WO2021084982A1 - 融着型光コネクタ付き配線、融着型光コネクタ付き配線の製造方法 - Google Patents

融着型光コネクタ付き配線、融着型光コネクタ付き配線の製造方法 Download PDF

Info

Publication number
WO2021084982A1
WO2021084982A1 PCT/JP2020/036050 JP2020036050W WO2021084982A1 WO 2021084982 A1 WO2021084982 A1 WO 2021084982A1 JP 2020036050 W JP2020036050 W JP 2020036050W WO 2021084982 A1 WO2021084982 A1 WO 2021084982A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fusion
wiring
optical
optical connector
Prior art date
Application number
PCT/JP2020/036050
Other languages
English (en)
French (fr)
Inventor
齋藤 大悟
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2021084982A1 publication Critical patent/WO2021084982A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/245Removing protective coverings of light guides before coupling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means

Definitions

  • the present invention relates to a wiring with a fusion-type optical connector and a method for manufacturing a wiring with a fusion-type optical connector.
  • the present application claims priority based on Japanese Patent Application No. 2019-9877 filed in Japan on November 1, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 includes a fusion-type optical connector including an optical connector having a first optical fiber arranged in a ferrule and an optical wiring having a second optical fiber fused and connected to the first optical fiber. Wiring with connectors is disclosed.
  • waterproof optical wiring is thicker than normal optical wiring.
  • the present invention has been made in view of the above problems, and is a wiring with a fusion-type optical connector capable of connecting an optical connector and an optical wiring without preparing a special fusion-bonding machine, or manufacturing thereof.
  • the purpose is to provide a method.
  • the wiring with a fusion-type optical connector includes an optical connector having a ferrule and a first optical fiber arranged in the ferrule, and a second optical fiber fused and connected to the first optical fiber. And an optical wiring having an outer skin covering the second optical fiber, the second optical fiber extends from an end face of the outer skin, and the outer skin extends from the end face along the second optical fiber. It has a plurality of divided portions, and the plurality of divided portions are connected to each other by a connecting portion.
  • the second optical fiber is exposed from the outer skin before the plurality of divided portions are combined, and the second optical fiber is exposed to the fusion splicer.
  • Fiber can be set. Therefore, it is possible to connect the optical connector and the optical wiring without preparing a special fusion splicer. Further, after the fusion splicing, the second optical fiber can be protected by connecting the plurality of divided portions to each other.
  • the optical connector may have a reinforcing sleeve that protects a fusion point between the first optical fiber and the second optical fiber, and a housing that covers the reinforcing sleeve.
  • the region for protecting the second optical fiber with the reinforcing sleeve can be shortened. Therefore, the length of the housing covering the reinforcing sleeve can also be shortened.
  • the joint portion may be a shrink tube that covers the plurality of divided portions.
  • the optical connector may have a housing that covers a part of the shrinkable tube.
  • the method for manufacturing a wiring with a fusion-type optical connector covers a ferrule, an optical connector having a first optical fiber arranged in the ferrule, a second optical fiber, and the second optical fiber.
  • the first optical fiber and the second optical fiber are removed from the fusion splicer, and the plurality of divided portions are coupled to each other.
  • an optical wiring having a large outer diameter and an optical connector can be connected by using a standard fusion splicer.
  • the plurality of divided portions may be joined by covering the plurality of divided portions with a shrinkable tube.
  • a part of the shrinkable tube may be covered with the housing of the optical connector.
  • FIG. 3A It is a figure explaining the process which follows FIG. 3A. It is a figure explaining the process which follows FIG. 3B. It is a figure explaining the process following FIG. 3C. It is a figure explaining the fusion
  • FIG. 5B It is a perspective view of the fusion machine used in the manufacturing method of the wiring with a fusion type optical connector which concerns on one Embodiment. It is a figure explaining the coupling process in the manufacturing method of the wiring with a fusion type optical connector which concerns on one Embodiment. It is a figure explaining the process which follows FIG. 7A. It is a figure explaining the process which follows FIG. 7B. It is a figure explaining the process which follows FIG. 7C. It is a figure explaining the process which follows FIG. 8A. It is a figure explaining the process following FIG. 8B.
  • an optical fiber cord having a single core optical fiber core will be exemplified as the optical wiring connected to the optical connector.
  • the optical wiring may be a multi-core optical fiber cable.
  • FIG. 1 is a perspective view of a wiring 1 with a fusion-type optical connector according to an embodiment.
  • FIG. 2 is a vertical cross-sectional view (cross-sectional view along the axial direction described later) of the wiring 1 with a fusion-type optical connector.
  • the wiring 1 with a fusion-type optical connector includes an optical connector 2 and an optical wiring 3 connected to the optical connector 2.
  • the optical connector 2 has a ferrule 10 and a housing 20 that houses the ferrule 10 and the ends of the optical wiring 3.
  • the ferrule 10 is formed in a columnar shape.
  • the direction in which the central axis of the ferrule 10 extends is referred to as an axial direction.
  • the connection end surface 10a side of the ferrule 10 in the axial direction is the front side (+ X side), and the opposite side (optical wiring 3 side) is the rear side ( ⁇ X side).
  • the direction orthogonal to the axial direction is the radial direction, and the direction around the central axis of the ferrule 10 is the circumferential direction.
  • An insertion hole 11 is formed in the ferrule 10.
  • the insertion hole 11 is open to the connection end surface 10a of the ferrule 10. As shown in FIG. 2, the insertion hole 11 penetrates the ferrule 10 in the axial direction.
  • a first optical fiber 13 (also referred to as a pigtail) is inserted into the insertion hole 11. A part of the first optical fiber 13 extends rearward from the ferrule 10. The rear end of the first optical fiber 13 is fused and connected to the front end of the second optical fiber 4a of the optical wiring 3 arranged at the rear at a fusion point P.
  • the first optical fiber 13 is an optical fiber that was separate from the second optical fiber 4a before being fused and connected to the second optical fiber 4a.
  • the first optical fiber 13 and the second optical fiber 4a are covered with a common reinforcing sleeve 60. The reinforcing sleeve 60 can protect the fusion point P.
  • a part of the first optical fiber 13 is covered with a coating layer 13a (first coating layer).
  • the coating layer 13a is located behind the ferrule 10.
  • a ferrule flange 12 is fixed to the rear end of the ferrule 10.
  • the ferrule flange 12 projects radially outward from the outer peripheral surface of the ferrule 10.
  • the ferrule flange 12 holds the first optical fiber 13 extending rearward from the ferrule 10 by holding the coating layer 13a.
  • the portion of the ferrule flange 12 that holds the coating layer 13a is also covered with the reinforcing sleeve 60.
  • the reinforcing sleeve 60 for example, a heat-shrinkable tube can be adopted.
  • the housing 20 has an inner housing 21, an outer housing 22, and boots 23.
  • the inner housing 21 houses the ferrule 10.
  • the outer housing 22 covers the inner housing 21.
  • the boot 23 is sandwiched between the inner housing 21 and the outer housing 22, and extends rearward from the inner housing 21 and the outer housing 22.
  • the inner housing 21 has an inner cylinder portion 30, an outer cylinder portion 31, a cover 32, a spring 33, and a coupler 34.
  • the inner cylinder portion 30 is arranged behind the ferrule flange 12, and its front end surface is in axial contact with the back surface of the ferrule flange 12. Engagement protrusions 30a projecting outward in the radial direction are formed on the outer peripheral surface of the inner cylinder portion 30.
  • the outer cylinder portion 31 has an engaging groove 31b that accommodates a part of the inner cylinder portion 30 and engages with the engaging protrusion 30a of the inner cylinder portion 30.
  • the engaging groove 31b extends in the axial direction and guides the inner cylinder portion 30 so as to be movable in the axial direction.
  • a spring 33 is arranged inside the outer cylinder portion 31.
  • the spring 33 is arranged behind the inner cylinder portion 30 and urges the rear end surface of the inner cylinder portion 30 toward the front.
  • the ferrule flange 12 is in contact with the front end surface of the inner cylinder portion 30. Therefore, the ferrule flange 12 is urged forward by the spring 33 together with the inner cylinder portion 30. Further, the ferrule 10 in contact with the ferrule flange 12 is also urged forward by the spring 33.
