WO2021083282A1 - 校准方法、可移动平台以及计算机可读存储介质 - Google Patents

校准方法、可移动平台以及计算机可读存储介质 Download PDF

Info

Publication number
WO2021083282A1
WO2021083282A1 PCT/CN2020/124876 CN2020124876W WO2021083282A1 WO 2021083282 A1 WO2021083282 A1 WO 2021083282A1 CN 2020124876 W CN2020124876 W CN 2020124876W WO 2021083282 A1 WO2021083282 A1 WO 2021083282A1
Authority
WO
WIPO (PCT)
Prior art keywords
target liquid
usage amount
volume
level gauge
movable platform
Prior art date
Application number
PCT/CN2020/124876
Other languages
English (en)
French (fr)
Inventor
舒展
周乐
侯奕鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2019/114884 external-priority patent/WO2021081956A1/zh
Priority claimed from PCT/CN2020/097484 external-priority patent/WO2021258258A1/zh
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to JP2022519796A priority Critical patent/JP2023500779A/ja
Publication of WO2021083282A1 publication Critical patent/WO2021083282A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/28Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement

Definitions

  • This application relates to the technical field of liquid measurement, and specifically to a calibration method, a movable platform and a computer-readable storage medium.
  • Plant protection drones are unmanned aircraft used for agricultural and forestry plant protection operations. They are composed of flying platforms (fixed wing, helicopter, multi-axis aircraft, etc.) It consists of three parts, navigation flight control, and spraying mechanism.
  • the spraying operation can be realized by ground remote control or navigation flight control, which can spray medicine, seeds, powder, liquid pesticide, water, etc.
  • one of the objectives of this application is to provide a calibration method, a removable platform and a computer-readable storage medium.
  • an embodiment of the present application provides a calibration method, which is applied to a movable platform equipped with a level gauge and a flow meter, and the method includes:
  • the level gauge and/or the flow meter are calibrated according to the first usage amount and the second usage amount.
  • an embodiment of the present application provides a movable platform, including a level gauge, a flow meter, a container, a pipeline connected to the container, a memory storing executable instructions, and a processor;
  • the level gauge is used to measure the volume of the target liquid in the container
  • the flow meter is used to measure the flow rate of the target liquid in the pipeline connected to the container;
  • the processor executes the executable instruction, it is configured to: determine the first usage amount of the target liquid according to the volume of the target liquid and determine the second usage amount of the target liquid according to the flow rate of the target liquid ; Calibrate the level gauge and/or the flow meter according to the first usage amount and the second usage amount.
  • an embodiment of the present application provides a computer-readable storage medium having executable instructions stored thereon, and when the executable instructions are executed by a processor, they are used to implement the method described in any one of the first aspects. .
  • a calibration method, a movable platform, and a computer-readable storage medium realize mutual calibration based on the data measured by the liquid level gauge and the data measured by the flow meter, and merge the data of the two measuring instruments.
  • FIG. 1A and 1B are different schematic diagrams of a spray system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a calibration method provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • the embodiment of the present application provides a calibration method, which is applied to a movable platform equipped with a level gauge and a flow meter.
  • the level gauge is used to measure the volume of the target liquid in the container, and according to the target The volume of the liquid determines the first usage amount of the target liquid; and, using a flow meter to measure the flow rate of the target liquid in the pipe connected to the container, and determine the first usage amount of the target liquid according to the flow rate of the target liquid 2.
  • the usage amount; then, the level gauge and/or the flow meter are calibrated according to the first usage amount and the second usage amount.
  • This embodiment implements mutual calibration based on the data measured by the liquid level gauge and the data measured by the flow meter, and merges the data of the two measuring instruments to make up for the shortcomings of a single measuring instrument, thereby helping to improve the measuring accuracy of the measuring instrument, and thus has It is helpful to improve the accuracy of spraying precision and liquid volume control.
  • the calibration method provided by the embodiments of the present application can be applied to a movable platform installed with a liquid level gauge and a flow meter, and the movable platform includes but is not limited to an unmanned aerial vehicle, an unmanned vehicle, or a movable robot.
  • FIG. 1A and FIG. 1B show different schematic diagrams of the spray system installed on the movable platform.
  • the spray system includes a container 11 for holding a target liquid, such as a medicine tank for holding liquid pesticides, the level gauge 12 is used to measure the volume of the target liquid in the container 11, and the spray
  • the system also includes one or more pipes 13 connected to the container 11; in an example, please refer to FIG. 1A, in order to save costs, the spraying system includes a pipe 13 connected to the container 11, which The pipeline 13 is connected to one or more water pumps 15 (FIG. 1A takes four water pumps 15 as an example for illustration).
  • the flow meter 14 corresponds to the pipeline 13 and is used to measure the flow rate of the target liquid in the pipeline 13 per unit time.
  • the spraying system includes a plurality of pipes 13 connected to the container 11, each pipe 13 is connected to a water pump 15 ( Figure 1B takes 4 water pumps 15 as an example Note), the spraying system is also correspondingly installed with a plurality of flow meters 14, each pipeline 13 corresponds to the flow meter 14 one-to-one, and the flow meter 14 is used to measure the target liquid in the pipeline 13 in a unit time.
  • the water pump 15 is used to extract the target liquid from the container 11 through the pipe 13 and deliver it to the spray head 16 connected to it, and then the spray head 16 sprays the liquid through the nozzle 17.
  • FIG. 2 shows a schematic diagram of a use scene of an unmanned aerial vehicle equipped with the spraying system shown in FIG. 1A or FIG. 1B.
  • the unmanned aerial vehicle 100 is in a farmland.
  • the spraying system carried by it is used for spraying operations.
  • the water pump 15 extracts the target liquid from the container 11 through the pipeline and delivers it to the spray head 16 connected to it, and then the spray head 16 passes through The nozzle 17 sprays liquid to realize the spraying process.
  • the UAV 100 obtains the first usage amount of the target liquid determined based on the measurement data of the liquid level gauge, and obtains the second usage amount of the target liquid determined based on the measurement data of the flow meter. , And then calibrate the level gauge and/or the flow meter according to the first usage amount and the second usage amount, and then perform the calibration of the target liquid based on the calibrated level gauge and/or flow meter Accurate measurement.
  • This embodiment implements mutual calibration based on the data measured by the liquid level gauge and the data measured by the flow meter, and merges the data of the two measuring instruments to make up for the shortcomings of a single measuring instrument, thereby helping to improve the measuring accuracy of the measuring instrument, and thus has It is helpful to improve the accuracy of spraying precision and liquid volume control.
  • an embodiment of the present application provides a calibration method, which is applied to a movable platform equipped with a level gauge and a flow meter, and the method includes:
  • step S101 the level gauge is used to measure the volume of the target liquid in the container, and the first usage amount of the target liquid is determined according to the volume of the target liquid.
  • step S102 a flow meter is used to measure the flow rate of the target liquid in the pipeline connected to the container, and the second usage amount of the target liquid is determined according to the flow rate of the target liquid.
  • step S103 the level gauge and/or the flow meter are calibrated according to the first usage amount and the second usage amount.
  • the level gauge includes, but is not limited to, a side-mounted magnetic flap level gauge, a bundled remote-transmission level gauge, a capacitive level gauge, or a radar level gauge.
  • the flowmeter includes, but is not limited to, an electromagnetic flowmeter, a differential pressure flowmeter, a rotameter, a positive displacement flowmeter, or an ultrasonic flowmeter.
  • the present application does not impose any restrictions on the type of the target liquid and the shape of the container for holding the target liquid, and specific settings can be made according to actual application scenarios.
  • the target liquid may be water, liquid pesticides, etc.; in the field of chemical engineering, the target liquid may be chemical reagents and the like.
  • the container for holding the target liquid may be a box or a bottle.
  • the movable platform can use the level gauge to measure the volume of the target liquid in the container in real time, or periodically use the level gauge to measure the volume of the target liquid in the container, which can be based on actual conditions. Specific settings for the application scenario, this example does not impose any restrictions on this.
  • the movable platform may determine the first usage amount of the target liquid according to the volume of the target liquid measured by the liquid level gauge. Specifically, before the spraying operation, the movable platform can use the level gauge to measure the initial volume of the target liquid in the container, and during the spraying operation, the movable platform can use the liquid level The meter measures the current volume of the target liquid in the container, and then performs a difference operation in the time domain based on the initial volume and the current volume of the target liquid to determine the first usage amount of the target liquid.
  • the level gauge is provided with a scale, and the level gauge is used to determine the target according to the scale in the scale corresponding to the level of the target liquid in the container The capacity of the liquid.
  • the scale may use a Hall switch array as an electrical signal scale, and the level of the target liquid is determined according to the Hall switch array, thereby determining the volume of the target liquid.
  • the movable platform can use the flow meter to measure the flow rate per unit time in the pipeline connected to the container in real time, and then according to the target liquid Integrate the flow rate in the time domain to obtain the second usage amount of the target liquid.
  • a flow meter is correspondingly provided on the movable platform, and the flow meter is used to measure the flow rate in the pipeline in real time per unit time, and then the movable platform Perform an integral operation according to the measured flow rate of the target liquid on a continuous time series to obtain the second usage amount of the target liquid.
  • the movable platform is provided with a plurality of flow meters corresponding to each other, and the flow meters correspond to the pipelines one-to-one, and the flow meters are used for real-time measurement of the corresponding pipelines. Then, the movable platform performs an integral operation according to the flow rate of the target liquid measured by a plurality of flowmeters in a continuous time series to obtain the second usage amount of the target liquid.
