵抗値が低いことが要求される。裏面導電層のシート抵抗値は、例えば、250Ω/□以下であり、200Ω/□以下が好ましい。
 裏面導電層の材料は、例えば、CrもしくはTaなどの金属、またはこれらの合金を用いることができる。Crを含む合金としては、Crに、B、N、O、およびCからなる群から選択される1種以上を含有したCr化合物を用いることができる。Taを含む合金としては、Taに、B、N、O、およびCからなる群から選択される1種以上を含有したTa化合物を用いることができる。
 裏面導電層の膜厚は、静電チャック用としての機能を満足する限り特に限定されないが、例えば、10~400nmとする。また、この裏面導電層は、反射型マスクブランクの裏面側の応力調整も備えることができる。すなわち、裏面導電層は、主面側に形成された各種層からの応力とバランスをとって、反射型マスクブランクを平坦にするように調整することができる。
 裏面導電層の形成方法は、マグネトロンスパッタリング法、イオンビームスパッタリング法などの公知の成膜方法を用いることができる。
 裏面導電層は、例えば、反射層を形成する前に、基板の裏面に形成することができる。   
<反射型マスク>
 次に、図2に示す反射型マスクブランクを用いて得られる反射型マスクについて説明する。図9は、反射型マスクの構成の一例を示す概略断面図である。図9に示す反射型マスクは、図2に示す反射型マスクブランクの吸収層40(下部吸収層41、上部吸収層42)に、所望の吸収体パターン60を形成したものである。吸収体パターンは通常の加工方法、すなわち反射型マスクブランク上へのレジスト塗布、露光、現像、エッチングにより形成される。なお、図1に示す反射型マスクブランクを用いて得られる反射型マスクの場合、単層の吸収層に吸収体パターンが形成される。
 例1、例3、例4は実施例、例2は比較例である。
 [例1]
 成膜用の基板として、SiO2-TiO2系のガラス基板(外形が約152mm角、厚さが約6.3mm)を使用した。なお、ガラス基板の熱膨張係数は0.02×10-7/℃以下である。ガラス基板を研磨して、表面粗さを二乗平均平方根粗さRqで0.15nm以下、平坦度を100nm以下の平滑な表面に加工した。ガラス基板の裏面上には、マグネトロンスパッタリング法を用いて、厚さが約100nmのCr層を成膜し、静電チャック用の裏面導電層を形成した。Cr層のシート抵抗値は100Ω/□程度であった。
 基板の裏面に導電層を成膜した後、基板の表面にイオンビームスパッタリング法を用いて、Si膜およびMo膜を交互に成膜することを40周期繰り返す。Si膜の膜厚は、約4.0nmとし、Mo膜の膜厚は、約3.0nmとする。これにより、合計の膜厚が約280nm((Si膜:4.0nm+Mo膜:3.0nm)×40)の反射層(多層反射膜)を形成した。その後、反射層の上に、イオンビームスパッタリング法を用いてRu層(膜厚が約2.5nm)を成膜して、保護層を形成した。このとき、波長13.53nmにおける反射率は64%となった。
 保護層上に、吸収層としてTaNb膜を成膜した。スパッタターゲットにはTaNb(Ta:Nb=60:40)を用い、スパッタガスにはArを用いた。吸収層のスパッタ時にステージの回転を止めることにより、面内で膜厚分布を有する吸収層を得た。これにより、図1に示す反射型マスクブランクを作製した。吸収層の膜厚は、X線回折装置(株式会社リガク社製、SmartLab HTP)を用いてX線反射率法(XRR)にて測定した。
 反射型マスクブランクの吸収層の厚さと反射率の関係を測定した。反射率の測定には、マスクブランク用EUV反射率計(AIXUV社製、MBR)を用いて行った。EUV光の波長は13.53nmとした。吸収層の厚さと反射率との関係を図10(a)に示す。吸収層の膜厚72nm付近で反射率3.2%のピークを持っている。この反射率は位相シフトマスクとしての条件である2.5%以上、10%以下を満たしている。
 図10(a)には、実測値とともにシミュレーション結果を示している。シミュレーションでは、波長13.53nmにおける屈折率nを0.945とし、同波長における吸収係数kを0.0236とした。実測値とシミュレーション結果は良く一致していることが判る。
