WO2021085023A1 - 鉱石もしくは製錬中間物の処理方法 - Google Patents

鉱石もしくは製錬中間物の処理方法 Download PDF

Info

Publication number
WO2021085023A1
WO2021085023A1 PCT/JP2020/037292 JP2020037292W WO2021085023A1 WO 2021085023 A1 WO2021085023 A1 WO 2021085023A1 JP 2020037292 W JP2020037292 W JP 2020037292W WO 2021085023 A1 WO2021085023 A1 WO 2021085023A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
ore
iodine
leaching
activated carbon
Prior art date
Application number
PCT/JP2020/037292
Other languages
English (en)
French (fr)
Inventor
有兼 深野
成卓 上西
航大 眞野
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to AU2020373621A priority Critical patent/AU2020373621B2/en
Priority to US17/637,387 priority patent/US20220298600A1/en
Priority to PE2022000361A priority patent/PE20220688A1/es
Publication of WO2021085023A1 publication Critical patent/WO2021085023A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0069Leaching or slurrying with acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0071Leaching or slurrying with acids or salts thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0086Treating solutions by physical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This specification discloses a technique relating to a method for processing a gold-containing ore or a smelting intermediate.
  • gold contained in ores such as chalcopyrite and other sulfide minerals and silicate ores, and gold contained in smelting intermediates which are leaching residues obtained by leaching copper in copper sulfide or iron in pyrite.
  • a technique for recovering copper a method using a hydrometallurgy method is known.
  • the so-called bluening method which is a method of forming a complex of gold in an ore or a smelting intermediate in a cyanide solution as a leachate and leaching it, is the mainstream.
  • a technique related to this there are those described in Non-Patent Documents 1 to 5.
  • heap leaching is performed by supplying the leachate to the ore group deposited in the field by spraying, etc., and collecting the leachate liquid that drips from the lower side through the ore group. May be adopted in the bluening method.
  • Patent Document 1 discloses a technique for leaching gold contained in ore using an iodine-added leachate.
  • iodine in the leachate forms a complex with gold, the reactivity of gold with the leachate is improved, so that gold can be leached efficiently.
  • ore containing gold and copper is generally recovered as gold / copper concentrate by floating beneficiation, and the concentrate is recovered as gold / copper at a smelter by a pyrometallurgical method or the like. If the gold / copper concentrate has a low metal grade, or if it contains a relatively large amount of impurities such as arsenic and mercury, which are problems in pyrometallurgy, the processing cost will increase and other reasons such as economic efficiency will increase. It cannot be used for processing at the smelter.
  • the leachate since the leachate is generally used repeatedly, if iodine is adsorbed on the activated carbon, it is necessary to desorb the iodine adsorbed on the activated carbon by some method. Further, in this desorption step, it is necessary to selectively desorb gold and iodine, not just desorbing iodine from activated carbon, and various studies are required.
  • the inventors have solved the above problems as a result of diligent studies.
  • a method for treating an ore or a smelting intermediate capable of effectively extracting gold from an ore containing gold or a smelting intermediate has been conceived, and the treatment method is disclosed in this specification.
  • the method for treating an ore or a smelting intermediate disclosed in this specification is a method for treating a gold-containing ore or a gold-containing smelting intermediate obtained by subjecting an ore to a smelting treatment. Therefore, the leaching step of leaching gold from the ore or the smelting intermediate using a sulfuric acid solution containing iodide ion and iron (III) ion as the leaching solution, and the iodine in the leaching solution obtained in the leaching step. It includes an adsorption step of adsorbing gold to the activated charcoal and an iodine separation step of separating iodine from the activated charcoal while leaving gold in the activated charcoal that has undergone the adsorption step.
  • gold can be effectively extracted from ores containing gold or smelting intermediates.
  • the method for treating an ore or a smelting intermediate is to recover gold from a gold-containing ore or a smelting intermediate obtained by subjecting an ore to a smelting treatment and containing gold.
  • a sulfuric acid solution containing iodide ion and iron (III) ion is used as a leachate, and gold is leached from an ore or a refining intermediate, and a leachate step is obtained.
  • It includes an adsorption step of adsorbing iodine and gold in the liquid after leaching to the activated carbon, and an iodine separation step of separating iodine from the activated carbon while leaving gold on the activated carbon that has undergone the adsorption step.
  • the ore or smelting intermediate contains not only gold but also copper, and the method for treating the ore or smelting intermediate can include each step shown in FIG.
  • the treatment method shown in FIG. 1 will be described in detail below as an example, but this embodiment can be applied to ores containing no copper or smelting intermediates with appropriate modifications.
  • the ore and smelting intermediate are selected from, for example, bright copper ore, speckled copper ore, copper indigo, brass ore, chalcopyrite, arsenopyrite, arsenopyrite, astrine, zinc flash, arsenopyrite, bright an ore, and magnetic arsenopyrite.
  • An ore containing at least one kind of ore, an ore containing gold and sulfur such as arsenopyrite, or an intermediate obtained after smelting the ore also referred to as "smelting intermediate" here). Can be done.
  • the smelting treatment refers to, for example, a treatment of leaching copper with a predetermined leachate in the case of copper ore, or a treatment of leaching iron with a predetermined leachate in the case of iron ore.
  • the leaching residue obtained by the treatment can be used as a smelting intermediate.
  • the ore and smelting intermediate can be refined ore that has undergone conventional mineral processing such as flotation and specific gravity sorting. Further, the particle size of the ore may be reduced by crushing ore so that the leachate in the leachation step or the like can easily come into contact with the gold inside the mineral.
  • the ore or smelting intermediate shall contain gold, the gold content of which is typically on the order of 0.1 mass ppm to 500 mass ppm, more typically 0.5 mass ppm to 50 mass. It is about ppm.
  • the ore or smelting intermediate may contain copper.
  • the copper content in the ore or smelting intermediate is, for example, 0.1% by mass to 10% by mass, typically 0.2% by mass to 5% by mass.
  • a sulfuric acid solution containing iodide ion and iron (III) ion is used as a leaching solution, and the leaching solution is brought into contact with an ore or a smelting intermediate to leach gold from the ore or the smelting intermediate.
  • the leaching solution containing iodide ions can effectively promote the leaching of gold.
  • gold iodine complexes [AuI 2] -, [ AuI 4] - or the like
  • the leaching process will leached copper as well as gold.
  • the dissolution or leaching of copper sulfide ore is considered to proceed by a series of catalytic reactions with iodine represented by the following formulas (2-1) and (2-2).
  • iodine represented by the following formulas (2-1) and (2-2)
  • the sum of both sides of formulas (2-1) and (2-2) is taken and the iodine component is eliminated, the following formula (2-3) is obtained, and the leaching reaction using iron (III) ion as an oxidizing agent for copper sulfide ore is performed. It turns out that there is.
  • the leaching of gold and copper here is carried out by a reaction with a leachate containing iodine (I 2 ), but iodine has low solubility in water. Therefore, it is preferable to add to the leachate an iodide that is easily dissolved in the leachate and dissociates into iodide ions (I ⁇ ).
  • an iodide those that dissolve in water to generate iodide ions, and as specific examples, sodium iodide, potassium iodide, ammonium iodide, hydrogen iodide and the like can be used.
  • iodine containing iodine in the form of the above-mentioned various iodides or other forms obtained by separating iodine adsorbed on activated carbon from the liquid after leaching in the adsorption step from activated carbon in the iodine separation step is contained.