  • the movable platform may perform a comparison between the level gauge and the second usage amount according to the first usage amount and the second usage amount.
  • the flowmeter is calibrated, and then based on the calibrated level gauge and/or flowmeter, accurate measurement of the target liquid is achieved.
  • This embodiment implements mutual calibration based on the data measured by the liquid level gauge and the data measured by the flow meter, and merges the data of the two measuring instruments to make up for the shortcomings of a single measuring instrument, thereby helping to improve the measuring accuracy of the measuring instrument, and thus has It is helpful to improve the accuracy of spraying precision and liquid volume control.
  • the level gauge includes a scale, which can use a Hall switch array as an electrical signal scale, and can accurately determine the level of the target liquid according to the Hall switch array, and then Determine the volume of the target liquid.
  • the Hall switch array there is a certain distance between any two adjacent Hall switches.
  • the Hall switch array when used to measure the level of the target liquid in the container, it is not always The liquid level in the container at all times corresponds to the scale of the scale in the liquid level gauge. Only the position of the Hall switch corresponds to an accurate scale, and there is a certain distance between any two adjacent Hall switches. , An estimation is needed to determine the corresponding scale. If the level of the target liquid in the container is between any two adjacent Hall switches, the level of the target liquid is determined according to the measurement data of the level gauge. There may be errors in the first usage amount.
  • the designated scale may be the Hall switch.
  • the scale indicated by the switch array may have an error in the first usage amount determined based on the volume of the target liquid, and the movable platform can use the second usage amount determined based on the measurement data of the flow meter to assist.
  • the first usage amount and the second usage amount are calibrated to each other, thereby ensuring the accuracy of liquid measurement.
  • the movable platform may be based on the first usage amount and the second usage amount.
  • the level gauge and/or the flow meter are calibrated. This embodiment integrates the data of two measuring instruments to make up for the shortcomings of a single measuring instrument, thereby helping to improve the measuring accuracy of the measuring instrument, thereby helping to improve the accuracy of spraying accuracy and liquid volume control.
  • the scale uses a Hall switch array as the electrical signal scale, and the designated scale is the Hall switch array
  • the flow meter is calibrated based on the first usage amount determined based on the measurement data of the liquid level gauge to ensure the measurement accuracy of the flow meter, thereby helping to improve the spraying accuracy and the accuracy of liquid volume control.
  • the temperature change of the environment in which the flowmeter is located may affect the measurement result of the flowmeter, thereby causing errors in the second usage amount determined based on the flow rate measured by the flowmeter.
  • the level gauge can determine that the first usage amount of the target liquid determined based on the volume of the target liquid is accurate under the condition that the volume of the target liquid is determined by the designated scale in the scale.
  • the movable platform can perform flow calibration on the flow meter according to the first usage amount, so as to ensure the measurement accuracy of the flow meter.
  • the flow meter when the flow meter performs an integral operation based on the flow measured in a continuous time series to obtain the second usage amount, there may be a certain cumulative error, which causes the second usage amount to be inaccurate.
  • the level gauge can determine that the first usage amount of the target liquid determined based on the volume of the target liquid is accurate under the condition that the volume of the target liquid is determined by the designated scale in the scale, so The movable platform can perform flow calibration on the flow meter according to the first usage amount, so as to ensure the measurement accuracy of the flow meter.
  • the flowmeter when the flowmeter measures different types of liquids, because different types of liquids have different viscosities, if the flowmeter is measured based on the same standard, it will result in the flow rate measured based on the flowmeter. If there is an error in the determined second usage amount, the level gauge can determine the target liquid determined based on the volume of the target liquid under the condition that the volume of the target liquid is determined by the designated scale in the scale. If the first usage amount is accurate, the movable platform can calibrate the flowmeter according to the first usage amount, so as to ensure that the flowmeter can also ensure its measurement when measuring different types of liquids. accuracy.
  • the movable platform can use the flow meter to detect whether air has entered the pipeline, and if it is determined that air has entered the pipeline, the level gauge can determine the target through a designated scale on the scale. In the case of the volume of the liquid, it can be determined that the first usage amount of the target liquid determined based on the volume of the target liquid is accurate, and then the flowmeter is calibrated according to the first usage amount to ensure that all The measurement accuracy of the flowmeter is described.
  • the flow meter collects the voltage signal generated during operation, monitors the voltage signal, obtains the voltage signal for a predetermined period of time, and then according to the predetermined period of time The voltage signal determines whether air enters the pipe. Specifically, the voltage time domain signal corresponding to the voltage generated during the operation of the flowmeter is collected; the voltage time domain signal is analyzed and processed to obtain the voltage frequency domain signal corresponding to the voltage time domain signal; according to the voltage frequency domain Signal to determine whether air enters into the measuring pipe of the electromagnetic flowmeter.
  • the flow meter may perform Fourier transform processing on the voltage time domain signal, obtain the voltage frequency domain signal corresponding to the voltage time domain signal, obtain the detection amplitude in the voltage frequency domain signal, and then according to the The detection amplitude determines whether air enters the measuring pipe of the electromagnetic flowmeter.
  • the voltage frequency domain signal contains each frequency and the amplitude corresponding to each frequency. After the voltage frequency domain signal is obtained, the detection amplitude of the voltage frequency domain signal is obtained. According to the detection amplitude, the measurement pipeline of the electromagnetic flowmeter is determined Whether it enters the air.
  • the detection amplitude is the amplitude corresponding to the preset frequency in the voltage frequency domain signal, for example, the preset frequency is set to A Hz (for example, 50 Hz).
  • the detection frequency in the voltage frequency domain signal is determined. For example, when the electromagnetic flowmeter is used in an indoor scene application in mainland China, the preset frequency in the voltage frequency domain signal is determined to be 70 Hz; when the electromagnetic flowmeter is used on an airplane, the preset frequency in the voltage frequency domain signal is determined For 400 Hz and so on.
  • the flowmeter calculates the absolute difference between the detection amplitude and the preset amplitude; if the absolute difference is less than or equal to the preset threshold, it is determined that no air enters the measuring pipe of the electromagnetic flowmeter ; If the absolute difference is greater than the preset threshold, it is determined that air has entered the measuring pipe of the electromagnetic flowmeter.
  • the preset amplitude and the corresponding preset threshold for detecting whether air enters into the measuring pipe of the electromagnetic flowmeter can be preset.
  • the preset amplitude is 40.
  • the preset frequency or the amplitude corresponding to the detection frequency in the voltage frequency domain signal is the same as the preset amplitude, no air enters into the measuring pipe of the electromagnetic flowmeter.
  • the flowmeter can determine whether the detection amplitude is within a preset amplitude interval; if the detection amplitude is within the preset amplitude interval, determine the measurement pipeline of the electromagnetic flowmeter No air enters inside; if the detection amplitude is outside the preset amplitude interval, it is determined that air enters into the measuring pipe of the electromagnetic flowmeter.
  • a preset amplitude interval for detecting whether air enters into the measuring pipe of the electromagnetic flowmeter is preset.
  • the preset amplitude interval is preset to [20, 50], and when the detection amplitude in the voltage frequency domain signal is within the preset amplitude interval, it is determined that no air enters the measuring pipe of the electromagnetic flowmeter.
  • the blind zone refers to a liquid level lower than the value indicated by the minimum scale of the scale; for example, a 6GHz electromagnetic wave radar level gauge has a wavelength There are several centimeters. In the distance of several wavelengths from the probe, the waveform will be reflected and interfered many times, and it is difficult to identify the correct reflected wave. The distance of these several wavelengths is the blind zone of the radar level gauge. When the liquid level changes below the minimum scale value, the liquid level gauge cannot give a corresponding output change and can only maintain 0 output, resulting in inaccurate measurement results.
  • the movable platform may determine the target according to the second usage amount
  • the second usage amount determined based on the measurement data of the flow meter is implemented to assist in determining the actual remaining capacity in the container, thereby helping to improve the spraying accuracy and the accuracy of liquid volume control.
  • the movable platform can use the liquid level gauge to measure the initial volume of the target liquid in the container, and then output liquid state information according to the initial volume.
  • the liquid state information is used to inform the user of the current position.
  • the initial capacity in the container For example, the movable platform may send the liquid state information to an associated remote control terminal, so as to display the liquid state information on the interactive interface of the remote control terminal, so that the user can know the liquid state information in the container.
  • the capacity situation is conducive to improving the user experience.
  • the movable platform may use the level gauge to measure the initial volume of the target liquid in the container, and then plan the plant based on the initial volume and plot information. Describe the movement route of the movable platform.
  • the plot information includes, but is not limited to, the area of the plot, the length and width of the plot, the volume of the target liquid to be sprayed in a unit area (for example, per square meter), and the like.