 上記の条件では、(4)式よりdMAXは72.3nmとなる。図10(b)には膜厚がdMAXでの反射光スペクトル、図10(c)には膜厚がdMAX-6nmでの反射光スペクトルを示す。実測値とシミュレーション結果は良く一致していることが判る。位相シフトマスクの膜厚管理に反射光スペクトルを用いることができる。
[例2]
 吸収層として、TaNb膜の代わりにTaN膜を用いた。波長13.53nmにおける屈折率nを0.947、同波長における吸収係数kを0.031とすると、dMAXは(4)式より72.0nmとなった。このときの反射率はシミュレーションより1.2%となり、位相シフトマスクとしての条件である2.5%以上、10%以下を満たしていない。
 例1,2について、投影光学系の開口数NAが0.33、σ値が0.5の露光条件でウエハ上22nmの孤立ホールパターンを露光した場合のシミュレーション結果を図11(a),(b)に示す。図11(a)にNILSの膜厚依存性をシミュレーションにより求めた結果を示し、図11(b)に光学像のピーク光強度の膜厚依存性をシミュレーションにより求めた結果を示す。図11(a),(b)では、横軸を吸収層の膜厚と、(4)式より求まるdMAXとの差としている。図11(a)に示すように、吸収層がTaNb膜の例1に比べ、吸収層がTaN膜の例2は、NILSはずっと小さくなり、位相シフト効果は小さいことが判る。図11(b)に示すように、吸収層がTaNb膜の例1に比べ、吸収層がTaN膜の例2は、露光時のピーク光強度が低いことが判る。
[例3]
 吸収層として、TaNb膜の代わりにRe膜を用いた。波長13.53nmにおける屈折率nを0.933、同波長における吸収係数kを0.0405とすると、dMAXは(4)式より44.8nmとなり、TaNb膜を用いた例1よりずっと薄くなる。これはn値が小さいためである。このときの反射率はシミュレーションより3.7%となり、位相シフトマスクとしての条件である2.5%以上、10%以下を満たしている。投影光学系の開口数NAが0.33、σ値が0.5の露光条件でウエハ上に22nmの孤立ホールパターンを露光した場合のシミュレーション結果を図12(a),(b)に示す。図12(a)にNILSの膜厚依存性をシミュレーションにより求めた結果を示し、図12(b)に光学像のピーク光強度の膜厚依存性をシミュレーションにより求めた結果を示す。図12(a),(b)では、横軸を吸収層の膜厚と、(4)式より求まるdMAXとの差としている。図12(a)に示すように、吸収層としてRe膜を用いた例3のNILSは、吸収層としてTaNb膜を用いた例1と同じく、吸収層膜厚がdMAX、MAX-6nm付近でピークを持っている。
 図12(b)より判るように、光学像の光強度は膜厚が薄いほど大きくなる。一方、NILSは、吸収層の膜厚がdMAXのとき最大になり、dMAX-6nmにもピークを持っている。膜厚dMAX-6nmでの光強度は、膜厚dMAXでの光強度より6%高い。NILSと光強度のバランスを考慮すると、吸収層の膜厚の最適値はdMAXあるいはdMAX-6nmのどちらかになる。
[例4]
 吸収層として、TaNb膜の代わりに、下部吸収層のTaNb膜、上部吸収層のTaNO膜(膜厚4nm)の二層膜(TaNO(4nm)/TaNb膜)を用いた。下部吸収層としてのTaNbの波長13.53nmにおける屈折率n1は0.945、上部吸収層としてのTaONの波長13.53nmにおける屈折率n2は0.968、同波長における吸収係数k2は0.0512とすると、dbi MAXは(6)式より71.6nmとなる。このときの反射率はシミュレーションより3.5%となり、位相シフトマスクとして十分な効果を期待できる。TaNO膜が最表面にあるため、TaNb単膜に比べ洗浄に強く、経時安定性良好になる。投影光学系の開口数NAが0.33、σ値が0.5の露光条件でウエハ上に22nmの孤立ホールパターンを露光した場合のシミュレーション結果を図12(a),(b)に示す。図12(a)に示すように、下部吸収層のTaNb膜、上部吸収層のTaNO膜(膜厚4nm)の二層膜を用いた例4のNILSは、吸収層としてTaNb膜を用いた例1と同じく、吸収層膜厚がdbi MAX、bi MAX-6nm付近でピークを持っている。
 図12(b)より判るように、光学像の光強度は膜厚が薄いほど大きくなる。一方、NILSは、吸収層の膜厚がdbi MAXのとき最大になり、dbi MAX-6nmにもピークを持っている。膜厚dbi MAX-6nmでの光強度は、膜厚dbi MAXでの光強度より6%高い。NILSと光強度のバランスを考慮すると、吸収層の膜厚の最適値はdbi MAXあるいはdbi MAX-6nmのどちらかになる。