  • the solution can also be reused in addition to the leachate of this leachate step.
  • the leachate iodide - include (I). Also in the leachate, alone iodine produced from the reaction of the above formula (1) (I 2) is an iodide ion - (I 3 -) (I ) triiodide ions produced react with may be included There is.
  • Such iodide ion (I -) and triiodide (I 3 -) concentration of iodine in the leaching solution including preferably 10mg / L ⁇ 10000mg / L, more preferably a 50mg / L ⁇ 1000mg / L To do. If the iodine concentration is too low, there is a concern that the leaching rate of gold and copper cannot be sufficiently increased. On the other hand, if the iodine concentration is too high, there is a risk of deterioration of economic efficiency due to iodine loss.
  • the leaching solution requires iron (III) ions as an oxidizing agent, and it is necessary to supply iron (III) ions in order to continue leaching.
  • the iron (III) ion concentration in the leachate is preferably 1000 mg / L to 20000 mg / L, and more preferably 2000 mg / L to 10000 mg / L. It is preferable that the iron (III) ion concentration in the leachate is 20 times or more by weight with respect to the iodine concentration (iron (III) ion concentration is 2 g / L or more with respect to the iodine concentration of 100 mg / L). ..
  • the source of iron (III) ions is not particularly limited, but iron (III) sulfate, iron (III) chloride, or one obtained by oxidizing iron (II) ions in an iron (II) sulfate solution can be used. Can be mentioned. Further, as will be described later, the iron-containing solution obtained by performing the adsorption step, the copper separation step and the iron oxidation step on the leachate liquid can be reused by adding it to the leachate liquid. The iron (III) ion becomes an iron (II) ion by the above-mentioned reaction.
  • the pH of the leachate can be adjusted to 2.5 or less with sulfuric acid or the like in order to prevent the precipitation of iron (III) ions.
  • the leaching step described above can be carried out in any leaching mode, for example, batch stirring leaching, or heap leaching or dump leaching in which the leachate is sprayed on the ore group on which the ore is deposited.
  • in-place leaching can be adopted in which the leachate is poured into an underground ore body to leach it.
  • the leaching can be performed at room temperature without heating regardless of the temperature.
  • the post-leach liquid obtained by performing the above leaching step on the ore or the smelting object has a gold concentration of, for example, 0.1 mg / L to 100 mg / L, and a copper concentration of, for example, 100 mg / L to 10000 mg. / L.
  • Activated carbon is one that is usually used as an adsorbent for adsorbing gold, for example, a physical method such as activation treatment that changes wood, coconut shells, or other carbonaceous raw materials into porous raw materials, or chemistry using chemicals. It can be a general activated carbon produced by law or the like. Activated carbon has a large surface area, is suitable for use in a liquid phase, and has excellent stability, and is preferably granular or spherical. Specifically, for example, Yashikoru Mc manufactured by Taihei Kagaku Sangyo, Shirasagi X7000H manufactured by Japan Enviro Chemicals, and the like can be used.
  • the post-adsorption liquid obtained after adsorbing iodine and gold in the post-leaching liquid on activated carbon in the adsorption step preferably has an iodine concentration of 10 mg / L or less and a gold concentration of 1 mg / L or less.
  • copper in the liquid after leaching does not adsorb to activated carbon, so it remains in the liquid after adsorption.
  • iodine is adsorbed on the activated carbon and removed from the post-adsorption liquid to prevent the loss of iodine in the copper separation step and iron oxidation step described later for the post-adsorption liquid. It is possible to suppress a decrease in the iron oxidation rate.
  • An iodine separation step can be performed on activated carbon that has adsorbed iodine and gold in the adsorption step. In the iodine separation step, iodine is separated from the activated carbon while leaving gold on the activated carbon.
  • Iodine in gold iodide adsorbed on activated carbon by forming a complex with gold may not be separated from activated carbon in the iodine separation step and may remain in activated carbon together with gold.
  • the ore or smelting intermediate containing a small amount of gold as described above is the target, so the loss of iodine here does not matter so much.
  • a large amount of iodine loss means that the amount of gold attached to the activated carbon in a complex with iodine is also large, and the gold recovery rate is high.
  • a sulfite solution, iron (II) ion, hydrazine, or the like can be used as a desorption liquid that separates iodine from the activated carbon by contacting it with activated carbon.
  • the sulfurous acid solution is preferable in that it becomes sulfuric acid when it is oxidized by the reaction and does not become an impurity when the leachate is repeatedly used.
  • the amount of sulfurous acid is not particularly limited, but typically contains 0.1 to 10 times the amount of sulfurous acid ions by weight with respect to the amount of iodide ions eluted at this time.
  • the iodide ion can be recovered using the solution.
  • the sulfite ion concentration in the sulfite solution is preferably 0.15% by weight to 15% by weight.
  • gold can be recovered by performing the gold separation step described later on the activated carbon. Further, in the iodine separation step, an iodine-containing solution containing iodine separated from activated carbon is obtained. The iodine-containing solution can be reused as a leachate in the leachate step.
  • Gold separation process In the activated carbon that has undergone the iodine separation step, iodine has been separated, but gold remains. Gold can be separated from the activated carbon by performing a gold separation step on the activated carbon on which such gold is adsorbed.
  • the gold separation step can be performed by various methods, and as an example, the above activated carbon is brought into contact with a cyan solution in which cyan ion is added to caustic soda or the like, a solution in which thiosulfate is added, or another solution. , Elute the gold adsorbed on the activated carbon. As a result, an activated carbon from which gold has been separated can be obtained, and the activated carbon is subjected to activation or other regeneration treatment according to a decrease in activity or the like, and can be reused in an adsorption step or the like.
  • the post-adsorption liquid after adsorbing gold and iodine on activated carbon in the adsorption step described above contains copper ions and iron (II) ions. Since copper is separated from the liquid after adsorption, a copper separation step can be performed.
  • Copper separated from the liquid after adsorption by solvent extraction or the like can be recovered by electrolysis or the like.
  • the post-copper separation liquid obtained in the copper separation step contains iron (II) ions.
  • iron (II) ions In order to make the liquid after copper separation reusable, for example, it can be treated with an iron-oxidizing microorganism and subjected to an iron oxidation step of oxidizing iron (II) ions in the acidic solution to iron (III) ions.
  • the iron-containing solution thus obtained can be replenished with iron (III) ions as needed and used again in addition to the leachate used in the leaching step.
  • Test Example 1 A test was conducted in which the ore containing gold was shaken in a flask with a leachate for 24 hours to leach gold from the ore.
  • the ore was Kensington ore (copper grade 0.85 mass%, gold grade 220 mass ppm), and a solution containing potassium iodide and ferric sulfate was used as the leachate.
  • the composition of the leachate was Fe 3+ ion concentration: 5 g / L, iodine concentration: 100 mg / L, 1000 mg / L, and two types of leachate having different iodine concentrations were prepared. The results are shown in Table 1.
  • Test Example 2 A leachate containing potassium iodide and ferric sulfate was prepared in a flask, and a gold iodide (AuI) reagent was dissolved therein. The resulting solution was brought into contact with activated carbon to adsorb iodine and gold on the activated carbon, and the adsorption rates of iodine and gold were examined by liquid analysis before and after adsorption.
  • AuI gold iodide

