WO2021084755A1 - 化合物半導体の結晶欠陥観察方法 - Google Patents

化合物半導体の結晶欠陥観察方法 Download PDF

Info

Publication number
WO2021084755A1
WO2021084755A1 PCT/JP2019/043132 JP2019043132W WO2021084755A1 WO 2021084755 A1 WO2021084755 A1 WO 2021084755A1 JP 2019043132 W JP2019043132 W JP 2019043132W WO 2021084755 A1 WO2021084755 A1 WO 2021084755A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
compound semiconductor
plane
dislocations
observing
Prior art date
Application number
PCT/JP2019/043132
Other languages
English (en)
French (fr)
Inventor
佐々木 肇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/624,840 priority Critical patent/US20220268715A1/en
Priority to JP2020511411A priority patent/JP6780805B1/ja
Priority to CN201980101687.9A priority patent/CN114599965A/zh
Priority to PCT/JP2019/043132 priority patent/WO2021084755A1/ja
Publication of WO2021084755A1 publication Critical patent/WO2021084755A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects
    • G01N2223/6462Specific applications or type of materials flaws, defects microdefects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Definitions

  • the present invention relates to a method for observing crystal defects of a compound semiconductor using a transmission electron microscope.
  • GaN has come to be used as a material for high-frequency devices and blue-emitting devices with high output and high efficiency.
  • GaN has more crystal defects than Si and GaAs. Therefore, efforts are being made to reduce the density of crystal defects that adversely affect the device.
  • extremely poor quality defects such as stacking defects and micropipes have disappeared, but linear penetrating dislocations called dislocations still exist at high density. It is important to understand the type and density of dislocations and feed them back into the process to reduce the dislocation density.
  • TEM transmission electron microscope
  • the method of observing the cross section of a semiconductor device at high magnification using a TEM is called a cross section TEM. Since it is necessary to inject electrons from the cross-sectional direction, the observation sample is generally sliced. The sliced sample is attached to a mesh made of copper or molybdenum, set in a TEM device, and irradiated with an electron beam to observe a magnified image or a diffraction image. Since crystal defects such as dislocations or stacking defects have a great influence on the characteristics and reliability of the device, TEM analysis is actively performed. Since the effect on the device differs depending on the type of crystal defect, it is not enough to simply confirm the existence of the defect, and detailed analysis is required.
  • Crystal defects appear or disappear on the screen of the electron microscope by changing the diffraction conditions. Therefore, it is necessary to observe the crystal defects in consideration of the crystal structure, the diffraction vector of the electron beam, and the Burgers vector of the crystal.
  • GaN used as a material for the device has a wurtzite structure, and its analysis is complicated because the crystal axis is not vertical as compared with Si having a diamond structure and GaAs having a sphalerite structure. There are blade dislocations, spiral dislocations, and mixed dislocations as complete dislocations of the wurtzite structure. In order to discriminate the type of each dislocation by TEM, it is necessary to select the diffraction (reflection) vector (see, for example, Patent Document 1).
  • the sample is slightly tilted when selecting the diffraction vector. If it is tilted by 5 degrees or more, the crystal zone axis shifts to another crystal zone axis, and conventional analysis becomes impossible.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a method for observing crystal defects of a compound semiconductor that can be observed while identifying dislocations existing in the compound semiconductor having a wurtzite structure. It is a thing.
  • the Burgers vector is 1/3 [2-1-10], 1 / by the process of preparing a sample by cutting out on the plane and by injecting an electron beam into the sample from the [-1010] direction with a transmission electron microscope. It is characterized by comprising a step of observing a blade-shaped dislocation of 3 [-2110] and a mixed dislocation having a Burgers vector of 1/3 [2-1-13] and 1/3 [-2113].
  • a device in which a gate electrode is formed along the [2-1-10] direction on the c-plane (0001) of a compound semiconductor having a wurtzite structure is cut out on the (10-10) plane to prepare a sample.
  • An electron beam is incident from the [-1010] direction by a transmission electron microscope. This makes it possible to identify and observe the dislocations present in the compound semiconductor having a wurtzite structure.
  • FIG. It is a figure which shows the crystal defect observation method of the compound semiconductor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the crystal defect observation method of the compound semiconductor which concerns on a comparative example. It is a figure which shows the crystal defect observation method of the compound semiconductor which concerns on Embodiment 2. It is a figure which shows the crystal defect observation method of the compound semiconductor which concerns on Embodiment 3. It is a figure which observed the crystal structure of FIG. 4 from above along the c-axis. It is a figure which shows the thick film sample cut out so that it contains the crystal defect which we want to observe. It is a figure which shows the example which made the thick film sample further thin film for ordinary TEM.