 図13(a),(b)には例1、3、4で述べたTaNb膜、Re膜、TaON膜(4nm)/TaNb膜の反射光スペクトルを示す。図13(a)は膜厚がdMAXまたはdbi MAXの場合で、反射率のピーク波長は13.53nm付近となっている。図13(b)は膜厚がdMAX-6nmまたはdbi MAX-6nmの場合で、反射率のピーク波長は13.63nm付近となっている。図13(a),(b)から判るように、吸収層の膜厚管理の基準として、膜種によらず、反射光のピーク波長を用いることができる。
 以上の通り、本発明は、以下の反射型マスクブランクおよび反射型マスクを提供する。
 (1)基板上に、EUV光を反射する反射層と、前記反射層を保護する保護層と、EUV光を吸収する吸収層をこの順に有する反射型マスクブランクであって、
 前記吸収層の波長13.53nmにおける反射率が2.5~10%であり、
 前記吸収層の膜厚dは
Figure JPOXMLDOC01-appb-M000014
という関係を満たすことを特徴とする反射型マスクブランク。
 ここで、整数iは0または1であり、dMAX
Figure JPOXMLDOC01-appb-M000015
である。上式中、吸収層の屈折率をn、吸収層の吸収係数をkとする。INT(x)は小数部を切り捨てた整数値を返す関数である。
 (2)基板上に、EUV光を反射する反射層と、前記反射層を保護する保護層と、EUV光を吸収する吸収層をこの順に有する反射型マスクブランクであって、
 前記吸収層の波長13.53nmにおける反射率が2.5~10%であり、
 前記吸収層が、下部吸収層および上部吸収層の二層からなり、
 前記二層からなる吸収層の膜厚dbi
Figure JPOXMLDOC01-appb-M000016
という関係を満たすことを特徴とする反射型マスクブランク。
 ここで、整数iは0または1であり、dbi MAX
Figure JPOXMLDOC01-appb-M000017
である。上式中、下部吸収層の屈折率をn1、上部吸収層の屈折率をn2、上部吸収層の吸収係数をk2とする。INT(x)は小数部を切り捨てた整数値を返す関数である。
 (3)前記反射層の波長13.53nmにおける反射光に対する前記吸収層の波長13.53nmにおける反射光の位相差は190~220度であることを特徴とする上記(1)または(2)に記載の反射型マスクブランク。
 (4)前記吸収層はTa、Nb、Mo、Ti、Zr、Re、Ru、Au、Pt、Pd、Rh、B、N、および、Oからなる群から選択される1種以上の元素を含有することを特徴とする上記(1)~(3)のいずれか一つに記載の反射型マスクブランク。
 (5)前記吸収層の反射光スペクトルのピーク波長をλMAXとしたとき、前記整数iに対応して
Figure JPOXMLDOC01-appb-M000018
を満たすことを特徴とする上記(1)~(4)のいずれか一つに記載の反射型マスクブランク。
 (6)前記吸収層の上にハードマスク層を有することを特徴とする上記(1)~(5)のいずれか一つに記載の反射型マスクブランク。
 (7)前記ハードマスク層は、CrおよびSiの少なくとも一方の元素を含むことを特徴とする上記(6)に記載の反射型マスクブランク。
 (8)前記基板の裏面に裏面導電層を有することを特徴とする上記(1)~(7)のいずれか一つに記載の反射型マスクブランク。
 (9)前記裏面導電層の材料は、CrもしくはTa、またはこれらの合金であることを特徴とする上記(8)に記載の反射型マスクブランク。
 (10)上記(1)~(9)のいずれか一つに記載の反射型マスクブランクの前記吸収層に、パターンが形成されている反射型マスク。
 以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更などを行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 本出願は、2019年10月29日出願の日本特許出願2019-195856に基づくものであり、その内容はここに参照として取り込まれる。
10 基板
20 反射層
30 保護層
40 吸収層
41 下部吸収層
42 上部吸収層
60 吸収体パターン