Abstract

金を含有する鉱石もしくは、鉱石に対して製錬処理を施して得られた金を含有する製錬中間物を処理する方法であって、ヨウ化物イオン及び鉄(III)イオンを含有する硫酸溶液を浸出液として用いて、前記鉱石もしくは製錬中間物から金を浸出させる浸出工程と、浸出工程で得られる浸出後液中のヨウ素及び金を、活性炭に吸着させる吸着工程と、吸着工程を経た前記活性炭に金を残しつつ、該活性炭からヨウ素を分離させるヨウ素分離工程とを含む。

Description

鉱石もしくは製錬中間物の処理方法
 この明細書は、金を含有する鉱石もしくは製錬中間物を処理する方法に関する技術を開示するものである。
 たとえば、黄銅鉱その他の硫化鉱物や珪酸鉱等の鉱石に含まれる金や、硫化銅鉱中の銅又は黄鉄鉱中の鉄を浸出等して得られた浸出残渣である製錬中間物に含まれる金を回収する技術としては、湿式製錬法を利用したものが知られている。
 この種の湿式製錬法のなかでは、浸出液としてのシアン化物の溶液中で鉱石もしくは製錬中間物中の金を錯体に形成して浸出させる手法、いわゆる青化法が主流である。これに関連する技術としては、非特許文献1~5に記載されたもの等がある。
 なお、金の含有量が少ない鉱石等に対しては、野外で堆積させた鉱石群に浸出液を散布等により供給し、鉱石群中を通って下方側から滴り落ちる浸出後液を回収するヒープリーチングを、青化法で採用することもある。
 また、特許文献1には、ヨウ素を添加した浸出液を用いて、鉱石に含まれる金を浸出する技術が開示されている。浸出液中のヨウ素が金と錯体を形成することで、金の浸出液に対する反応性が向上するため、金を効率的に浸出することが可能となる。
米国特許第4557759号明細書
S.S.KONYRATBEKOVA et al., "Thermodynamic and kinetic of iodine-iodide leaching in gold hydrometallurgy", Transactions of Nonferrous Metals Society of China, Volume 25, November 2015, p. 3774-3783 FRICKER A G., "Recovery of cyanide in the extraction of gold", Journal of Cleaner Production, Volume 1, 1993, p. 77-80 TRAPP S et al., "Feasibility of cyanide elimination using plants", The European Journal of Mineral Processing and Environmental Protection, Volume 3, No.1, 1303-0868, 2003, p. 128-137 MUDDER T I et al., "Cyanide and society: a critical review", The European Journal of Mineral Processing and Environmental Protection, Volume 4, No. 1, 1303-0868, 2004, p. 62-74 BOTZ M et al., "Cyanide Treatment: Physical, Chemical, and Biological Processes", Gold Ore Processing (Second Edition), Project Development and Operations, 2016, p. 619-645
 しかしながら、青化法で使用するシアンはその毒性の故に使用が制限されることが多いので、このような薬品を用いることは望ましくない。特にヒープリーチングでは、開放された環境下でシアンを使用することになり、環境への影響が懸念される。
 また仮に鉱石が金の他に銅をも含むものである場合は、シアンが鉱石中の銅により消費されることから、鉱石中の金をシアン化物の溶液で有効に浸出させることが困難になる。
 加えて、金及び銅を含む鉱石は一般に、浮遊選鉱に供して金・銅精鉱として回収され、同精鉱は製錬所にて乾式製錬法等により金・銅として回収されるが、当該金・銅精鉱が低い金属品位である場合や、乾式製錬で問題になるヒ素や水銀等の不純物を比較的多く含む場合は、処理に要する費用の増大その他の経済性等の理由から製錬所での処理に供することができない。
 青化法の他、環境負荷の低い塩素や臭素等を用いて金を浸出する手法も検討はされているものの、浸出率やコスト等の観点から実用化には至っていないのが現状である。
 特許文献1に記載の技術では、浸出液を活性炭に通液し、活性炭の微細孔に金を吸着させることで金を回収している。しかしながら、浸出液中には金以外の様々な物質が存在する。活性炭の微細孔には、金だけでなくこれらの物質が吸着する可能性があるが、特許文献1では何ら検討されていない。特に、ヨウ素については、金と錯体を形成しており、この状態で存在するヨウ素の活性炭に対する挙動の検討は必須となる。
 また、一般に浸出液は繰り返し用いられるため、仮にヨウ素が活性炭に吸着する場合には、何らかの方法で活性炭に吸着したヨウ素を脱着する必要がある。更に、この脱着工程では、単に活性炭からヨウ素を脱着すればよいのではなく、金とヨウ素とを選択的に脱着する必要があり、様々な検討が必要である。