  • An engaging protrusion 31a protruding outward in the radial direction is formed on the outer peripheral surface of the outer cylinder portion 31 behind the engaging groove 31b. Further, an outer cylinder flange 31c is formed on the outer peripheral surface of the outer cylinder portion 31 behind the engaging projection 31a. Further, a male screw 31d is formed on the outer peripheral surface of the outer cylinder portion 31 behind the outer cylinder flange 31c.
  • the cover 32 has an engaging groove 32b that engages with the engaging projection 31a of the outer cylinder portion 31.
  • the cover 32 covers the outer peripheral surface of the outer cylinder portion 31 in front of the outer cylinder flange 31c, and also covers the peripheral surface of the inner cylinder portion 30 protruding forward from the outer cylinder portion 31. Further, the cover 32 covers up to the front end surface of the ferrule flange 12.
  • the cover 32 has a through hole 32a through which the ferrule 10 is arranged.
  • the outer diameter of the ferrule flange 12 is different between the front portion and the rear portion.
  • the outer diameter of the front portion of the ferrule flange 12 is smaller than the outer diameter of the rear portion.
  • the inner diameter of the through hole 32a is smaller than the outer diameter of the front portion of the ferrule flange 12. Therefore, the ferrule flange 12 cannot pass through the through hole 32a and comes into axial contact with the cover 32.
  • the cover 32 is a stopper for the ferrule flange 12 which is urged forward by the spring 33.
  • the coupler 34 has a female screw 34b that is screwed into a male screw 31d at the rear end of the outer cylinder portion 31.
  • a plurality of seal protrusions 34a are formed on the outer peripheral surface of the coupler 34.
  • Each seal protrusion 34a is formed in a ring shape and is provided at intervals in the axial direction.
  • the boot 23 has a recess 23b into which the coupler 34 is fitted.
  • the recess 23b is recessed from the front end portion of the boot 23 toward the rear.
  • the seal protrusion 34a of the coupler 34 described above is liquid-tightly adhered to the inner wall surface of the recess 23b.
  • the boot 23 is formed with a through hole 23a extending rearward from the recess 23b.
  • An optical wiring 3 is arranged inside the through hole 23a.
  • the inner wall surface of the through hole 23a is in close contact with the outer peripheral surface of the optical wiring 3 (the outer peripheral surface of the shrink tube 6 described later) in a liquid-tight manner.
  • the boot 23 may be formed by combining two divided pieces in order to facilitate incorporation into the optical wiring 3. Each of the two dividing pieces may have a semi-cylindrical shape extending in the axial direction.
  • a stepped surface 23c is formed on the outer peripheral surface of the boot 23.
  • the stepped surface 23c is formed in an annular shape and faces rearward.
  • the outer housing 22 has a rear housing 40, a front housing 41, and an outer sleeve 42.
  • the rear housing 40 is formed in a tubular shape that can be assembled from the rear with respect to the outer peripheral surface of the boot 23.
  • a contact portion 40a capable of axially contacting the stepped surface 23c of the boot 23 is formed.
  • a female screw 40b is formed on the inner wall surface of the rear housing 40 in front of the contact portion 40a. Further, a flange 40c protruding outward in the radial direction is formed on the outer peripheral surface of the rear housing 40 behind the contact portion 40a.
  • the front housing 41 is formed in a tubular shape that can be assembled from the front to the rear housing 40.
  • the front housing 41 has a male screw portion 41a that is screwed into the female screw 40b of the rear housing 40. Further, the front housing 41 has a plug portion 41b located in front of the rear housing 40. The outer diameter of the plug portion 41b is larger than the outer diameter of the rear housing 40.
  • annular grooves 41c and 41d are formed on the outer peripheral surface of the front housing 41 between the plug portion 41b and the male screw portion 41a.
  • Seal members 50 and 51 are arranged in the annular grooves 41c and 41d, respectively.
  • As the sealing members 50 and 51 for example, a rubber ring can be adopted.
  • the annular groove 41c is formed at a position in front of the male screw portion 41a and facing the inner wall surface of the rear housing 40.
  • the annular groove 41d is formed in front of the annular groove 41c and on the outer peripheral surface of the plug portion 41b exposed from the rear housing 40.
  • the outer sleeve 42 is formed in a tubular shape that can be assembled from the front with respect to the outer peripheral surface of the rear housing 40.
  • a contact portion 42a facing rearward is formed on the inner wall surface of the outer sleeve 42.
  • the contact portion 42a faces the flange 40c of the rear housing 40 in the axial direction and can contact the flange 40c.
  • the outer sleeve 42 is assembled to the outer periphery of the rear housing 40 by being sandwiched in the axial direction between the flange 40c and the plug portion 41b of the front housing 41.
  • the optical wiring 3 has an optical fiber core wire 4, an outer skin 5 that covers the optical fiber core wire 4, and a tensile strength body (not shown).
  • the optical fiber core wire 4 has a second optical fiber 4a which is a wire, and a coating layer 4b (second coating layer) that covers the second optical fiber 4a.
  • the material of the coating layer 4b may be, for example, a resin such as nylon or a thermoplastic elastomer.
  • the outer skin 5 covers the tensile strength body together with the optical fiber core wire 4.
  • the outer skin 5 is formed of, for example, waterproof rubber.
  • the optical fiber core wire 4 extends from the front end surface 5c of the outer skin 5. In the example of FIG. 2, not only the second optical fiber 4a but also the coating layer 4b extends from the end face 5c, and the coating layer 4b is also covered with the reinforcing sleeve 60.
  • a plurality of slits 5b are formed in the outer skin 5 at intervals in the circumferential direction. Each slit 5b penetrates the exodermis 5 in its thickness direction and extends rearward from the end face 5c.
  • the outer skin 5 is divided into a plurality of divided portions 5a in the circumferential direction by the slit 5b. Each divided portion 5a also extends rearward from the end surface 5c along the axial direction.
  • the number of slits 5b is two, and the number of divided portions 5a is also two. However, the number of slits 5b and the number of divided portions 5a may be 3 or more.
  • the split portions 5a are coupled to each other by a contraction tube 6 as a coupling portion.
  • the contraction tube 6 covers the outer circumference of the plurality of divided portions 5a.
  • the shrink tube 6 also covers the end face 5c of the exodermis 5.
  • the contraction tube 6 is formed longer than at least a plurality of divided portions 5a (see FIG. 1). That is, the rear end of the contraction tube 6 is located behind the rear end of the split portion 5a.
  • a heat-shrinkable tube made of polyolefin, a fluoropolymer, a thermoplastic elastomer, or the like as a main raw material can be adopted.
  • 3A to 3C and 4 are diagrams showing a pretreatment step performed before the fusional connection step in the method for manufacturing the wiring 1 with a fusional optical connector according to the embodiment.
  • the pretreatment step includes a dividing step and a folding step.
  • the optical fiber core wire 4 extends from the end surface 5c of the outer skin 5. Further, the coating layer 4b at the tip of the optical fiber core wire 4 is peeled off to expose the second optical fiber 4a.
  • the outer skin 5 is split from the end face 5c along the optical fiber core wire 4 to form a plurality of split portions 5a (splitting step). Specifically, a plurality of slits 5b extending in the axial direction are formed in the outer skin 5 with a cutter or the like.
  • the slit 5b is opened and the exodermis 5 (plurality of divided portions 5a) is bent so as to be folded back (folding step).
  • the coating layer 4b is largely exposed from the outer skin 5.
  • the coating layer 4b is exposed from the outer skin 5.
  • the coating layer 4b does not have to extend from the end face 5c.
  • an inner housing 21 (excluding the cover 32), a reinforcing sleeve 60, and the like are arranged in advance on the outer periphery of the optical fiber core wire 4 in which the coating layer 4b is exposed.
  • the contraction tube 6, a part of the outer housing 22 (rear housing 40), the boots 23, and the like described above may also be arranged in advance on the outer periphery of the outer skin 5 before the outer skin 5 is torn in FIG. 3B.
  • FIG. 5A to 5C are diagrams showing a fusion splicing step and a post-processing step in the method for manufacturing the wiring 1 with a fusion fusing optical connector according to the embodiment.
  • FIG. 6 is a perspective view of the fusion splicer 100 used in the method for manufacturing the wiring 1 with a fusion fusing optical connector according to the embodiment.
  • the optical fiber core wire 4 in a state where the coating layer 4b is exposed from the outer skin 5 is set in, for example, the fusion splicer 100 shown in FIG.