Claims (10)

  1.  基板上に、EUV光を反射する反射層と、前記反射層を保護する保護層と、EUV光を吸収する吸収層をこの順に有する反射型マスクブランクであって、
     前記吸収層の波長13.53nmにおける反射率が2.5~10%であり、
     前記吸収層の膜厚dは
    Figure JPOXMLDOC01-appb-M000001
    という関係を満たすことを特徴とする反射型マスクブランク。
     ここで、整数iは0または1であり、dMAX
    Figure JPOXMLDOC01-appb-M000002
    である。上式中、吸収層の屈折率をn、吸収層の吸収係数をkとする。INT(x)は小数部を切り捨てた整数値を返す関数である。
  2.  基板上に、EUV光を反射する反射層と、前記反射層を保護する保護層と、EUV光を吸収する吸収層をこの順に有する反射型マスクブランクであって、
     前記吸収層の波長13.53nmにおける反射率が2.5~10%であり、
     前記吸収層が、下部吸収層および上部吸収層の二層からなり、
     前記二層からなる吸収層の膜厚dbi
    Figure JPOXMLDOC01-appb-M000003
    という関係を満たすことを特徴とする反射型マスクブランク。
     ここで、整数iは0または1であり、dbi MAX
    Figure JPOXMLDOC01-appb-M000004
    である。上式中、下部吸収層の屈折率をn1、上部吸収層の屈折率をn2、上部吸収層の吸収係数をk2とする。INT(x)は小数部を切り捨てた整数値を返す関数である。
  3.  前記反射層の波長13.53nmにおける反射光に対する前記吸収層の波長13.53nmにおける反射光の位相差は190~220度であることを特徴とする請求項1または2に記載の反射型マスクブランク。
  4.  前記吸収層はTa、Nb、Mo、Ti、Zr、Re、Ru、Au、Pt、Pd、Rh、B、N、および、Oからなる群から選択される1種以上の元素を含有することを特徴とする請求項1~3のいずれか一項に記載の反射型マスクブランク。
  5.  前記吸収層の反射光スペクトルのピーク波長をλMAXとしたとき、前記整数iに対応して
    Figure JPOXMLDOC01-appb-M000005
    を満たすことを特徴とする請求項1~4のいずれか一項に記載の反射型マスクブランク。 
  6.  前記吸収層の上にハードマスク層を有することを特徴とする請求項1~5のいずれか一項に記載の反射型マスクブランク。
  7.  前記ハードマスク層は、CrおよびSiの少なくとも一方の元素を含むことを特徴とする請求項6に記載の反射型マスクブランク。
  8.  前記基板の裏面に裏面導電層を有することを特徴とする請求項1~7のいずれか一項に記載の反射型マスクブランク。
  9.  前記裏面導電層の材料は、CrもしくはTa、またはこれらの合金であることを特徴とする請求項8に記載の反射型マスクブランク。
  10.  請求項1~9のいずれか一項に記載の反射型マスクブランクの前記吸収層に、パターンが形成されている反射型マスク。
PCT/JP2020/040115 2019-10-29 2020-10-26 反射型マスクブランクおよび反射型マスク WO2021085382A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020247006841A KR20240033148A (ko) 2019-10-29 2020-10-26 반사형 마스크 블랭크 및 반사형 마스크
KR1020227013985A KR102644109B1 (ko) 2019-10-29 2020-10-26 반사형 마스크 블랭크 및 반사형 마스크
JP2021553606A JP7363913B2 (ja) 2019-10-29 2020-10-26 反射型マスクブランクおよび反射型マスク
US17/658,763 US11914283B2 (en) 2019-10-29 2022-04-11 Reflective mask blank and reflective mask
JP2023162137A JP7544222B2 (ja) 2019-10-29 2023-09-26 反射型マスクブランクおよび反射型マスク
US18/417,352 US20240176225A1 (en) 2019-10-29 2024-01-19 Reflective mask blank and reflective mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019195856 2019-10-29
JP2019-195856 2019-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/658,763 Continuation US11914283B2 (en) 2019-10-29 2022-04-11 Reflective mask blank and reflective mask