  • the movable platform may plan the movement route of the movable platform according to the initial capacity, the volume of the target liquid to be sprayed in a unit area, and the length and width of the plot to ensure that the When the movable platform flies to the end point, the target liquid in the container is just used up or there is still surplus, so as to prevent the movable platform from flying to the terminal when the target liquid in the container is used up, resulting in flight resources. Waste.
  • the zero point of the flowmeter means that the output value of the flowmeter should be zero when the input value of the flowmeter is at the starting point of the range (that is, when the object to be measured has no flow, the flow should be zero).
  • a large deviation of the zero value will result in inaccurate flow detected by the flowmeter, which will affect the control accuracy of the flow in the pipeline by the movable platform. Therefore, before the spraying operation is performed, in order to ensure the measurement accuracy of the flow meter, this embodiment may perform zero point correction on the flow meter according to the measurement data of the liquid level meter.
  • the movable platform can obtain the current capacity of the container measured by the level gauge, and determine whether the difference between the current capacity and the capacity obtained last time is within a preset range, if the current capacity The difference between the capacity obtained last time and the capacity difference is within the preset capacity difference range. If it is determined that the target liquid in the pipeline is in a non-flowing state, that is, in a stationary state, the movable platform can obtain the flowmeter measurement The current flow rate of the target liquid in the pipeline, and the flowmeter is controlled to perform zero point calibration according to the current flow rate.
  • the preset capacity difference can be set to zero.
  • the measurement information of the liquid level gauge may have a certain deviation, or other factors may cause the liquid level information obtained twice to be unequal in a static state, but the difference between the two is within a small range. Therefore, the preset capacity difference range can be set to a smaller non-zero value, such as 1.
  • those skilled in the art can set the preset capacity difference according to actual needs, which is not specifically limited in this embodiment.
  • the movable platform After acquiring the current flow value of the flow meter, the movable platform can determine whether the flow meter needs to be calibrated according to the current flow value. If the difference between the current flow rate and the zero point of the flow meter is greater than a preset threshold, it is determined that calibration is required, and the movable platform sends a calibration instruction to the flow meter, and the calibration instruction is used to control the flow meter to automatically perform the zero point calibration.
  • the zero point of the flowmeter is affected by the environment.
  • the zero point of the flowmeter may not be an absolute zero value. Therefore, the calibration value can be set to a non-zero value, that is, the current flow value of the flowmeter is calibrated to make the flowmeter The difference between the current flow value and the zero point is within the preset difference range.
  • an embodiment of the present application also provides a movable platform, including a level gauge 12, a flow meter 14, a container 11, a pipe 13 connected to the container 11, and a memory storing executable instructions 19 and processor 18.
  • the level gauge 12 is used to measure the volume of the target liquid in the container 11.
  • the flow meter 14 is used to measure the flow rate of the target liquid in the pipe 13 connected to the container 11.
  • the processor 18 executes the executable instruction, it is configured to: determine the first usage amount of the target liquid according to the volume of the target liquid and determine the second usage amount of the target liquid according to the flow rate of the target liquid Volume; According to the first usage and the second usage, the level gauge 12 and/or the flow meter 14 are calibrated.
  • the processor 18 executes executable instructions included in the memory 19, the processor 18 may be a central processing unit (Central Processing Unit, CPU), or may be other general-purpose processors, digital signal processors (Digital Signal Processors). Processor, DSP), application specific integrated circuit (ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 19 stores executable instructions of the calibration method.
  • the memory 19 may include at least one type of storage medium.
  • the storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.) ), random access memory (RAM), static random access memory (SRAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), programmable read only memory (PROM), magnetic memory, magnetic disk , CD, etc.
  • the device can cooperate with a network storage device that performs the storage function of the memory through a network connection.
  • the memory 19 may be an internal storage unit of the movable platform, such as a hard disk or memory of the movable platform.
  • the memory 19 may also be an external storage device of a removable platform, such as a plug-in hard disk equipped on a removable platform, a smart memory card (Smart Media Card, SMC), a Secure Digital (SD) card, and a flash memory card (Flash). Card) and so on. Further, the memory 19 may also include both an internal storage unit of the movable platform and an external storage device. The memory 19 is used to store the computer program 55 and other programs and data required by the device. The memory 19 can also be used to temporarily store data that has been output or will be output.
  • a plug-in hard disk equipped on a removable platform such as a plug-in hard disk equipped on a removable platform, a smart memory card (Smart Media Card, SMC), a Secure Digital (SD) card, and a flash memory card (Flash). Card) and so on. Further, the memory 19 may also include both an internal storage unit of the movable platform and an external storage device. The memory 19 is used to store the computer program 55 and other programs and data required by the device. The memory 19
  • the various embodiments described herein can be implemented using a computer-readable medium such as computer software, hardware, or any combination thereof.
  • the implementation described here can be implemented by using application-specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable gate arrays ( It is implemented by at least one of an FPGA), a processor, a controller, a microcontroller, a microprocessor, and an electronic unit designed to perform the functions described herein.
  • ASIC application-specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable gate arrays
  • implementations such as procedures or functions may be implemented with separate software modules that allow execution of at least one function or operation.
  • the software code can be implemented by a software application (or program) written in any suitable programming language, and the software code can be stored in a memory and executed by the controller.
  • the movable platform also includes a water pump 15, a spray head 16, and a nozzle 17.
  • the water pump 15 is used to extract the target liquid from the container 11 through the pipe 13 and deliver it to the spray head connected to it. 16, and then the spray head 16 sprays liquid through the nozzle 17.
  • the processing is specifically used to: obtain the initial volume and the current volume of the target liquid measured by the level gauge 12; and make a difference in the time domain based on the initial volume and the current volume of the target liquid Calculation to determine the first usage amount of the target liquid.
  • the second usage amount of the target liquid is obtained by integrating the flow rate of the target liquid in the time domain.
  • the level gauge 12 is provided with a scale; the level gauge 12 is used to determine the scale according to the scale in the scale corresponding to the level of the target liquid in the container 11 State the volume of the target liquid.
  • the processor 18 is further configured to: if the volume of the target liquid is determined by a designated scale in the scale, perform flow calibration on the flowmeter 14 according to the first usage amount.
  • the processing is specifically configured to: if the volume of the target liquid is determined by other scales on the scale except the designated scale, according to the first usage amount and the second usage amount
  • the level gauge 12 and/or the flow meter 14 are calibrated.
  • the scale uses a Hall switch array as an electrical signal scale, and the designated scale is a scale indicated by the Hall switch array.
  • the processor 18 is further configured to: if the volume of the target liquid is less than or equal to the value indicated by the minimum scale of the scale, determine the actual volume of the target liquid according to the second usage amount. The remaining capacity.
  • the actual remaining volume of the target liquid is determined according to the initial volume of the target liquid measured by the level gauge 12 and the second usage amount.
  • the processor 18 is further configured to: use the level gauge 12 to measure the initial volume of the target liquid in the container 11; output liquid state information according to the initial volume, and the liquid state information is used for Inform the user of the current initial capacity in the container 11.
  • the processor 18 is further configured to: use the level gauge 12 to measure the initial volume of the target liquid in the container 11, and plan the movable platform's capacity according to the initial volume and plot information. Movement route.
  • the movable platform includes an unmanned aerial vehicle, an unmanned vehicle, or a movable robot.
  • the processor 18 is further configured to: use the flow meter 14 to detect whether air enters the pipeline 13; if so, perform flow calibration on the flow meter 14 according to the first usage amount.
  • the processor 18 is specifically configured to: collect a voltage signal generated during the operation of the flow meter 14; monitor the voltage signal to obtain a voltage signal for a predetermined period of time; Signal to determine whether air enters the pipe 13.
  • the voltage signal is a voltage time domain signal; the processor 18 is specifically configured to: analyze and process the voltage time domain signal to obtain a voltage frequency domain signal corresponding to the voltage time domain signal; According to the detection amplitude in the voltage frequency domain signal, it is determined whether air enters the pipe 13.
  • the processor 18 is further configured to: obtain the current capacity of the container 11 measured by the level gauge 12, and determine whether the difference between the current capacity and the capacity obtained last time is Within the preset capacity difference range; if so, obtain the current flow rate of the target liquid in the pipeline 13 measured by the flow meter 14, and control the flow meter 14 to perform zero point calibration according to the current flow rate.
  • the processor 18 is specifically configured to: if the difference between the current flow rate and the zero point of the flow meter 14 is greater than a preset threshold, control the flow meter 14 to perform zero point calibration.
  • the second usage amount of the target liquid is determined according to the flow rate of the target liquid in the corresponding pipe 13 measured by a plurality of flow meters 14 respectively.
  • non-transitory computer-readable storage medium including instructions, such as a memory including instructions, which may be executed by a processor of a device to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and so on.
  • a non-transitory computer-readable storage medium When the instructions in the storage medium are executed by the processor of the terminal, the terminal can execute the above method.

