WO2021085027A1 - ゲート駆動回路 - Google Patents

ゲート駆動回路 Download PDF

Info

Publication number
WO2021085027A1
WO2021085027A1 PCT/JP2020/037382 JP2020037382W WO2021085027A1 WO 2021085027 A1 WO2021085027 A1 WO 2021085027A1 JP 2020037382 W JP2020037382 W JP 2020037382W WO 2021085027 A1 WO2021085027 A1 WO 2021085027A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
side switch
control signal
switch
gate drive
Prior art date
Application number
PCT/JP2020/037382
Other languages
English (en)
French (fr)
Inventor
紘生 小川
Original Assignee
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020127529A external-priority patent/JP7161509B2/ja
Application filed by 株式会社タムラ製作所 filed Critical 株式会社タムラ製作所
Priority to CN202080075701.5A priority Critical patent/CN114616750A/zh
Publication of WO2021085027A1 publication Critical patent/WO2021085027A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the present invention relates to a gate drive circuit for driving a power switch such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field effect transistor).
  • a power switch such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field effect transistor).
  • a gate drive circuit for driving a high power switch used in such an electric power device is used.
  • Such a high power switch needs to be turned on / off at high speed (accuracy of nsec level). That is, the switching frequency of electric power equipment tends to be increased due to demands for weight reduction, space saving, and low price.
  • Power switches used under such circumstances also need to be switched at high speed.
  • Semiconductors such as IGBTs, SiC-MOSFETs, and GaN are used for the power switch. These semiconductors such as IGBTs have a large input capacitance at the drive terminal (gate terminal).
  • the gate circuit of a high-power power switch is generally capacitive, and the larger the power capacity, the larger the capacity.
  • the present invention is a switch circuit used for such a gate drive circuit, and an object of the present invention is to provide a gate drive circuit capable of realizing higher speed switching.
  • Patent Document 1 Japanese Patent Laid-Open No. 03-286619
  • a configuration is disclosed in which a reverse blocking switch is provided in the middle of wiring for supplying an electric charge from a power source to a gate, and an inductance element is provided between the reverse blocking switch and the gate. It is said that this configuration enables high-speed switching by causing resonance between the gate capacitance and the inductance of the inductance element.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 04-176209, which will be described later, discloses a configuration in which an electric charge for turning on a MOS (metal-oxide-semiconductor) transistor is supplied via a diode.
  • MOS metal-oxide-semiconductor
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2017-17995, which will be described later, discloses a wireless power feeding device including a high frequency circuit using a MISFET (Metal Insulator Semiconductor Field Transistors) and a resonance circuit connected to the high frequency circuit. There is. It is said that the resonant circuit enables high-speed switching and provides a wireless power feeding device with excellent performance.
  • MISFET Metal Insulator Semiconductor Field Transistors
  • the circuit configuration as shown in FIG. 10 is used.
  • the switch circuit 10 is configured by providing a high-side switch 11 on the positive side of the power supply and a low-side switch 12 on the negative side of the power supply. Further, an input terminal 13 for inputting a control signal from a control circuit (not shown) is connected to a high side switch 11 and a low side switch 12.
  • a circuit for driving the high-side switch 11 and the low-side switch 12 with a control signal (or referred to as an "ON / OFF signal" from the control circuit is configured.
  • the output terminal 14 is further connected to the high side switch 11 and the low side switch 12, and the output terminal 14 outputs an output signal for driving the IGBT 15.
  • a P-AMP 16 for power amplification is provided between the output terminal 14 and the IGBT 15 (see FIG. 10).
  • each switch (high side switch). 11. There may be a period during which the low-side switch 12) is turned on at the same time.
  • the cause is that, as shown in FIG. 11, when the control signal from the control circuit changes its state, it always passes through the intermediate potential between Vdc (the positive side of the power supply) and Vee (the negative side of the power supply). Because there is. During this period, the voltage of the control signal is an input voltage (this is called an ON operating voltage) for operating (both switches) ON for both the high side switch 11 and the low side switch 12. As a result, both switches are turned on at the same time during this period.
  • FIG. 11 is a graph showing an ON / OFF operation state of the high side switch 11 and the low side switch 12 when the control signal changes.
  • the horizontal axis indicates the passage of time, and the vertical axis represents each signal.
  • VHg the threshold voltage at which the high side switch 11 is switched on and off
  • VLg the threshold voltage of the low side switch 12
  • both switches are in the period when the output voltage of the control circuit is changed from VLg to (Vdc-VHg). It will be in the ON operation state. That is, since both the high-side switch 11 and the low-side switch 12 are in the ON operation during the period from time t1 to t2 shown in FIG. 11, a through current is generated from Vdc to Vee.
  • FIG. 12A An example of a circuit using a level shift circuit is shown in FIG. 12A.
  • the level shift circuit is a circuit that shifts the DC level of the signal of the high side switch 11 in the direction in which the constant value voltage rises.
  • FIG. 12B a time chart showing the state of level shift by the level shift circuit 20 is drawn.
  • the horizontal axis indicates the passage of time, and in the vertical direction, the state of the output signal of the level shift circuit 20 applied to the high side switch 11 and the control circuit 21 applied to the low side switch 12.
  • the state of the output signal (control signal) of is illustrated respectively.
  • the output signal (control signal) of the control circuit 21 is a 10 Vpp signal swinging from the GND level to 10 V.
  • the output signal of the level shift circuit 21 is a 10 Vpp signal that swings in the range of Vdc-10V from the positive side voltage (Vdc) as a result of shifting the voltage by the shift voltage.
  • Vdc positive side voltage
  • the low side switch 12 is in the ON operation state after a predetermined dead time elapses after the high side switch 11 is in the OFF operation state.
  • the high side switch 11 enters the ON operation state after a predetermined dead time elapses after the low side switch 12 is in the OFF operation state.
  • a dead time is provided for both switches to be in the OFF operation state. be able to. Therefore, it is possible to prevent a through current from being generated.
  • FIGS. 13A and 13B A method using a dead time
  • a dead time is provided in advance in the control signal itself. Explanatory diagrams of the method of making this dead time are shown in FIGS. 13A and 13B.
  • FIG. 13A is a circuit diagram when this method is adopted.
  • the switch circuit 10b shown in FIG. 13A includes two types of input terminals. That is, as shown in FIG. 13A, the switch circuit 10b has two types, an input terminal 13a for a control signal supplied to the internal high-side switch 11 and an input terminal 13b for a control signal supplied to the low-side switch 12. It is equipped with an input terminal.
  • the control circuit 21a has two types of control: an ON / OFF signal for the high-side switch 11 (control signal for the high-side switch IN1) and an ON / OFF signal for the low-side switch 12 (control signal for the low-side switch IN2). A signal is output and supplied to each switch to drive both switches.
  • FIG. 13B A time chart illustrating such timing is shown in FIG. 13B.
  • FIG. 13B a time chart showing the state of each signal when the control circuit 21 outputs two types of control signals provided with dead times is drawn.
  • the horizontal axis shows the passage of time, and the high-side switch control signal IN1 and the low-side switch control signal IN2 are shown side by side in the vertical direction.
  • the control circuit 21a changes the high-side switch control signal IN1 to a value at which the high-side switch 11 is turned off, and after a predetermined dead time elapses, this time.
  • the control signal IN2 for the low-side switch is changed to a value at which the low-side switch 12 is turned on.
  • control circuit 21a changes the low-side switch control signal IN2 to a value at which the low-side switch 12 operates OFF, and after a predetermined dead time elapses, this time, the high-side switch control signal IN1 is transmitted to the high-side. The value is changed so that the switch 11 is turned on. In this way, the control circuit 21a sets the high-side switch control signal IN1 and the low-side switch control signal IN2 so that the high-side switch 11 and the low-side switch 12 are alternately turned on with a predetermined dead time in between. It is controlled and output.
  • the present invention has been made to solve such a problem, and to provide a gate drive circuit provided with a faster switch circuit while suppressing an increase in cost while using a simpler circuit. With the goal.
  • the present invention is a gate drive circuit that drives a semiconductor switch based on a control signal in order to solve the above problems, and is a high side connected to an input terminal for inputting the control signal and a positive power supply.
  • a first differential circuit connected to a switch, a low-side switch connected to a negative power supply, an input terminal, a positive power supply, differentiates the control signal, and supplies the high-side switch to the high-side switch, and the input.
  • a second differential circuit connected to the terminal and the negative power supply, differentiating the control signal and supplying it to the low-side switch, an output terminal for outputting a signal for driving the semiconductor switch, and the high-side switch.
  • the first impedance circuit which is connected between the output terminal and has an impedance of 0 ohm or more, and is connected between the low side switch and the output terminal and has 0 ohm or more. It is a gate drive circuit including a second impedance circuit having an impedance.
  • the present invention is the gate drive circuit according to (1), wherein the high-side switch includes a pnp-type transistor, the low-side switch includes an npn-type transistor, and the first differentiating circuit is ,
  • the differentiated control signal is supplied to the base of the pnp type transistor
  • the second differentiating circuit supplies the differentiated control signal to the base of the npn type transistor
  • the first impedance circuit is the pnp type.
  • the second impedance circuit is connected between the collector terminal of the transistor and the output terminal, and the second impedance circuit is connected between the collector terminal of the npn type transistor and the output terminal. It is a gate drive circuit.
  • the present invention is the gate drive circuit according to (1) or (2), and is a collector terminal of either the collector terminal of the pnp type transistor or the collector terminal of the npn type transistor.
  • a gate drive circuit including a constant voltage diode connected between the output terminal and the output terminal.
  • the present invention is the gate drive circuit according to any one of (1) to (3), which is connected between the input terminal of the high side switch and the positive power supply.
  • a semiconductor switch is provided, the semiconductor switch is turned on by a predetermined prohibition signal, the input terminal of the high side switch is connected to the positive side power supply, and a high voltage is applied to the output terminal regardless of the control signal. It is a gate drive circuit that can prohibit output.
  • the present invention is a gate drive circuit that drives a plurality of semiconductor switches in parallel based on a control signal, and includes an input terminal for inputting the control signal and a high-side switch connected to a positive power supply.
  • a low-side switch connected to a negative power supply, an input terminal, a first differential circuit connected to the positive power supply, differentiating the control signal, and supplying the high-side switch to the high-side switch, and the input terminal.
  • a second differential circuit connected to the negative power supply, differentiating the control signal and supplying it to the low-side switch, an output terminal for outputting a signal for driving the semiconductor switch, and the high-side switch.