  • FIG. 1 is a diagram showing a method for observing crystal defects of a compound semiconductor according to the first embodiment.
  • a unit cell of GaN1 which is a compound semiconductor having a wurtzite structure is shown.
  • GaN1 has crystal axes in three directions a1, a2, and a3 perpendicular to the c-axis, respectively.
  • the dislocations 2a, 2b, and 2c of the Burgers vector perpendicular to the c-axis are called blade-shaped dislocations.
  • the dislocation 2d of the Burgers vector in the c-axis direction is called a spiral dislocation.
  • the dislocation 2e, which is a combination of the blade-shaped dislocation and the spiral dislocation, is called a mixed dislocation.
  • the dislocation 2e is on the same plane as the dislocation 2b and is inclined in the positive method in the direction a1, but on the contrary, there is also a mixed dislocation inclined in the negative direction. There are also mixed dislocations inclined in the negative direction on the planes of dislocations 2a and 2c. Therefore, there are 6 types of mixed dislocations.
  • the planes perpendicular to the directions a1, a2, and a3 are collectively called the a plane (2-1-10).
  • the plane rotated 30 degrees from the a-plane (2-1-10) is collectively called the m-plane (10-10).
  • a general GaN device such as a GaN HEMT is formed on a c-plane (0001) perpendicular to the c-axis.
  • the gate electrode 3 is formed on the c-plane (0001) of GaN 1 along the [2-1-10] direction.
  • the drain electrode and the source electrode are also usually formed in a direction parallel to the gate electrode 3.
  • This device is cut out at an m-plane (10-10) oblique to the gate electrode 3 to prepare a sample 4.
  • An electron beam 5 is incident on the sample 4 from the [-1010] direction by a transmission electron microscope (hereinafter referred to as TEM).
  • TEM transmission electron microscope
  • the c-axis is tilted slightly in the ⁇ a1 direction by several degrees and adjusted so that the spot (-12-10) of the diffraction vector is excited.
  • the Burgers vector is 1/3 [2-1-10], 1/3 [-2110] blade dislocations and the Burgers vector is 1/3 [2-1-13], 1/3 [-2113].
  • Observe the mixed dislocations of. Dislocations with equivalent Burgers vectors can be observed in the same way.
  • FIG. 2 is a diagram showing a method for observing crystal defects of a compound semiconductor according to a comparative example.
  • the device is cut out on the a-plane (2-1-10) perpendicular to the gate electrode 3 to prepare the sample 4.
  • an electron beam is incident on the sample 4 by TEM from the [-2110] direction perpendicular to the cross section.
  • the c-axis is tilted slightly in the ⁇ a1 direction by several degrees and adjusted so that the spot (01-10) of the diffraction vector is excited.
  • the device is cut out at an angle of 30 degrees with respect to the gate electrode 3 to prepare a sample 4, and an electron beam is incident on the sample 4 from the [-1010] direction to observe dislocations. ..
  • This avoids the annihilation rule in which the inner product of the diffraction vector g and the Burgers vector b is zero (g ⁇ b 0), and observes while distinguishing all blade-like dislocations and mixed dislocations existing in the compound semiconductor of the Wurtz ore structure. can do.
  • FIG. 3 is a diagram showing a method for observing crystal defects of the compound semiconductor according to the second embodiment. Similar to the first embodiment, the gate electrode 3 is formed along the [2-1-10] direction on the c-plane (0001) of GaN1, which is a compound semiconductor having a wurtzite structure. In the present embodiment, as in the comparative example, the device is cut out on the (2-1-10) plane perpendicular to the gate electrode 3 to prepare the sample 4.
  • the electron beam 5 is incident on the sample 4 by TEM from the [-2110] direction in the same manner as in the normal observation method, and the sample 4 is rotated in the microscope and tilted by 60 degrees in the [-1-120] direction and [-1-120].
  • the electron beam 5 is also incident from the 12-10] direction for observation.
  • the Burgers vector becomes 1/3 [11-20], 1/3 [-1-120], 1/3 [11-]. 23], 1/3 [-1-123] dislocations disappear on the screen of the transmission electron microscope, and the Burgers vector is 1/3 [-2110], 1/3 [2-1-10], 1 /. Dislocations of 3 [-2113] and 1/3 [2-1-13] appear. Further, by injecting the electron beam 5 into the sample 4 from the [-12-10] direction, the Burgers vector becomes 1/3 [1-210], 1/3 [-12-10], 1/3 [1-]. 213], 1/3 [-12-13] dislocations are eliminated. Thereby, the directions of the Burgers vector of the dislocations derived from a1, a2, and a3 can be distinguished and identified.
  • FIG. 4 is a diagram showing a method for observing crystal defects of the compound semiconductor according to the third embodiment.
  • the gate electrode 3 is formed along the [10-10] direction on the c-plane (0001) of GaN1, which is a compound semiconductor having a wurtzite structure.
  • the formation direction of the gate electrode 3 is different from that of the first embodiment, but the formation direction is generally different depending on the manufacturer or the manufacturing method.