  • the second optical fiber 4a of the optical fiber core wire 4 and the first optical fiber 13 of the optical connector 2 are fused and connected (fusion connection step).
  • the fusion splicer 100 shown in FIG. 6 is a small standard device that can be carried to a work site away from a factory, for example.
  • the fusion splicer 100 has an apparatus main body 100a, a monitor 100b, and a cover 100c.
  • the apparatus main body 100a includes a pair of electrode rods 101, a pair of fiber clamps 103, and the like.
  • the monitor 100b displays images of the tip portions of the first optical fiber 13 and the second optical fiber 4a.
  • the cover 100c covers the electrode rod 101, the fiber clamp 103, and the like to reduce the influence of wind when performing fusion splicing.
  • a ferrule 10 with a first optical fiber 13 (pigtail) is clamped to one of the pair of fiber clamps 103 in a state of being attached to the assembly tool 105.
  • the assembly tool 105 for example, a configuration substantially similar to that of the assembly tool disclosed in the above-mentioned prior art document (Japanese Patent Laid-Open No. 2017-106985) can be adopted.
  • the optical fiber core wire 4 exposed from the outer skin 5 is clamped to the other side of the pair of fiber clamps 103.
  • the outer diameter of the outer skin 5 is, for example, 4 mm or more.
  • the maximum outer diameter of an object that can be clamped by the fiber clamp 103 is, for example, 3 mm. Therefore, the fiber clamp 103 may not be able to clamp the outer skin 5.
  • the optical fiber core wire 4 since the optical fiber core wire 4 is exposed from the outer skin 5 by the pretreatment step, the optical fiber core wire 4 can be clamped by the fiber clamp 103.
  • the pair of electrode rods 101 are arranged so that their tips face each other.
  • the ends of the first optical fiber 13 and the second optical fiber 4a are arranged between the pair of electrode rods 101 in contact with each other or in close proximity to each other.
  • the pair of electrode rods 101 are fused and connected to the first optical fiber 13 and the second optical fiber 4a by heating by arc discharge (fusion connection step). After this fusion splicing step, the ferrule 10 and the optical wiring 3 are removed from the fusion splicer 100.
  • the optical fiber 13, 4a and the fusion point P are protected by the reinforcing sleeve 60 previously arranged on the outer periphery of the optical fiber core wire 4.
  • the reinforcing sleeve 60 is slid forward and brought into contact with the ferrule flange 12. Then, heat is applied to the reinforcing sleeve 60 to heat shrink it. As a result, the reinforcing sleeve 60 is fixed so as to cover the optical fibers 13, 4a and the fusion point P.
  • the reinforcing sleeve 60 is protected by the inner housing 21 previously arranged on the outer periphery of the optical fiber core wire 4. Specifically, as shown in FIG. 5C, the inner housing 21 is slid forward to bring the inner cylinder portion 30 of the inner housing 21 into contact with the ferrule flange 12. As a result, the reinforcing sleeve 60 is covered with the inner housing 21. As described with reference to FIGS. 5B-5C, in the post-treatment step, the reinforcing sleeve 60 and the inner housing 21 protect the first optical fiber 13, the second optical fiber 4a, and the fusion point P.
  • FIGS. 7A to 7C are diagrams illustrating a coupling process in the method for manufacturing the wiring 1 with a fusion-bonded optical connector according to the embodiment.
  • this method next, as shown in FIGS. 7A to 7C, a plurality of divided portions 5a of the outer skin 5 are bonded to each other (bonding step).
  • the split portion 5a that has been folded back is unfolded and returned to the front (development step).
  • the contraction tube 6 previously arranged on the outer circumference of the outer skin 5 is slid forward to cover the plurality of divided portions 5a and the slits 5b.
  • heat is applied to the shrinkage tube 6 to heat shrink it (heating step).
  • the plurality of split portions 5a are tightened and joined by the shrinkage tube 6, and the shape of the exodermis 5 is substantially returned to the state before the split step.
  • the bonding step includes a developing step and a heating step.
  • FIGS. 8A to 8C are diagrams showing a process of assembling the housing 20 of the optical connector 2 in the method of manufacturing the wiring 1 with a fusion-type optical connector according to the embodiment.
  • the housing 20 is assembled so that a part of the shrinkage tube 6 is covered with the housing 20 of the optical connector 2 (housing assembly step).
  • the boots 23 previously arranged on the outer periphery of the outer skin 5 are moved forward, and the boots 23 are attached to the coupler 34 of the inner housing 21.
  • a part (at least the front end portion) of the contraction tube 6 is covered with the boot 23.
  • the cover 32 is attached to the outer cylinder portion 31 of the inner housing 21 from the front.
  • the housing 40 is slid forward after being arranged on the outer periphery of the outer skin 5 in advance, and is engaged with the outer peripheral surface of the boot 23.
  • the outer sleeve 42 is engaged with the outer peripheral surface of the rear housing 40 from the front. Further, the front housing 41 is screwed into the rear housing 40 from the front. As described above, the wiring 1 with a fusion-type optical connector in which the waterproof optical wiring 3 is connected to the optical connector 2 can be obtained.
  • the wiring 1 with the fusion type optical connector of the present embodiment is fused to the ferrule 10 and the optical connector 2 having the first optical fiber 13 arranged in the ferrule 10 and the first optical fiber 13. It includes an optical wiring 3 having an outer skin 5 that covers the connected second optical fiber 4a and the second optical fiber 4a.
  • the second optical fiber 4a extends from the end surface 5c of the outer skin 5, and the outer skin 5 has a plurality of divided portions 5a extending from the end surface 5c along the second optical fiber 4a.
  • the plurality of divided portions 5a are connected to each other by a connecting portion (shrink tube 6).
  • the optical fiber core wire 4 (second optical fiber 4a) is connected from the outer skin 5 before the divided portion 5a is coupled.
  • the optical fiber core wire 4 can be set in the fusion splicer 100 after being exposed. Therefore, it is possible to connect the optical connector 2 and the optical wiring 3 without preparing a large-sized or special fusion splicer. Further, after the fusion splicing, the optical fiber core wire 4 can be protected by connecting the plurality of divided portions 5a to each other.
  • the optical connector 2 has a reinforcing sleeve 60 that protects the fusion point P between the first optical fiber 13 and the second optical fiber 4a, and a housing 20 that covers the reinforcing sleeve 60.
  • the region where the optical fiber core wire 4 is protected by the reinforcing sleeve 60 can be shortened. Therefore, the length of the housing 20 that covers the reinforcing sleeve 60 can also be shortened.
  • the connecting portion of the present embodiment is a shrinkage tube 6 that covers a plurality of divided portions 5a. Therefore, by contracting the contraction tube 6, the split portion 5a can be easily connected. Further, by covering the gap (slit 5b) between the divided portions 5a, the waterproof property can be further improved.
  • the joint portion does not have to be the contraction tube 6.
  • an adhesive may be used to bond and bond the plurality of divided portions 5a to each other.
  • the optical connector 2 has a housing 20 that covers only a part of the joint portion (shrink tube 6). As a result, the size of the housing 20 in the axial direction can be reduced as compared with the case where the housing 20 covers the entire joint portion.
  • the outer skin 5 is split along the second optical fiber 4a from the end face 5c extending from the second optical fiber 4a to form a plurality of divided portions.
  • the second optical fiber 4a exposed from the outer skin 5 is set in the fusion splicer 100, and the second optical fiber 4a and the first optical fiber 13 are combined.
  • the first optical fiber 13 and the second optical fiber 4a are removed from the fusion splicer 100, and the plurality of divided portions 5a are coupled to each other (coupling step). ..
  • a waterproof optical wiring 3 having a large outer diameter and an optical connector 2 can be connected by using a standard small fusion machine 100.
  • the case where the outer diameter of the outer skin 5 is large because the optical wiring 3 has waterproof property has been described.
  • the above embodiment can also be applied when the outer diameter of the outer skin 5 is large due to other factors (for example, the number of the second optical fibers 4a included in the optical wiring 3 is large).
  • the case where one first optical fiber 13 and one second optical fiber 4a are fused and connected has been described.
  • the plurality of first optical fibers 13 and the plurality of second optical fibers 4a may be fused and connected at once.
  • the ferrule 10 is provided with a plurality of through holes through which each first optical fiber 13 is inserted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