  • a first impedance circuit connected between the output terminal and having an impedance of 0 ohm or more, and a low side switch and the output terminal connected between the first impedance circuit and the output terminal and having an impedance of 0 ohm or more. It is a gate drive circuit including a second impedance circuit having the same.
  • a switch circuit capable of preventing a through current with a simpler configuration is realized. Therefore, the switch circuit can be used to provide a gate drive circuit having a simpler configuration while preventing a through current.
  • the first embodiment there is a circuit diagram of a switch circuit using a differentiating circuit. It is explanatory drawing which shows the example of the differentiating circuit in this Embodiment 1. It is a circuit diagram which made the differentiating circuit of FIG. 1 a concrete circuit example. In the first embodiment, it is a time chart showing a signal pattern in a switch circuit using a differentiating circuit. This is a graph obtained by calculating the input voltage of the high side switch using equation (1). It is a circuit diagram of a switch circuit when a high-side switch and a low-side switch are configured by using a bipolar transistor. It is a circuit diagram of a switch circuit using a constant voltage diode.
  • Embodiment 1 is a switch circuit used in a gate drive circuit for driving a power switch such as an IGBT or MOSFET.
  • FIG. 1 shows a circuit diagram of a gate drive circuit including a switch circuit 110.
  • This gate drive circuit is a gate drive circuit that drives the gate of the IGBT 15.
  • the IGBT 15 corresponds to a preferred example of a semiconductor switch in the claims.
  • the gate drive circuit may include other circuits with the switch circuit 110 as the main configuration.
  • P-AMP16 may be included (see FIG. 1), but may not be included depending on the application.
  • the switch circuit 110 is characterized in that the differentiating circuits 120 and 121 are connected to the input terminals of the high side switch 111 and the low side switch 112. These differentiating circuits 120 and 121 are the same as when the above-mentioned level shift circuit (shifting the voltage in the positive direction) is inserted on the input side of the high side switch 111 in the time zone when the input signal (control signal) rises. Produces the effect of. Further, in the time zone when the input signal drops, the same effect as when the level shift circuit (shifting the voltage in the negative direction) is inserted on the input side of the low side switch 112 is produced.
  • the differentiating circuits 120 and 121 are the network shown in the differentiating circuits 1 to 3 of FIG. 2, or a network in which these network networks are connected in parallel.
  • the differentiating circuit 1 of FIG. 2 is a circuit of only the capacitor C
  • the differentiating circuit 2 of FIG. 2 is a parallel circuit of the capacitor C and the resistor R.
  • the differentiating circuit 3 of FIG. 2 is a direct circuit of the resistor Ra and the capacitor C, and a parallel circuit of the resistor Rb.
  • FIG. 1 described above can be represented as shown in FIG. 3A.
  • the differentiating circuit 120 is composed of a parallel circuit of the capacitor C1 and the resistor R1, but the resistor Rg is shown as the input resistance of the high side switch 111.
  • the differentiating circuit 121 is composed of a parallel circuit of the capacitor C2 and the resistor R2, but the resistor Rg is shown as the input resistance of the low side switch 112.
  • FIG. 3A also shows a control circuit 131 that outputs a control signal, and the control circuit 131 supplies the control signal to the input terminal 113.
  • the differentiating circuit 120 corresponds to a preferred example of the first differentiating circuit in the claims.
  • the differentiating circuit 121 corresponds to a preferred example of the second differentiating circuit in the claims. This also applies to FIGS. 3A, 5, 6 and the like, which will be described later.
  • the formula (2) of the input terminal voltage of the low-side switch 112 does not have such a term, and there is no initial voltage generation when the voltage of the control signal rises starting from Vee.
  • the differentiating circuit 121 is connected to the negative power supply Vee. Since the control signal is differentiated with respect to the negative power supply Vee, the voltage shown in the first term of the equation (1) is not generated. In this way, the same effect as when the voltage shift circuit is inserted only in the high side switch 111 can be obtained. That is, the same effect as that of the circuit shown in FIG. 12 can be obtained.
  • the graph of FIG. 4 is drawn.
  • the horizontal axis represents time and the vertical axis represents the drive voltage of the high side switch 111.
  • the first term of the equation (1) (represented by the “shift voltage (first term)” in FIG. 4) is as if there is a voltage shift circuit.
  • the voltage of the control signal of the high side switch 111 is raised.
  • FIG. 3A consider the opposite case, that is, in FIG. 3A, when the control signal goes from Vdc to Vee.
  • the voltages of the input terminals of the high-side switch 111 and the low-side switch 112 are represented by the following equations (4) and (5). In this case, a voltage corresponding to the voltage shift is generated in the input voltage of the low side switch 112, and no voltage shift is generated in the input voltage of the high side switch 111.
  • FIG. 3B A time chart showing how the control signal by the differentiating circuit changes is shown in FIG. 3B.
  • the horizontal axis is time, and the control signal, the signal of the input terminal of the high side switch 111, and the signal of the input terminal of the low side switch 112 are shown in order in the vertical axis. That is, how the control signal changes depending on the differentiating circuit is drawn.
  • the control signal rises from Vee to Vdc at a predetermined rise time (tr) and changes from Vdc to Vec at a predetermined fall time (tf) (see FIG. 3B).
  • tr Vdc / k
  • tf Vdc / k.
  • the lower row is the signal of the input terminal of the low side switch 112, and when compared with the control signal in the upper row by passing through a differentiating circuit, an overshoot appears at the rising edge of the signal, and an undershoot appears at the falling edge of the signal. It appears.
  • the portion where the value of this signal exceeds Vsh (threshold value) is the period of the ON operation of the low side switch 112.
  • Vsh threshold value
  • Vdc to Vsh (threshold value) of this signal is the period of the OFF operation of the high side switch 111.
  • the portion from Vsh (threshold value) to GND is the period of ON operation of the high side switch 111. These are shown in FIG. 3B.
  • the signal of the input terminal of the high side switch 111 in the middle stage of FIG. 3B is raised by the shift voltage shown in the first term of the equation (1). Due to this shift voltage, when the waveform of the signal at the input terminal of the high-side switch 111 falls below Vsh, the timing at which the high-side switch 111 shifts to the ON operation is delayed. Further, due to this shift voltage (formula (1), item 1), when the waveform of the signal of the input terminal of the high side switch 111 rises, it exceeds Vsh early, and the high side switch 111 shifts to the OFF operation. The timing to do it has been advanced.
  • a dead time is formed between the signal appearing at the input terminal of the low side switch 112, and a dead time is formed between the signal at the input terminal of the high side switch 111 and the signal at the input terminal of the low side switch 112. It is possible to prevent the high-side switch 111 and the low-side switch 112 from operating simultaneously.
  • the output signal of the high side switch 111 is connected to the output terminal 114 via the impedance z1 (see FIG. 1). Further, the output signal of the low side switch 112 is connected to the output terminal 114 via the impedance z2 (see FIG. 1).
  • a resistance value of a predetermined value or the like is used, but it is not necessary. That is, either one or both of the impedance circuits z1 and z2 may be 0 ohms (that is, directly connected). However, it is preferable to insert an impedance circuit having a small value in order to stabilize the output, smoothly switch between the high-side switch 111 and the low-side switch 112, and the like.
  • the impedance circuit z1 corresponds to a preferred example of the first impedance circuit in the claims. Further, the impedance circuit z2 corresponds to a preferred example of the second impedance circuit in the claims.
  • FIG. 5 shows a circuit block diagram of a gate drive circuit including a switch circuit 110 when a pnp transistor is used for the high-side switch 111a and an npn transistor is used for the low-side switch 112a. It is shown. Also in FIG. 5, the gate drive circuit has the switch circuit 110 as the main configuration, but may include other configurations. For example, the gate drive circuit may or may not include the P-AMP16. Even when a so-called bipolar transistor is used, the same operation and effect as those of the circuits shown in FIGS. 1 to 3 described above can be obtained. Further, by using a transistor instead of a MOSFET for each switch of the high side switch 111a, various advantages occur.
  • VBE the base-emitter voltage when each transistor is conducting.
  • the base voltage up to immediately before the ON operation is calculated, and after the ON operation, the distance between the base and the emitter is limited to about 0.7V.
  • the impedance between the base and the emitter is high impedance with respect to the resistance value of the resistor Rg immediately after the control signal starts to change. To do.
  • the input signal of each switch when the control signal rises from Vee to Vdc is the equation (6) representing the input signal of the high-side switch 111a, and the equation (7) representing the input signal of the low-side switch 112a. Is. However, in the case of the equation (7), when the base-emitter conducts, the base-emitter voltage is clamped at about 0.7V.
  • the equations when the control signal descends from Vdc to Vee are shown in the following equations (8) and (9). However, in the case of the equation (8), when the base-emitter of the transistor conducts, the base-emitter voltage is clamped to about 0.7V.
  • the threshold voltage of the gate of the MOSFET is set between the gate and the source. Need to be applied to. By applying a voltage equal to or higher than this threshold value between the gate and the source, the MOSFET operates ON and a current flows. The current that can flow between the drain and the source is almost independent of the gate-source voltage, and when the gate-source voltage exceeds the threshold value, the current can flow.
  • the high-side switch 111 and the low-side switch 112 are configured by using MOSFETs, the drain current is limited only by the ON resistance, so that a large current may occur. It is not possible to allow the situation where the low side switch 112 and the low side switch 112 are turned on at the same time.
  • the gate-source voltage has a maximum rating, and a voltage exceeding this maximum rating cannot be applied. Therefore, depending on the magnitude of the control signal voltage, a protective zener diode may be used. You will need it.
  • a protective constant voltage diode since the voltage between the base and the emitter is about 0.6 V during the ON operation, there is a feature that such a protective constant voltage diode is not required.
  • the points to be noted differ between the case where the high side switch 111 and the low side switch 112 use the bipolar transistor and the case where the MOSFET is used.
  • FIG. 6 is a block diagram in the case where the constant voltage diode D1 is inserted into the output circuit of the switch circuit 110a.
  • a gate drive circuit for driving a power switch IGBT15 or the like
  • the output of the switch circuit described in this embodiment and the gate drive circuit using the same is required to be diverse.
  • the gate drive circuit in FIG. 6 has a switch circuit 110a as a main configuration, but other configurations may be included.
  • the gate drive circuit may or may not include the P-AMP16.
  • the output may require a swing width from Vdc to Vee, or it may have to limit the voltage range, such as Vdc to GND. In such a case, as shown in FIG. 6, the swing width of the output voltage is adjusted by inserting the diode D1 between the transistor constituting the high side switch 111a or the low side switch 112a and the output terminal 114. be able to.
  • the Zener voltage of D1 is made equal to Vee, and the output is taken from the collector of the pnp transistor constituting the high side switch 111. Good.
  • the output may be obtained from the collector of the npn transistor constituting the low-side switch 112.