Publications (1)

Publication Number Publication Date
WO2021085382A1 true WO2021085382A1 (ja) 2021-05-06

Family

ID=75715949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040115 WO2021085382A1 (ja) 2019-10-29 2020-10-26 反射型マスクブランクおよび反射型マスク

Country Status (5)

Country Link
US (2) US11914283B2 (ja)
JP (2) JP7363913B2 (ja)
KR (2) KR20240033148A (ja)
TW (2) TWI830961B (ja)
WO (1) WO2021085382A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095769A1 (ja) * 2021-11-24 2023-06-01 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク
WO2024029409A1 (ja) * 2022-08-03 2024-02-08 Agc株式会社 反射型マスクブランク及び反射型マスク

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114173A (ja) * 1993-10-15 1995-05-02 Canon Inc リソグラフィ用反射型マスクおよび縮小投影露光装置
JP2010067757A (ja) * 2008-09-10 2010-03-25 Toppan Printing Co Ltd ハーフトーン型euvマスク、ハーフトーン型euvマスクブランク、ハーフトーン型euvマスクの製造方法及びパターン転写方法
WO2017090485A1 (ja) * 2015-11-27 2017-06-01 Hoya株式会社 マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
WO2018135467A1 (ja) * 2017-01-17 2018-07-26 Hoya株式会社 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
WO2018159392A1 (ja) * 2017-03-03 2018-09-07 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
JP2018141969A (ja) * 2017-02-27 2018-09-13 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266988U (ja) 1975-11-13 1977-05-18
JP4780847B2 (ja) * 2001-03-21 2011-09-28 Hoya株式会社 Euv露光用反射型マスクブランクおよびeuv露光用反射型マスク
EP2189842B1 (en) 2002-04-11 2017-08-23 Hoya Corporation Reflective mask blank, reflective mask and methods of producing the mask blank and the mask
JP4163038B2 (ja) 2002-04-15 2008-10-08 Hoya株式会社 反射型マスクブランク及び反射型マスク並びに半導体の製造方法
JP4703353B2 (ja) 2005-10-14 2011-06-15 Hoya株式会社 多層反射膜付き基板、その製造方法、反射型マスクブランクおよび反射型マスク
JP6060636B2 (ja) * 2012-01-30 2017-01-18 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP6861095B2 (ja) 2017-03-03 2021-04-21 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
US11281088B2 (en) * 2017-04-17 2022-03-22 AGC Inc. Reflective mask blank for EUV exposure, and reflective mask
US11294270B2 (en) * 2017-07-05 2022-04-05 Toppan Printing Co., Ltd. Reflective photomask blank and reflective photomask
US10890842B2 (en) * 2017-09-21 2021-01-12 AGC Inc. Reflective mask blank, reflective mask, and process for producing reflective mask blank