融着型光コネクタ付き配線は、フェルールおよび前記フェルール内に配された第1光ファイバを有する光コネクタと、前記第1光ファイバに融着接続された第2光ファイバおよび前記第2光ファイバを被覆する外皮を有する光配線と、を備え、前記第2光ファイバは、前記外皮の端面から延出し、前記外皮は、前記端面から前記第2光ファイバに沿って延びる複数の分割部を有し、前記複数の分割部は結合部によって互いに結合されている。

Description

融着型光コネクタ付き配線、融着型光コネクタ付き配線の製造方法
 本発明は、融着型光コネクタ付き配線、融着型光コネクタ付き配線の製造方法に関するものである。
 本願は、2019年11月1日に、日本に出願された特願2019-199877号に基づき優先権を主張し、その内容をここに援用する。
 下記特許文献1には、フェルール内に配された第1光ファイバを有する光コネクタと、前記第1光ファイバに融着接続された第2光ファイバを有する光配線と、備える、融着型光コネクタ付き配線が開示されている。
日本国特開2017-106985号公報
 例えば防水性を有する光配線は、通常の光配線よりも太い。このような太い光配線を光コネクタに接続しようとすると、特殊な融着機を用意しなければならない場合がある。
 本発明は、上記問題点に鑑みてなされたものであり、特殊な融着機を用意しなくても光コネクタと光配線とを接続することが可能な融着型光コネクタ付き配線またはその製造方法の提供を目的とする。
 本発明の一態様に係る融着型光コネクタ付き配線は、フェルールおよび前記フェルール内に配された第1光ファイバを有する光コネクタと、前記第1光ファイバに融着接続された第2光ファイバおよび前記第2光ファイバを被覆する外皮を有する光配線と、を備え、前記第2光ファイバは、前記外皮の端面から延出し、前記外皮は、前記端面から前記第2光ファイバに沿って延びる複数の分割部を有し、前記複数の分割部は結合部によって互いに結合されている。
 この構成によれば、融着機が許容する寸法より外皮の外径が大きくても、複数の分割部が結合される前に外皮から第2光ファイバを露出させ、融着機に第2光ファイバをセットできる。したがって、特殊な融着機を用意しなくても光コネクタと光配線とを接続することが可能である。また、融着接続後は、複数の分割部を互いに結合させることで、第2光ファイバを保護できる。
 ここで、前記光コネクタは、前記第1光ファイバと前記第2光ファイバとの融着点を保護する補強スリーブと、前記補強スリーブを覆うハウジングと、を有してもよい。
 この場合、上記の通り、結合部によって結合された分割部によって第2光ファイバを保護できるため、第2光ファイバを補強スリーブで保護する領域を短くできる。したがって、補強スリーブを覆うハウジングの長さも短くできる。
 また、前記結合部は、前記複数の分割部を被覆する収縮チューブであってもよい。
 また、前記光コネクタは、前記収縮チューブの一部を覆うハウジングを有してもよい。
 本発明の一態様に係る融着型光コネクタ付き配線の製造方法は、フェルールおよび前記フェルール内に配された第1光ファイバを有する光コネクタと、第2光ファイバおよび前記第2光ファイバを覆う外皮を有する光配線と、を備える融着型光コネクタ付き配線の製造方法であって、前記外皮を、前記第2光ファイバが延出する端面から前記第2光ファイバに沿って裂くことで、複数の分割部を形成し、前記複数の分割部を形成した後、前記外皮から露出した前記第2光ファイバを融着機にセットし、前記第2光ファイバと前記第1光ファイバとを融着接続し、前記融着接続した後、前記融着機から前記第1光ファイバ及び前記第2光ファイバを取り外し、前記複数の分割部を互いに結合させる。
 この手法によれば、外径の大きい光配線と光コネクタとを、標準的な融着機を用いて接続することができる。
 上記態様の融着型光コネクタ付き配線の製造方法において、収縮チューブによって前記複数の分割部を被覆することで前記複数の分割部を結合させてもよい。
 上記態様の融着型光コネクタ付き配線の製造方法において、前記複数の分割部を結合させた後、前記収縮チューブの一部を前記光コネクタのハウジングで覆ってもよい。
 上記態様によれば、特殊な融着機を用意しなくても光コネクタと光配線とを接続することが可能な融着型光コネクタ付き配線またはその製造方法を提供できる。
一実施形態に係る融着型光コネクタ付き配線の斜視図である。 図1の融着型光コネクタ付き配線の軸方向に沿った断面図である。 一実施形態に係る融着型光コネクタ付き配線の製造方法において、前処理工程を説明する図である。 図3Aに続く工程を説明する図である。 図3Bに続く工程を説明する図である。 図3Cに続く工程を説明する図である。 一実施形態に係る融着型光コネクタ付き配線の製造方法において、融着接続工程を説明する図である。 図5Aに続く工程を説明する図である。 図5Bに続く工程を説明する図である。 一実施形態に係る融着型光コネクタ付き配線の製造方法において使用する融着機の斜視図である。 一実施形態に係る融着型光コネクタ付き配線の製造方法において、結合工程を説明する図である。 図7Aに続く工程を説明する図である。 図7Bに続く工程を説明する図である。 図7Cに続く工程を説明する図である。 図8Aに続く工程を説明する図である。 図8Bに続く工程を説明する図である。
 以下、本発明の一実施形態について図面を参照して説明する。なお、以下の説明では、光コネクタに接続された光配線として、光ファイバ心線が単心の光ファイバコードを例示する。ただし、光配線は、多心の光ファイバケーブルであってもよい。
 図1は、一実施形態に係る融着型光コネクタ付き配線1の斜視図である。図2は、融着型光コネクタ付き配線1の縦断面図(後述の軸方向に沿った断面図)である。
 図1に示すように、融着型光コネクタ付き配線1は、光コネクタ2と、光コネクタ2に接続された光配線3と、を備える。光コネクタ2は、フェルール10と、フェルール10及び光配線3の端部を収容するハウジング20と、を有する。
 フェルール10は、円柱状に形成されている。以下、フェルール10の中心軸が延びる方向を軸方向と称する。軸方向におけるフェルール10の接続端面10a側を前方(+X側)とし、その反対側(光配線3側)を後方(-X側)とする。また、軸方向と直交する方向を径方向、フェルール10の中心軸回りの方向を周方向とする。