  • This device is cut out on a (10-10) plane perpendicular to the gate electrode 3 to prepare a sample 4.
  • the electron beam 5 was incident on the sample 4 from the [-1010] direction perpendicular to the sample 4 by TEM, and the sample 4 was rotated in the microscope and tilted by 30 degrees in the [-1-120] direction and [-1-120].
  • the electron beam 5 is also incident from the direction of -2110] for observation.
  • FIG. 5 is a view of the crystal structure of FIG. 4 observed from above along the c-axis.
  • the position where the crystal defect 6 to be observed exists has been electrically operated in the state of the device and specified by electroluminescence (EL), light beam heating resistance change (OBIRCH), or heat generation analysis.
  • EL electroluminescence
  • OBIRCH light beam heating resistance change
  • FIB heat generation analysis
  • the relevant portion is cut out using FIB or the like to prepare a sample 4.
  • the acceleration voltage of the electron beam is 70 kV to 300 kV, so that the thin film of 0.02 ⁇ m to 0.3 ⁇ m is required for the electron beam to pass through the sample 4. Since the alignment accuracy of EL, OBIRCH, luminescence observation and FIB processing is about 1 ⁇ m, the part to be observed may be cut off.
  • the ultra-high voltage electron microscope is an electron microscope having an electron acceleration voltage of 1 MV or more, and existing ones can accelerate up to 3 MV. Since the electron penetrating power is high, in the case of GaN, even a sample 4 having a thickness of 3 ⁇ m can be permeated and observed. Therefore, the region to be observed can be reliably taken out and observed.
  • FIG. 6 is a diagram showing a thick film sample cut out so as to include a crystal defect to be observed.
  • a crystal defect 6 For example, an electron beam of 1 MV or more is incident on the thick film sample 4a from the [-1010] direction for observation.
  • the position of the crystal defect 6 can be specified by a stereo method or the like.
  • the thick film sample 4a is thinned by FIB.
  • FIG. 7 is a diagram showing an example in which the thick film sample 4a is further thinned for a normal TEM.
  • the thin film enables ultra-high resolution observation to the extent that an atomic image can be observed, detailed analysis of Burgers vector, and analysis by energy loss spectroscopy.
  • FIGS. 8 to 10 are diagrams showing a method for observing crystal defects of the compound semiconductor according to the fourth embodiment.
  • a device in which a gate electrode 3 is formed along the [10-10] direction on the c-plane (0001) of GaN having a wurtzite structure is manufactured.
  • the device is cut out on the (2-1-10) plane to prepare a thick film sample 4a having a thickness of 0.1 ⁇ m to 5 ⁇ m.
  • the thick film sample 4a Observe the thick film sample 4a with an ultra-high voltage electron microscope and identify the location of the crystal defect 6 by the stereo method or the like. Then, the thick film sample 4a is obliquely thinned so that the (-2110) plane appears, and the thin film sample 4b is prepared as shown in FIG.
  • Crystal defects 6 are observed by injecting electron beams into the thin film sample 4b from three directions [-12-10], [-2110], and [-1-120] by TEM.
  • the dislocations derived from a2 which could not be eliminated by the methods of FIGS. 5 to 7, can also be eliminated. Therefore, the dislocations derived from a1, a2, and a3 can be eliminated, and the directions of the Burgers vectors of all blade-shaped dislocations and mixed dislocations can be distinguished and identified.
  • Embodiment 5 are diagrams showing a method for observing crystal defects of a compound semiconductor according to the fifth embodiment.
  • a device formed on the c-plane (0001) of GaN1, which is a compound semiconductor having a wurtzite structure is cut out in parallel with the gate electrode 3 to prepare a sample 4 having a thickness of 0.1 ⁇ m to 5 ⁇ m. .. In the usual thinning method, the cut out sample 4 is thinned in parallel.
  • a plurality of flakes having three or more different plane orientations are formed in one sample 4.
  • flakes having three plane orientations of (11-20), (-12-10), and (-2110) are formed in one sample 4.
  • the Burgers vector is analyzed by observing crystal defects of a plurality of flakes by TEM. As a result, it is possible to reduce the labor of sample preparation and the labor of setting the sample in the TEM as compared with the case of preparing a plurality of samples 4.
  • FIG. 13 is a diagram showing a method for observing crystal defects of the compound semiconductor according to the sixth embodiment.
  • the gate electrode 3 is formed on the c-plane (0001) of GaN1, which is a compound semiconductor having a wurtzite structure, along the [10-10] direction perpendicular to the m-plane (10-10).
  • the wurtzite structure has partial dislocations in addition to the complete dislocations described in the previous embodiments.
  • Typical examples are partial dislocations 7a to 7d in which the Burgers vector b is 1/3 [10-10], 1/3 [02-23], 1/3 [20-23], 1/2 [0001].
  • the above device is cut out on the a-plane (2-1-10) tilted by 30 degrees with respect to the gate electrode 3 to prepare the sample 4.
  • partial dislocations 7a and 7c in which the Burgers vector of sample 4 is 1/3 [10-10] and 1/3 [20-23] can be observed by TEM.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