  • the constant voltage diode D1 used in the circuit shown in FIG. 6 in the present embodiment has a constant voltage diode having an equivalent capacitance existing in parallel with the constant voltage diode D1 during the period when the low side switch 112a is ON. It can be charged to the voltage of D1. Therefore, even at the moment when the switch is inverted, the high-side switch is turned on, and the low-side switch 112 is turned off, the electric charge stored in the equivalent capacitance is maintained. As a result, according to the present embodiment, it is not necessary to charge the parallel equivalent capacitance of the constant voltage diode D1 at the moment when the high-side and low-side switches are switched, and it is possible to output a stable output voltage instantly. There are also merits.
  • FIG. 7 is a circuit block diagram of a gate drive circuit when a P-channel MOSFET 140 (hereinafter referred to as Q1) is inserted between the input terminal of the high-side switch 111 and Vdc.
  • the source terminal of Q1 is connected to Vdc, and the drain terminal is connected to the input terminal of the high side switch 111.
  • the gate drive circuit in FIG. 7 may include a switch circuit 110b as a main configuration and other configurations.
  • the gate drive circuit may or may not include a buffer or an inverter circuit using MOSFETs or the like connected between the output terminal 114 and the IGBT 15 to be driven.
  • the switch circuit 110b included in the gate drive circuit includes a prohibition signal input terminal 141 for inputting the prohibition signal IN2.
  • the prohibition signal input terminal 141 is connected to the gate terminal of Q1 via the voltage dividing circuit of the resistor R10 and the resistor R11.
  • the prohibition signal IN2 is High
  • the output terminal 114 outputs High corresponding to the signal.
  • the output terminal 114 outputs Low corresponding to the signal.
  • the output terminal 114 is Low regardless of the value of the control signal IN1.
  • the output terminal 114 may have to be forcibly held in Low even when the control signal IN1 is operating normally.
  • Q1 are provided so that a prohibition signal can be input.
  • such a prohibited operation is an operation performed when there is an abnormality in the state of the IGBT 15, and it is necessary to reduce the delay time as much as possible. Therefore, the circuit shown in FIG. 7 in which such a delay operation does not occur can be easily constructed to receive a prohibition signal. Further, according to the circuit shown in FIG. 7, a configuration capable of receiving a prohibition signal can be configured more simply.
  • FIG. 8 An example of a specific circuit diagram of the gate drive circuit 200 is shown in FIG.
  • the gate drive circuit shown in FIG. 8 includes a switch circuit 110c as a main configuration, and other circuits are not shown. However, as shown in FIGS. 1, 3A and 5 described above, for example, P-AMP may be included.
  • a control signal is input to the input terminal 113.
  • the control signal swings from + 15V of the positive power supply to -10V of the negative power supply.
  • the control signal is a rectangular wave having a frequency of about 10 kHz.
  • the input terminal 113 is connected to two differentiating circuits 120 and 121 as in FIG. 3A.
  • the output signal of the differentiating circuit 120 is supplied to the base terminal of the high side switch 111 (for example, a pnp transistor) (hereinafter referred to as Q1).
  • the output signal of the differentiating circuit 121 is supplied to the base terminal of the low-side switch 112 (for example, an npn transistor) (hereinafter referred to as Q2) (see FIG. 8).
  • a series circuit of the constant voltage diode D1 and the resistor R5 is connected between the collector terminal of Q1 and the collector terminal of Q2, and the output signal of the switch circuit 110c is output from both ends of the series circuit. ..
  • These two types of output signals are output from the output terminal 114b via an inverter including a P-channel MOSFET (referred to as Q3) and an N-channel MOSFET (referred to as Q4). Therefore, the output terminal 114b is a substantial output terminal of the switch circuit 110c.
  • the output terminal 114b is connected to the gate terminal of the IGBT 15 to be driven.
  • the voltage of the base terminal of Q1 is a voltage corresponding to the voltage of the shift circuit shown in the first term of the above equation (1), and then the control signal. It rises to + 15V in proportion to the rise of the voltage of. At this time, a voltage as calculated by the equation (1) appears at the base terminal of Q1. In this way, the state of the ON operation is changed to the state of the OFF operation at the very initial time when the control voltage changes from ⁇ 10 V to + 15 V.
  • Q2 when the control signal shifts from ⁇ 10V to + 15V, the state shifts from the OFF operation state to the ON operation state.
  • the voltage at the base terminal of Q2 is the function of the differentiating circuit 121 composed of C2 and R2, and a voltage corresponding to the voltage of the shift circuit is generated. Due to this generated voltage, the potential of the base terminal drops at the very early stage of the falling edge of the control signal, and Q2 operates OFF.
  • Q1 shifts from the OFF operation state to the ON operation state by shifting the voltage of the control signal from + 15V to -10V.
  • the voltage of the control signal is ⁇ 10 V
  • the output transistor Q4 in FIG. 8 is turned on and Q3 is turned off. Therefore, the output voltage of the output terminal 114b of the gate drive circuit 200 becomes LOW, and the gate drive circuit 200 draws out the charge between the gate and the source of the IGBT 15 via R9 and Q4.
  • the IGBT operates OFF.
  • the gate terminal of the IGBT 15 becomes approximately -10V, and the OFF state is sufficiently maintained.
  • the voltage can be appropriately applied while ensuring the withstand voltage by the action of the constant voltage diode D1.
  • the gate drive circuit 200 passes a current between the gate and the source of the IGBT 15 via R8 and Q3.
  • the output voltage of the output terminal 114b becomes HIGH, and the gate voltage of the IGBT 15 is set to approximately + 15V.
  • the IGBT 15 operates ON.
  • the gate voltage is maintained at + 15V to maintain the ON state.
  • the gate-source voltage of Q4 can be appropriately applied to the gate terminal of Q4 while ensuring the withstand voltage by the action of the constant voltage diode D1.
  • the gate drive circuit 200 shown in FIG. 8 can drive the IGBT 15 for switching a large amount of electric power. Since the polarities of the control signal and the output signal are also matched, the circuit can be configured very efficiently.
  • FIG. 9 shows a gate drive circuit 200b.
  • the gate drive circuit 200b includes a switch circuit 110d including R1 to R7, C1, C2, D1, Q1, Q2, etc. in FIG.
  • the switch circuit 110d is a preferred example of the switch circuit having the configuration shown in FIG. 5 (and claim 3) described above.
  • the switch circuit 110e including R11 to R15, R20, C11, C12, C20, D11, Q11, Q12 and the like has the configuration shown in FIG. 6 (and claim 4).
  • This is a suitable example of a switch circuit.
  • Q3, Q4, Q14, R6 to R9, and R16 to R19 correspond to a preferable example of the internal circuit configuration of the P-AMP (power amplifier) 16 of FIG.
  • a control signal which is a rectangular wave of about 10 kHz is input to the input terminal 113 as a normal operation, and the Softoff-in terminal 142 is in a high state during the normal operation.
  • the input terminal 113 is High
  • Q3 is in the ON operation state
  • the output terminal 114 outputs High.
  • both Q4 and Q14 are turned on, and the output terminal is connected to a potential of ⁇ 10 V via R9 and R19 to become Low.
  • the gate charge of the IGBT 15 is discharged by the parallel resistance value of R9 and R19.
  • the discharge time constant is Will be. The time it takes for the IGBT 15 to transition from the ON operation state to the OFF operation state is affected by this time constant.
  • R9 and R19 are connected in parallel to the gate terminal of the IGBT 15, and the time constant is calculated by the parallel connection as in the above equation (10).
  • these two resistors may be connected in series.
  • the connection destination of the terminal of R9 on the side connected to the gate terminal of IGBT 15 may be changed from the gate terminal of IGBT 15 to the connection point of the drain terminal of R19 and Q14.
  • the time constant of the OFF operation (of the IGBT 15) during the normal operation becomes the time constant based on R19.
  • the resistance value of R9 is assumed to be sufficiently larger than the resistance value of R19.
  • the transition time for the IGBT 15 to transition from the ON operation state to the OFF operation state must be appropriately selected. If the transition time is too long, the switching loss increases, and if it is short, the switching loss decreases, but due to parasitic inductance. A voltage surge occurs. Further, since this voltage surge increases in proportion to the collector current, the optimum switching loss can be selected according to the collector current by changing the transition time according to the collector current. Further, if the OFF operation is performed in the normal transition time at the time of a short circuit, a surge voltage exceeding the withstand voltage between the collector and the emitter of the IGBT 15 is applied, which leads to the destruction of the IGBT 15.
  • Cge ⁇ R9.
  • the switch circuit and the gate drive circuit using the switch circuit according to the present embodiment have the following effects.
  • a differentiating circuit was provided at the input section of the switch circuit, and the control signal that passed through this differentiating circuit was supplied to the switch circuit (high-side switch, low-side switch).
  • the control signal can have the same effect as the voltage shift. Therefore, it is possible to provide a switch circuit capable of preventing a through current with a simple configuration.
  • the switch circuit can be used to provide a gate drive circuit having a simple configuration.
  • a bipolar transistor pnp type, npn type
  • the switch circuit can obtain the same effect as the voltage shift of the control signal, the use of the differentiating circuit shortens the time until the gate voltage of the semiconductor switch is switched with respect to the input signal. Can be done. Therefore, if this switch circuit is applied to the parallel drive of a plurality of semiconductor switches, it is possible to suppress the variation in the ON / OFF timing of the plurality of semiconductor switches to a small extent, which is effective.
  • a constant voltage diode or the like can be used between the switch circuit (high-side switch, low-side switch) and the output terminal to make adjustments such as narrowing the output voltage range by that voltage. Thereby, the swing range of the output voltage can also be adjusted.
  • the gate drive circuit may be forcibly stopped depending on the drive state of the IGBT or the like to be driven. If a switch for connecting the input terminal on the high side switch side to the Vdc based on the prohibition signal is provided, the gate drive circuit can be easily forcibly stopped with a simple configuration.
  • the switch for connecting the example of the P-channel MOSFET has been described above, but any switch that operates by the prohibition signal may be used.
  • the time constant when extracting the electric charge of the IGBT to be driven can be lengthened. As a result, the surge voltage due to the parasitic inductance can be reduced, and thus the damage of the IGBT can be prevented. Further, if this time constant is too long, the switching loss will increase, but if it is short, a voltage surge will occur as described above. Since this voltage surge increases in proportion to the collector current, the switching loss can be selected according to the collector current by adjusting the time constant according to the collector current.
  • the embodiment described above is an example as a means for realizing the present invention, and should be appropriately modified or changed depending on the configuration of the device to which the present invention is applied and various conditions, and the present invention is the present embodiment.
  • the mode is not limited to.
  • the IGBT is mainly described as the power semiconductor switch to be driven, but other power semiconductor switches can also be applied.
  • the various differentiating circuits described above are suitable examples, and other circuits having similar functions may be used.
  • the present invention relates to a gate drive circuit for driving a power switch such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field effect transistor).
  • a power switch such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field effect transistor).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