 発明者らは、鋭意検討の結果、上記の課題を解決した。金を含む鉱石もしくは製錬中間物から金を有効に取り出すことのできる鉱石もしくは製錬中間物の処理方法を想到するに至り、当該処理方法をこの明細書で開示する。
 この明細書で開示する鉱石もしくは製錬中間物の処理方法は、金を含有する鉱石もしくは、鉱石に対して製錬処理を施して得られた金を含有する製錬中間物を処理する方法であって、ヨウ化物イオン及び鉄(III)イオンを含有する硫酸溶液を浸出液として用いて、前記鉱石もしくは製錬中間物から金を浸出させる浸出工程と、浸出工程で得られる浸出後液中のヨウ素及び金を、活性炭に吸着させる吸着工程と、吸着工程を経た前記活性炭に金を残しつつ、該活性炭からヨウ素を分離させるヨウ素分離工程とを含むものである。
 上述した鉱石もしくは製錬中間物の処理方法によれば、金を含む鉱石もしくは製錬中間物から金を有効に取り出すことができる。
一の実施形態に係る鉱石もしくは製錬中間物の処理方法を示すフロー図である。 実施例の試験2のヨウ素の吸着率及び脱着率を示すグラフである。 実施例の試験2の金の吸着率及び脱着率を示すグラフである。
 以下に、この明細書で開示する実施の形態について説明する。
 一の実施形態に係る鉱石もしくは製錬中間物の処理方法は、金を含有する鉱石もしくは、鉱石に対して製錬処理を施して得られて金を含有する製錬中間物から、金を回収するために、そのような鉱石もしくは製錬中間物を処理するものである。具体的には、この処理方法には、ヨウ化物イオン及び鉄(III)イオンを含有する硫酸溶液を浸出液として用いて、鉱石もしくは製錬中間物から金を浸出させる浸出工程と、浸出工程で得られる浸出後液中のヨウ素及び金を、活性炭に吸着させる吸着工程と、吸着工程を経た前記活性炭に金を残しつつ、該活性炭からヨウ素を分離させるヨウ素分離工程とが含まれる。
 典型的には、鉱石もしくは製錬中間物は金のみならず銅も含み、当該鉱石もしくは製錬中間物の処理方法は、図1に示す各工程を含み得るものである。図1に示す処理方法を例として詳細について次に述べるが、この実施形態は、銅を含有しない鉱石もしくは製錬中間物に対しても適宜変更を加えて適用可能である。
(鉱石もしくは製錬中間物)
 鉱石や製錬中間物は、たとえば、輝銅鉱、斑銅鉱、銅藍、黄銅鉱、黄鉄鉱、硫砒銅鉱、硫砒鉄鉱、方鉛鉱、閃亜鉛鉱、硫砒鉄鉱、輝安鉱、磁硫鉄鉱から選択される少なくとも一種を含む鉱石や、珪酸鉱等の金及び硫黄を含有する鉱石、または、その鉱石を製錬処理した後に得られる中間物(ここでは「製錬中間物」ともいう。)とすることができる。
 なおここで、製錬処理とは、たとえば、銅鉱石の場合は所定の浸出液で銅を浸出させる処理、または、鉄鉱石の場合は所定の浸出液で鉄を浸出させる処理等をいい、このような処理により得られる浸出残渣を製錬中間物とすることができる。
 鉱石や製錬中間物は、必要に応じて、浮遊選鉱や比重選別といった慣用の選鉱処理を経た精鉱とすることができる。また、浸出工程等における浸出液が鉱物内部の金に接触しやすいように、粉砕摩鉱して鉱石の粒径を小さくしたものとすることもできる。
 鉱石もしくは製錬中間物は金を含有するものとし、その金含有量は、典型的には0.1質量ppm~500質量ppm程度であり、より典型的には0.5質量ppm~50質量ppm程度である。
 また、鉱石もしくは製錬中間物は銅を含有することがある。この場合、鉱石もしくは製錬中間物中の銅含有量は、たとえば0.1質量%~10質量%、典型的には0.2質量%~5質量%である。
(浸出工程)
 浸出工程では、ヨウ化物イオン及び鉄(III)イオンを含有する硫酸溶液を浸出液として、該浸出液を鉱石もしくは製錬中間物と接触させ、鉱石もしくは製錬中間物から金を浸出させる。ヨウ化物イオンを含む浸出液で金の浸出を有効に促進させることができる。ここでは、金がヨウ素と錯体([AuI2- [AuI4-等)を形成して溶解すると推測され、浸出は、下記式(1)または(2)に基いて、ヨウ素との反応により進行すると考えられる。
 2Au+I3 -+I-→2[AuI2-   (1)
 2Au+3I3 -→2[AuI4-+I-   (2)
 仮に鉱石もしくは製錬中間物が銅をも含む場合、浸出工程では金とともに銅も浸出される。たとえば硫化銅鉱の溶解ないし浸出は、下記式(2-1)及び(2-2)に示す一連のヨウ素による触媒反応によって進むと考えられる。なお、式(2-1)及び(2-2)の両辺の和をとりヨウ素成分を消去すると下記式(2-3)となり、硫化銅鉱に対する鉄(III)イオンを酸化剤とした浸出反応であることが解かる。
 2I-+2Fe3+→I2+2Fe2+   (2-1)
 CuFeS2+I2+2Fe3+→Cu2++3Fe2++2S+2I-   (2-2)
 CuFeS2+4Fe3+→Cu2++5Fe2++2S   (2-3)
 ここでの金や銅の浸出は、ヨウ素(I2)を含有する浸出液による反応により行われるが、ヨウ素は水に対する溶解度が低い。それ故に、浸出液中で容易に溶解してヨウ化物イオン(I-)に解離するヨウ化物を浸出液に添加することが好ましい。このようなヨウ化物としては、水に溶解してヨウ化物イオンを発生するもの、具体例としてはヨウ化ナトリウム、ヨウ化カリウム、ヨウ化アンモニウム、ヨウ化水素等が使用可能である。また、後述するように、吸着工程で浸出後液から活性炭に吸着させたヨウ素を、ヨウ素分離工程で活性炭から分離させて得られる上記の各種ヨウ化物の形態もしくはその他の形態のヨウ素を含むヨウ素含有溶液を、この浸出工程の浸出液に加えて再利用することも可能である。