ウルツ鉱構造の化合物半導体(1)のc面(0001)上にゲート電極(3)が[2-1-10]方向に沿って形成されたデバイスを(10-10)面で切り出して試料(4)を作成する。透過型電子顕微鏡により試料(4)に[-1010]方向から電子線(5)を入射させることで、バーガースベクトルが1/3[2-1-10],1/3[-2110]の刃状転位とバーガースベクトルが1/3[2-1-13],1/3[-2113]の混合転位を観察する。

Description

化合物半導体の結晶欠陥観察方法
 本発明は、透過型電子顕微鏡を用いた化合物半導体の結晶欠陥観察方法に関する。
 最近、高出力・高効率の高周波デバイス及び青色発光デバイスの材質としてGaNが用いられるようになってきた。GaNは、Si及びGaAsに比べ結晶欠陥が多い。従って、デバイスに悪影響を与える結晶欠陥の密度を低下させる努力がなされている。最近では積層欠陥及びマイクロパイプのような極端に質の悪い欠陥は無くなってきたが、転位と言われる線状の貫通転位は依然高密度で存在している。転位の種類と密度を把握しプロセスにフィードバックして転位密度を低下させることが重要である。
 転位を観察する手法としてKOHのエッチングを利用するエッチピット法がある。しかし、デバイスパターンが形成されていると観察が難しく、転位の種類の同定も簡便ではない。このため、透過型電子顕微鏡(以下、TEMと記載する。)を用いて転位を観察する手法が最も優れている。
 TEMを用いて半導体デバイスの断面を高倍率で観察する手法を断面TEMと呼ぶ。電子を断面方向から入射させる必要があるため、一般的に観察用試料を薄片化する。薄片化した試料を銅又はモリブデン製のメッシュに取り付け、TEM装置内にセットし、電子線を照射することで拡大像又は回折像を観察する。転位又は積層欠陥などの結晶欠陥がデバイスの特性と信頼性に大きく影響を与えるためTEMによる解析が盛んに行われている。結晶欠陥の種類によりデバイスに与える影響も異なるため、単純に欠陥の存在を確認するだけでは不十分であり詳細な解析が必要である。
 結晶欠陥は回折条件を変化させることにより電子顕微鏡の画面上で出現又は消滅する。このため、結晶構造、電子線の回折ベクトル、結晶のバーガースベクトルを考慮して結晶欠陥を観察する必要がある。デバイスの材料として用いられるGaNはウルツ鉱構造であり、ダイヤモンド構造のSi及び閃亜鉛鉱構造のGaAsに比べ結晶軸が垂直でないため解析が複雑である。ウルツ鉱構造の完全転位として刃状転位、螺旋転位、混合転位がある。TEMで各々の転位の種類を判別するためには、回折(反射)ベクトルを選別する必要がある(例えば、特許文献1参照)。
日本特開2000-349338号公報
 回折ベクトルを選別する際に試料をわずかに傾斜させる。5度以上傾斜させると晶帯軸が別の晶帯軸に移行してしまい従来の解析はできなくなる。GaNの場合、刃状転位と混合転位のバーガースベクトルは三方向に向いている。回折ベクトルgとバーガースベクトルbの内積がゼロ(g・b=0)の場合、透過型電子顕微鏡の画面から消滅して見えなくなる。このため、ウルツ鉱構造の化合物半導体に存在する転位を識別しながら観察することができないという問題があった。
 本発明は、上述のような課題を解決するためになされたもので、その目的はウルツ鉱構造の化合物半導体に存在する転位を識別しながら観察することができる化合物半導体の結晶欠陥観察方法を得るものである。
 本発明に係る化合物半導体の結晶欠陥観察方法は、ウルツ鉱構造の化合物半導体のc面(0001)上にゲート電極が[2-1-10]方向に沿って形成されたデバイスを(10-10)面で切り出して試料を作成する工程と、透過型電子顕微鏡により前記試料に[-1010]方向から電子線を入射させることで、バーガースベクトルが1/3[2-1-10],1/3[-2110]の刃状転位とバーガースベクトルが1/3[2-1-13],1/3[-2113]の混合転位を観察する工程とを備えることを特徴とする。
 本発明では、ウルツ鉱構造の化合物半導体のc面(0001)上にゲート電極が[2-1-10]方向に沿って形成されたデバイスを(10-10)面で切り出して試料を作成し、透過型電子顕微鏡により[-1010]方向から電子線を入射させる。これにより、ウルツ鉱構造の化合物半導体に存在する転位を識別しながら観察することができる。
実施の形態1に係る化合物半導体の結晶欠陥観察方法を示す図である。 比較例に係る化合物半導体の結晶欠陥観察方法を示す図である。 実施の形態2に係る化合物半導体の結晶欠陥観察方法を示す図である。 実施の形態3に係る化合物半導体の結晶欠陥観察方法を示す図である。 図4の結晶構造をc軸に沿って上方向から観察した図である。 観察したい結晶欠陥を含むように切り出した厚膜試料を示す図である。 厚膜試料を通常のTEM用にさらに薄膜化した例を示す図である。 実施の形態4に係る化合物半導体の結晶欠陥観察方法を示す図である。 実施の形態4に係る化合物半導体の結晶欠陥観察方法を示す図である。 実施の形態4に係る化合物半導体の結晶欠陥観察方法を示す図である。 実施の形態5に係る化合物半導体の結晶欠陥観察方法を示す図である。 実施の形態5に係る化合物半導体の結晶欠陥観察方法を示す図である。 実施の形態6に係る化合物半導体の結晶欠陥観察方法を示す図である。
 実施の形態に係る化合物半導体の結晶欠陥観察方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、実施の形態1に係る化合物半導体の結晶欠陥観察方法を示す図である。ウルツ鉱構造の化合物半導体であるGaN1の単位格子が示されている。GaN1はc軸に対して垂直な3方向a1,a2,a3にそれぞれ結晶軸を有する。