Abstract

一种校准方法、可移动平台以及计算机可读存储介质,方法包括:使用液位计(12)测量容器(11)中的目标液体的容量,并根据目标液体的容量确定目标液体的第一使用量(S101);以及,使用流量计(14)测量与容器(11)连接的管道(13)中目标液体的流量,并根据目标液体的流量确定目标液体的第二使用量(S102);根据第一使用量和第二使用量,对液位计(12)和/或流量计(14)进行校准(S103)。根据液位计(12)测得的数据以及流量计(14)测得的数据进行相互校准,有利于提高测量仪器的测量精度。

Description

校准方法、可移动平台以及计算机可读存储介质 技术领域
本申请涉及液体测量技术领域,具体而言,涉及一种校准方法、可移动平台以及计算机可读存储介质。
背景技术
在植保领域,植保无人机、植保机器人等可移动平台逐渐发展起来,植保无人机是用于农林植物保护作业的无人驾驶飞机,由飞行平台(固定翼、直升机、多轴飞行器等)、导航飞控、喷洒机构三部分组成,通过地面遥控或导航飞控来实现喷洒作业,可以喷洒药剂、种子、粉剂、液体农药、水等。
随着植保无人机、植保机器人等可移动平台的逐渐推广,对于喷洒精度和液体容量控制的要求越来越高,单一测量仪器容易受到环境因素或者其他因素的影响,无法准确校准,使得其测量精度有限,无法满足日益提高的精度要求。
发明内容
有鉴于此,本申请的目的之一是提供一种校准方法、可移动平台以及计算机可读存储介质。
第一方面,本申请实施例提供了一种校准方法,应用于安装有液位计和流量计的可移动平台,所述方法包括:
使用所述液位计测量容器中的目标液体的容量,并根据所述目标液体的容量确定所述目标液体的第一使用量;
以及,使用流量计测量与所述容器连接的管道中所述目标液体的流量,并根据所述目标液体的流量确定所述目标液体的第二使用量;
根据所述第一使用量和所述第二使用量,对所述液位计和/或所述流量计进行校准。
第二方面,本申请实施例提供了一种可移动平台,包括液位计、流量计、容器、与所述容器连接的管道、存储可执行指令的存储器以及处理器;
所述液位计用于测量所述容器中的目标液体的容量;
所述流量计用于测量与所述容器连接的管道中所述目标液体的流量;
所述处理器执行所述可执行指令时,用于:根据所述目标液体的容量确定所述目标液体的第一使用量以及根据所述目标液体的流量确定所述目标液体的第二使用量;根据所述第一使用量和所述第二使用量,对所述液位计和/或所述流量计进行校准。
第三方面,本申请实施例提供了一种计算机可读存储介质,其上存储有可执行指令,当所述可执行指令为处理器执行时用于实现第一方面任意一项所述的方法。
本申请实施例所提供的一种校准方法、可移动平台以及计算机可读存储介质,实现根据液位计测得的数据以及流量计测得的数据进行相互校准,融合两种测量仪器的数据,弥补单一测量仪器的不足,从而有利于提高测量仪器的测量精度,从而有利于提高喷洒精度和液体容量控制的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A以及图1B是本申请一个实施例提供的喷洒系统的不同示意图;
图2是本申请一个实施例提供的应用场景示意图;
图3是本申请一个实施例提供的一种校准方法的流程示意图;
图4是本申请一个实施例提供的一种可移动平台的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
随着植保无人机、植保机器人等可移动平台的逐渐推广,对于喷洒精度和液体容量控制的要求越来越高,单一测量仪器容易受到环境因素或者其他因素的影响,无法准确校准,使得其测量精度有限,无法满足日益提高的精度要求。
基于此,本申请实施例提供了一种校准方法,应用于安装有液位计和流量计的可移动平台中,使用所述液位计测量容器中的目标液体的容量,并根据所述目标液体的 容量确定所述目标液体的第一使用量;以及,使用流量计测量与所述容器连接的管道中所述目标液体的流量,并根据所述目标液体的流量确定所述目标液体的第二使用量;然后根据所述第一使用量和所述第二使用量,对所述液位计和/或所述流量计进行校准。本实施例实现根据液位计测得的数据以及流量计测得的数据进行相互校准,融合两种测量仪器的数据,弥补单一测量仪器的不足,从而有利于提高测量仪器的测量精度,从而有利于提高喷洒精度和液体容量控制的准确性。
本申请实施例提供的校准方法可应用于安装有液位计和流量计的可移动平台中,所述可移动平台包括但不限于无人飞行器、无人驾驶车辆或者可移动机器人。
在一实施例中,请参阅图1A以及图1B,图1A以及图1B示出了安装于所述可移动平台上的喷洒系统的不同示意图。所述喷洒系统包括有用于盛放目标液体的容器11,比如是用于盛放液体农药的药箱,所述液位计12用于测量所述容器11中的目标液体的容量,所述喷洒系统还包括有与所述容器11连接的一个或多个管道13;在一个例子中,请参阅图1A,为了节省成本,所述喷洒系统包括有与所述容器11连接的一个管道13,该管道13与一个或多个水泵15连接(图1A以4个水泵15为例进行说明),所述流量计14与该管道13对应,用于测量该管道13中目标液体在单位时间内的流量;在另一个例子中,请参阅图1B,所述喷洒系统包括有与所述容器11连接的多个管道13,每条管道13与一个水泵15连接(图1B以4个水泵15为例进行说明),所述喷洒系统也对应安装有多个流量计14,每条管道13与所述流量计14一一对应,所述流量计14用于测量该管道13中目标液体在单位时间内的流量;所述水泵15用于通过所述管道13从所述容器11中抽取目标液体,并输送给与其连接的喷头16,进而所述喷头16通过所述喷嘴17喷洒液体。
在一个示例性的实施例中,请参阅图2,图2示出了搭载有图1A或图1B所示的喷洒系统的无人飞行器的使用场景示意图,在所述无人飞行器100在农田地块上方飞行过程中,使用其搭载的喷洒系统进行喷洒作业,比如所述水泵15通过所述管道从所述容器11中抽取目标液体,并输送给与其连接的喷头16,进而所述喷头16通过所述喷嘴17喷洒液体,实现喷洒作业过程。在这个过程中,所述无人飞行器100获取基于液位计的测量数据确定的所述目标液体的第一使用量,以及获取基于流量计的测量数据确定的所述目标液体的第二使用量,然后根据所述第一使用量和所述第二使用量,对所述液位计和/或所述流量计进行校准,进而基于校准后的液位计和/或流量计实现对目标液体的准确测量。本实施例实现根据液位计测得的数据以及流量计测得的数据进行相互校准,融合两种测量仪器的数据,弥补单一测量仪器的不足,从而有利于提高 测量仪器的测量精度,从而有利于提高喷洒精度和液体容量控制的准确性。
请参阅图3,本申请实施例提供了一种校准方法,应用于安装有液位计和流量计的可移动平台,所述方法包括:
在步骤S101中,使用所述液位计测量容器中的目标液体的容量,并根据所述目标液体的容量确定所述目标液体的第一使用量。
在步骤S102中,使用流量计测量与所述容器连接的管道中所述目标液体的流量,并根据所述目标液体的流量确定所述目标液体的第二使用量。
在步骤S103中,根据所述第一使用量和所述第二使用量,对所述液位计和/或所述流量计进行校准。
本领域技术人员可以理解的是,本申请实施例对于所述液位计和所述流量计的类型不做任何限制,可以依据实际应用场景进行具体设置。例如,所述液位计包括但不限于侧装式磁翻板液位计、捆绑式远传液位计、电容式液位计或者雷达液位计等。所述流量计包括但不限于电磁流量计、差压式流量计、转子流量计、容积流量计、或者超声波流量计等。
另外,本申请对于所述目标液体的类型以及用于盛放所述目标液体的容器的形状也不做任何限制,可依据实际应用场景进行具体设置。例如,在植保领域,所述目标液体可以是水、液体农药等;在化工领域,所述目标液体可以是化学试剂等。所述用于盛放目标液体的容器可以是箱体或者瓶体等。
对于步骤S101,所述可移动平台可以使用所述液位计实时测量容器中的目标液体的容量,也可以周期性使用所述液位计测量所述容器中的目标液体的容量,可依据实际应用场景进行具体设置,本实例对此不做任何限制。
在所述可移动平台进行喷洒作业的过程中,所述可移动平台可以根据所述液位计测得的所述目标液体的容量来确定所述目标液体的第一使用量。具体来说,在进行喷洒作业之前,所述可移动平台可以使用所述液位计测量容器中的目标液体的初始容量,以及在喷洒作业过程中,所述可移动平台可以使用所述液位计测量容器中的目标液体的当前容量,然后基于所述目标液体的初始容量和当前容量在时域上进行差分运算,确定所述目标液体的第一使用量。
在一实施例中,所述液位计上设有刻度尺,所述液位计用于根据所述容器中所述目标液体的液位对应的所述刻度尺中的刻度,确定所述目标液体的容量。在一个例子中,所述刻度尺可以使用霍尔开关阵列作为电信号刻度,根据所述霍尔开关阵列来确定所述目标液体的液位,进而确定出所述目标液体的容量。