 浸出液にはヨウ化物イオン(I-)が含まれる。また浸出液には、上記式(1)の反応により生じた単体ヨウ素(I2)が、ヨウ化物イオン(I-)と反応して生成される三ヨウ化物イオン(I3 -)も含まれることがある。
 このようなヨウ化物イオン(I-)及び三ヨウ化物イオン(I3 -)を含め浸出液中のヨウ素濃度は、好ましくは10mg/L~10000mg/L、より好ましくは50mg/L~1000mg/Lとする。ヨウ素濃度が低すぎると、金や銅の浸出率を十分に高めることができない懸念がある。一方、ヨウ素濃度が高すぎると、ヨウ素ロスによる経済性の悪化のおそれがある。
 また浸出液には、上述した式から解かるように、酸化剤としての鉄(III)イオンが必要であり、浸出を継続させるためには鉄(III)イオンを供給することを要する。
 浸出液中の鉄(III)イオン濃度は、1000mg/L~20000mg/Lであることが好ましく、さらに2000mg/L~10000mg/Lであることが好ましい。浸出液中の鉄(III)イオン濃度は、ヨウ素濃度に対して重量比で20倍以上(ヨウ素濃度100mg/Lに対して、鉄(III)イオン濃度2g/L以上)とすることが好適である。
 鉄(III)イオンの供給源としては、特に限らないが、硫酸鉄(III)もしくは塩化鉄(III)又は、硫酸鉄(II)溶液の鉄(II)イオンを酸化して得られるもの等を挙げることができる。また後述するように、浸出後液に対して吸着工程、銅分離工程及び鉄酸化工程を行って得られる鉄含有溶液を、浸出液に加えて再利用することもできる。鉄(III)イオンは、上述した反応により、鉄(II)イオンになる。
 なお、浸出液は、鉄(III)イオンの沈殿を防ぐため、硫酸等によりpHを2.5以下に調整しておくことができる。
 上述した浸出工程は、どのような浸出の態様でも行うことができ、たとえば回分攪拌浸出でもよく、または、鉱石を堆積させた鉱石群に浸出液を散布するヒープリーチングもしくはダンプリーチングでもよい。あるいは、地下にある鉱体に浸出液を流し込んで浸出するインプレースリーチングも採用可能である。
 浸出は温度を特に問わず、加熱なしの常温で行うこともできる。
 鉱石もしくは製錬対象物に対して上記の浸出工程を行って得られる浸出後液は、金濃度が、たとえば0.1mg/L~100mg/Lであり、銅濃度が、たとえば100mg/L~10000mg/Lである。
(吸着工程)
 吸着工程では、浸出工程で得られる浸出後液中のヨウ素及び金を、活性炭に吸着させる。活性炭としては、金を吸着させる吸着材として通常用いられているもの、たとえば、木材、椰子殻その他の炭素質原料を多孔質原料に変化させる賦活処理等の物理法又は、化学薬品を用いた化学法等により製造された一般的な活性炭とすることができる。活性炭は表面積が大きく、かつ液相中での利用に適し、かつ安定性に優れたものであって、粒状もしくは球状のものが好ましい。具体的には、例えば太平化学産業製ヤシコールMc、日本エンバイロケミカルズ製白鷺X7000Hなどが使用可能である。
 浸出後液に対して活性炭を用いると、浸出後液中のヨウ素とともに金も活性炭に吸着する。吸着工程で浸出後液中のヨウ素及び金を活性炭に吸着させた後に得られる吸着後液では、ヨウ素濃度が10mg/L以下、金濃度が1mg/L以下であることが好ましい。この一方で、浸出後液中の銅は活性炭に吸着しないので、吸着後液に残留する。
 なお吸着工程で、活性炭にヨウ素を吸着させて、吸着後液から取り除いておくことにより、吸着後液に対してその後に行う後述の銅分離工程及び鉄酸化工程でヨウ素のロスを防止し、また鉄酸化速度の低下を抑制することができる。
(ヨウ素分離工程)
 吸着工程でヨウ素及び金を吸着した活性炭に対しては、ヨウ素分離工程を行うことができる。ヨウ素分離工程では、活性炭に金を残しつつ、該活性炭からヨウ素を分離させる。
 ヨウ素が吸着している活性炭から、所定の脱着液を使用してヨウ素を分離できることは解かっていたが、ヨウ素だけでなく金も吸着した活性炭の場合、活性炭からのヨウ素の分離に当該金が及ぼす影響については不明であった。
 これに対し、後述の実施例で述べる試験結果より、ヨウ素及び金が吸着した活性炭から実質的にヨウ素のみを分離できるとの新たな知見が得られた。それにより、金を含有する鉱石もしくは製錬中間物からの金の回収に、先述したヨウ素を用いた浸出を有効に適用できると考えられる。また、仮に鉱石もしくは製錬中間物が金及び銅を含むものである場合は、この実施形態を適用することにより、金と銅の回収を同時に行うことが可能になるので、優れた経済性を実現することができる。
 なお、金との錯体を形成して活性炭に吸着されたヨウ化金中のヨウ素は、ヨウ素分離工程で活性炭から分離されず、活性炭に金とともに残留する可能性がある。但し、多くの場合は先述したような微量の金を含有する鉱石もしくは製錬中間物が対象となるので、ここでのヨウ素のロスはそれほど問題にならない。また、ヨウ素のロスが多いということは、活性炭にヨウ素と錯体をなして付着している金の量も多いことになり、金の回収率が高くなる。