 GaN1の完全転位のバーガースベクトルは大きく分けて3種類ある。c軸に垂直なバーガースベクトルの転位2a,2b,2cは刃状転位と呼ばれる。c軸方向のバーガースベクトルの転位2dは螺旋転位と呼ばれる。刃状転位と螺旋転位を合わせた転位2eは混合転位と呼ばれる。
 転位2eは転位2bと同一面上にあり方向a1のプラス方法に傾斜しているが、逆にマイナス方向に傾斜した混合転位も存在する。転位2a,2cの面上にもマイナス方向に傾斜した混合転位が存在する。従って、混合転位は6種類存在する。
 方向a1,a2,a3に垂直な面を総称してa面(2-1-10)と呼んでいる。a面(2-1-10)から30度回転した面を総称してm面(10-10)と呼んでいる。GaN HEMTなどの一般的なGaNデバイスはc軸に垂直なc面(0001)上に形成されている。ゲート電極3がGaN1のc面(0001)上で[2-1-10]方向に沿って形成されている。簡略化のため図示していないが、通常、ドレイン電極とソース電極もゲート電極3と並行な方位で形成されている。
 このデバイスを、ゲート電極3に対して斜めのm面(10-10)で切り出して試料4を作成する。透過型電子顕微鏡(以下、TEMと記載する。)により試料4に[-1010]方向から電子線5を入射させる。結晶の晶帯軸に正確に入射方向を合わせた後、c軸を±a1方向にわずかに数度傾斜させ回折ベクトルの(-12-10)のスポットが励起されるように調整する。これにより、バーガースベクトルが1/3[2-1-10],1/3[-2110]の刃状転位とバーガースベクトルが1/3[2-1-13],1/3[-2113]の混合転位を観察する。なお、等価なバーガースベクトルを持つ転位も同様に観察することができる。
 続いて、本実施の形態の効果を比較例と比較して説明する。図2は、比較例に係る化合物半導体の結晶欠陥観察方法を示す図である。比較例では、デバイスを、ゲート電極3に垂直なa面(2-1-10)で切り出して試料4を作成する。そして、TEMにより試料4に、断面に対して垂直な[-2110]方向から電子線を入射させる。結晶の晶帯軸に正確に入射方向を合わせた後、c軸を±a1方向にわずかに数度傾斜させ回折ベクトルの(01-10)のスポットが励起されるように調整する。これにより一部の刃状転位と混合転位が観察できるようになる。螺旋転位はバーガースベクトルbと回折ベクトルgの内積がゼロ(g・b=0)となるため、透過型電子顕微鏡の画面上で消滅して観察できない。比較例では、刃状転位である転位2b,2eも内積がゼロ(g・b=0)となり観察できない。
 これに対して、本実施の形態では、デバイスをゲート電極3に対して30度傾けて切り出して試料4を作成し、試料4に[-1010]方向から電子線を入射させて転位を観察する。これにより、回折ベクトルgとバーガースベクトルbの内積がゼロ(g・b=0)の消滅則を回避し、ウルツ鉱構造の化合物半導体に存在する全ての刃状転位と混合転位を識別しながら観察することができる。
 なお、比較例でも電子線を30度斜めから入射させれば、転位を観察することができる。しかし、最近のTEMは高倍率で観察する機能を優先させ、高角度で試料4を傾斜できない場合も多い。これに対して本実施の形態の結晶欠陥観察方法は全てのTEMに適用できる。
実施の形態2.
 図3は、実施の形態2に係る化合物半導体の結晶欠陥観察方法を示す図である。実施の形態1と同様に、ゲート電極3が、ウルツ鉱構造の化合物半導体であるGaN1のc面(0001)上で[2-1-10]方向に沿って形成されている。本実施の形態では、比較例と同様に、デバイスを、ゲート電極3に垂直な(2-1-10)面で切り出して試料4を作成する。
 TEMにより試料4に、通常の観察方法と同様に[-2110]方向から電子線5を入射させると共に、顕微鏡内で試料4を回転させて60度傾斜させた[-1-120]方向と[-12-10]方向からも電子線5を入射させて観察を行う。[-2110]方向から電子線5を入射させると、刃状転位2bはg・b=0を満足するため見えなくなる。
 一方、試料4に[-1-120]方向から電子線5を入射させることで、バーガースベクトルが1/3[11-20],1/3[-1-120],1/3[11-23],1/3[-1-123]の転位を透過型電子顕微鏡の画面上で消滅させ、バーガースベクトルが1/3[-2110],1/3[2-1-10],1/3[-2113],1/3[2-1-13]の転位を出現させる。また、試料4に[-12-10]方向から電子線5を入射させることで、バーガースベクトルが1/3[1-210],1/3[-12-10],1/3[1-213],1/3[-12-13]の転位を消滅させる。これにより、a1,a2,a3由来の転位のバーガースベクトルの方向を区別して同定することができる。
実施の形態3.
 図4は、実施の形態3に係る化合物半導体の結晶欠陥観察方法を示す図である。ゲート電極3が、ウルツ鉱構造の化合物半導体であるGaN1のc面(0001)上で[10-10]方向に沿って形成されている。ゲート電極3の形成方向が実施の形態1とは異なるが、一般的に形成方向はメーカー又は製造方式で異なる。このデバイスを、ゲート電極3に垂直な(10-10)面で切り出して試料4を作成する。
 TEMにより試料4に、試料4に対して垂直な[-1010]方向から電子線5を入射させると共に、顕微鏡内で試料4を回転させて30度傾斜させた[-1-120]方向と[-2110]方向からも電子線5を入射させて観察を行う。