对于步骤S102,在所述可移动平台进行喷洒作业的过程中,所述可移动平台可以使用所述流量计实时测量与所述容器连接的管道中单位时间内的流量,然后根据所述目标液体的流量在时域上进行积分运算得到所述目标液体的第二使用量。
示例性地,与所述容器连接的管道有一个,所述可移动平台上对应设有一个流量计,所述流量计用于实时测量该管道中单位时间内的流量,然后所述可移动平台根据在连续时间序列上测得的所述目标液体的流量进行积分运算得到所述目标液体的第二使用量。
示例性地,与所述容器连接的管道有多个,所述可移动平台对应设有多个流量计,所述流量计与所述管道一一对应,所述流量计用于实时测量对应管道中单位时间内的流量,然后所述可移动平台根据在连续时间序列上多个流量计分别测得的所述目标液体的流量进行积分运算得到所述目标液体的第二使用量。
对于步骤S103,在获取所述目标液体的第一使用量以及第二使用量之后,所述可移动平台可以根据所述第一使用量以及所述第二使用量,对所述液位计和/或流量计进行校准,进而基于校准后的液位计和/或流量计实现对目标液体的准确测量。本实施例实现根据液位计测得的数据以及流量计测得的数据进行相互校准,融合两种测量仪器的数据,弥补单一测量仪器的不足,从而有利于提高测量仪器的测量精度,从而有利于提高喷洒精度和液体容量控制的准确性。
前面我们提到,所述液位计包括有刻度尺,所述刻度尺可以使用霍尔开关阵列作为电信号刻度,可以根据所述霍尔开关阵列来准确确定所述目标液体的液位,进而确定出所述目标液体的容量。在霍尔开关阵列中,任意相邻两个霍尔开关之间存在一定的距离,即是说,在利用霍尔开关阵列测量所述目标液体在所述容器中的液位时,并不是每个时刻所述容器中的液位都对应所述液位计中刻度尺的刻度,只有在霍尔开关所在位置对应有准确的刻度,在任意相邻两个霍尔开关之间存在一定的距离,需要进行估算以确定相应的刻度,则如果所述容器中目标液体的液位处于任意相邻两个霍尔开关之间,则根据所述液位计的测量数据确定的所述目标液体的第一使用量可能存在误差。
基于此,如果通过所述刻度尺中除指定刻度之外的其他刻度确定所述目标液体的容量,所述刻度尺以霍尔开关阵列作为电信号刻度,所述指定刻度可以是所述霍尔开关阵列指示的刻度,基于该目标液体的容量确定的第一使用量可能存在误差,则所述可移动平台可以使用基于流量计的测量数据所确定的第二使用量进行辅助,可以根据所述第一使用量和所述第二使用量进行相互校准,进而保证液体测量的准确性。在一 种实现方式中,若通过所述刻度尺中除指定刻度之外的其他刻度确定所述目标液体的容量,所述可移动平台可以根据所述第一使用量和所述第二使用量的综合结果,对所述液位计和/或所述流量计进行校准。本实施例融合两种测量仪器的数据,弥补单一测量仪器的不足,从而有利于提高测量仪器的测量精度,从而有利于提高喷洒精度和液体容量控制的准确性。
可以理解的是,本实施例对于所述综合结果的具体确定过程不做任何限制,可依据实际应用场景进行具体设置。在一个例子中,所述综合结果可以是对所述第一使用量和所述第二使用量进行加权平均得到,比如综合结果=第一使用量×第一权重+第二使用量×第二权重;由于第一使用量可能存在误差,则可以设置第一权重小于所述第二权重。
在另一实施例中,如果通过所述刻度尺中的指定刻度确定所述目标液体的容量,所述刻度尺以霍尔开关阵列作为电信号刻度,所述指定刻度为所述霍尔开关阵列指示的刻度,则可以确定基于该目标液体的容量确定的所述目标液体的第一使用量是准确的,所述可移动平台可以根据所述第一使用量对所述流量计进行流量校准。本实施例实现基于液位计的测量数据所确定的第一使用量来对所述流量计进行校准,保证所述流量计的测量准确性,从而有利于提高喷洒精度和液体容量控制的准确性。
在第一个例子中,所述流量计所处环境的温度变化可能会对所述流量计的测量结果产生影响,从而导致基于所述流量计测得的流量确定的第二使用量存在误差,则所述液位计在通过所述刻度尺中的指定刻度确定所述目标液体的容量的情况下,可以确定基于该目标液体的容量确定的所述目标液体的第一使用量是准确的,则所述可移动平台可以根据所述第一使用量对所述流量计进行流量校准,从而保证所述流量计的测量准确性。
在第二个例子中,所述流量计基于在连续时间序列上测得的流量进行积分运算得到所述第二使用量时,可能存在一定的累积误差,导致第二使用量不准确,则所述液位计在通过所述刻度尺中的指定刻度确定所述目标液体的容量的情况下,可以确定基于该目标液体的容量确定的所述目标液体的第一使用量是准确的,则所述可移动平台可以根据所述第一使用量对所述流量计进行流量校准,从而保证所述流量计的测量准确性。
在第三个例子中,所述流量计在测量不同类型的液体时,由于不同类型的液体的黏度不同,如果所述流量计基于同一标准进行测量,会导致基于所述流量计测得的流量确定的第二使用量存在误差,则所述液位计在通过所述刻度尺中的指定刻度确定所 述目标液体的容量的情况下,可以确定基于该目标液体的容量确定的所述目标液体的第一使用量是准确的,则所述可移动平台可以根据所述第一使用量对所述流量计进行流量校准,从而保证所述流量计在测量不同类型的液体时也可以保证其测量准确性。
在第四个例子中,在流量计使用过程中,经常会出现空气进入流量计所对应的管道内的情况,少量空气进入管道时会使流量计的测量精度变差,当有较多空气进入管道时会导致无法形成电压环路,从而致使流量计失效。因此,所述可移动平台可以使用所述流量计检测所述管道内是否进入空气,若确定所述管道内进空气,在所述液位计通过所述刻度尺中的指定刻度确定所述目标液体的容量的情况下,可以确定基于该目标液体的容量确定的所述目标液体的第一使用量是准确的,则根据所述第一使用量对所述流量计进行流量校准,从而保证所述流量计的测量准确性。
在使用所述流量计检测所述管道内是否进入空气时,所述流量计采集在运行时产生的电压信号,监控所述电压信号,获取预定时间段的电压信号,然后根据所述预定时间段的电压信号确定所述管道内是否进入空气。具体来说,采集流量计运行时产生的电压对应的电压时域信号;对所述电压时域信号进行分析处理,获得所述电压时域信号对应的电压频域信号;根据所述电压频域信号,确定所述电磁流量计的测量管道内是否进入空气。
所述流量计可以将所述电压时域信号进行傅里叶变换处理,获得所述电压时域信号对应的电压频域信号,获取所述电压频域信号中的检测幅值,然后根据所述检测幅值确定所述电磁流量计的测量管道内是否进入空气。电压频域信号中包含各个频率以及各个频率对应的幅值,在获得电压频域信号后,获取该电压频域信号中的检测幅值,根据该检测幅值,确定电磁流量计的测量管道内是否进入空气。也即不用对电压频域信号中的各个频率所对应的幅值都进行分析,只需获取其中的检测频率对应的检测幅值,并基于该检测幅值来分析确定电磁流量计的测量管道内是否进入空气。
其中,所述检测幅值为所述电压频域信号中预设频率对应的幅值,例如,设置该预设频率为A赫兹(例如,50赫兹)。或者,根据电磁流量计的应用场景,确定电压频域信号中的检测频率。比如,当电磁流量计用于中国内地的室内场景应用时,确定电压频域信号中的预设频率为70赫兹;当电磁流量计用于飞机上时,确定电压频域信号中的预设频率为400赫兹等。
示例性,所述流量计计算所述检测幅值与预设幅值的绝对差值;若所述绝对差值小于或等于预设阈值,则确定所述电磁流量计的测量管道内未进入空气;若所述绝对差值大于所述预设阈值,则确定所述电磁流量计的测量管道内进入空气。其中,可以 预先设置用于检测电磁流量计的测量管道内是否进入空气的预设幅值以及对应的预设阈值。例如,该预设幅值为40。当电压频域信号中的预设频率或检测频率对应的幅值与该预设幅值相同时,电磁流量计的测量管道内未进入空气。
示例性的,所述流量计可以确定所述检测幅值是否处于预设幅值区间内;若所述检测幅值处于所述预设幅值区间内,则确定所述电磁流量计的测量管道内未进入空气;若所述检测幅值处于所述预设幅值区间外,则确定所述电磁流量计的测量管道内进入空气。其中,预先设置用于检测电磁流量计的测量管道内是否进入空气的预设幅值区间。例如,预先设置该预设幅值区间为[20,50],当电压频域信号中的检测幅值处于该预设幅值区间内时,确定电磁流量计的测量管道内未进入空气。
在一实施例中,考虑到液位计的底部存在盲区,所述盲区指的是低于所述刻度尺的最小刻度指示的值的液位;比如说6GHz的电磁波雷达液位计,其波长就有好几个厘米,在距离探头几个波长的距离里,波形会多次反射干扰,很难识别正确的反射波,这几个波长的距离就是雷达液位计的盲区。液位在最小刻度值以下变化时,液位计不能给出相应的输出变化而只能保持0输出,导致测量结果不准确。即是说当所述目标液体的容量小于或者等于所述刻度尺的最小刻度指示的值时,存在测量盲区问题,所述液位计的测量结果可能不准确,在这种情况下,为了解决所述液位计的盲区问题,在所述目标液体的容量小于或等于所述刻度尺的最小刻度指示的值的情况下,所述可移动平台可以根据所述第二使用量确定所述目标液体的实际剩余容量;具体来说,所述目标液体的实际剩余容量可以根据所述液位计测量的所述目标液体的初始容量以及所述第二使用量确定,比如所述实际剩余容量=所述初始容量-所述第二使用量。本实施例中,实现基于流量计的测量数据所确定的第二使用量来辅助确定所述容器中的实际剩余容量,从而有利于提高喷洒精度和液体容量控制的准确性。