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114173A (ja) * 1993-10-15 1995-05-02 Canon Inc リソグラフィ用反射型マスクおよび縮小投影露光装置
JP2010067757A (ja) * 2008-09-10 2010-03-25 Toppan Printing Co Ltd ハーフトーン型euvマスク、ハーフトーン型euvマスクブランク、ハーフトーン型euvマスクの製造方法及びパターン転写方法
WO2017090485A1 (ja) * 2015-11-27 2017-06-01 Hoya株式会社 マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
WO2018135467A1 (ja) * 2017-01-17 2018-07-26 Hoya株式会社 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2018141969A (ja) * 2017-02-27 2018-09-13 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
WO2018159392A1 (ja) * 2017-03-03 2018-09-07 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095769A1 (ja) * 2021-11-24 2023-06-01 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク
TWI837962B (zh) * 2021-11-24 2024-04-01 日商凸版光掩模有限公司 反射型空白光罩及反射型光罩
WO2024029409A1 (ja) * 2022-08-03 2024-02-08 Agc株式会社 反射型マスクブランク及び反射型マスク

Also Published As

Publication number Publication date
US20220236636A1 (en) 2022-07-28
TW202121048A (zh) 2021-06-01
JP7363913B2 (ja) 2023-10-18
KR102644109B1 (ko) 2024-03-07
KR20240033148A (ko) 2024-03-12
US11914283B2 (en) 2024-02-27
TWI830961B (zh) 2024-02-01
JPWO2021085382A1 (ja) 2021-05-06
US20240176225A1 (en) 2024-05-30
JP2023175863A (ja) 2023-12-12
JP7544222B2 (ja) 2024-09-03
TW202417978A (zh) 2024-05-01
KR20220086585A (ko) 2022-06-23

Similar Documents

Publication Publication Date Title
KR101981897B1 (ko) 반사형 마스크 블랭크, 반사형 마스크 및 반사형 마스크 블랭크의 제조 방법
US8288062B2 (en) Reflective mask blank for EUV lithography
US8828627B2 (en) Reflective mask blank for EUV lithography and reflective mask for EUV lithography
US8081384B2 (en) Multilayer reflective film coated substrate, manufacturing method thereof, reflective mask blank, and reflective mask
US8546047B2 (en) Reflective mask blank and method of manufacturing a reflective mask
US8329361B2 (en) Reflective mask blank, method of manufacturing a reflective mask blank and method of manufacturing a reflective mask
US8927181B2 (en) Reflective mask blank for EUV lithography
JP5348141B2 (ja) Euvリソグラフィ用反射型マスクブランク
US7804648B2 (en) Multilayer reflective film coated substrate, manufacturing method thereof, reflective mask blank, and reflective mask
JP7544222B2 (ja) 反射型マスクブランクおよび反射型マスク
JP6965833B2 (ja) 反射型マスクブランク、反射型マスク及び反射型マスクブランクの製造方法
WO2022050156A1 (ja) 反射型マスク、反射型マスクブランク、および反射型マスクの製造方法
US20210349387A1 (en) Reflective mask blank, reflective mask, and process for producing reflective mask blank
US20220187699A1 (en) Reflective mask blank for euvl, reflective mask for euvl, and method of manufacturing reflective mask for euvl
WO2022249863A1 (ja) マスクブランク、反射型マスク及び半導体デバイスの製造方法
JP5333016B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP7480927B2 (ja) 反射型マスクブランク、反射型マスク、反射型マスクの製造方法
JP2022093271A (ja) Euvl用反射型マスクブランク、euvl用反射型マスク、およびeuvl用反射型マスクの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553606

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227013985

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882063

Country of ref document: EP

Kind code of ref document: A1