 試料4に[-1-120]方向から電子線5を入射することで、g・b=0が満たされてバーガースベクトルが1/3[11-20],1/3[-1-120],1/3[11-23],1/3[-1-123]の転位が透過型電子顕微鏡の画面上で消滅する。試料4に[-2110]方向から電子線を入射させることで、バーガースベクトルが1/3[-2110],1/3[2-1-10],1/3[-2113],1/3[2-1-10]の転位が消滅する。これにより、a1,a2,a3由来の転位のバーガースベクトルの方向を区別して同定することができる。
実施の形態4.
 図5は、図4の結晶構造をc軸に沿って上方向から観察した図である。従来、観察したい結晶欠陥6が存在する位置は、デバイスの状態で電気的に動作させ、エレクトロルミネッセンス(EL)、光ビーム加熱抵抗変化(OBIRCH)又は発熱解析により特定していた。そして、FIBなどを用いて当該箇所を切り出して試料4を作成する。通常のTEMの場合、電子線の加速電圧が70kVから300kVのため、電子線が試料4を透過するためには0.02μmから0.3μmの薄膜化が必要である。EL、OBIRCH、発光観察とFIB加工の位置合わせ精度が1μm程度のため、観察したい箇所を切り落としてしまう場合があった。
 結晶欠陥6を確実に観察するため、超高圧電子顕微鏡を用いることが有効である。超高圧電子顕微鏡は電子の加速電圧が1MV以上の電子顕微鏡であり、現存するものでは最大3MVの加速が可能である。電子の透過力が高いため、GaNの場合、3μm厚の試料4でも透過して観察することができる。従って、確実に観察したい領域を取り出して観察することができる。
 図6は、観察したい結晶欠陥を含むように切り出した厚膜試料を示す図である。この厚膜試料4aに例えば[-1010]方向から1MV以上の電子線を入射させて観察を行う。結晶欠陥6の位置はステレオ法などで特定できる。位置を特定した後にFIBにより厚膜試料4aの薄膜化を行う。図7は、厚膜試料4aを通常のTEM用にさらに薄膜化した例を示す図である。薄膜化することで、原子像を観察できる程度の超高分解能観察、バーガースベクトルの詳細解析、エネルギー損失分光による分析が可能になる。
 図8から図10は、実施の形態4に係る化合物半導体の結晶欠陥観察方法を示す図である。図8に示すように、ウルツ鉱構造であるGaNのc面(0001)上にゲート電極3が[10-10]方向に沿って形成されたデバイスを製造する。次に、図9に示すように、デバイスを(2-1-10)面で切り出して厚み0.1μmから5μmの厚膜試料4aを作成する。
 超高圧電子顕微鏡により厚膜試料4aを観察して、ステレオ法などにより結晶欠陥6の場所を特定する。その後、(-2110)面が表れるように厚膜試料4aを斜めに薄膜化して、図10に示すように薄膜試料4bを作成する。
 TEMにより薄膜試料4bに[-12-10],[-2110],[-1-120]の三方向から電子線を入射して結晶欠陥6を観察する。これにより、図5から図7の方法では消滅させることができなかったa2由来の転位も消滅させることができる。従って、a1,a2,a3由来の転位を各々消滅させて、全ての刃状転位と混合転位のバーガースベクトルの方向を区別して同定することができる。
実施の形態5.
 図11及び図12は、実施の形態5に係る化合物半導体の結晶欠陥観察方法を示す図である。図11に示すように、ウルツ鉱構造の化合物半導体であるGaN1のc面(0001)上に形成されたデバイスをゲート電極3に平行に切り出して、厚み0.1μmから5μmの試料4を作成する。通常の薄膜化方法では、切り出した試料4を平行に薄膜化する。一方、本実施の形態では、図12に示すように、一つの試料4において異なる3方向以上の面方位を持つ複数の薄片を形成する。ここでは、(11-20)、(-12-10)、(-2110)の3方向の面方位を持つ薄片を一つの試料4に形成している。TEMにより複数の薄片の結晶欠陥を観察してバーガースベクトルを解析する。これにより、複数の試料4を作製する場合に比べて、試料作製の手間とTEMへの試料セットの手間を削減することができる。
実施の形態6.
 図13は、実施の形態6に係る化合物半導体の結晶欠陥観察方法を示す図である。ゲート電極3が、ウルツ鉱構造の化合物半導体であるGaN1のc面(0001)上でm面(10-10)に垂直な[10-10]方向に沿って形成されている。
 ウルツ鉱構造には、これまでの実施の形態で述べた完全転位とは別に部分転位が存在しる。代表例は、バーガースベクトルbが1/3[10-10],1/3[02-23],1/3[20-23],1/2[0001]の部分転位7a~7dである。ゲート電極3に対して垂直面で切り出して試料4を作成して、電子線を垂直に入射すると、部分転位7a,7cが消滅し見えない。
 これに対して、本実施の形態では、上記のデバイスをゲート電極3に対して30度傾斜させたa面(2-1-10)で切り出して試料4を作成する。これにより、TEMにより試料4のバーガースベクトルが1/3[10-10],1/3[20-23]の部分転位7a,7cを観察することができる。
 なお、実施の形態1-6において代表的なバーガースベクトルの解析方法について述べたが、等価な他のバーガースベクトルについても同様の手法で解析を行うことができる。また、ウルツ鉱構造のバーガースベクトルの解析方法について述べたが、他の結晶構造でも同様の手法を用いて解析を行うことができる。
1 GaN、2a,2b,2c,2d,2e 転位、3 ゲート電極、4 試料、4a 厚膜試料、4b 薄膜試料、5 電子線、6 結晶欠陥、7a~7d 部分転位