より単純な回路を用いつつ、コストの上昇を抑制しながら、より高速なスイッチ回路を備えたゲート駆動回路を提供することである。制御信号に基づき、半導体スイッチを駆動するゲート駆動回路であって、入力端子と、プラス側電源に接続したハイサイドスイッチと、マイナス側電源に接続したローサイドスイッチと、プラス側電源に接続され制御信号を微分して、ハイサイドスイッチに供給する第1微分回路と、マイナス側電源に接続され制御信号を微分してローサイドスイッチに供給する第2微分回路と、駆動する信号を出力する出力端子と、ハイサイドスイッチと出力端子との間に接続される第1インピーダンス回路と、ハイサイドスイッチと前記出力端子との間に接続される第2インピーダンス回路と、を備えるゲート駆動回路。

Description

ゲート駆動回路
 本発明は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field effect transistor)のような電力スイッチを駆動するためのゲート駆動回路に関する。
 近年の省エネルギー化の要求に伴い、太陽光発電や風力発電がエネルギーの供給面で重要になりつつある。このような電力機器において使用される大電力スイッチを駆動するゲート駆動回路が使用される。
 このような大電力スイッチは、高速(nsecレベルの精度)でON/OFFする必要がある。つまり、電力機器のスイッチング周波数は、軽量化、省スペース、低価格の実現などの要求から高周波化が進む傾向にある。そのような状況下で使用される電力スイッチも高速にスイッチングする必要がある。
 電力スイッチには、IGBTやSiC-MOSFET、GaNなどの半導体が使用される。これらIGBT等の半導体は駆動端子(ゲート端子)に大きな入力容量がある。大電力の電力スイッチのゲート回路は一般に容量性であり、電力容量が大きくなればなるほどその容量も大きくなる。
 したがって、電力スイッチの駆動時の初期に大きな電流が流れることになる。そのため、このような電力スイッチを駆動するような高速スイッチは、大電流を高速で切り替える能力が必要となる。近年の省エネルギー化の要請から、装置の一層の軽量化が求められ、一層高速化が要求されている。その結果、電力スイッチを高速でスイッチングする駆動回路は、瞬時に大電流を供給できる能力がより一層要求されている。
 一方、電力機器の制御回路は、このような大電流を直接大電力スイッチに供給することはできない。そこで、制御回路と大電力スイッチとの間には電流増幅や電圧増幅を高速で行うゲート駆動回路が通常は必要となる。本発明は、このようなゲート駆動回路に使用されるスイッチ回路であって、より高速なスイッチングを実現しうるゲート駆動回路を提供しようとするものである。
 先行特許技術
 例えば、後述する特許文献1(特開平03-286619号公報)には、絶縁ゲートを備えた半導体を駆動するゲート駆動回路が開示されている。特に、電源から電荷をゲートに供給する配線の途中に逆阻止型スイッチが設けられ、逆阻止型スイッチとゲートの間にインダクタンス素子が設けられている構成が開示されている。この構成によって、ゲート容量と、インダクタンス素子のインダクタンスで共振を生じさせることによって、高速なスイッチングが可能になるとされている。
 後述する特許文献2(特開平04-176209号公報)には、MOS(metal-oxide-semiconductor)トランジスタをON動作させるための電荷をダイオードを介して供給する構成が開示されている。これによって、一度ON動作したMOSFET(metal-oxide-semiconductor field-effect transistor)はON動作し続け、以て高速なスイッチングをすることができるとされている。
 後述する特許文献3(特開2017-17995号公報)には、MISFET(Metal Insulator Semiconductor Field Transistors)を用いた高周波回路と、高周波回路に接続する共振回路と、を含むワイヤレス給電装置が開示されている。共振回路によって、高速なスイッチングが可能になり性能の優れたワイヤレス給電装置が提供できるとされている。
特開平03-286619号公報 特開平04-176209号公報 特開2017-17995号公報
 制御回路からの信号を高速で増幅する場合、図10のような回路構成が使用されている。図10に示すように、スイッチ回路10は、電源のプラス側にハイサイドスイッチ11、電源のマイナス側にローサイドスイッチ12を設けて構成されている。また、図示されていない制御回路からの制御信号を入力する入力端子13は、ハイサイドスイッチ11及びローサイドスイッチ12に接続している。これによって、ハイサイドスイッチ11及びローサイドスイッチ12を制御回路からの制御信号(又は「ON/OFF信号」と呼ぶ)で駆動する回路が構成されている。
 図10においては、さらに出力端子14が、ハイサイドスイッチ11及びローサイドスイッチ12に接続しており、出力端子14はIGBT15を駆動するための出力信号を出力する。なお、出力端子14と、IGBT15との間には電力増幅のためのP-AMP16が設けられている(図10参照)。
 しかし、制御回路からの制御信号を直接ハイサイドスイッチ11、ローサイドスイッチ12に接続すると制御回路からのON/OFF信号が、L → H、又はH → L に変化するとき、各スイッチ(ハイサイドスイッチ11、ローサイドスイッチ12)が同時にON状態となる期間が生じてしまう場合がある。
 その原因は、図11に示すように制御回路からの制御信号が、その状態を変化する際に、必ずVdc(電源のプラス側)とVee(電源のマイナス側)との中間電位を通過する期間があるためである。この期間において、制御信号の電圧は、ハイサイドスイッチ11、ローサイドスイッチ12ともに(両スイッチを)ON動作させる入力電圧(これを、ON動作電圧と呼ぶ)である。その結果、この期間では、両方のスイッチが同時にON動作してしまう。
 図11は、制御信号が変化する際のハイサイドスイッチ11と、ローサイドスイッチ12とのON/OFF動作状態の様子を示すグラフである。図11のグラフにおいて、横軸は時間の経過を示し、縦軸には各信号が並んでいる。
 例えば、ハイサイドスイッチ11のON/OFFが切り替わる閾値電圧をVHgとし、ローサイドスイッチ12の閾値電圧をVLgとすると、制御回路の出力電圧がVLgから(Vdc-VHg)となる期間は、両スイッチがON動作の状態となる。すなわち、図11に示す時間t1~t2の期間はハイサイドスイッチ11、ローサイドスイッチ12が共にON動作の状態となるため、VdcからVeeに向かって貫通電流が生じてしまう。
 レベルシフト回路を用いる方法
 このような貫通電流を防ぐ一つの方法として、レベルシフト回路を使用する方法がある。レベルシフト回路を使用した回路の例が、図12Aに示されている。レベルシフト回路とは、ハイサイドスイッチ11の信号の直流レベルを一定値電圧が上がる方向にシフトさせる回路である。このようなレベルシフト回路を用いることによって、図11に示すような両方のスイッチが同時にON動作する時間帯をなくすことができる。
 図12Aにおいては、図10の図に比べて、レベルシフト回路20が設けられている点が異なる。すなわち、図12Aのスイッチ回路10aは、図10のスイッチ回路10と比べると、レベルシフト回路20が備えられている点が異なる。なお、図12Aにおいては、制御回路21が描かれており、制御信号を入力端子13に印加する。
 図12Bには、レベルシフト回路20によるレベルシフトの様子を示すタイムチャートが描かれている。図12Bのタイムチャート中、横軸は時間の経過を示し、縦方向には、ハイサイドスイッチ11に印加されるレベルシフト回路20の出力信号の様子と、ローサイドスイッチ12に印加される制御回路21の出力信号(制御信号)の様子とが、それぞれ例示されている。
 図12Bに示すように、この例では、制御回路21の出力信号(制御信号)はGNDレベルから10Vまでをスイングする10Vp-pの信号である。これに対して、レベルシフト回路21の出力信号は、シフト電圧だけ電圧をシフトさせた結果、プラス側電圧(Vdc)から、Vdc-10Vの範囲をスイングする10Vp-pの信号である。このようにレベルシフトをした結果、ハイサイドスイッチ11は、OFF動作に入るタイミングが早くなり、逆にON動作に入るタイミングが遅れることになる。
 その結果、図12Bにも示すように、ハイサイドスイッチ11がOFF動作の状態になってから所定のデッドタイム経過後に、ローサイドスイッチ12がON動作の状態にはいる。また、逆に、ローサイドスイッチ12がOFF動作の状態になってから所定のデッドタイム経過後に、ハイサイドスイッチ11がON動作の状態に入る。
 このように、図12に示す例では、レベルシフト回路を用いることによって、ハイサイドスイッチ11のON/OFF動作を行うタイミングをずらしたので、両スイッチが共にOFF動作の状態となるデッドタイムを設けることができる。したがって、貫通電流が生じてしまうことを防止することができる。
 デッドタイムを用いる方法
 また、貫通電流を防ぐ他の方法として、制御信号そのものにあらかじめデッドタイムを設けておく方法がある。このデッドタイムを作る方法の説明図が、図13A、図13Bに示されている。
 図13Aは、この方法を採用した場合の回路図である。図10のスイッチ回路10と異なり、図13Aに示すスイッチ回路10bは、入力端子を2種備えている。つまり、図13Aに示すように、スイッチ回路10bは、内部のハイサイドスイッチ11に供給する制御信号用の入力端子13aと、ローサイドスイッチ12に供給する制御信号用の入力端子13bと、の2種類の入力端子を備えている。
 そして、制御回路21aは、ハイサイドスイッチ11用のON/OFF信号(ハイサイドスイッチ用制御信号IN1)とローサイドスイッチ12用のON/OFF信号(ローサイドスイッチ用制御信号IN2)との2種類の制御信号を出力して、それぞれのスイッチに供給して、両スイッチを駆動している。
 そして、ハイサイドスイッチ用制御信号IN1と、ローサイドスイッチ用制御信号IN2との間にデッドタイムを予め設けておくことによって、各スイッチのON動作している期間を、OFF動作している期間よりも少し短く設定している。この結果、両スイッチが同時にON動作する時間帯をなくすことができる。このようなタイミングを説明するタイムチャートが図13Bに示されている。
 図13Bには、制御回路21が、デッドタイムを設けた2種の制御信号を出力する場合の各信号の様子を示すタイムチャートが描かれている。図13Bのタイムチャート中、横軸は時間の経過を示し、縦方向には、ハイサイドスイッチ用制御信号IN1と、ローサイドスイッチ用制御信号IN2とが並べて示されている。
 図13Bに示すように、この例では、制御回路21aは、ハイサイドスイッチ用制御信号IN1を、ハイサイドスイッチ11がOFF作動させる値にまで変化させた後、所定のデッドタイム経過後に、今度はローサイドスイッチ用制御信号IN2を、ローサイドスイッチ12がON作動させる値にまで変化させている。
 また、制御回路21aは、ローサイドスイッチ用制御信号IN2を、ローサイドスイッチ12がOFF作動させる値にまで変化させた後、所定のデッドタイム経過後に、今度はハイサイドスイッチ用制御信号IN1を、ハイサイドスイッチ11がON作動させる値にまで変化させている。
 このように所定のデッドタイムを挟んで、ハイサイドスイッチ11とローサイドスイッチ12とが交互にON作動するように、制御回路21aは、ハイサイドスイッチ用制御信号IN1、及びローサイドスイッチ用制御信号IN2を制御して出力している。
 その結果、ハイサイドスイッチ11とローサイドスイッチ12とに流れる貫通電流を防止することができる。
 これらのいずれの方法でも、貫通電流を防止することが可能であるが、回路の複雑さや回路コストの上昇はさけることができない。本発明は、このような課題を解決するためになされたものであり、より単純な回路を用いつつ、コストの上昇を抑制しながら、より高速なスイッチ回路を備えたゲート駆動回路を提供することを目的とする。
 (1)本発明は、上記課題を解決するために、制御信号に基づき、半導体スイッチを駆動するゲート駆動回路であって、前記制御信号を入力する入力端子と、プラス側電源に接続したハイサイドスイッチと、マイナス側電源に接続したローサイドスイッチと、前記入力端子と、前記プラス側電源とに接続され、前記制御信号を微分して、前記ハイサイドスイッチに供給する第1微分回路と、前記入力端子と、前記マイナス側電源とに接続され、前記制御信号を微分して、前記ローサイドスイッチに供給する第2微分回路と、前記半導体スイッチを駆動する信号を出力する出力端子と、前記ハイサイドスイッチと、前記出力端子と、の間に接続され、0オーム又はそれ以上のインピーダンスを有する第1インピーダンス回路と、前記ローサイドスイッチと、前記出力端子と、の間に接続され、0オーム又はそれ以上のインピーダンスを有する第2インピーダンス回路と、を備えることを特徴とするゲート駆動回路である。
 (2)また、本発明は、(1)記載のゲート駆動回路であって、前記ハイサイドスイッチは、pnp型トランジスタを備え、前記ローサイドスイッチは、npn型トランジスタを備え、前記第1微分回路は、微分した前記制御信号を前記pnp型トランジスタのベースに供給し、前記第2微分回路は、微分した前記制御信号を前記npn型トランジスタのベースに供給し、前記第1インピーダンス回路は、前記pnp型トランジスタのコレクタ端子と、前記出力端子と、の間に接続され、 前記第2インピーダンス回路は、前記npn型トランジスタのコレクタ端子と、前記出力端子と、の間に接続されていることを特徴とするゲート駆動回路である。
 (3)また、本発明は、(1)又は(2)記載のゲート駆動回路であって、前記pnp型トランジスタのコレクタ端子、又は、前記npn型トランジスタのコレクタ端子、のいずれか一方のコレクタ端子と、前記出力端子と、の間に接続された定電圧ダイオード、を備えることを特徴とするゲート駆動回路である。
 (4)また、本発明は、(1)~(3)のいずれか1項に記載のゲート駆動回路であって、前記ハイサイドスイッチの入力端子と、前記プラス側電源との間に接続する半導体スイッチ、を備え、前記半導体スイッチは、所定の禁止信号によりON動作し、前記ハイサイドスイッチの入力端子を前記プラス側電源と接続し、前記制御信号にかかわらず、前記出力端子にHigh電圧が出力させることを禁止することができるゲート駆動回路である。
 (5)また、本発明は、制御信号に基づき、複数の半導体スイッチを並列に駆動するゲート駆動回路であって、前記制御信号を入力する入力端子と、プラス側電源に接続したハイサイドスイッチと、マイナス側電源に接続したローサイドスイッチと、前記入力端子と、前記プラス側電源とに接続され、前記制御信号を微分して、前記ハイサイドスイッチに供給する第1微分回路と、前記入力端子と、前記マイナス側電源とに接続され、前記制御信号を微分して、前記ローサイドスイッチに供給する第2微分回路と、前記半導体スイッチを駆動する信号を出力する出力端子と、前記ハイサイドスイッチと、前記出力端子と、の間に接続され、0オーム又はそれ以上のインピーダンスを有する第1インピーダンス回路と、前記ローサイドスイッチと、前記出力端子と、の間に接続され、0オーム又はそれ以上のインピーダンスを有する第2インピーダンス回路と、を備えることを特徴とするゲート駆動回路である。
 
 本発明によれば、より簡易な構成で貫通電流を防止できるスイッチ回路を実現している。したがって、そのスイッチ回路を用いて、貫通電流を防止しつつ、より簡易な構成のゲート駆動回路を提供することができる。
本実施形態1において、微分回路を用いたスイッチ回路の回路図ある。 本実施形態1において、微分回路の例を示す説明図である。 図1の微分回路を具体的な回路例にした回路図である。 本実施形態1において、微分回路を用いたスイッチ回路における信号の様  子を表すタイムチャートである。 ハイサイドスイッチの入力電圧を、式(1)を用いて算出して得られたグラ  フである。 バイポーラトランジスタを用いて、ハイサイドスイッチ及びローサイドスイ  ッチを構成した場合のスイッチ回路の回路図である。 定電圧ダイオードを用いたスイッチ回路の回路図である。 ハイサイドスイッチの入力端子とVdcとの間にPチャネルMOSFETを  設けたスイッチ回路の回路図である。 スイッチ回路を用いた具体的なゲート駆動回路の回路図である。 スイッチ回路を用いた具体的なゲート駆動回路の回路図である。 従来のスイッチ回路を含む回路図である。 制御信号が変化する際のグラフである。 従来のレベルシフト回路を用いたスイッチ回路図である。 従来のレベルシフト回路によるレベルシフトの様子を示すタイムチャー  トである。 従来のデッドタイムを設けた制御信号を用いるスイッチ回路図である。 従来のデッドタイムを設けた制御信号を用いるスイッチ回路の動作の様  子を示すタイムチャートである。
 以下、本発明の好適な実施形態を図面に基づき説明する。
 1.実施形態1
 本実施形態は、IGBTやMOSFETのような電力スイッチを駆動するためのゲート駆動回路に用いられるスイッチ回路である。図1には、スイッチ回路110を備えたゲート駆動回路の回路図が示されている。このゲート駆動回路は、IGBT15のゲートを駆動するゲート駆動回路である。ここで、IGBT15は、請求の範囲の半導体スイッチの好適な一例に相当する。また、ゲート駆動回路は、スイッチ回路110を主要構成として、その他の回路を含んでよい。例えば、P-AMP16を含めてもよい(図1参照)が、アプリケーションによっては含めなくてもよい。本実施形態1に係るスイッチ回路110は、ハイサイドスイッチ111及びローサイドスイッチ112の入力端子に微分回路120、121を接続することを特徴とする。これらの微分回路120、121は、入力信号(制御信号)が上昇する時間帯ではハイサイドスイッチ111の入力側に、上述したレベルシフト回路(プラス方向に電圧をシフトする)を挿入した場合と同様の効果を生む。また、入力信号が下降する時間帯においては、ローサイドスイッチ112の入力側に、レベルシフト回路(マイナス方向に電圧をシフトする)を挿入した場合と同様の効果を生む。
 ここで、微分回路120、121は図2の微分回路1~3に示す回路網又は、これら回路網を並列接続した回路網とする。図2の微分回路1は、コンデンサCのみの回路であり、図2の微分回路2は、コンデンサCと抵抗Rとの並列回路である。また、図2の微分回路3は、抵抗RaとコンデンサCとの直接回路と、抵抗Rbと、の並列回路である。
 ここで、微分回路120、121として、例えば、コンデンサCと抵抗Rの並列回路(図2の微分回路2)を採用すると、上述した図1は、図3Aのように表すことができる。
なお図1におけるインピーダンスZ1、Z2は、図3Aでは省略して示されていない。また、微分回路120は、図3Aでは、コンデンサC1と抵抗R1との並列回路から構成されているが、ハイサイドスイッチ111の入力抵抗として抵抗Rgが示されている。また、微分回路121は、図3Aでは、コンデンサC2と抵抗R2との並列回路から構成されているが、ローサイドスイッチ112の入力抵抗として抵抗Rgが示されている。また、図3Aでは、制御信号を出力する制御回路131も示されており、制御回路131は、制御信号を入力端子113に供給している。
 図3Aにおけるゲート駆動回路は、スイッチ回路110を主要構成とするが、P-AMP16をゲート駆動回路に含めてもよいし、含めなくてもよい。
 微分回路120は、請求の範囲の第1微分回路の好適な一例に相当する。微分回路121は、請求の範囲の第2微分回路の好適な一例に相当する。これは後述する図3A、図5、図6等においても同様である。
 図3Aにおいて、制御信号がVee電位からVdc電位に向かって上昇する場面を考える。このときの制御信号の電圧上昇の傾きの絶対値をk(V/sec)とする。
 また、制御信号がVee電位からVdc電位に向かい始める時刻をt=0とする。制御信号が上昇過程にある時間帯に限れば、ハイサイドスイッチ111の入力端子電圧vhgとローサイドスイッチ112の入力端子電圧vlgとは、それぞれ下記式(1)、式(2)で表される。
 この式(1)から、ハイサイドスイッチ111の入力端子電圧はt=0において、式(1)の第1項の値となる。制御信号の電圧がVeeを起点として上昇しても、ハイサイドスイッチ111の入力電圧の起点は、式(1)の第1項で示される電圧からスタートすることがわかる。すなわち、微分回路120を設けることによって、電圧シフト回路を設けたと同様の効果を得ることができ、ハイサイドスイッチ111とローサイドスイッチ112の両方のスイッチが共にON動作の状態となる期間を防止できる。
 これは、微分回路120が、プラス側電源Vdcに接続しているからである。プラス側電源Vdcを基準に制御信号を微分するので、式(1)の第1項で示した電圧からスタートすることになる。
 一方、ローサイドスイッチ112の入力端子電圧の式(2)は、このような項はなく、制御信号の電圧がVeeを起点として上昇する際の初期の電圧発生はない。
 これは、微分回路121が、マイナス側電源Veeに接続しているからである。マイナス側電源Veeに対して制御信号を微分するので、式(1)の第1項で示した電圧は発生しない。
 このようにして、ハイサイドスイッチ111にのみ電圧シフト回路を挿入した場合と同様の効果が得られる。すなわち、図12に示す回路と同様の効果が得られる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
ただし、
Figure JPOXMLDOC01-appb-M000003
 ここで、例として、時定数τ1 = 200nsec、図3AのR1 = 27kΩ、Rg = 2.2kΩ、C1 = 100pF、Vdc = 15V、 また、Vee = -10Vとし、制御信号の電圧の上昇率がk = 3V/nsecとする。これらの値を用いて、ハイサイドスイッチ111の入力電圧を、式(1)を用いて算出すると、図4のグラフが描かれる。図4のグラフは、横軸が時間であり、縦軸がハイサイドスイッチ111の駆動電圧を示す。この図4のグラフからわかるように、式(1)の第1項(図4中、「シフト電圧(第1項)」で表される)は、あたかも、電圧シフト回路があるかのようにハイサイドスイッチ111の制御信号の電圧をかさ上げする。
 次に、逆の場合、すなわち図3Aにおいて、制御信号がVdcからVeeに向かう場合を考える。
 図3Aにおいて、制御信号がVdc からVeeに向かう場合を検討する。制御信号が、VdcからVeeに向かい始める瞬間をt=0として、制御信号が下降している時間帯に限定して検討する。すると、ハイサイドスイッチ111とローサイドスイッチ112の入力端子の電圧は、次の式(4)及び式(5)で表される。
 