 ヨウ素分離工程では、活性炭と接触させて活性炭からヨウ素を分離させる脱着液として、亜硫酸溶液、鉄(II)イオン又はヒドラジン等を用いることができる。なかでも亜硫酸溶液は、反応によって自身が酸化された際に硫酸となり、浸出液を繰り返し利用する際に不純物とならない点で好ましい。脱着液として亜硫酸溶液を用いる場合、亜硫酸の量は特に限定されないが、典型的には、このとき溶出させるヨウ化物イオン量に対して、重量比で0.1倍から10倍の亜硫酸イオンを含む溶液を用いてヨウ化物イオンを回収することができる。亜硫酸溶液中の亜硫酸イオン濃度は、好ましくは0.15重量%~15重量%である。
 ヨウ素分離工程の後は、活性炭に対して後述の金分離工程を行うことにより金を回収することができる。
 また、ヨウ素分離工程では、活性炭から分離したヨウ素を含有するヨウ素含有溶液が得られる。ヨウ素含有溶液は、浸出工程で浸出液に再度利用することができる。
(金分離工程)
 ヨウ素分離工程を経た活性炭は、ヨウ素が分離されたが金が残留している。このような金が吸着した活性炭に対しては金分離工程を行って、当該活性炭から金を分離させることができる。
 金分離工程は様々な手法により行うことができるが、その一例としては、上記の活性炭を、苛性ソーダ等にシアンイオンを添加したシアン溶液又は、チオ硫酸塩を添加した溶液その他の溶液に接触させて、活性炭に吸着した金を溶離させる。
 これにより金が分離された活性炭が得られるところ、当該活性炭は、活性度の低下等に応じて賦活その他の再生処理が施され、吸着工程等で再度使用することができる。
(銅分離工程)
 先述した吸着工程で活性炭に金及びヨウ素を吸着させた後の吸着後液は、銅イオン及び鉄(II)イオンを含むものである。吸着後液から銅を分離させるため、銅分離工程を行うことができる。
 吸着後液からの銅の分離は、一般に銅を選択的に抽出する抽出剤を用いた溶媒抽出法又は、まれにセメンテーション法が用いられる。
 溶媒抽出等により吸着後液から分離された銅は、電解等により回収することができる。
(鉄酸化工程)
 銅分離工程で得られる銅分離後液は、鉄(II)イオンが含まれる。銅分離後液は再利用できるようにするため、たとえば鉄酸化微生物により処理して該酸性溶液中の鉄(II)イオンを鉄(III)イオンに酸化する鉄酸化工程に供することができる。
 これにより得られる鉄含有溶液は、必要に応じて鉄(III)イオンを補充し、浸出工程で用いる浸出液に加えて再度使用することができる。
 次に、上述した鉱石もしくは製錬中間物の処理方法を試験的に実施し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、これに限定されることを意図するものではない。
 (試験例1)
 金を含有する鉱石を浸出液で24時間にわたってフラスコ振盪し、当該鉱石から金を浸出させる試験を行った。鉱石はケンジントン鉱(銅品位0.85質量%、金品位220質量ppm)とし、浸出液としてはヨウ化カリウム及び硫酸第二鉄を含む溶液を用いた。浸出液の組成は、Fe3+イオン濃度:5g/L、ヨウ素濃度:100mg/L、1000mg/Lであり、ヨウ素濃度の異なる二種類の浸出液を用意した。その結果を表1に示す。
 表1に示すところから、24時間の振盪で、ヨウ素濃度:100mg/L及び1000mg/Lのいずれの浸出液を用いた場合も、比較的高いAu浸出率を実現できたことが解かる。特にヨウ素濃度が1000mg/Lである浸出液を用いた場合、Cu浸出率が21%、Au浸出率が70.6%であり、極めて高いAu及びCu浸出率を達成することができた。ヨウ素濃度が100mg/Lである浸出液を用いた場合でも、Cu浸出率が11%、Au浸出率が7.9%と良好であった。
Figure JPOXMLDOC01-appb-T000001
(試験例2)
 フラスコにヨウ化カリウム及び硫酸第二鉄を含んだ浸出液を用意し、これにヨウ化金(AuI)試薬を溶解させた。それにより得られた溶液を活性炭と接触させて、ヨウ素及び金を活性炭に吸着させ、吸着前後の液分析よりヨウ素及び金のそれぞれの吸着率を調べた。
 その後、吸着済み活性炭を取り出し、これを亜硫酸溶液に含浸させることによりヨウ素脱着を試みた。脱着後の脱着液の分析値からヨウ素、金の脱着率を調べた。
 それらの結果を、表2並びに図2及び図3に示す。
Figure JPOXMLDOC01-appb-T000002
 この試験は、ヨウ化金を溶解させた「ヨウ化金有り」と、比較用にヨウ化金を投入しなかった「ヨウ化金無し」を各二回行った。
 「ヨウ化金有り」では、表2に示すように、金は浸出液に32mg/L~35mg/L溶解し、これを活性炭に通すとAu濃度は0.1mg/Lまで低下した。このことから、Auはほぼ全量が活性炭に吸着したと考えられる。また表2及び図3から解かるように、脱着後の脱着液には金がほとんど含まれておらず、金の大部分は活性炭に吸着したままであった。
 ヨウ素は、図2に示すように、ヨウ化金の有無にかかわらず同様の挙動を示し、ほぼ全量が吸着し、60%程度が脱着された。
 よって、溶液中に浸出された金は活性炭に吸着し、亜硫酸によっても脱着されないことが解かった。また上記の結果より、ヨウ素の吸脱着には影響を与えないといえる。
 以上の試験結果より、上述した鉱石もしくは製錬中間物の処理方法によれば、金を含む鉱石もしくは製錬中間物から金を有効に取り出すことができることが解かった。

Claims (5)

  1.  金を含有する鉱石もしくは、鉱石に対して製錬処理を施して得られた金を含有する製錬中間物を処理する方法であって、
     ヨウ化物イオン及び鉄(III)イオンを含有する硫酸溶液を浸出液として用いて、前記鉱石もしくは製錬中間物から金を浸出させる浸出工程と、浸出工程で得られる浸出後液中のヨウ素及び金を、活性炭に吸着させる吸着工程と、吸着工程を経た前記活性炭に金を残しつつ、該活性炭からヨウ素を分離させるヨウ素分離工程とを含む、鉱石もしくは製錬中間物の処理方法。
  2.  ヨウ素分離工程で、亜硫酸溶液を用いてヨウ素を分離させる、請求項1に記載の鉱石もしくは製錬中間物の処理方法。
  3.  浸出工程で、浸出液中のヨウ素濃度を、10mg/L~10000mg/Lとする、請求項1又は2に記載の鉱石もしくは製錬中間物の処理方法。
  4.  ヨウ素分離工程でヨウ素を分離させた前記活性炭から、金を分離させる金分離工程をさらに含む、請求項1~3のいずれか一項に記載の鉱石もしくは製錬中間物の処理方法。
  5.  前記鉱石もしくは製錬中間物がさらに銅を含有し、浸出工程で前記鉱石もしくは製錬中間物から金及び銅を浸出させ、
     吸着工程で得られる吸着後液から銅を分離させる銅分離工程をさらに含む、請求項1~4のいずれか一項に記載の鉱石もしくは製錬中間物の処理方法。
PCT/JP2020/037292 2019-10-31 2020-09-30 鉱石もしくは製錬中間物の処理方法 WO2021085023A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020373621A AU2020373621B2 (en) 2019-10-31 2020-09-30 Method for treating ore or refining intermediate
US17/637,387 US20220298600A1 (en) 2019-10-31 2020-09-30 Method for processing ore or refining intermediate
PE2022000361A PE20220688A1 (es) 2019-10-31 2020-09-30 Metodo para procesar una mena o un producto intermedio de refinacion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019199328A JP7305516B2 (ja) 2019-10-31 2019-10-31 鉱石もしくは製錬中間物の処理方法
JP2019-199328 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085023A1 true WO2021085023A1 (ja) 2021-05-06

Family

ID=75712597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037292 WO2021085023A1 (ja) 2019-10-31 2020-09-30 鉱石もしくは製錬中間物の処理方法

Country Status (5)

Country Link
US (1) US20220298600A1 (ja)
JP (1) JP7305516B2 (ja)
AU (1) AU2020373621B2 (ja)
PE (1) PE20220688A1 (ja)
WO (1) WO2021085023A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373779B1 (ja) 2022-08-31 2023-11-06 株式会社 ホーペック テントとその設営方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241506A (ja) * 2005-03-02 2006-09-14 C Uyemura & Co Ltd 金の非シアン溶解除去剤
JP2015196847A (ja) * 2014-03-31 2015-11-09 Jx日鉱日石金属株式会社 鉄の除去方法及び鉄の浸出方法、並びに金の回収方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241506A (ja) * 2005-03-02 2006-09-14 C Uyemura & Co Ltd 金の非シアン溶解除去剤
JP2015196847A (ja) * 2014-03-31 2015-11-09 Jx日鉱日石金属株式会社 鉄の除去方法及び鉄の浸出方法、並びに金の回収方法

Also Published As

Publication number Publication date
AU2020373621A1 (en) 2022-03-03
US20220298600A1 (en) 2022-09-22
AU2020373621B2 (en) 2023-03-16
PE20220688A1 (es) 2022-05-03
JP2021070854A (ja) 2021-05-06
JP7305516B2 (ja) 2023-07-10

Similar Documents

Publication Publication Date Title
Gámez et al. Precious metals recovery from waste printed circuit boards using thiosulfate leaching and ion exchange resin
Jeon et al. Ammonium thiosulfate extraction of gold from printed circuit boards (PCBs) of end-of-life mobile phones and its recovery from pregnant leach solution by cementation
Aylmore Alternative lixiviants to cyanide for leaching gold ores
Grosse et al. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review)
Zhang et al. The recovery of gold from ammoniacal thiosulfate solutions containing copper using ion exchange resin columns
WO2013108478A1 (ja) 金の回収方法及びそれを用いた金の製造方法
Zhang et al. Dual lixiviant leaching process for extraction and recovery of gold from ores at room temperature
RU2385959C1 (ru) Способ получения золота из сульфидных золотосодержащих руд
JP5840761B2 (ja) 活性炭に吸着された金の回収方法及びそれを用いた金の製造方法
WO1991011539A1 (en) Separation process
CN116171190A (zh) 用于在有机溶剂中浸出和回收铂族金属的方法
Olteanu et al. Experimental process analysis and mathematical modeling for selective gold leaching from slag through wet chlorination
JP6038279B2 (ja) 金及び銀の溶離方法及びそれを用いた金及び銀の回収方法
WO2021085023A1 (ja) 鉱石もしくは製錬中間物の処理方法
JP6437352B2 (ja) 硫化銅鉱からの銅の浸出方法及び硫化銅鉱のカラムリーチング試験のヨウ素損失量の評価方法
JP6195536B2 (ja) 鉄の除去方法及び鉄の浸出方法、並びに金の回収方法
JP2015048524A (ja) 活性炭に吸着された金の回収方法
JP6899672B2 (ja) 鉱石もしくは精錬中間物からの金の回収方法
JP7007905B2 (ja) 銅の回収方法、及び電気銅の製造方法
Ubaldini et al. Application of innovative processes for gold recovery from Romanian mining wastes
CA2897470C (en) Method for leaching gold from gold ore containing pyrite
WO2019064709A1 (ja) 金の浸出方法および、金の回収方法
JP6849482B2 (ja) 金を含む鉱石もしくは精錬中間物からの金の回収方法
EA035804B1 (ru) Способ получения золота из концентратов двойной упорности
Karppinen et al. Gold recovery from cyanidation residue by chloride leaching and carbon adsorption–Preliminary results from CICL process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020373621

Country of ref document: AU

Date of ref document: 20200930

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881613

Country of ref document: EP

Kind code of ref document: A1