Claims (6)

  1.  ウルツ鉱構造の化合物半導体のc面(0001)上にゲート電極が[2-1-10]方向に沿って形成されたデバイスを(10-10)面で切り出して試料を作成する工程と、
     透過型電子顕微鏡により前記試料に[-1010]方向から電子線を入射させることで、バーガースベクトルが1/3[2-1-10],1/3[-2110]の刃状転位とバーガースベクトルが1/3[2-1-13],1/3[-2113]の混合転位を観察する工程とを備えることを特徴とする化合物半導体の結晶欠陥観察方法。
  2.  ウルツ鉱構造の化合物半導体のc面(0001)上にゲート電極が[2-1-10]方向に沿って形成されたデバイスを(2-1-10)面で切り出して試料を作成する工程と、
     透過型電子顕微鏡により前記試料に[-1-120]方向から電子線を入射させることで、バーガースベクトルが1/3[11-20],1/3[-1-120],1/3[11-23],1/3[-1-123]の転位を前記透過型電子顕微鏡の画面上で消滅させ、バーガースベクトルが1/3[-2110],1/3[2-1-10],1/3[-2113],1/3[2-1-13]の転位を出現させ、前記試料に[-12-10]方向から電子線を入射させることで、バーガースベクトルが1/3[1-210],1/3[-12-10],1/3[1-213],1/3[-12-13]の転位を消滅させることで、前記試料に含まれる転位のバーガースベクトルの方向を同定する工程とを備えることを特徴とする化合物半導体の結晶欠陥観察方法。
  3.  ウルツ鉱構造の化合物半導体のc面(0001)上にゲートが[10-10]方向に沿って形成されたデバイスを(10-10)面で切り出して試料を作成する工程と、
     透過型電子顕微鏡により前記試料に[-1-120]方向から電子線を入射することで、バーガースベクトルが1/3[11-20],1/3[-1-120],1/3[11-23],1/3[-1-123]の転位を前記透過型電子顕微鏡の画面上で消滅させ、前記試料に[-2110]方向から電子線を入射させることで、バーガースベクトルが1/3[-2110],1/3[2-1-10],1/3[-2113],1/3[2-1-10]の転位を消滅させることで、前記試料に含まれる転位のバーガースベクトルの方向を同定する工程とを備えることを特徴とする化合物半導体の結晶欠陥観察方法。
  4.  ウルツ鉱構造の化合物半導体のc面(0001)上にゲート電極が[10-10]方向に沿って形成されたデバイスを(2-1-10)面で切り出して厚み0.1μmから5μmの厚膜試料を作成する工程と、
     電子の加速電圧が1MV以上の超高圧電子顕微鏡により前記厚膜試料を観察して結晶欠陥の場所を特定した後、(-2110)面が表れるように前記厚膜試料を斜めに薄膜化して薄膜試料を作成する工程と、
     透過型電子顕微鏡により前記薄膜試料に電子線を入射して前記結晶欠陥を観察する工程とを備えることを特徴とする化合物半導体の結晶欠陥観察方法。
  5.  ウルツ鉱構造の化合物半導体のc面(0001)上に形成されたデバイスから厚み0.1μmから5μmの試料を作成する工程と、
     一つの前記試料において異なる面方位を持つ複数の薄片を形成する工程と、
     透過型電子顕微鏡により前記複数の薄片の結晶欠陥を観察する工程とを備えることを特徴とする化合物半導体の結晶欠陥観察方法。
  6.  ウルツ鉱構造の化合物半導体のc面(0001)上にゲート電極が[10-10]方向に沿って形成されたデバイスを(2-1-10)面で切り出して試料を作成する工程と、
     透過型電子顕微鏡により前記試料のバーガースベクトルが1/3[10-10],1/3[20-23]方向の部分転位を観察することを特徴とする化合物半導体の結晶欠陥観察方法。
PCT/JP2019/043132 2019-11-01 2019-11-01 化合物半導体の結晶欠陥観察方法 WO2021084755A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/624,840 US20220268715A1 (en) 2019-11-01 2019-11-01 Crystal defect observation method for compound semiconductor
JP2020511411A JP6780805B1 (ja) 2019-11-01 2019-11-01 化合物半導体の結晶欠陥観察方法
CN201980101687.9A CN114599965A (zh) 2019-11-01 2019-11-01 化合物半导体的晶体缺陷观察方法
PCT/JP2019/043132 WO2021084755A1 (ja) 2019-11-01 2019-11-01 化合物半導体の結晶欠陥観察方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043132 WO2021084755A1 (ja) 2019-11-01 2019-11-01 化合物半導体の結晶欠陥観察方法

Publications (1)

Publication Number Publication Date
WO2021084755A1 true WO2021084755A1 (ja) 2021-05-06

Family

ID=73022511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043132 WO2021084755A1 (ja) 2019-11-01 2019-11-01 化合物半導体の結晶欠陥観察方法

Country Status (4)