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 この場合は、ローサイドスイッチ112の入力電圧に電圧シフトに相当する電圧が発生し、ハイサイドスイッチ111の入力電圧には、電圧シフトは発生しない。
 なお、微分回路による制御信号がどのように変化するかを示すタイムチャートが図3Bに示されている。図3Bにおいては、横軸が時間で、縦に制御信号、ハイサイドスイッチ111の入力端子の信号、ローサイドスイッチ112の入力端子の信号、が順に示されている。すなわち、制御信号が、微分回路によってどのように変化するかが描かれている。
 図3Bにおいて、制御信号は、所定の立ち上がり時間(tr)でVeeからVdcまで立ち上がり、また所定の立ち下がり時間(tf)でVdcからVeeまで変化しておく(図3B参照)。ここで、tr=Vdc/kであり、tf=Vdc/kである。
 図3Bにおいて、下段がローサイドスイッチ112の入力端子の信号であり、微分回路を通じることによって、上段の制御信号と比較すると、信号の立ち上がりでオーバーシュートが表れ、信号の立ち下がりで、アンダーシュートが表れている。この信号の値がVsh(閾値)を超えた部分が、ローサイドスイッチ112のON動作の期間となる。
 また、図3Bの中段には、ハイサイドスイッチ111の入力端子の信号であり、微分回路を通じることによって、ローサイドスイッチ112と同様に、信号の立ち上がりでオーバーシュートが表れ、信号の立ち下がりで、アンダーシュートが表れている。この信号のVdcからVsh(閾値)の部分が、ハイサイドスイッチ111のOFF動作の期間となる。Vsh(閾値)からGNDの部分が、ハイサイドスイッチ111のON動作の期間となる。これらが図3Bに示されている。
 なお、図3Bの中段のハイサイドスイッチ111の入力端子の信号は、式(1)の第1項で示されるシフト電圧分だけ、かさ上げされている。このシフト電圧によって、ハイサイドスイッチ111の入力端子の信号の波形が立ち下がり時において、Vshを下回って、ハイサイドスイッチ111がON動作に移行するタイミングが遅れる。また、このシフト電圧(式(1)第1項)によって、ハイサイドスイッチ111の入力端子の信号の波形が立ち上がり時においては、早めにVshを上回ってしまい、ハイサイドスイッチ111がOFF動作に移行するタイミングが早められている。この結果、ローサイドスイッチ112の入力端子に表れる信号との間にデッドタイムが形成され、ハイサイドスイッチ111の入力端子の信号とローサイドスイッチ112の入力端子の信号との間でデッドタイムが形成され、ハイサイドスイッチ111とローサイドスイッチ112とが同時にON動作することを防止することができる。
 なお、ハイサイドスイッチ111の出力信号は、インピーダンスz1を介して、出力端子114に接続する(図1参照)。また、ローサイドスイッチ112の出力信号は、インピーダンスz2を介して、出力端子114に接続する(図1参照)。インピーダンス回路z1、z2は、所定の値の抵抗値等が用いられるが、なくても良い。すなわち、インピーダンス回路z1及びz2は、いずれか一方又は双方が0オーム(つまり、直結)であってもよい。ただし、出力の安定化、ハイサイドスイッチ111とローサイドスイッチ112との円滑な切り替え等のために、小さい値のインピーダンス回路を挿入しておくことは好ましい。
 インピーダンス回路z1は、請求の範囲の第1インピーダンス回路の好適な一例に相当する。また、インピーダンス回路z2は、請求の範囲の第2インピーダンス回路の好適な一例に相当する。
 以上説明したように、図3(図1)の回路構成によれば、制御信号がVeeからVdcまでスイングする場合、制御信号の上昇(VeeからVdcに上昇)時及び下降(VdcからVeeに下降)時の両方の場合において、ハイサイドスイッチ111とローサイドスイッチ112の両方が同時にON動作の状態となる期間の発生を防止することができる。
 2.実施形態2 バイポーラトランジスタを用いた例
 図5には、ハイサイドスイッチ111aにpnpトランジスタを使用し、ローサイドスイッチ112aにはnpnトランジスタを使用した場合のスイッチ回路110を含むゲート駆動回路の回路ブロック図が示されている。図5においても、ゲート駆動回路は、スイッチ回路110を主要構成とするが、その他の構成を含んでいてもよい。例えばゲート駆動回路はP-AMP16を含めてもよいが、含めなくともよい。
 いわゆるバイポーラトランジスタを用いた場合でも、これまで説明してきた図1~図3に示す回路とほぼ同様の作用効果を奏する。また、ハイサイドスイッチ111a各スイッチにMOSFETではなく、トランジスタを使用することで、種々の利点が生じる。
 以下、ハイサイドスイッチ111aとローサイドスイッチ112aとにトランジスタを用いた本実施形態2の場合に関する式を追加する。各トランジスタの導通したときのベース-エミッタ間電圧をVBEとする。トランジスタがOFF動作の状態からON動作の状態に移行する場合は、ON動作直前までのベース電圧を算出したものであり、ON動作後はベース-エミッタ間は、約0.7Vで制限される。また、トランジスタがON動作の状態からOFF動作の状態へ移行する場合は、制御信号が変化し始めた直後から、ベース-エミッタ間のインピーダンスは抵抗Rgの抵抗値に対してハイインピーダンスであると仮定する。
 制御信号がVeeからVdcへ上昇する場合の各スイッチの入力信号は、ハイサイドスイッチ111aの入力信号を表す式が式(6)であり、ローサイドスイッチ112aの入力信号を表す式が式(7)である。
 ただし、式(7)の場合は、ベース-エミッタ間が導通すると、ベース-エミッタ間電圧は、約0.7Vにてクランプされる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 制御信号が、VdcからVeeへ下降する場合の式は、次の式(8)、式(9)に示されている。ただし、式(8)の場合、トランジスタのベース-エミッタ間が導通すると、ベース-エミッタ間電圧は約0.7Vにクランプされる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 ここで、ハイサイドスイッチ111やローサイドスイッチ112を、バイポーラトランジスタの代わりにMOSFETを用いる場合は、OFF動作の状態からON動作の状態に移行するとき、MOSFETのゲートの閾値電圧以上をゲート-ソース間に印加する必要がある。この閾値以上の電圧をゲート-ソース間に印加することによって、MOSFETはON動作して電流を流す。ドレイン-ソース間に流し得る電流はゲート-ソース間電圧にほとんど関係なく、ゲート-ソース間電圧が閾値を超えると電流を流すことができる。
 一方、トランジスタはベース-エミッタ電圧である約0.6Vを超えると、ベース電流が流れてコレクタ電流が流れるが、ベース電流のhFE倍の電流に制限される。そのため、ベース電流Ibを制限すれば、仮にハイサイドスイッチ111aのpnpトランジスタとローサイドスイッチ112aのnpnトランジスタが同時にON動作し、導通状態となっても、流れる電流(コレクタ電流)はIC = hFE × Ibに制限され、極めて短時間であれば、破損を免れうる場合もある。これに対して、ハイサイドスイッチ111、ローサイドスイッチ112をMOSFETを利用して構成する場合は、ON抵抗でのみドレイン電流が制限されるので、大きな電流となる可能性があり、ハイサイドスイッチ111とローサイドスイッチ112とが同時にON動作する状況を許容することはできない
 さらに、MOSFETの場合は、ゲート-ソース間電圧は最大定格があり、この最大定格の電圧を超える電圧を加えることができないので、制御信号の電圧の大きさによっては、保護用の定電圧ダイオードが必要となる。これに対して、トランジスタの場合は、ON動作時においてはベース-エミッタ間は約0.6Vとなるため、このような保護用定電圧ダイオードを必要としないという特徴がある。
 このように、ハイサイドスイッチ111と、ローサイドスイッチ112にバイポーラトランジスタを用いる場合と、MOSFETを用いる場合とで、それぞれ留意すべき点が異なる。
 3.実施形態3:定電圧ダイオードを利用する例
 図6は、スイッチ回路110aの出力の回路に定電圧ダイオードD1を挿入した場合のブロック図である。電力スイッチ(IGBT15等)を駆動するゲート駆動回路において、本実施形態で説明するスイッチ回路及びそれを用いたゲート駆動回路の出力は、多様性が求められる。図6におけるゲート駆動回路は、スイッチ回路110aを主要構成とするが、他の構成を含めてもよい。例えば、ゲート駆動回路は、P-AMP16を含めてもよいし、含めなくともよい。
 例えば、出力はVdcからVeeまでのスイング幅が必要な場合もあれば、Vdc~GNDのように電圧範囲を限定しなければならない場合もある。このような場合には、図6に示すように、ハイサイドスイッチ111aやローサイドスイッチ112aを構成するトランジスタと出力端子114との間にダイオードD1を挿入することで、出力電圧のスイング幅を調整することができる。
 例えば、Vdc~GNDの範囲の出力を得たい場合は、D1のツェナー電圧をVeeと等しくして、ハイサイドスイッチ111を構成するpnpトランジスタのコレクタから出力をとる図5のような接続とすればよい。
 逆にVeeからGNDの間でスイングする出力を得たいときは、ローサイドスイッチ112を構成するnpnトランジスタのコレクタから出力を得ればよい。
 特に、本実施形態における図6に示している回路に使用した定電圧ダイオードD1は、ローサイドスイッチ112aがON動作している期間に定電圧ダイオードD1に並列に存在する等価容量を当定電圧ダイオーオードD1の電圧にまで充電することができる。したがって、スイッチが反転してハイサイドスイッチがON動作し、ローサイドスイッチ112がOFF動作した瞬間においてもその等価容量に蓄えた電荷が維持されている。その結果、本実施形態によれば、ハイサイドとローサイドのスイッチの切り替わる瞬間において定電圧ダイオードD1の並列等価容量を充電する必要がなく、瞬時に安定した出力電圧を出力することが可能となるというメリットもある。
 4.実施形態4
 図7は、ハイサイドスイッチ111の入力端子とVdcとの間にPチャネルMOSFET140(以下、Q1と呼ぶ)を挿入した場合のゲート駆動回路の回路ブロック図である。Q1のソース端子はVdcに接続し、ドレイン端子はハイサイドスイッチ111の入力端子に接続する。図7におけるゲート駆動回路は、スイッチ回路110bを主要構成として、他の構成を含めてもよい。例えば、ゲート駆動回路は、出力端子114と、駆動対象であるIGBT15との間に接続された、MOSFET等を用いたバッファやインバータ回路を含めてもよいし、含めなくともよ。
 このゲート駆動回路が備えるスイッチ回路110bは、禁止信号IN2を入力する禁止信号入力端子141を備えている。この禁止信号入力端子141は、抵抗R10と抵抗R11の分圧回路を介して、Q1のゲート端子と接続する。
 禁止信号IN2がHighの場合は、制御信号IN1にLow信号を入力すると出力端子114はその信号に対応してHighを出力する。制御信号IN1にHigh信号を入力すると出力端子114はその信号に対応してLowを出力する。
 一方、禁止信号IN2がLowの場合は、制御信号IN1の値に関わらず、出力端子114はLowとなる。駆動対象であるIGBT15の駆動状態によっては、制御信号IN1が通常動作をしている場合であっても出力端子114を強制的にLowに保持しなければならない場合があるので、このような場合に、Q1を設けて、禁止信号を入力することができるように構成している。
 ところで、このような場合に、出力端子114を外部回路によって、強制的にLowとすることも考えられるが、出力端子114の出力抵抗が低いため強制的にLowとすることで、大電流が流れることとなり本回路のハイサイドスイッチ111は、必要以上の過負荷状態となってしまい、好ましくはない。