 フェルール10には挿入孔11が形成されている。挿入孔11は、フェルール10の接続端面10aに開口している。挿入孔11は、図2に示すように、フェルール10を軸方向で貫通している。この挿入孔11には、第1光ファイバ13(ピグテールとも言う)が挿入されている。第1光ファイバ13の一部は、フェルール10から後方に延出している。第1光ファイバ13の後端は、後方に配置された光配線3の第2光ファイバ4aの前端と、融着点Pにて融着接続されている。第1光ファイバ13は、第2光ファイバ4aと融着接続される前は、第2光ファイバ4aとは別体であった光ファイバである。第1光ファイバ13および第2光ファイバ4aは、共通の補強スリーブ60によって覆われている。補強スリーブ60により、融着点Pを保護することができる。
 第1光ファイバ13の一部は、被覆層13a(第1被覆層)によって覆われている。被覆層13aはフェルール10の後方に位置している。フェルール10の後端部には、フェルールフランジ12が固定されている。フェルールフランジ12は、フェルール10の外周面よりも径方向外側に突出している。また、フェルールフランジ12は、被覆層13aを保持することで、フェルール10から後方に延びる第1光ファイバ13を保持している。図2の例では、フェルールフランジ12のうち被覆層13aを保持する部分も、補強スリーブ60により覆われている。補強スリーブ60としては、例えば熱収縮チューブを採用できる。
 ハウジング20は、内ハウジング21と、外ハウジング22と、ブーツ23と、を有する。内ハウジング21はフェルール10を収容している。外ハウジング22は内ハウジング21を覆っている。ブーツ23は、内ハウジング21と外ハウジング22との間に挟持されると共に、内ハウジング21及び外ハウジング22よりも後方に延びている。
 内ハウジング21は、内筒部30と、外筒部31と、カバー32と、バネ33と、カプラー34と、を有する。内筒部30は、フェルールフランジ12の後方に配置され、その前端面はフェルールフランジ12の背面と軸方向で接触している。内筒部30の外周面には、径方向外側に向けて突出する係合突起30aが形成されている。
 外筒部31は、内筒部30の一部を収容すると共に、内筒部30の係合突起30aと係合する係合溝31bを有する。係合溝31bは、軸方向に延び、内筒部30を軸方向に移動可能に案内する。外筒部31の内側には、バネ33が配置されている。バネ33は、内筒部30の後方に配置され、内筒部30の後端面を前方に向かって付勢している。フェルールフランジ12は内筒部30の前端面に接触している。このため、フェルールフランジ12は内筒部30とともにバネ33によって前方に付勢される。さらに、フェルールフランジ12に接しているフェルール10も、バネ33によって前方に付勢される。
 外筒部31の係合溝31bよりも後方の外周面には、径方向外側に突出する係合突起31aが形成されている。また、外筒部31の係合突起31aよりも後方の外周面には、外筒フランジ31cが形成されている。さらに、外筒部31の外筒フランジ31cよりも後方の外周面には、雄ネジ31dが形成されている。
 カバー32は、外筒部31の係合突起31aと係合する係合溝32bを有する。カバー32は、外筒部31の外筒フランジ31cより前方の外周面を覆うと共に、外筒部31から前方に突出した内筒部30の周面を覆う。さらにカバー32は、フェルールフランジ12の前端面までを覆っている。
 カバー32は、フェルール10が貫通して配置される貫通孔32aを有する。フェルールフランジ12の外径は、前方部分と後方部分とで異なっている。フェルールフランジ12の前方部分の外径は、後方部分の外径より小さい。貫通孔32aの内径は、フェルールフランジ12の前方部分の外径よりも小さい。このため、フェルールフランジ12は、貫通孔32aを通過できず、カバー32と軸方向で接触する。このように、カバー32は、バネ33により前方に付勢されるフェルールフランジ12の抜け止めとなっている。
 カプラー34は、外筒部31の後端の雄ネジ31dに螺合する雌ネジ34bを有する。カプラー34の外周面には、複数のシール突起34aが形成されている。各シール突起34aは、リング状に形成されると共に、軸方向に間隔をあけて設けられている。
 ブーツ23は、カプラー34が内側に嵌合される凹部23bを有する。凹部23bは、ブーツ23の前端部から、後方に向けて窪んでいる。凹部23bの内壁面には、上述したカプラー34のシール突起34aが液密に密着する。ブーツ23には、凹部23bから後方に延びる貫通孔23aが形成されている。貫通孔23aの内側には、光配線3が配設されている。
 貫通孔23aの内壁面は、光配線3の外周面(後述する収縮チューブ6の外周面)に液密に密着する。なお、ブーツ23は、光配線3に対する組み込みを容易にするために、2つの分割ピースが合わさることで形成されてもよい。2つの分割ピースはそれぞれ、軸方向に延びる半筒状であってもよい。ブーツ23の外周面には、段差面23cが形成されている。段差面23cは、環状に形成されると共に、後方を向いている。
 外ハウジング22は、後ハウジング40と、前ハウジング41と、外スリーブ42と、を有する。後ハウジング40は、ブーツ23の外周面に対して後方から組み付け可能な筒状に形成されている。後ハウジング40の内壁面には、ブーツ23の段差面23cに軸方向で当接可能な当接部40aが形成されている。
 当接部40aより前方の後ハウジング40の内壁面には、雌ネジ40bが形成されている。また、当接部40aより後方の後ハウジング40の外周面には、径方向外側に突出するフランジ40cが形成されている。
 前ハウジング41は、後ハウジング40に対して前方から組み付け可能な筒状に形成されている。前ハウジング41は、後ハウジング40の雌ネジ40bに螺合する雄ネジ部41aを有する。また、前ハウジング41は、後ハウジング40よりも前方に位置するプラグ部41bを有する。プラグ部41bの外径は後ハウジング40の外径よりも大きい。
 プラグ部41bと雄ネジ部41aとの間の前ハウジング41の外周面には、2つの環状溝41c、41dが形成されている。環状溝41c、41dにはそれぞれ、シール部材50,51が配置される。シール部材50、51としては、例えばゴム製のリングを採用できる。環状溝41cは、雄ネジ部41aの前方であって、後ハウジング40の内壁面に対向する位置に形成されている。環状溝41dは、環状溝41cの前方であって、後ハウジング40から露出したプラグ部41bの外周面に形成されている。