Country Link
US (1) US20220268715A1 (ja)
JP (1) JP6780805B1 (ja)
CN (1) CN114599965A (ja)
WO (1) WO2021084755A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349338A (ja) * 1998-09-30 2000-12-15 Nec Corp GaN結晶膜、III族元素窒化物半導体ウェーハ及びその製造方法
JP2004311700A (ja) * 2003-04-07 2004-11-04 Sumitomo Mitsubishi Silicon Corp 結晶欠陥の評価方法と評価用試料
JP2004327766A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 半導体装置
WO2009035079A1 (ja) * 2007-09-12 2009-03-19 Asahi Kasei Emd Corporation 化合物半導体基板、化合物半導体基板の製造方法及び半導体デバイス
JP2009149513A (ja) * 2007-01-16 2009-07-09 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法、iii族窒化物結晶基板およびiii族窒化物半導体デバイス
JP2010004074A (ja) * 2002-12-16 2010-01-07 Regents Of The Univ Of California ハイドライド気相成長法による平坦な無極性窒化ガリウムの成長
JP2014003146A (ja) * 2012-06-18 2014-01-09 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2015188003A (ja) * 2014-03-26 2015-10-29 新日鐵住金株式会社 SiC板状体における転位の面内分布評価方法
JP2016012717A (ja) * 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 窒化物半導体構造、窒化物半導体構造を備えた電子デバイス、窒化物半導体構造を備えた発光デバイス、および窒化物半導体構造を製造する方法
US20160139063A1 (en) * 2013-05-24 2016-05-19 Drexel University Strain Mapping in TEM Using Precession Electron Diffraction
JP2017147464A (ja) * 2010-05-07 2017-08-24 住友化学株式会社 半導体基板
JP6521205B1 (ja) * 2017-10-25 2019-05-29 日本製鉄株式会社 結晶方位図生成装置、荷電粒子線装置、結晶方位図生成方法およびプログラム
JP2019140184A (ja) * 2018-02-07 2019-08-22 富士電機株式会社 炭化珪素エピタキシャル基板の製造方法及び半導体装置の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349338A (ja) * 1998-09-30 2000-12-15 Nec Corp GaN結晶膜、III族元素窒化物半導体ウェーハ及びその製造方法
JP2010004074A (ja) * 2002-12-16 2010-01-07 Regents Of The Univ Of California ハイドライド気相成長法による平坦な無極性窒化ガリウムの成長
JP2004311700A (ja) * 2003-04-07 2004-11-04 Sumitomo Mitsubishi Silicon Corp 結晶欠陥の評価方法と評価用試料
JP2004327766A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 半導体装置
JP2009149513A (ja) * 2007-01-16 2009-07-09 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法、iii族窒化物結晶基板およびiii族窒化物半導体デバイス
WO2009035079A1 (ja) * 2007-09-12 2009-03-19 Asahi Kasei Emd Corporation 化合物半導体基板、化合物半導体基板の製造方法及び半導体デバイス
JP2017147464A (ja) * 2010-05-07 2017-08-24 住友化学株式会社 半導体基板
JP2014003146A (ja) * 2012-06-18 2014-01-09 Fujitsu Ltd 化合物半導体装置及びその製造方法
US20160139063A1 (en) * 2013-05-24 2016-05-19 Drexel University Strain Mapping in TEM Using Precession Electron Diffraction
JP2015188003A (ja) * 2014-03-26 2015-10-29 新日鐵住金株式会社 SiC板状体における転位の面内分布評価方法
JP2016012717A (ja) * 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 窒化物半導体構造、窒化物半導体構造を備えた電子デバイス、窒化物半導体構造を備えた発光デバイス、および窒化物半導体構造を製造する方法
JP6521205B1 (ja) * 2017-10-25 2019-05-29 日本製鉄株式会社 結晶方位図生成装置、荷電粒子線装置、結晶方位図生成方法およびプログラム
JP2019140184A (ja) * 2018-02-07 2019-08-22 富士電機株式会社 炭化珪素エピタキシャル基板の製造方法及び半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISHIKAWA, YUKARI: "Currentsituation and issues of detection and analysis of dislocations in GaN", HE 47TH THIN FILM AND SURFACE PHYSICS SEMINAR, BASICS AND APPLICATIONS OF SEMICONDUCTOR GAN SYNTHESIS/ANALYSIS/STRUCTURAL DESIGN TECHNOLOGY FOR POWER DEVICE DEVELOPMENT, vol. 47, 26 July 2019 (2019-07-26), pages 19 - 24 *

Also Published As

Publication number Publication date
CN114599965A (zh) 2022-06-07
US20220268715A1 (en) 2022-08-25
JP6780805B1 (ja) 2020-11-04
JPWO2021084755A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
Ishitani et al. Improvements in performance of focused ion beam cross-sectioning: aspects of ion-sample interaction
Carnevale et al. Rapid misfit dislocation characterization in heteroepitaxial III-V/Si thin films by electron channeling contrast imaging
Kumaresan et al. Self-induced growth of vertical GaN nanowires on silica
Yao et al. Identification of Burgers vectors of dislocations in monoclinic β-Ga2O3 via synchrotron x-ray topography
Tang et al. Practical issues for atom probe tomography analysis of III-nitride semiconductor materials
Simon-Najasek et al. Advanced FIB sample preparation techniques for high resolution TEM investigations of HEMT structures
Samuel et al. Origins of nanoscale emission inhomogeneities of high content red emitting InGaN/InGaN quantum wells
JP6780805B1 (ja) 化合物半導体の結晶欠陥観察方法
Fireman et al. Strain compensated superlattices on m-plane gallium nitride by ammonia molecular beam epitaxy
US11747243B2 (en) Method of producing test-sample for transmission electron microscope
Licata et al. Dopant-defect interactions in Mg-doped GaN via atom probe tomography
Vijaya et al. MBE growth of sharp interfaces in dilute-nitride quantum wells with improved nitrogen-plasma design
Fan et al. Observation of threading dislocations and misfit dislocation half-loops in GaN/AlGaN heterostructures grown on Si using electron channeling contrast imaging
JP7318424B2 (ja) SiC基板の評価方法、SiCエピタキシャルウェハの製造方法及びSiCデバイスの製造方法
Aabdin et al. Microstructural characterization of AlxGa1− xN/GaN high electron mobility transistor layers on 200 mm Si (111) substrates
Groiss et al. Burgers vector analysis of vertical dislocations in Ge crystals by large-angle convergent beam electron diffraction
Stokes et al. Defect localization and analysis of compound semiconductors using ECCI, CBED, and STEM-in-SEM for an all-in-situ workflow using a FIB/SEM microscope
Isshiki Crystal defect evaluation of silicon carbide (SiC) using an electron microscope
Sato et al. Surface morphology and dislocation characteristics near the surface of 4H-SiC wafer using multi-directional scanning transmission electron microscopy
Tang et al. Microstructural dependency of optical properties of m-plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates
Xin et al. Atomic resolution Z–contrast imaging of semiconductors
Mogilatenko et al. Predominant growth of non-polar a-plane (Al, Ga) N on patterned c-plane sapphire by hydride vapor phase epitaxy
JP5720550B2 (ja) エピタキシャルウエーハの欠陥評価方法
US10704162B2 (en) Aluminum nitride single crystal
Roque et al. Comprehension of peculiar local emission behavior of InGaAs quantum well by colocalized nanocharacterization combining cathodoluminescence and electron microscopy techniques

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020511411

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950981

Country of ref document: EP

Kind code of ref document: A1