 また、入力端子113に例えば所定の論理回路を挿入して、制御信号そのものを強制的にHighに保持する方法も考えられる。しかし、その論理回路や、その論理回路の時間遅れが余分に発生してしまい、好ましい結果をもたらすことはないと考えられる。
 通常、このような禁止動作は、IGBT15の状態などに異常がある場合に行う動作であり、できるだけ遅れ時間を少なくする必要がある。そのため、かかる遅延動作が生じない図7に示す回路は、禁止信号を受け付けることができる構成を容易に構築することができる。さらに、図7に示す回路によれば、禁止信号を受け付けることができる構成を、よりシンプルに構成することができる。
 5.本発明の具体的な実施の形態
 5.1具体的な実施の形態1
 具体的なゲート駆動回路200の回路図の例を図8に示す。図8に示すゲート駆動回路は、スイッチ回路110cを主要構成として含み、他の回路は示されていない。しかし、これまで説明した図1、図3A及び図5のように、例えばP-AMPを含めてもよい。入力端子113に制御信号が入力される。制御信号は、プラス電源の+15Vからマイナス電源の-10Vまでスイングする。また、制御信号は、周波数が10kHz程度の矩形波である。
 入力端子113は、図3Aと同様に、2個の微分回路120、121に接続されている。微分回路120の出力信号は、ハイサイドスイッチ111(例えば、pnpトランジスタ)(以下、Q1と呼ぶ)のベース端子に供給される。微分回路121の出力信号は、ローサイドスイッチ112(例えば、npnトランジスタ)(以下、Q2と呼ぶ)のベース端子に供給される(図8参照)。
 Q1のコレクタ端子と、Q2のコレクタ端子との間には、定電圧ダイオードD1と、抵抗R5との直列回路が接続されており、その直列回路の両端からスイッチ回路110cの出力信号が出力される。この2種の出力信号は、PチャネルMOSFET(Q3と呼ぶ)とNチャネルMOSFET(Q4と呼ぶ)とからなるインバータを介して出力端子114bから出力される。従って、出力端子114bが、実質的なスイッチ回路110cの出力端子である。出力端子114bは、駆動対象であるIGBT15のゲート端子に接続している。
 さて、制御信号が-10Vから+15Vへ変化するとき、Q1のベース端子の電圧は、上述した式(1)の第一項に示すシフト回路の電圧に相当する電圧が発生し、その後、制御信号の電圧の上昇に比例して+15Vまで上昇する。このとき、Q1のベース端子には、式(1)で算出されるような電圧が表れる。このようにして、制御電圧が-10Vから+15Vへ変化するごく初期の時間にON動作の状態からOFF動作の状態に移行する。
一方、Q2は、制御信号が-10Vから+15Vに移行することで、OFF動作の状態からON動作の状態へ移行する。制御信号が、+15Vから-10Vへ変化する場合は、Q2のベース端子の電圧はC2、R2で構成される微分回路121の働きで、シフト回路の電圧に相当する電圧が発生する。この発生する電圧によって、制御信号の立下りのごく初期にベース端子の電位は低下し、Q2がOFF動作する。
 次に、Q1は、制御信号の電圧が+15Vから-10Vへ移行することで、OFF動作の状態からON動作の状態に移行する。制御信号の電圧が-10Vのときは、図8中の出力のトランジスタQ4がON動作し、Q3はOFF動作している。従って、ゲート駆動回路200の出力端子114bの出力電圧はLOWとなり、ゲート駆動回路200は、R9、Q4を介してIGBT15のゲート-ソース間の電荷を引き抜く。その結果IGBTはOFF動作する。IGBT15のゲート端子はほぼ-10Vとなり、十分にOFF状態を保つ。Q3のゲート-ソース間電圧については、定電圧ダイオードD1の働きにより耐圧を確保しながら適正に電圧を印加できる。
 制御電圧が+15Vとなると、今度はQ3がON動作してQ4がOFF動作する。このとき、ゲート駆動回路200は、R8、Q3を介してIGBT15のゲート-ソース間に電流を流す。出力端子114bの出力電圧はHIGHとなりIGBT15のゲート電圧をほぼ+15Vにする。その結果、IGBT15はON動作する。ゲート電圧は+15Vに維持されて、ON状態を保持する。Q3と同じく、Q4のゲート-ソース間電圧についても、定電圧ダイオードD1の働きにより、耐圧を確保しながら適正にQ4のゲート端子に電圧を印加できる。このように、図8に示すゲート駆動回路200は、大電力をスイッチングするIGBT15を駆動することができる。制御信号と、出力信号との極性も整合しているので、非常に効率よく回路を構成できる。
 5.2具体的な実施の形態2
 具体的な実施形態2の回路図を図9に示す。図9にはゲート駆動回路200bが示されている。ゲート駆動回路200bは、図9中において、R1~R7、C1、C2、D1、Q1、Q2等からなるスイッチ回路110dを備える。このスイッチ回路110dは、上述した図5(及び請求の範囲の請求項3)に示された構成のスイッチ回路の好適な一例である。
 また、図9中において、R11~R15、R20、C11、C12、C20、D11、Q11、Q12等からなるスイッチ回路110eは、図6(及び請求の範囲の請求項4)に示された構成のスイッチ回路の好適な一例である。また、Q3、Q4、Q14、R6~R9、R16~R19は、図1のP-AMP(電力増幅器)16の内部回路構成の好適な一例に相当する。
 入力端子113には、通常動作として10kHz程度の矩形波である制御信号が入力されており、Softoff-in端子142は、通常稼働時にはHighの状態である。この状態では、入力端子113がHighの場合は、Q3がON動作の状態となり、出力端子114はHighを出力する。また、入力端子113がLowの場合は、Q4、Q14の両方がON動作し、出力端子は-10Vの電位にR9、R19 を介して接続されてLow となる。このとき、IGBT15のゲート電荷は、R9とR19の並列抵抗値によって放電する。その放電時定数は、
Figure JPOXMLDOC01-appb-M000010
となる。IGBT15がON動作の状態からOFF動作の状態に移行する時間はこの時定数に影響を受ける。τが大きければ移行時間は長くなり、τが短ければ移行時間は短くなる。
 なお、図9に示す例では、R9とR19とがIGBT15のゲート端子に対して並列に接続されている例を示し、かかる並列接続によって、上記(10)式のように時定数が算出されているが、この2個の抵抗は直列に接続されていてもよい。
 例えば、図9において、IGBT15のゲート端子に接続している側のR9の端子の接続先を、IGBT15のゲート端子から、R19とQ14のドレイン端子の接続点に変更してもよい。
 このような回路接続とすることによって、通常動作時の(IGBT15の)OFF動作の時定数は、R19に基づく時定数となる。また、禁止信号を受信している際の時定数は。R9に基づく時定数とすることができる。但し、R9の抵抗値は、R19の抵抗値より十分に大きいものとする。
 IGBT15がON動作の状態からOFF動作の状態に移行する移行時間は、適切に選定する必要があり、移行時間が長すぎるとスイッチング損失が増大し、短いとスイッチング損失は低減するが、寄生インダクタンスによる電圧サージが発生する。また、この電圧サージは、コレクタ電流に比例して大きくなるため、コレクタ電流に合わせて移行時間を変えることで、コレクタ電流に合わせて最適なスイッチング損失を選定できる。また、短絡時に通常の移行時間でOFF動作させるとIGBT15のコレクタ-エミッタ間の耐圧を超えるサージ電圧が印加されIGBT15の破壊につながる。
 本実施形態は、短絡時にSoftoff-in端子142をLowとすることで、Q11を常にOFF動作の状態に維持できる。この状態では、IGBT15のゲート電荷を引き抜く時定数をτ = Cge × R9と表すことができる。その結果、時定数τは長くなり、IGBT15がON動作状態からOFF動作の状態へ移行する時間も長くなり、電圧サージが低減する。その結果、IGBT15の破損を回避することができる。
 6.効果その他
 以上説明したように、本実施形態におけるスイッチ回路及びそれを用いたゲート駆動回路によれば、次のような効果を奏する。
 スイッチ回路の入力部に微分回路を設けて、この微分回路を通過した制御信号をスイッチ回路(ハイサイドスイッチ、ローサイドスイッチ)に供給した。その結果、制御信号を電圧シフトと同様の効果を得ることができる。したがって、簡易な構成で、貫通電流を防止できるスイッチ回路を提供することができる。さらに、そのスイッチ回路を用いて、簡易な構成のゲート駆動回路を提供することができる。
 また、スイッチ回路(ハイサイドスイッチ、ローサイドスイッチ)としては、MOSFETではなく、バイポーラトランジスタ(pnp型、npn型)を用いてもよい。その場合は、ベース-エミッタ間の電圧は約0.6V程度でクランプされるため、MOSFETのように保護用定電圧ダイオード等を設ける必要がないので、より簡易な構成とできる。
さらに、スイッチ回路は、制御信号を電圧シフトと同様な効果を得ることができるにもかかわらず、微分回路を用いたことにより、入力信号に対する半導体スイッチのゲート電圧を切替えるまでの時間を短縮することができる。従って、このスイッチ回路を複数の半導体スイッチの並列駆動に適用すれば、複数ある半導体スイッチのON/OFFのタイミングのバラツキを小さく抑えることができり、効果的である。
 また、スイッチ回路(ハイサイドスイッチ、ローサイドスイッチ)と出力端子との間に定電圧ダイオード等を用いてその電圧だけ出力電圧の範囲を狭める等の調整をおこなうことができる。これによって、出力電圧のスイング範囲を調整することもできる。
 また、駆動対象であるIGBT等の駆動状態により、ゲート駆動回路を強制停止させる場合もある。ハイサイドスイッチ側の入力端子を、禁止信号に基づいてVdcに接続させるスイッチを設ければ、簡易な構成で容易にゲート駆動回路を強制停止させることができる。接続させるためのスイッチとしては、PチャネルMOSFETの例を上では説明したが、禁止信号によって動作するスイッチであればどのようなスイッチでもよい。
 また、上述した実施形態では、駆動対象であるIGBTの電荷を引き抜く際の時定数を長くすることができる。その結果、寄生インダクタンスによるサージ電圧の低減を図り、以て、IGBTの破損を未然に防止することができる。
 また、この時定数は、長すぎるとスイッチング損失が増大してしまうが、短ければ上述の通り電圧サージが発生する。この電圧サージはコレクタ電流に比例して大きくなるので、コレクタ電流に合わせて時定数を調整することで、コレクタ電流に合わせたスイッチング損失を選ぶことができる。
 また、以上説明した実施形態は、本発明の実現手段としての一例であり、本発明が適用される装置の構成や各種条件によって適宜修正又は変更されるべきものであり、本発明は本実施形態の態様に限定されるものではない。例えば、上述した実施形態においては、駆動対象である電力半導体スイッチとしてIGBTを主として説明したが、他の電力半導体スイッチでも適用することができる。また、上で説明した種々の微分回路は好適な一例であり、同様の機能を備えた他の回路を用いてもよい。
産業上利用可能性
 本発明は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field effect transistor)のような電力スイッチを駆動するためのゲート駆動回路に関する。
 10、10a、10b、110、110a、110b、110c スイッチ回路
 110d、110e スイッチ回路
 11、111 ハイサイドスイッチ
 12、112 ローサイドスイッチ
 13、113 入力端子
 14、114 出力端子
 15 IGBT
 16 P-AMP
 20 シフト回路
 21、131 制御回路
 120、121 微分回路
 141 禁止信号入力端子
 142 Softoff-in端子
 200、200b ゲート駆動回路
 