 外スリーブ42は、後ハウジング40の外周面に対して前方から組み付け可能な筒状に形成されている。外スリーブ42の内壁面には、後方を向く当接部42aが形成されている。当接部42aは、後ハウジング40のフランジ40cに軸方向で対向しており、フランジ40cに当接可能である。外スリーブ42は、フランジ40cと前ハウジング41のプラグ部41bとの間で軸方向に挟み込まれることで、後ハウジング40の外周に組み付けられている。
 光配線3は、光ファイバ心線4と、光ファイバ心線4を被覆する外皮5と、抗張力体(不図示)と、を有する。光ファイバ心線4は、素線である第2光ファイバ4aと、第2光ファイバ4aを覆う被覆層4b(第2被覆層)と、を有する。被覆層4bの材質は、例えばナイロンや熱可塑性エラストマー等の樹脂などであってもよい。外皮5は、光ファイバ心線4と共に前記抗張力体を被覆している。外皮5は、例えば防水ゴムなどから形成されている。光ファイバ心線4は、外皮5の前方の端面5cから延出している。図2の例では、第2光ファイバ4aだけでなく、被覆層4bも端面5cから延出し、被覆層4bも補強スリーブ60により覆われている。
 外皮5には、周方向に間隔を空けて複数のスリット5bが形成されている。各スリット5bは、外皮5をその厚さ方向において貫通し、端面5cから後方に向けて延びている。スリット5bによって、外皮5は周方向において複数の分割部5aに分割されている。各分割部5aも端面5cから後方に向けて、軸方向に沿って延びている。本実施形態では、スリット5bの数は2つであり、分割部5aの数も2つである。ただし、スリット5bおよび分割部5aの数は3以上であってもよい。分割部5aは、結合部としての収縮チューブ6によって、互いに結合されている。
 収縮チューブ6は、複数の分割部5aの外周を被覆している。また、収縮チューブ6は外皮5の端面5cも被覆している。収縮チューブ6は、少なくとも複数の分割部5aよりも長く形成されている(図1参照)。すなわち、収縮チューブ6の後端は、分割部5aの後端より後方に位置する。収縮チューブ6としては、例えば、ポリオレフィン、フッ素系ポリマー、熱可塑性エラストマーなどを主原料とする熱収縮チューブを採用できる。
 続いて、上記構成の融着型光コネクタ付き配線1の製造方法(以下、本手法と称する)について、図3A~図8Cを参照して説明する。
 図3A~図3C及び図4は、一実施形態に係る融着型光コネクタ付き配線1の製造方法において、融着接続工程の前に行う前処理工程を示す図である。前処理工程には、分割工程および折り返し工程が含まれる。
 本手法では、先ず、図3Aに示すように、外皮5の端面5cから光ファイバ心線4が延出した状態にする。さらに光ファイバ心線4の先端の被覆層4bを剥ぎ、第2光ファイバ4aを露出させる。
 次に、図3Bに示すように、外皮5を、端面5cから光ファイバ心線4に沿って裂き、複数の分割部5aを形成する(分割工程)。具体的には、カッターなどで外皮5に軸方向に延びる複数のスリット5bを形成する。
 次に、図3Cに示すように、スリット5bを開いて外皮5(複数の分割部5a)を後方に折り返すように曲げる(折り返し工程)。これにより、被覆層4bが外皮5から大きく露出した状態となる。このように、前処理工程では、被覆層4bを外皮5から露出させる。なお、図3Bの時点では被覆層4bが端面5cから延出していなくてもよい。
 次に、図4に示すように、被覆層4bが露出した光ファイバ心線4の外周に、内ハウジング21(カバー32を除く)や補強スリーブ60などを予め配置しておく。なお、上述した収縮チューブ6、外ハウジング22の一部(後ハウジング40)やブーツ23なども、図3Bで外皮5を裂く前に、外皮5の外周に予め配置しておくとよい。
 図5A~図5Cは、一実施形態に係る融着型光コネクタ付き配線1の製造方法において、融着接続工程及び後処理工程を示す図である。図6は、一実施形態に係る融着型光コネクタ付き配線1の製造方法において使用する融着機100の斜視図である。
 本手法では、次に、外皮5から被覆層4bが露出した状態の光ファイバ心線4を、例えば、図6に示す融着機100にセットする。そして図5Aに示すように、光ファイバ心線4の第2光ファイバ4aと光コネクタ2の第1光ファイバ13とを融着接続する(融着接続工程)。
 図6に示す融着機100は、例えば工場から離れた作業現場に持ち運べる小型の標準的な装置である。融着機100は、装置本体100aと、モニタ100bと、カバー100cと、を有する。装置本体100aは、一対の電極棒101、一対のファイバクランプ103、等を備える。モニタ100bは、第1光ファイバ13および第2光ファイバ4aの先端部の画像を表示する。カバー100cは、電極棒101、ファイバクランプ103等を覆うことにより、融着接続を行う際の風の影響を少なくする。
 一対のファイバクランプ103の一方には、第1光ファイバ13(ピグテール)付きのフェルール10が、組立工具105に取り付けられた状態でクランプされる。組立工具105としては、例えば上述した先行技術文献(日本国特開2017-106985号公報)に開示された組立工具と略同様の構成を採用できる。
 一対のファイバクランプ103の他方には、外皮5から露出した状態の光ファイバ心線4がクランプされる。防水性を有する光配線3の場合、外皮5の外径は、例えば4mm以上である。一般的な融着機100の場合、ファイバクランプ103がクランプ可能な対象物の最大外径は例えば3mmである。したがって、ファイバクランプ103は外皮5をクランプできない場合がある。これに対して本実施形態では、前処理工程によって外皮5から光ファイバ心線4を露出させているため、光ファイバ心線4をファイバクランプ103によりクランプできる。
 図5Aに示すように、一対の電極棒101は、各々の先端同士が対向するように配置されている。第1光ファイバ13および第2光ファイバ4aの各端部は、当接若しくは近接した状態で、一対の電極棒101の間に配置される。一対の電極棒101は、アーク放電による加熱によって第1光ファイバ13および第2光ファイバ4aを融着接続させる(融着接続工程)。この融着接続工程の後、融着機100からフェルール10及び光配線3を取り外す。
 本手法では、次に、予め光ファイバ心線4の外周に配置しておいた補強スリーブ60で、光ファイバ13,4a及び融着点Pを保護する。具体的には、図5Bに示すように、補強スリーブ60を前方にスライドさせ、フェルールフランジ12に接触させる。その後、補強スリーブ60に熱をかけ、熱収縮させる。これにより、光ファイバ13,4a及び融着点Pを覆った状態で補強スリーブ60が固定される。