另外,在进行喷洒作业之前,所述可移动平台可以使用所述液位计测量容器中的目标液体的初始容量,然后根据初始容量输出液体状态信息,所述液体状态信息用于告知用户当前所述容器中的初始容量。例如,所述可移动平台可以向关联的遥控终端发送所述液体状态信息,以便在所述遥控终端的交互界面上显示所述液体状态信息,从而可以让用户得知所述容器中的液体的容量情况,有利于提升用户的使用体验。
在本申请的另一实施例中,在进行喷洒作业之前,所述可移动平台可以使用所述液位计测量容器中的目标液体的初始容量,然后根据所述初始容量以及地块信息规划所述可移动平台的移动路线。所述地块信息包括但不限于所述地块的面积,所述地块的长宽,单位面积内(例如每平方米)所需喷洒的目标液体的容量等。在一个例子中, 所述可移动平台可以根据所述初始容量、单位面积内所需喷洒的目标液体的容量以及所述地块的长宽来规划所述可移动平台的移动路线,确保所述可移动平台飞行至终点时,所述容器内的目标液体刚好用完或者还有剩余,从而避免所述可移动平台在容器中的目标液体用完的情况下空箱飞行至终端补给造成飞行资源的浪费。
在本申请的另一实施例中,流量计的零点是指流量计输入值在量程方位起点(即待测对象实际没有流量,流量应为零)时的输出值应为零,若流量计的零点值发生较大偏差,就会导致流量计检测的流量不准确,进而影响可移动平台对管道中流量的控制精度。因此,在进行喷洒作业之前,为了保证所述流量计的测量准确性,本实施例可以根据所述液位计的测量数据对所述流量计进行零点校正。
所述可移动平台可以获取所述液位计测量的所述容器的当前容量,并确定所述当前容量与上一次获取的容量之间的差值是否在预设范围内,如果所述当前容量与上一次获取的容量之间的差值在预设容量差范围内,确定所述管道内的目标液体处于非流动状态,即处于静止状态,则所述可移动平台可以获取所述流量计测量的所述管道中所述目标液体的当前流量,并根据所述当前流量控制所述流量计进行零点校准。
可选的,预设容量差可以设置为0。然而实际应用中,由于液位计的测量信息可能存在一定偏差,或者其它因素导致在静止状态下,两次获取的液位信息不相等,但是二者的差值在一个较小的范围内。因而,可以将预设容量差范围设置为较小的非0值,例如1。其中,本领域技术人员可以根据实际需求设置预设容量差,本实施例在此不做具体限定。
所述可移动平台在获取到流量计的当前流量值之后,可以根据当前流量值确定流量计是否需要校准。若所述当前流量与所述流量计的零点之间的差值大于预设阈值,确定需要校准,则所述可移动平台发送校准指令至流量计,该校准指令用于控制流量计自动进行零点校准。
然而,实际应用中,流量计的零点受环境影响,通常流量计的零点可能不是绝对零值,因而还可以设置校准值为非0值,即对流量计的当前流量值进行校准,使流量计的当前流量值与零点的差值位于预设差值范围内。
相应的,请参阅图4,本申请实施例还提供了一种可移动平台,包括液位计12、流量计14、容器11、与所述容器11连接的管道13、存储可执行指令的存储器19以及处理器18。
所述液位计12用于测量所述容器11中的目标液体的容量。
所述流量计14用于测量与所述容器11连接的管道13中所述目标液体的流量。
所述处理器18执行所述可执行指令时,用于:根据所述目标液体的容量确定所述目标液体的第一使用量以及根据所述目标液体的流量确定所述目标液体的第二使用量;根据所述第一使用量和所述第二使用量,对所述液位计12和/或所述流量计14进行校准。
所述处理器18执行所述存储器19中包括的可执行指令,所述处理器18可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器19存储所述校准方法的可执行指令,所述存储器19可以包括至少一种类型的存储介质,存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,设备可以与通过网络连接执行存储器的存储功能的网络存储装置协作。存储器19可以是可移动平台的内部存储单元,例如可移动平台的硬盘或内存。存储器19也可以是可移动平台的外部存储设备,例如可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器19还可以既包括可移动平台的内部存储单元也包括外部存储设备。存储器19用于存储计算机程序55以及设备所需的其他程序和数据。存储器19还可以用于暂时地存储已经输出或者将要输出的数据。
这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由控制器执行。
请参阅图4,所述可移动平台还包括有水泵15、喷头16以及喷嘴17,所述水泵 15用于通过所述管道13从所述容器11中抽取目标液体,并输送给与其连接的喷头16,进而所述喷头16通过所述喷嘴17喷洒液体。
在一实施例中,所述处理具体用于:获取所述液位计12测量的所述目标液体的初始容量和当前容量;基于所述目标液体的初始容量和当前容量在时域上进行差分运算,确定所述目标液体的第一使用量。
在一实施例中,所述目标液体的第二使用量根据对所述目标液体的流量在时域上进行积分运算得到。
在一实施例中,所述液位计12设有刻度尺;所述液位计12用于根据所述容器11中所述目标液体的液位对应的所述刻度尺中的刻度,确定所述目标液体的容量。
在一实施例中,所述处理器18还用于:若通过所述刻度尺中的指定刻度确定所述目标液体的容量,根据所述第一使用量对所述流量计14进行流量校准。
在一实施例中,所述处理具体用于:若通过所述刻度尺中除指定刻度之外的其他刻度确定所述目标液体的容量,根据所述第一使用量和所述第二使用量的综合结果,对所述液位计12和/或所述流量计14进行校准。
在一实施例中,所述刻度尺以霍尔开关阵列作为电信号刻度,所述指定刻度为所述霍尔开关阵列指示的刻度。
在一实施例中,所述处理器18还用于:若所述目标液体的容量小于或等于所述刻度尺的最小刻度指示的值,根据所述第二使用量确定所述目标液体的实际剩余容量。
在一实施例中,所述目标液体的实际剩余容量根据所述液位计12测量的所述目标液体的初始容量以及所述第二使用量确定。
在一实施例中,所述处理器18还用于:使用所述液位计12测量容器11中的目标液体的初始容量;根据所述初始容量输出液体状态信息,所述液体状态信息用于告知用户当前所述容器11中的初始容量。
在一实施例中,所述处理器18还用于:使用所述液位计12测量容器11中的目标液体的初始容量,并根据所述初始容量以及地块信息规划所述可移动平台的移动路线。
在一实施例中,所述可移动平台包括无人飞行器、无人驾驶车辆或者可移动机器人。
在一实施例中,所述处理器18还用于:使用流量计14检测所述管道13内是否进入空气;若是,根据所述第一使用量对所述流量计14进行流量校准。
在一实施例中,所述处理器18具体用于:采集所述流量计14运行时产生的电压信号;监控所述电压信号,获取预定时间段的电压信号;根据所述预定时间段的电压 信号,确定所述管道13内是否进入空气。
在一实施例中,所述电压信号为电压时域信号;所述处理器18具体用于:对所述电压时域信号进行分析处理,获得所述电压时域信号对应的电压频域信号;根据所述电压频域信号中的检测幅值,确定所述管道13内是否进入空气。
在一实施例中,所述处理器18还用于:获取所述液位计12测量的所述容器11的当前容量,并确定所述当前容量与上一次获取的容量之间的差值是否在预设容量差范围内;若是,获取所述流量计14测量的所述管道13中所述目标液体的当前流量,并根据所述当前流量控制所述流量计14进行零点校准。
在一实施例中,所述处理器18具体用于:若所述当前流量与所述流量计14的零点之间的差值大于预设阈值,控制所述流量计14进行零点校准。
在一实施例中,与所述容器11连接的管道13有多个,则所述流量计14有多个,所述流量计14与所述管道13一一对应;
所述目标液体的第二使用量根据多个流量计14分别测量的对应管道13中的所述目标液体的流量确定。
上述可移动平台中各个单元的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由装置的处理器执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当存储介质中的指令由终端的处理器执行时,使得终端能够执行上述方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个 例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (38)

  1. 一种校准方法,其特征在于,应用于安装有液位计和流量计的可移动平台,所述方法包括:
    使用所述液位计测量容器中的目标液体的容量,并根据所述目标液体的容量确定所述目标液体的第一使用量;
    以及,使用流量计测量与所述容器连接的管道中所述目标液体的流量,并根据所述目标液体的流量确定所述目标液体的第二使用量;
    根据所述第一使用量和所述第二使用量,对所述液位计和/或所述流量计进行校准。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述目标液体的容量确定所述目标液体的第一使用量,包括:
    获取所述液位计测量的所述目标液体的初始容量和当前容量;
    基于所述目标液体的初始容量和当前容量在时域上进行差分运算,确定所述目标液体的第一使用量。
  3. 根据权利要求1所述的方法,其特征在于,所述目标液体的第二使用量根据所述目标液体的流量在时域上进行积分运算得到。
  4. 根据权利要求1所述的方法,其特征在于,所述液位计设有刻度尺;
    所述液位计用于根据所述容器中所述目标液体的液位对应的所述刻度尺中的刻度,确定所述目标液体的容量。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    若通过所述刻度尺中的指定刻度确定所述目标液体的容量,根据所述第一使用量对所述流量计进行流量校准。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述第一使用量和所述第二使用量,对所述液位计和/或所述流量计进行校准,包括:
    若通过所述刻度尺中除指定刻度之外的其他刻度确定所述目标液体的容量,根据所述第一使用量和所述第二使用量的综合结果,对所述液位计和/或所述流量计进行校准。
  7. 根据权利要求5或6所述的方法,其特征在于,所述刻度尺以霍尔开关阵列作为电信号刻度,所述指定刻度为所述霍尔开关阵列指示的刻度。
  8. 根据权利要求4所述的方法,其特征在于,还包括:
    若所述目标液体的容量小于或等于所述刻度尺的最小刻度指示的值,根据所述第二使用量确定所述目标液体的实际剩余容量。
  9. 根据权利要求8所述的方法,其特征在于,所述目标液体的实际剩余容量根据所述液位计测量的所述目标液体的初始容量以及所述第二使用量确定。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    使用所述液位计测量容器中的目标液体的初始容量;
    根据所述初始容量输出液体状态信息,所述液体状态信息用于告知用户当前所述容器中的初始容量。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    使用所述液位计测量容器中的目标液体的初始容量,并根据所述初始容量以及地块信息规划所述可移动平台的移动路线。
  12. 根据权利要求1所述的方法,其特征在于,所述可移动平台包括无人飞行器、无人驾驶车辆或者可移动机器人。
  13. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    使用流量计检测所述管道内是否进入空气;
    若是,根据所述第一使用量对所述流量计进行流量校准。
  14. 根据权利要求13所述的方法,其特征在于,所述使用流量计检测所述管道内是否进入空气,包括:
    采集所述流量计运行时产生的电压信号;
    监控所述电压信号,获取预定时间段的电压信号;
    根据所述预定时间段的电压信号,确定所述管道内是否进入空气。
  15. 根据权利要求14所述的方法,其特征在于,所述电压信号为电压时域信号;
    所述根据所述预定时间段的电压信号,确定所述管道内是否进入空气,包括:
    对所述电压时域信号进行分析处理,获得所述电压时域信号对应的电压频域信号;
    根据所述电压频域信号中的检测幅值,确定所述管道内是否进入空气。
  16. 根据权利要求1所述的方法,其特征在于,还包括:
    获取所述液位计测量的所述容器的当前容量,并确定所述当前容量与上一次获取的容量之间的差值是否在预设容量差范围内;
    若是,获取所述流量计测量的所述管道中所述目标液体的当前流量,并根据所述当前流量控制所述流量计进行零点校准。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述流量控制所述流量计进行零点校准,包括:
    若所述当前流量与所述流量计的零点之间的差值大于预设阈值,控制所述流量计 进行零点校准。
  18. 根据权利要求1所述的方法,其特征在于,与所述容器连接的管道有多个,则所述流量计有多个,所述流量计与所述管道一一对应;
    所述目标液体的第二使用量根据多个流量计分别测量的对应管道中的所述目标液体的流量确定。
  19. 根据权利要求1所述的方法,其特征在于,所述可移动平台应用于植保领域,所述目标液体包括:水或者液体农药。
  20. 一种可移动平台,其特征在于,包括液位计、流量计、容器、与所述容器连接的管道、存储可执行指令的存储器以及处理器;
    所述液位计用于测量所述容器中的目标液体的容量;
    所述流量计用于测量与所述容器连接的管道中所述目标液体的流量;
    所述处理器执行所述可执行指令时,用于:根据所述目标液体的容量确定所述目标液体的第一使用量以及根据所述目标液体的流量确定所述目标液体的第二使用量;根据所述第一使用量和所述第二使用量,对所述液位计和/或所述流量计进行校准。
  21. 根据权利要求20所述的可移动平台,其特征在于,所述处理具体用于:获取所述液位计测量的所述目标液体的初始容量和当前容量;基于所述目标液体的初始容量和当前容量在时域上进行差分运算,确定所述目标液体的第一使用量。
  22. 根据权利要求20所述的可移动平台,其特征在于,所述目标液体的第二使用量根据对所述目标液体的流量在时域上进行积分运算得到。
  23. 根据权利要求20所述的可移动平台,其特征在于,所述液位计设有刻度尺;
    所述液位计用于根据所述容器中所述目标液体的液位对应的所述刻度尺中的刻度,确定所述目标液体的容量。
  24. 根据权利要求23所述的可移动平台,其特征在于,所述处理器还用于:若通过所述刻度尺中的指定刻度确定所述目标液体的容量,根据所述第一使用量对所述流量计进行流量校准。
  25. 根据权利要求23所述的可移动平台,其特征在于,所述处理具体用于:若通过所述刻度尺中除指定刻度之外的其他刻度确定所述目标液体的容量,根据所述第一使用量和所述第二使用量的综合结果,对所述液位计和/或所述流量计进行校准。
  26. 根据权利要求24或25所述的可移动平台,其特征在于,所述刻度尺以霍尔开关阵列作为电信号刻度,所述指定刻度为所述霍尔开关阵列指示的刻度。
  27. 根据权利要求23所述的可移动平台,其特征在于,所述处理器还用于:若所述目标液体的容量小于或等于所述刻度尺的最小刻度指示的值,根据所述第二使用量确定所述目标液体的实际剩余容量。
  28. 根据权利要求27所述的可移动平台,其特征在于,所述目标液体的实际剩余容量根据所述液位计测量的所述目标液体的初始容量以及所述第二使用量确定。
  29. 根据权利要求20所述的可移动平台,其特征在于,所述处理器还用于:使用所述液位计测量容器中的目标液体的初始容量;根据所述初始容量输出液体状态信息,所述液体状态信息用于告知用户当前所述容器中的初始容量。
  30. 根据权利要求20所述的可移动平台,其特征在于,所述处理器还用于:使用所述液位计测量容器中的目标液体的初始容量,并根据所述初始容量以及地块信息规划所述可移动平台的移动路线。
  31. 根据权利要求20所述的可移动平台,其特征在于,所述可移动平台包括无人飞行器、无人驾驶车辆或者可移动机器人。
  32. 根据权利要求24所述的可移动平台,其特征在于,所述处理器还用于:使用流量计检测所述管道内是否进入空气;若是,根据所述第一使用量对所述流量计进行流量校准。
  33. 根据权利要求32所述的可移动平台,其特征在于,所述处理器具体用于:采集所述流量计运行时产生的电压信号;监控所述电压信号,获取预定时间段的电压信号;根据所述预定时间段的电压信号,确定所述管道内是否进入空气。
  34. 根据权利要求33所述的可移动平台,其特征在于,所述电压信号为电压时域信号;所述处理器具体用于:对所述电压时域信号进行分析处理,获得所述电压时域信号对应的电压频域信号;根据所述电压频域信号中的检测幅值,确定所述管道内是否进入空气。
  35. 根据权利要求20所述的可移动平台,其特征在于,所述处理器还用于:获取所述液位计测量的所述容器的当前容量,并确定所述当前容量与上一次获取的容量之间的差值是否在预设容量差范围内;若是,获取所述流量计测量的所述管道中所述目标液体的当前流量,并根据所述当前流量控制所述流量计进行零点校准。
  36. 根据权利要求35所述的可移动平台,其特征在于,所述处理器具体用于:若所述当前流量与所述流量计的零点之间的差值大于预设阈值,控制所述流量计进行零点校准。
  37. 根据权利要求20所述的可移动平台,其特征在于,与所述容器连接的管道有 多个,则所述流量计有多个,所述流量计与所述管道一一对应;
    所述目标液体的第二使用量根据多个流量计分别测量的对应管道中的所述目标液体的流量确定。
  38. 一种计算机可读存储介质,其特征在于,其上存储有可执行指令,当所述可执行指令为处理器执行时用于实现如权利要求1至19任意一项所述的方法。
PCT/CN2020/124876 2019-10-31 2020-10-29 校准方法、可移动平台以及计算机可读存储介质 WO2021083282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022519796A JP2023500779A (ja) 2019-10-31 2020-10-29 補正方法、移動式プラットフォーム、及びコンピュータプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/114884 2019-10-31
PCT/CN2019/114884 WO2021081956A1 (zh) 2019-10-31 2019-10-31 电磁流量计的检测方法、装置、设备及存储介质
CNPCT/CN2020/097484 2020-06-22
PCT/CN2020/097484 WO2021258258A1 (zh) 2020-06-22 2020-06-22 流量计的校准方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021083282A1 true WO2021083282A1 (zh) 2021-05-06

Family

ID=75715868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124876 WO2021083282A1 (zh) 2019-10-31 2020-10-29 校准方法、可移动平台以及计算机可读存储介质

Country Status (2)

Country Link
JP (1) JP2023500779A (zh)
WO (1) WO2021083282A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777888A (zh) * 2022-04-28 2022-07-22 四川泛华航空仪表电器有限公司 一种基于光纤光栅压力传感器液位测量误差补偿修正方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203323839U (zh) * 2013-07-03 2013-12-04 马烈 流量计法容量在线校准系统
CN205499375U (zh) * 2016-01-20 2016-08-24 南昌中航天信航空科技有限公司 植保无人飞行器喷洒控制装置
CN109060394A (zh) * 2018-08-10 2018-12-21 广州极飞科技有限公司 喷洒系统的故障检测方法及装置
CN109152353A (zh) * 2017-11-28 2019-01-04 深圳市大疆创新科技有限公司 药箱流量检测方法、装置和农用无人机
US20190025099A1 (en) * 2016-01-27 2019-01-24 Mitsubishi Heavy Industries, Ltd. Liquid level detection device of liquid supplying facility, liquid level detection method of liquid supplying facility, and liquid supplying facility having the liquid level detection device
CN109566580A (zh) * 2018-11-27 2019-04-05 广州极飞科技有限公司 植保设备、智能容器、植保设备系统及喷洒控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203323839U (zh) * 2013-07-03 2013-12-04 马烈 流量计法容量在线校准系统
CN205499375U (zh) * 2016-01-20 2016-08-24 南昌中航天信航空科技有限公司 植保无人飞行器喷洒控制装置
US20190025099A1 (en) * 2016-01-27 2019-01-24 Mitsubishi Heavy Industries, Ltd. Liquid level detection device of liquid supplying facility, liquid level detection method of liquid supplying facility, and liquid supplying facility having the liquid level detection device
CN109152353A (zh) * 2017-11-28 2019-01-04 深圳市大疆创新科技有限公司 药箱流量检测方法、装置和农用无人机
CN109060394A (zh) * 2018-08-10 2018-12-21 广州极飞科技有限公司 喷洒系统的故障检测方法及装置
CN109566580A (zh) * 2018-11-27 2019-04-05 广州极飞科技有限公司 植保设备、智能容器、植保设备系统及喷洒控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777888A (zh) * 2022-04-28 2022-07-22 四川泛华航空仪表电器有限公司 一种基于光纤光栅压力传感器液位测量误差补偿修正方法

Also Published As

Publication number Publication date
JP2023500779A (ja) 2023-01-11

Similar Documents

Publication Publication Date Title
EP3769091B1 (en) Wind flow sensing system for determining velocity fields of wind flow
KR101914550B1 (ko) 레이더의 표적 위치 추적 방법
EP3032230B1 (en) Flow meter and a method of calibration
CN106443578B (zh) 一种室内定位基站坐标标定方法
US11294063B2 (en) System and method for fast wind flow measurement by LiDAR in a complex terrain
CN109782240A (zh) 一种基于递推修正的多传感器系统误差配准方法和系统
CN112722279B (zh) 一种无人机植保作业监控方法及系统
WO2021083282A1 (zh) 校准方法、可移动平台以及计算机可读存储介质
CN104006827A (zh) 一种惯组标定用北向基准稳定性评估测试方法
CN107421598A (zh) 一种液量监测装置及监测方法
CN104504728A (zh) 多机动目标跟踪方法、系统及其广义联合概率数据关联器
Vickers et al. Formulation of the sea surface friction velocity in terms of the mean wind and bulk stability
CN112783206B (zh) 喷洒控制方法、装置、飞行器及存储介质
Cruvinel et al. An advanced sensors-based platform for the development of agricultural sprayers
CN113029136A (zh) 定位信息处理的方法、设备、存储介质及程序产品
KR101354522B1 (ko) 변분법과 초기추정법을 이용한 고분해능 레이더 바람장 산출방법
CN108072868A (zh) 一种基于fmcw雷达信号频率细化的高精度测距方法
CN109444892B (zh) 雷达定量测量降水的校准方法
CN106646413B (zh) 一种雷达组网垂线交叉融合定位方法及误差解算方法
CN204128566U (zh) 一种惯组标定用北向基准稳定性评估测试装置
CN103946678A (zh) 液位测量仪器和用于确定不同轨迹之间的函数关联的方法
CN114543935A (zh) 可信度输出的物位测量系统及物位测量方法
Mahardhika et al. Improving indoor positioning systems accuracy in closed buildings with kalman filter and feedback filter
Sun et al. Research on multi-source data fusion method based on Bayesian Estimation
JP2014196906A (ja) 気象観測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519796

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881498

Country of ref document: EP

Kind code of ref document: A1