 

Claims (5)

  1.  制御信号に基づき、半導体スイッチを駆動するゲート駆動回路であって、
     前記制御信号を入力する入力端子と、
     プラス側電源に接続したハイサイドスイッチと、
     マイナス側電源に接続したローサイドスイッチと、
     前記入力端子と、前記プラス側電源とに接続され、前記制御信号を微分して、前記ハイサイドスイッチに供給する第1微分回路と、
     前記入力端子と、前記マイナス側電源とに接続され、前記制御信号を微分して、前記ローサイドスイッチに供給する第2微分回路と、
     前記半導体スイッチを駆動する信号を出力する出力端子と、
     前記ハイサイドスイッチと、前記出力端子と、の間に接続され、0オーム又はそれ以上のインピーダンスを有する第1インピーダンス回路と、
     前記ローサイドスイッチと、前記出力端子と、の間に接続され、0オーム又はそれ以上のインピーダンスを有する第2インピーダンス回路と、
     を備えることを特徴とするゲート駆動回路。
  2.  請求項1記載のゲート駆動回路であって、
     前記ハイサイドスイッチは、pnp型トランジスタを備え、
     前記ローサイドスイッチは、npn型トランジスタを備え、
     前記第1微分回路は、微分した前記制御信号を前記pnp型トランジスタのベースに供給し、
     前記第2微分回路は、微分した前記制御信号を前記npn型トランジスタのベースに供給し、
     前記第1インピーダンス回路は、前記pnp型トランジスタのコレクタ端子と、前記出力端子と、の間に接続され、
     前記第2インピーダンス回路は、前記npn型トランジスタのコレクタ端子と、前記出力端子と、の間に接続されていることを特徴とするゲート駆動回路。
  3.  請求項1又は2記載のゲート駆動回路であって、
    前記pnp型トランジスタのコレクタ端子、又は、前記npn型トランジスタのコレクタ端子、のいずれか一方のコレクタ端子と、前記出力端子と、の間に接続された定電圧ダイオード、
     を備えることを特徴とするゲート駆動回路。
  4.  請求項1~3のいずれか1項に記載のゲート駆動回路であって、
     前記ハイサイドスイッチの入力端子と、前記プラス側電源との間に接続する半導体スイッチ、
     を備え、前記半導体スイッチは、所定の禁止信号によりON動作し、前記ハイサイドスイッチの入力端子を前記プラス側電源と接続し、
     前記制御信号にかかわらず、前記出力端子にHigh電圧が出力させることを禁止することができるゲート駆動回路。
  5.  制御信号に基づき、複数の半導体スイッチを並列に駆動するゲート駆動回路であって、
     前記制御信号を入力する入力端子と、
     プラス側電源に接続したハイサイドスイッチと、
     マイナス側電源に接続したローサイドスイッチと、
     前記入力端子と、前記プラス側電源とに接続され、前記制御信号を微分して、前記ハイサイドスイッチに供給する第1微分回路と、
     前記入力端子と、前記マイナス側電源とに接続され、前記制御信号を微分して、前記ローサイドスイッチに供給する第2微分回路と、
     前記半導体スイッチを駆動する信号を出力する出力端子と、
     前記ハイサイドスイッチと、前記出力端子と、の間に接続され、0オーム又はそれ以上のインピーダンスを有する第1インピーダンス回路と、
     前記ローサイドスイッチと、前記出力端子と、の間に接続され、0オーム又はそれ以上のインピーダンスを有する第2インピーダンス回路と、
     を備えることを特徴とするゲート駆動回路。
     

     
PCT/JP2020/037382 2019-10-31 2020-09-30 ゲート駆動回路 WO2021085027A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080075701.5A CN114616750A (zh) 2019-10-31 2020-09-30 栅极驱动电路

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-199392 2019-10-31
JP2019199392 2019-10-31
JP2020127529A JP7161509B2 (ja) 2019-10-31 2020-07-28 ゲート駆動回路
JP2020-127529 2020-07-28

Publications (1)

Publication Number Publication Date
WO2021085027A1 true WO2021085027A1 (ja) 2021-05-06

Family

ID=75716188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037382 WO2021085027A1 (ja) 2019-10-31 2020-09-30 ゲート駆動回路

Country Status (2)

Country Link
CN (1) CN114616750A (ja)
WO (1) WO2021085027A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121520A (ja) * 1988-10-31 1990-05-09 Ando Electric Co Ltd 容量性負荷に対するパルス増幅回路
US20180076747A1 (en) * 2016-09-13 2018-03-15 Infineon Technologies Ag Gate-driver circuit with improved common-mode transient immunity
US10461730B1 (en) * 2018-09-07 2019-10-29 Infineon Technologies Austria Ag Adaptive multi-level gate driver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121520A (ja) * 1988-10-31 1990-05-09 Ando Electric Co Ltd 容量性負荷に対するパルス増幅回路
US20180076747A1 (en) * 2016-09-13 2018-03-15 Infineon Technologies Ag Gate-driver circuit with improved common-mode transient immunity
US10461730B1 (en) * 2018-09-07 2019-10-29 Infineon Technologies Austria Ag Adaptive multi-level gate driver

Also Published As

Publication number Publication date
CN114616750A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US8427225B2 (en) Gate driving circuit
US8040162B2 (en) Switch matrix drive circuit for a power element
TWI641218B (zh) 增強模式fet閘極驅動器ic
US8466735B2 (en) High temperature gate drivers for wide bandgap semiconductor power JFETs and integrated circuits including the same
US20090023415A1 (en) Semiconductor switching device
US20060181831A1 (en) Gate drive circuit, semiconductor module and method for driving switching element
JP2007142788A (ja) 電圧駆動型スイッチング回路
US7705638B2 (en) Switching control circuit with reduced dead time
JP6842837B2 (ja) ゲート駆動回路
CN110943722B (zh) 驱动电路
US11543846B2 (en) Gate driver circuit for reducing deadtime inefficiencies
JP2016059036A (ja) 短絡保護用の回路、システム、及び方法
EP3832866A1 (en) Overcurrent protection circuit and switching circuit
CN107395000B (zh) 半导体器件
US10128749B2 (en) Method and circuitry for sensing and controlling a current
US9318973B2 (en) Driving device
JP5034919B2 (ja) 温度センサ回路
WO2021085027A1 (ja) ゲート駆動回路
JP4727360B2 (ja) 絶縁ゲート型半導体素子のゲート回路
JP7161509B2 (ja) ゲート駆動回路
JP2004048726A (ja) スイッチ・キャパシタに接続された駆動回路及びその動作方法
JP3802412B2 (ja) Mosトランジスタ出力回路
Bayerer et al. Low impedance gate drive for full control of voltage controlled power devices
JP2021082879A (ja) 論理回路および回路チップ
US6636087B2 (en) Spike current reducing circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881929

Country of ref document: EP

Kind code of ref document: A1