 本手法では、次に、予め光ファイバ心線4の外周に配置しておいた内ハウジング21で、補強スリーブ60を保護する。具体的には、図5Cに示すように、内ハウジング21を前方にスライドさせ、内ハウジング21の内筒部30をフェルールフランジ12に接触させる。これにより、補強スリーブ60を内ハウジング21で覆う。図5B~図5Cを用いて説明したように、後処理工程では、補強スリーブ60および内ハウジング21によって、第1光ファイバ13、第2光ファイバ4a、および融着点Pを保護する。
 図7A~図7Cは、一実施形態に係る融着型光コネクタ付き配線1の製造方法における結合工程を説明する図である。
 本手法では、次に、図7A~図7Cに示すように、外皮5の複数の分割部5aを互いに結合させる(結合工程)。
 具体的には、図7Aに示すように、後方に折り返していた分割部5aを展開して前方に戻す(展開工程)。次に、図7Bに示すように、予め外皮5の外周に配置しておいた収縮チューブ6を前方にスライドさせ、複数の分割部5a及びスリット5bを覆う。次に、図7Cに示すように、収縮チューブ6に熱をかけ、熱収縮させる(加熱工程)。収縮チューブ6により複数の分割部5aが締め付けられて結合され、分割工程の前の状態に外皮5の形状がほぼ戻る。このように、結合工程には、展開工程および加熱工程が含まれる。
 図8A~図8Cは、一実施形態に係る融着型光コネクタ付き配線1の製造方法において、光コネクタ2のハウジング20を組み立てる処理を示す図である。
 本手法では、次に、図8A~図8Cに示すように、収縮チューブ6の一部を光コネクタ2のハウジング20で覆うように、ハウジング20を組み立てる(ハウジング組立工程)。
 具体的には、図8Aに示すように、予め外皮5の外周に配置しておいたブーツ23を前方に移動させて、内ハウジング21のカプラー34にブーツ23を取り付ける。このとき、収縮チューブ6の一部(少なくとも前端部)をブーツ23によって覆う。さらに、内ハウジング21の外筒部31に、カバー32を前方から取り付ける。
 次に、図8Bに示すように、予め外皮5の外周に配置しておいた後ハウジング40を前方にスライドさせ、ブーツ23の外周面に係合させる。
 次に、図8Cに示すように、後ハウジング40の外周面に前方から外スリーブ42を係合させる。さらに、後ハウジング40に前方から前ハウジング41を螺合させる。
 以上により、防水性を有する光配線3を光コネクタ2に接続した融着型光コネクタ付き配線1が得られる。
 以上説明したように、本実施形態の融着型光コネクタ付き配線1は、フェルール10およびフェルール10内に配された第1光ファイバ13を有する光コネクタ2と、第1光ファイバ13に融着接続された第2光ファイバ4aおよび第2光ファイバ4aを被覆する外皮5を有する光配線3と、を備える。第2光ファイバ4aは外皮5の端面5cから延出し、外皮5は端面5cから第2光ファイバ4aに沿って延びる複数の分割部5aを有する。そして複数の分割部5aは、結合部(収縮チューブ6)によって互いに結合されている。
 この構成によれば、融着機100が許容する寸法より外皮5の外径が大きくても、分割部5aが結合される前に外皮5から光ファイバ心線4(第2光ファイバ4a)を露出させ、融着機100に光ファイバ心線4をセットできる。したがって、大型の、あるいは特殊な融着機を用意しなくても、光コネクタ2と光配線3とを接続することが可能である。また、融着接続後は、複数の分割部5aを互いに結合させることで、光ファイバ心線4を保護できる。
 また、光コネクタ2は、第1光ファイバ13と第2光ファイバ4aとの融着点Pを保護する補強スリーブ60と、補強スリーブ60を覆うハウジング20と、を有する。上記の通り、結合部(収縮チューブ6)によって結合された分割部5aによって光ファイバ心線4を保護できるため、光ファイバ心線4を補強スリーブ60で保護する領域を短くできる。したがって、補強スリーブ60を覆うハウジング20の長さも短くできる。
 また、本実施形態の結合部は、複数の分割部5aを被覆する収縮チューブ6である。このため、収縮チューブ6を収縮させることで、分割部5aを容易に結合させることができる。また、分割部5a同士の間の隙間(スリット5b)を覆うことで、防水性をより高めることができる。なお、結合部は収縮チューブ6でなくてもよい。例えば結合部として、複数の分割部5aを互いに接着して結合させる接着剤を用いてもよい。
 また、光コネクタ2は、結合部(収縮チューブ6)の一部のみを覆うハウジング20を有する。これにより、ハウジング20が結合部の全体を覆う場合と比較して、軸方向におけるハウジング20の寸法を小さくできる。
 また、本実施形態の融着型光コネクタ付き配線の製造方法は、外皮5を、第2光ファイバ4aが延出する端面5cから第2光ファイバ4aに沿って裂くことで、複数の分割部5aを形成し(分割工程)、複数の分割部5aを形成した後、外皮5から露出した第2光ファイバ4aを融着機100にセットし、第2光ファイバ4aと第1光ファイバ13とを融着接続し(融着接続工程)、融着接続した後、融着機100から第1光ファイバ13及び第2光ファイバ4aを取り外し、複数の分割部5aを互いに結合させる(結合工程)。
 このような製造方法を採用することによって、例えば防水性を有する外径の大きい光配線3と光コネクタ2とを、標準的な小型の融着機100を用いて接続することができる。
 なお、上記実施形態では光配線3が防水性を有するために外皮5の外径が大きい場合について説明した。しかしながら、その他の要因(例えば、光配線3が有する第2光ファイバ4aの数が多い等)のために外皮5の外径が大きい場合にも、上記実施形態を適用できる。
 また、上記実施形態では1本の第1光ファイバ13と1本の第2光ファイバ4aとを融着接続する場合について説明した。しかしながら、複数の第1光ファイバ13と複数の第2光ファイバ4aとを一括で融着接続してもよい。この場合、フェルール10には各第1光ファイバ13を挿通させる複数の貫通孔が設けられる。
 以上、本発明の好ましい実施形態を記載し説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、特許請求の範囲によって制限されている。
 1…融着型光コネクタ付き配線、2…光コネクタ、3…光配線、4a…第2光ファイバ、5…外皮、5a…分割部、6…収縮チューブ(結合部)、10…フェルール、13…第1光ファイバ、20…ハウジング、60…補強スリーブ、100…融着機

Claims (7)

  1.  フェルールおよび前記フェルール内に配された第1光ファイバを有する光コネクタと、
     前記第1光ファイバに融着接続された第2光ファイバおよび前記第2光ファイバを被覆する外皮を有する光配線と、を備え、
     前記第2光ファイバは、前記外皮の端面から延出し、
     前記外皮は、前記端面から前記第2光ファイバに沿って延びる複数の分割部を有し、
     前記複数の分割部は結合部によって互いに結合されている、融着型光コネクタ付き配線。
  2.  前記光コネクタは、
      前記第1光ファイバと前記第2光ファイバとの融着点を保護する補強スリーブと、
      前記補強スリーブを覆うハウジングと、を有する、請求項1に記載の融着型光コネクタ付き配線。
  3.  前記結合部は、前記複数の分割部を被覆する収縮チューブである、請求項1または2に記載の融着型光コネクタ付き配線。
  4.  前記光コネクタは、前記結合部の一部を覆うハウジングを有する、請求項1から3のいずれか1項に記載の融着型光コネクタ付き配線。
  5.  フェルールおよび前記フェルール内に配された第1光ファイバを有する光コネクタと、第2光ファイバおよび前記第2光ファイバを覆う外皮を有する光配線と、を備える融着型光コネクタ付き配線の製造方法であって、
     前記外皮を、前記第2光ファイバが延出する端面から前記第2光ファイバに沿って裂くことで、複数の分割部を形成し、
     前記複数の分割部を形成した後、前記外皮から露出した前記第2光ファイバを融着機にセットし、前記第2光ファイバと前記第1光ファイバとを融着接続し、
     前記融着接続した後、前記融着機から前記第1光ファイバ及び前記第2光ファイバを取り外し、前記複数の分割部を互いに結合させる、融着型光コネクタ付き配線の製造方法。
  6.  収縮チューブによって前記複数の分割部を被覆することで前記複数の分割部を結合させる、請求項5に記載の融着型光コネクタ付き配線の製造方法。
  7.  前記複数の分割部を結合させた後、前記収縮チューブの一部を前記光コネクタのハウジングで覆う、請求項6に記載の融着型光コネクタ付き配線の製造方法。
PCT/JP2020/036050 2019-11-01 2020-09-24 融着型光コネクタ付き配線、融着型光コネクタ付き配線の製造方法 WO2021084982A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019199877 2019-11-01
JP2019-199877 2019-11-01

Publications (1)

Publication Number Publication Date
WO2021084982A1 true WO2021084982A1 (ja) 2021-05-06

Family

ID=75715070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036050 WO2021084982A1 (ja) 2019-11-01 2020-09-24 融着型光コネクタ付き配線、融着型光コネクタ付き配線の製造方法

Country Status (1)

Country Link
WO (1) WO2021084982A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138232A1 (en) * 2001-05-10 2003-07-24 3M Innovative Properties Company Optical fiber recoat
JP2009205100A (ja) * 2008-02-29 2009-09-10 Sumitomo Electric Ind Ltd 光コネクタ
WO2019069615A1 (ja) * 2017-10-03 2019-04-11 株式会社フジクラ コネクタ付きケーブル及びコネクタ製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138232A1 (en) * 2001-05-10 2003-07-24 3M Innovative Properties Company Optical fiber recoat
JP2009205100A (ja) * 2008-02-29 2009-09-10 Sumitomo Electric Ind Ltd 光コネクタ
WO2019069615A1 (ja) * 2017-10-03 2019-04-11 株式会社フジクラ コネクタ付きケーブル及びコネクタ製造方法

Similar Documents

Publication Publication Date Title
US10036859B2 (en) Cable termination assembly and method for connectors
JP5806305B2 (ja) 光ファイバコネクター及びその組立方法
EP3214471B1 (en) Connecting piece and optical fibre connector
US8047726B2 (en) Optical connector
TWI427344B (zh) 光連接器
KR101203509B1 (ko) 광섬유 커넥터
KR101184629B1 (ko) 에프씨타입 현장 조립형 광커넥터
CN107111076A (zh) 利用强度构件保持的光纤连接器和子组件
US9110253B2 (en) Optical connector and method for assembling optical connector
WO2013080923A1 (ja) コネクタ付き光ファイバケーブル、コネクタ付き光ファイバケーブルの組立方法
US9846284B2 (en) Optical fiber connector assembly
CN114207493A (zh) 户外用现场组装防水光连接器插头及其制造方法
WO2012137954A1 (ja) 光コネクタ
WO2021084982A1 (ja) 融着型光コネクタ付き配線、融着型光コネクタ付き配線の製造方法
WO2018105152A1 (ja) コネクタ付光ファイバコード
JP2005114770A (ja) 光コネクタ
JP7161314B2 (ja) 光コネクタおよび光コネクタの組立方法
JP5276905B2 (ja) コネクタ付き光ファイバおよび光コネクタの組立方法
JP2004252070A (ja) 抗張力繊維を縦添えした金属管型光ファイバケーブルと光コネクタの接続構造
KR102578372B1 (ko) 옥외용 현장조립형 광커넥터
JP2010039109A (ja) 光コネクタおよびその組立方法
JP2014191279A (ja) Sc形光コネクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP