WO2021082991A1 - 一种用于定型耐火材料形变测试的散斑制备方法 - Google Patents
一种用于定型耐火材料形变测试的散斑制备方法 Download PDFInfo
- Publication number
- WO2021082991A1 WO2021082991A1 PCT/CN2020/122261 CN2020122261W WO2021082991A1 WO 2021082991 A1 WO2021082991 A1 WO 2021082991A1 CN 2020122261 W CN2020122261 W CN 2020122261W WO 2021082991 A1 WO2021082991 A1 WO 2021082991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speckle
- speckle pattern
- initial
- pattern
- speckles
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/34—Purifying; Cleaning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
Definitions
- the invention belongs to the technical field of shaped refractory deformation testing.
- it relates to a method for preparing speckles for deformation testing of shaped refractories.
- the commonly used strain measurement methods of shaped refractories are divided into contact method and non-contact method.
- the contact method obtains the local strain information of the shaped refractory material by using the displacement change of the strain gauge; the non-contact method uses the digital image correlation method to analyze the surface morphology changes of the shaped refractory material.
- the contact method requires high temperature resistance and high temperature stability of the measurement components, high sensor cost, difficult wiring layout, and limited measurement range, usually only a single point or local strain can be measured.
- the non-contact method has no interference to the sample, high measurement accuracy and local and global detection. It is the main method for strain measurement of shaped refractories in high-temperature service environments.
- Speckle pattern is the information carrier of material deformation at high temperature in material deformation measurement by digital image correlation method.
- the quality of speckle pattern will affect the accuracy of digital image correlation method measurement, the gray scale difference between speckle and sample, and the difference of speckle.
- the size, distribution and thickness have an important influence on the measurement results.
- a method for making speckles for high-temperature environment deformation measurement (CN 101905210A) patented technology, this technology uses high-temperature inorganic glue diluted with alcohol at a volume ratio of 7:3, add 10wt% CoO powder, use a brush or The dropper is randomly applied, sprayed or spattered on the surface of the specimen after the acetone cleaning treatment, and dried and cured at room temperature for 24 hours to produce high-temperature speckles; this method is relatively simple to operate, but the area covered by the high-temperature inorganic glue used will affect the test The shape, size, and thickness of speckles made with brushes or droppers are not easy to control, which ultimately affects the test results. In addition, the method takes too long to produce speckle patterns, which limits the popularization and use of this method.
- a high-temperature speckle and its adjustable preparation method (CN 108195298 A) patented technology, this technology uses sodium silicate solution as the matrix, adding silica powder and auxiliary additive powder to make a mixed solution, through self-made speckle
- the template prints the mixed liquid on the surface of the test piece, and the protrusion position of the speckle template is the spot where the speckle is located.
- This technology only uses the parameter of average gray gradient as the speckle quality evaluation parameter, and cannot reflect the smoothness of the gray surface of the speckle pattern, cannot prepare high-quality speckle patterns, and reduces the measurement accuracy of the digital image correlation method; Moreover, this technology has high requirements on the instrument and is not suitable for batch preparation; in addition, the convex speckle template is not easy to control the thickness of the speckle, which affects the adhesion of the speckle to the specimen and the degree of coloration of the specimen.
- the disadvantages of the prior art are that the shape, size, and thickness of the produced speckles are not easy to control, the quality of the speckle patterns is low, and the time required to prepare the speckles is too long.
- the present invention aims to overcome the defects of the prior art, and aims to provide a speckle preparation method for shaped refractory deformation testing with low production cost and short preparation time.
- the speckle prepared by the method is used for shaped refractory deformation testing.
- the size, shape and thickness are controllable, the pattern quality is good and the measurement accuracy is high. It is suitable for the deformation test of shaped refractories under the condition of 1200°C.
- Step 1 Make a speckle pattern
- Step 2 Optimize the initial speckle pattern
- Step 2.1 Use the average gray gradient ⁇ f to make a preliminary assessment of the quality of the initial speckle pattern: if the average gray gradient of the initial speckle pattern ⁇ f ⁇ 20, it means that the quality of the initial speckle pattern is poor, and the initial speckle pattern needs to be optimized. Speckle pattern: If the average grayscale gradient of the initial speckle pattern ⁇ f ⁇ 20, it means that the quality of the initial speckle pattern is good, and the speckle pattern after the initial evaluation is obtained.
- the method for optimizing the initial speckle pattern is to adjust the number of initial speckle spots and the area of the initial speckle spots in the initial speckle pattern to an average grayscale gradient ⁇ f ⁇ 20.
- Step 2.2 Use the average gray level second derivative W f to evaluate the quality of the speckle pattern after the initial evaluation: if the average gray level second derivative W f ⁇ 26, then the optimized speckle pattern will be obtained; if W f ⁇ 26 , It means that the quality of the speckle pattern after the initial evaluation is poor, and the speckle pattern after the initial evaluation needs to be optimized to obtain the optimized speckle pattern.
- the method for optimizing the speckle pattern after the preliminary evaluation is to adjust the number of speckle spots after the preliminary evaluation and the area of the speckle spots after the preliminary evaluation in the speckle pattern after the preliminary evaluation to an average gray level second derivative W f ⁇ 26.
- Step 3 Prepare a speckle template with an optimized speckle pattern
- Step 4 According to the mass ratio of silicon carbide powder: acetone of 1: (0.5-1), the silicon carbide powder and the acetone are mixed, and then homogenized to obtain a speckle mixed liquid.
- Step 5 Polish the surface of the refractory material to be measured, and clean the surface impurities with the acetone; coat the speckle template with the optimized speckle pattern on the surface of the refractory material to be measured, and then evenly coat the speckle mixture Overlay the speckle template of the optimized speckle pattern, scrape off the excess speckle mixture on the surface of the speckle template of the optimized speckle pattern, take the speckle template of the optimized speckle pattern, and test it. Uncured speckles are obtained on the surface of shaped refractories.
- Step 6 Perform curing treatment on the uncured speckles obtained on the surface of the refractory material to be measured to obtain speckles for the deformation test of the shaped refractory material.
- the average gray gradient ⁇ f is:
- W represents the image width of the initial speckle pattern
- H represents the image height of the initial speckle pattern
- x ij represents the pixel points located in the i-th row and j-th column in the pattern in the initial speckle pattern
- f x (x ij ) indicates that each pixel point x ij in the image of the initial speckle pattern is at a grayscale gradient in the x direction;
- f y (x ij ) indicates that each pixel x ij in the image of the initial speckle pattern is at a grayscale gradient in the y direction.
- the second derivative of the average gray level W f is:
- B represents the image width of the speckle pattern after the initial evaluation
- L represents the image height of the speckle pattern after the initial evaluation
- x mn represents the pixels in the m-th row and n-th column of the speckle pattern after the initial evaluation
- f xx (x mn ) represents the second-order gray-scale derivative of each pixel x mn in the x direction in the image of the speckle pattern after the preliminary evaluation
- f yy (x mn ) represents the second derivative of the gray level of each pixel x mn in the y direction in the image of the speckle pattern after the preliminary evaluation.
- the material of the speckle template is a tin foil sheet or an aluminum foil sheet.
- the particle size of the silicon carbide micropowder is less than 0.7 ⁇ m.
- the homogenization treatment is: ultrasonic treatment is performed by an ultrasonic cleaning machine, the time of the ultrasonic treatment is 5 to 15 minutes, and the frequency of the ultrasonic wave is 40 kHz.
- the curing treatment is: heat preservation at 60-80°C for 1 to 3 hours, and then at 100-120°C for 1 to 3 hours.
- the present invention has the following positive effects compared with the prior art:
- the present invention uses the average gray gradient ⁇ f to make a preliminary evaluation of the quality of the initial speckle pattern, and then uses the average gray second derivative W f to evaluate the quality of the speckle pattern after the preliminary evaluation to ensure that the produced is used for shaping
- the speckle of refractory deformation test has high contrast and suitable density, and at the same time has high measurement accuracy.
- the present invention uses tin foil sheet or aluminum foil sheet to make the speckle template, and the position of the speckle in the optimized speckle pattern is used as the opening position of the speckle template, and the processing is simple.
- the prepared speckle size and shape for the shaped refractory deformation test are the size and shape of the opening of the speckle template, and the prepared speckle size and shape for the shaped refractory deformation test can be controlled;
- the speckle thickness used for the shaped refractory deformation test is the thickness at the opening of the speckle template.
- the preparation thickness is controllable to avoid the cracking and peeling caused by the excessively large speckle thickness used for the shaped refractory deformation test and the thickness is too small. Insufficient gray-scale difference between the test piece and the test piece.
- the silicon carbide powder used in the present invention not only has high thermal conductivity, low thermal expansion coefficient and high temperature resistance to cracking, but also has good oxidation resistance under the condition of 1300-1500°C, and is not easy to fade; under the high temperature condition of 1100°C , Silicon carbide powder will have a small amount of sintering phenomenon, which can improve the compatibility of speckles used in the deformation test of shaped refractories and the deformation compatibility of the matrix material, and improve the bonding strength with the matrix material. Speckle is not easy to fall off.
- the silicon carbide micropowder and acetone used in the present invention are both conventional reagents, and the production cost is low; the uncured speckles obtained on the surface of the refractory to be tested can be cured for 2-6 hours to be used for the deformation test of the shaped refractory The speckle, the preparation time is short.
- the present invention has low production cost and short preparation time.
- the size, shape and thickness of the speckles prepared for shaped refractory deformation testing are controllable, the pattern quality is good, and the measurement accuracy is high. It is suitable for shaping at 1200°C. Refractory deformation test.
- Figure 1 is a partial enlarged photo of speckles prepared by the present invention for testing the deformation of shaped refractories
- Fig. 2 is a partial enlarged photo of another speckle used in the deformation test of shaped refractories prepared by the present invention.
- a method for preparing speckles for deformation testing of shaped refractories The steps of the speckle preparation method of this embodiment are:
- Step 1 Make a speckle pattern
- the number of randomly generated initial speckles is 681, and the total area of the randomly generated initial speckles is 5519 mm 2 , and the initial speckle pattern is obtained.
- Step 2 Optimize the initial speckle pattern
- the method for optimizing the speckle pattern after the preliminary evaluation is to adjust the number of speckles after the preliminary evaluation and the area of the speckles after the preliminary evaluation in the speckle pattern after the preliminary evaluation, after 1 to 5 adjustments: the adjusted average gray level 2
- the first-order derivative W f 18.4754, that is, the adjusted second-order derivative of the average gray level W f ⁇ 26, and the optimized speckle pattern is of better quality.
- the adjusted initial evaluation scattered spots are 504, and the adjusted initial evaluation scattered spots have a total area of 3492mm 2 .
- Step 3 Prepare a speckle template with an optimized speckle pattern
- Step 4 According to the mass ratio of silicon carbide powder: acetone of 1: (0.5-0.75), the silicon carbide powder and the acetone are mixed, and then homogenized to obtain a speckle mixed liquid.
- Step 5 Polish the surface of the refractory material to be measured, and clean the surface impurities with the acetone; coat the speckle template with the optimized speckle pattern on the surface of the refractory material to be measured, and then evenly coat the speckle mixture Overlay the speckle template of the optimized speckle pattern, scrape off the excess speckle mixture on the surface of the speckle template of the optimized speckle pattern, take the speckle template of the optimized speckle pattern, and test it. Uncured speckles are obtained on the surface of shaped refractories.
- Step 6 The uncured speckles obtained on the surface of the refractory material to be tested are cured to obtain the speckles used for the deformation test of the shaped refractory material as shown in Fig. 1.
- Fig. 1 is a kind of speckle prepared in this embodiment Speckle of silica brick deformation test.
- the average gray gradient ⁇ f is:
- W represents the image width of the initial speckle pattern
- H represents the image height of the initial speckle pattern
- x ij represents the pixel points located in the i-th row and j-th column in the pattern in the initial speckle pattern
- f x (x ij ) indicates that each pixel point x ij in the image of the initial speckle pattern is at a grayscale gradient in the x direction;
- f y (x ij ) indicates that each pixel x ij in the image of the initial speckle pattern is at a grayscale gradient in the y direction.
- the second derivative of the average gray level W f is:
- B represents the image width of the speckle pattern after the initial evaluation
- L represents the image height of the speckle pattern after the initial evaluation
- x mn represents the pixels in the m-th row and n-th column of the speckle pattern after the initial evaluation
- f xx (x mn ) represents the second-order gray-scale derivative of each pixel x mn in the x direction in the image of the speckle pattern after the preliminary evaluation
- f yy (x mn ) represents the second-order derivative of the gray level of each pixel x mn in the y direction in the image of the speckle pattern after the preliminary evaluation.
- the material of the speckle template is an aluminum foil sheet.
- the particle size of the silicon carbide micropowder is less than 0.7 ⁇ m.
- the homogenization treatment is: ultrasonic treatment is performed by an ultrasonic cleaning machine, the time of the ultrasonic treatment is 5-10 min, and the frequency of the ultrasonic is 40 kHz.
- the curing treatment is: heat preservation at 60-70°C for 1 to 2 hours, and then heat preservation at 100-110°C for 2 to 3 hours.
- the shaped refractory material is silica brick.
- a method for preparing speckles for deformation testing of shaped refractories The steps of the speckle preparation method of this embodiment are:
- Step 1 Make a speckle pattern
- the initial speckles are drawn randomly manually, the randomly generated initial speckles are 3577, and the total area of the randomly generated initial speckles is 2289mm 2 , that is, the initial speckle pattern is obtained.
- Step 2 Optimize the initial speckle pattern
- the adjusted initial speckles are 504, and the total area of the adjusted initial speckles is 3492mm 2 .
- Step 3 Prepare a speckle template with an optimized speckle pattern
- Step 4 According to the mass ratio of silicon carbide powder: acetone of 1: (0.75-0.1), the silicon carbide powder and the acetone are mixed, and then homogenized to obtain a speckle mixed liquid.
- Step 5 Polish the surface of the refractory material to be measured, and clean the surface impurities with the acetone; coat the speckle template with the optimized speckle pattern on the surface of the refractory material to be measured, and then evenly coat the speckle mixture Overlay the speckle template of the optimized speckle pattern, scrape off the excess speckle mixture on the surface of the speckle template of the optimized speckle pattern, take the speckle template of the optimized speckle pattern, and test it. Uncured speckles are obtained on the surface of shaped refractories.
- Step 6 The uncured speckles obtained on the surface of the refractory material to be tested are cured to obtain the speckles used for the deformation test of the shaped refractory material as shown in Figure 2.
- Figure 2 is a kind of speckles prepared in this embodiment. Speckle of alumina shaped refractory deformation test.
- the average gray gradient ⁇ f is:
- W represents the image width of the initial speckle pattern
- H represents the image height of the initial speckle pattern
- x ij represents the pixel points located in the i-th row and j-th column in the pattern in the initial speckle pattern
- f x (x ij ) indicates that each pixel point x ij in the image of the initial speckle pattern is at a grayscale gradient in the x direction;
- f y (x ij ) indicates that each pixel x ij in the image of the initial speckle pattern is at a grayscale gradient in the y direction.
- the second derivative of the average gray level W f is:
- B represents the image width of the speckle pattern after the initial evaluation
- L represents the image height of the speckle pattern after the initial evaluation
- x mn represents the pixels in the m-th row and n-th column of the speckle pattern after the initial evaluation
- f xx (x mn ) represents the second-order gray-scale derivative of each pixel x mn in the x direction in the image of the speckle pattern after the preliminary evaluation
- f yy (x mn ) represents the second-order derivative of the gray level of each pixel x mn in the y direction in the image of the speckle pattern after the preliminary evaluation.
- the material of the speckle template is tin foil sheet.
- the particle size of the silicon carbide micropowder is less than 0.7 ⁇ m.
- the homogenization treatment is: ultrasonic treatment is performed with an ultrasonic cleaning machine, the time of the ultrasonic treatment is 10-15 min, and the frequency of the ultrasonic is 40 kHz.
- the curing treatment is: heat preservation at 70-80°C for 2 to 3 hours, and then heat preservation at 110-120°C for 1 to 2 hours.
- the shaped refractory material is alumina ceramics.
- the present invention has the following positive effects:
- the present invention uses the average gray gradient ⁇ f to make a preliminary evaluation of the quality of the initial speckle pattern, and then uses the average gray second derivative W f to evaluate the quality of the speckle pattern after the preliminary evaluation to ensure that the produced is used for shaping
- the speckle of refractory deformation test has high contrast and suitable density, and at the same time has high measurement accuracy.
- the present invention uses tin foil sheet or aluminum foil sheet to make the speckle template, and the position of the speckle in the optimized speckle pattern is used as the opening position of the speckle template, and the processing is simple.
- the prepared speckle size and shape for the shaped refractory deformation test are the size and shape of the opening of the speckle template, and the prepared speckle size and shape for the shaped refractory deformation test can be controlled;
- the speckle thickness used for the shaped refractory deformation test is the thickness at the opening of the speckle template.
- the preparation thickness is controllable to avoid the cracking and peeling caused by the excessively large speckle thickness used for the shaped refractory deformation test and the thickness is too small. Insufficient gray-scale difference between the test piece and the test piece.
- the silicon carbide powder used in the present invention not only has high thermal conductivity, low thermal expansion coefficient and high temperature resistance to cracking, but also has good oxidation resistance under the condition of 1300-1500°C, and is not easy to fade; under the high temperature condition of 1100°C , Silicon carbide powder will have a small amount of sintering phenomenon, which can improve the compatibility of speckles used in the deformation test of shaped refractories and the deformation compatibility of the matrix material, and improve the bonding strength with the matrix material. Speckle is not easy to fall off.
- the silicon carbide micropowder and acetone used in the present invention are both conventional reagents, and the production cost is low; the uncured speckles obtained on the surface of the refractory to be tested can be cured for 2-6 hours to be used for the deformation test of the shaped refractory The speckle, the preparation time is short.
- the present invention has low production cost and short preparation time.
- the size, shape and thickness of the speckles prepared for shaped refractory deformation testing are controllable, the pattern quality is good, and the measurement accuracy is high. It is suitable for shaping at 1200°C. Refractory deformation test.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种用于定型耐火材料形变测试的散斑制备方法,包括以下步骤:采用MATLAB软件随机生成初始散斑点或人工随机绘制初始散斑点,即得初始散斑图案;采用平均灰度梯度δ f对初始散斑图案的质量进行初评,再用平均灰度二阶导数W f对初评后的散斑图案的质量进行评估,得到优化后的散斑图案;在丙酮试剂中加入碳化硅微粉,均匀化处理后形成散斑混合液;将散斑混合液均匀涂覆在具有优化后的散斑图案的散斑模板上,进行固化处理,得到用于定型耐火材料形变测试的散斑。散斑制备方法生产成本低和制备时间短,所制备的用于定型耐火材料形变测试的散斑的大小、形状和厚度可控,图案质量好和测量精度高,适用于1200℃条件下的定型耐火材料形变测试。
Description
本发明属于定型耐火材料形变测试技术领域。特别涉及一种用于定型耐火材料形变测试的散斑制备方法。
常用的定型耐火材料应变测量方法分为接触法和非接触法。接触法通过使用应变片位移变化获取定型耐火材料局部应变信息;非接触法采用数字图像相关法分析定型耐火材料表面形貌变化。接触法对测量元器件的耐高温性能及高温稳定性要求高、传感器成本较高和线路布置困难,且测量的范围有限,通常只能测量单点或局部的应变等。非接触法对试样无干扰,测量精度高且可进行局部和全局探测,是定型耐火材料在高温服役环境中应变测量的主要方式。
散斑图案是数字图像相关法在材料形变测量中材料高温形变的信息载体,散斑图案的质量会影响到数字图像相关法测量的精度,散斑与试样间的灰度区别及散斑的尺寸、分布和厚度等对测量结果有重要影响。
“一种用于高温环境变形测量的散斑制作方法”(CN 101905210A)专利技术,该技术使用高温无机胶用酒精按体积比7:3稀释后,加入10wt%的CoO粉末,使用毛刷或滴管随机点涂、喷溅或溅撒在经丙酮清洗处理后的试件表面,室温干燥固化24小时制作高温散斑;该方法操作较为简单,但所使用的高温无机胶覆盖区域会对试样形变产生影响,使用毛刷或滴管制作的散斑形状、大小与厚度不易控制,最终影响试验结果;此外该方法制作散斑图案时间过长,限制了该法的推广使用。
“一种用于高温变形测试实验的散斑制作方法”(CN 105043835 A)专利技术,该技术以氧化铝为集料的陶瓷粉末和液体结合剂按质量比3:1混合后均匀处理,将混合液喷涂在试件表面,最后经干燥处理制得高温散斑;该方法操作简单且节省成本,但散斑图案质量难以控制,对试验结果影响较大。
“一种高温散斑及其可调控制备方法”(CN 108195298 A)专利技术,该技术采用硅酸钠溶液为基体,加入二氧化硅粉末和辅助添加剂粉末制成混合液,通过自制的散斑模板将混合液印制在试件表面,其中散斑模板的突起位置为散斑所在点。该技术仅使用平均灰度梯度这一参数作为散斑质量评估参数,无法反映散斑图案灰度表面的光滑性,无法制备出高质量的散斑图案,降低了数字图像相关法的测量精度;且该技术对仪器要求较高,不适于批量制备;此外,凸起型散斑模板不易控制散斑厚度,从而影响斑点对试件附着能力和试件着色程度。
综上所述,现有技术的缺点在于,所制作的散斑形状、大小和厚度不易控制,散斑图案质量较低,制备散斑所需时间过长。
发明内容
本发明旨在克服现有技术缺陷,目的是提供一种生产成本低和制备时间短的用于 定型耐火材料形变测试的散斑制备方法,该方法制备的用于定型耐火材料形变测试的散斑的大小、形状和厚度可控,图案质量好和测量精度高,适用于1200℃条件下的定型耐火材料形变测试。
为实现上述目的,本发明采用的技术方案的具体步骤是:
步骤1、制作散斑图案
采用MATLAB软件在二维平面随机生成初始散斑点或人工随机绘制初始散斑点,即得初始散斑图案。
步骤2、优化初始散斑图案
步骤2.1、采用平均灰度梯度δ
f对初始散斑图案的质量进行初评:若初始散斑图案的平均灰度梯度δ
f<20时,则表示初始散斑图案质量较差,需优化初始散斑图案;若初始散斑图案的平均灰度梯度δ
f≥20时,则表示初始散斑图案质量较好,得到初评后的散斑图案。
所述优化初始散斑图案的方法是,调整初始散斑图案中的初始散斑点数目和初始散斑点面积至平均灰度梯度δ
f≥20。
步骤2.2、用平均灰度二阶导数W
f对初评后的散斑图案的质量进行评估:若平均灰度二阶导数W
f<26,则得到优化后的散斑图案;若W
f≥26,则表示初评后的散斑图案质量较差,再需优化初评后的散斑图案,得到优化后的散斑图案。
所述优化初评后的散斑图案的方法是,调整初评后的散斑图案中的初评后的散斑点数目和初评后的散斑点面积至平均灰度二阶导数W
f<26。
步骤3、制备具有优化后的散斑图案的散斑模板
先以优化后的散斑图案中的散斑点所在位置为散斑模板的开孔位置,再调控散斑模板打孔处的厚度至0.01~0.1mm,得到具有优化后的散斑图案的散斑模板。
步骤4、按碳化硅微粉∶丙酮的质量比为1∶(0.5~1),将所述碳化硅微粉和所述丙酮混合,再均匀化处理,得到散斑混合液。
步骤5、打磨待测定型耐火材料表面,用所述丙酮清洗表面杂质;将具有优化后的散斑图案的散斑模板覆在待测定型耐火材料表面,再将所述散斑混合液均匀涂覆在优化后的散斑图案的散斑模板上,刮去优化后的散斑图案的散斑模板表面多余的散斑混合液,取走优化后的散斑图案的散斑模板,在待测定型耐火材料表面获得未固化的散斑。
步骤6、将待测定型耐火材料表面获得未固化的散斑进行固化处理,得到用于定型耐火材料形变测试的散斑。
所述平均灰度梯度δ
f为:
式(1)中:
W表示初始散斑图案的图像宽度;
H表示初始散斑图案的图像高度;
x
ij表示初始散斑图案中位于图案中第i行和第j列的像素点;
f
x(x
ij)表示初始散斑图案的图像中每个像素点x
ij处在x方向灰度梯度;
f
y(x
ij)表示初始散斑图案的图像中每个像素点x
ij处在y方向灰度梯度。
所述平均灰度二阶导数W
f为:
式(2)中:
B表示初评后的散斑图案的图像宽度;
L表示初评后的散斑图案的图像高度;
x
mn表示初评后的散斑图案中位于图案中第m行和第n列的像素点;
f
xx(x
mn)表示初评后的散斑图案的图像中每个像素点x
mn在x方向的灰度二阶导数;
f
yy(x
mn)表示初评后的散斑图案的图像中每个像素点x
mn在y方向的灰度二阶导数。
所述散斑模板的材质为锡箔薄片或为铝箔薄片。
所述碳化硅微粉的粒度<0.7μm。
所述均匀化处理是:采用超声波清洗机进行超声波处理,超声波处理的时间为5~15min,所述超声波的频率为40kHz。
所述固化处理是:在60~80℃条件下保温1~3h,再于100~120℃条件下保温1~3h。
由于采用上述技术方案,本发明与现有技术相比具如下积极效果:
(1)本发明采用平均灰度梯度δ
f对初始散斑图案的质量进行初评,再采用平均灰度二阶导数W
f对初评后的散斑图案的质量进行评估,确保制作的用于定型耐火材料形变测试的散斑具有高对比度与合适的密度,同时具有较高的测量精度。
(2)本发明采用锡箔薄片或铝箔薄片制作散斑模板,优化后的散斑图案中的散斑点所在位置作为散斑模板的开孔位置,加工简单。所制得的用于定型耐火材料形变测试的散斑大小和形状即为散斑模板开孔处大小和形状,制备的用于定型耐火材料形变测试的散斑大小和形状可控;所制备的用于定型耐火材料形变测试的散斑厚度即为散斑模板开孔处厚度,制备厚度可控,避免因用于定型耐火材料形变测试的散斑厚度过大导致的开裂剥落和厚度过小引起的与待测试件灰度区别不足等现象。
(3)本发明采用的碳化硅微粉不仅热导率高、热膨胀系数小和高温不易开裂,且在1300~1500℃条件下仍具有良好的抗氧化性能,不易褪色;在1100℃的高温条件下,碳化硅微粉会发生少量烧结现象,可改善用于定型耐火材料形变测试的散斑与基体材料的变形相适性,提高了与基体材料结合强度,所制得用于定型耐火材料形变测试的散斑不易脱落。
(4)本发明采用的碳化硅微粉和丙酮均为常规试剂,生产成本低;在待测定型耐火材料表面获得未固化的散斑经2~6小时固化处理即得用于定型耐火材料形变测试的散斑,制备时间短。
因此,本发明生产成本低和制备时间短,所制备的用于定型耐火材料形变测试的 散斑的大小、形状和厚度可控,图案质量好和测量精度高,适用于1200℃条件下的定型耐火材料形变测试。
图1为本发明制备的一种用于定型耐火材料形变测试的散斑的局部放大照片;
图2为本发明制备的另一种用于定型耐火材料形变测试的散斑的局部放大照片。
下面结合附图和具体实施方式,对本发明作进一步描述,并非对其保护范围的限制。
实施例1
一种用于定型耐火材料形变测试的散斑制备方法。本实施例的散斑制备方法的步骤是:
步骤1、制作散斑图案
采用MATLAB软件在二维平面随机生成初始散斑点,随机生成的初始散斑点为681个,随机生成的初始散斑点总面积为5519mm
2,即得初始散斑图案。
步骤2、优化初始散斑图案
步骤2.1、采用平均灰度梯度δ
f对初始散斑图案的质量进行初评:初始散斑图案的平均灰度梯度δ
f=21.0441,即平均灰度梯度δ
f≥20,表示初始散斑图案质量较好,得到初评后的散斑图案。
步骤2.2、用平均灰度二阶导数W
f对初评后的散斑图案的质量进行评估:平均灰度二阶导数W
f=46.4352,即W
f≥26,则表示初评后的散斑图案质量较差,再需优化初评后的散斑图案,得到优化后的散斑图案。
所述优化初评后的散斑图案的方法是,调整初评后的散斑图案中的初评后的散斑点数目和初评后的散斑点面积,经1~5次调整:调整后的平均灰度二阶导数W
f=18.4754,即调整后的平均灰度二阶导数W
f<26,得到优化后的散斑图案质量较好。调整后的初评散斑点为504个,调整后的初评散斑点总面积为3492mm
2。
步骤3、制备具有优化后的散斑图案的散斑模板
先以优化后的散斑图案中的散斑点所在位置为散斑模板的开孔位置,再调控散斑模板打孔处的厚度至0.05~0.1mm,得到具有优化后的散斑图案的散斑模板。
步骤4、按碳化硅微粉∶丙酮的质量比为1∶(0.5~0.75),将所述碳化硅微粉和所述丙酮混合,再均匀化处理,得到散斑混合液。
步骤5、打磨待测定型耐火材料表面,用所述丙酮清洗表面杂质;将具有优化后的散斑图案的散斑模板覆在待测定型耐火材料表面,再将所述散斑混合液均匀涂覆在优化后的散斑图案的散斑模板上,刮去优化后的散斑图案的散斑模板表面多余的散斑混合液,取走优化后的散斑图案的散斑模板,在待测定型耐火材料表面获得未固化的散斑。
步骤6、将待测定型耐火材料表面获得未固化的散斑进行固化处理,得到如图1所示的用于定型耐火材料形变测试的散斑,图1是本实施例制备的一种用于硅砖形变测试的散斑。
所述平均灰度梯度δ
f为:
式(1)中:
W表示初始散斑图案的图像宽度;
H表示初始散斑图案的图像高度;
x
ij表示初始散斑图案中位于图案中第i行和第j列的像素点;
f
x(x
ij)表示初始散斑图案的图像中每个像素点x
ij处在x方向灰度梯度;
f
y(x
ij)表示初始散斑图案的图像中每个像素点x
ij处在y方向灰度梯度。
所述平均灰度二阶导数W
f为:
式(2)中:
B表示初评后的散斑图案的图像宽度;
L表示初评后的散斑图案的图像高度;
x
mn表示初评后的散斑图案中位于图案中第m行和第n列的像素点;
f
xx(x
mn)表示初评后的散斑图案的图像中每个像素点x
mn在x方向的灰度二阶导数;
f
yy(x
mn)表示初评后的散斑图案的图像中每个像素点x
mn在y方向的灰度二阶导数。
所述散斑模板的材质为铝箔薄片。
所述碳化硅微粉的粒度<0.7μm。
所述均匀化处理是:采用超声波清洗机进行超声波处理,超声波处理的时间为5~10min,所述超声波的频率为40kHz。
所述固化处理是:在60~70℃条件下保温1~2h,再于100~110℃条件下保温2~3h。
所述定型耐火材料为硅砖。
实施例2
一种用于定型耐火材料形变测试的散斑制备方法。本实施例的散斑制备方法的步骤是:
步骤1、制作散斑图案
人工随机绘制初始散斑点,随机生成的初始散斑点为3577个,随机生成的初始散斑点总面积为2289mm
2,即得初始散斑图案。
步骤2、优化初始散斑图案
步骤2.1、采用平均灰度梯度δ
f对初始散斑图案的质量进行初评:初始散斑图案的平均灰度梯度δ
f=17.2995,即平均灰度梯度δ
f<20时,则表示初始散斑图案质量较差,需优化初始散斑图案。
所述优化初始散斑图案的方法是,经1~5次调整:调整后的平均灰度梯度δ
f=20.6147,即调整后的平均灰度梯度δ
f≥20,得到初评后的散斑图案;调整后的初始散斑点为504个,调整后的初始散斑点总面积为3492mm
2。
步骤2.2、用平均灰度二阶导数W
f对初评后的散斑图案的质量进行评估:平均灰度二阶导数W
f=18.9994,即平均灰度二阶导数<26,则得到优化后的散斑图案。
步骤3、制备具有优化后的散斑图案的散斑模板
先以优化后的散斑图案中的散斑点所在位置为散斑模板的开孔位置,再调控散斑模板打孔处的厚度至0.01~0.05mm,得到具有优化后的散斑图案的散斑模板。
步骤4、按碳化硅微粉∶丙酮的质量比为1∶(0.75~0.1),将所述碳化硅微粉和所述丙酮混合,再均匀化处理,得到散斑混合液。
步骤5、打磨待测定型耐火材料表面,用所述丙酮清洗表面杂质;将具有优化后的散斑图案的散斑模板覆在待测定型耐火材料表面,再将所述散斑混合液均匀涂覆在优化后的散斑图案的散斑模板上,刮去优化后的散斑图案的散斑模板表面多余的散斑混合液,取走优化后的散斑图案的散斑模板,在待测定型耐火材料表面获得未固化的散斑。
步骤6、将待测定型耐火材料表面获得未固化的散斑进行固化处理,得到如图2所示的用于定型耐火材料形变测试的散斑,图2是本实施例制备的一种用于氧化铝定型耐火材料形变测试的散斑。
所述平均灰度梯度δ
f为:
式(1)中:
W表示初始散斑图案的图像宽度;
H表示初始散斑图案的图像高度;
x
ij表示初始散斑图案中位于图案中第i行和第j列的像素点;
f
x(x
ij)表示初始散斑图案的图像中每个像素点x
ij处在x方向灰度梯度;
f
y(x
ij)表示初始散斑图案的图像中每个像素点x
ij处在y方向灰度梯度。
所述平均灰度二阶导数W
f为:
式(2)中:
B表示初评后的散斑图案的图像宽度;
L表示初评后的散斑图案的图像高度;
x
mn表示初评后的散斑图案中位于图案中第m行和第n列的像素点;
f
xx(x
mn)表示初评后的散斑图案的图像中每个像素点x
mn在x方向的灰度二阶导数;
f
yy(x
mn)表示初评后的散斑图案的图像中每个像素点x
mn在y方向的灰度二阶导数。
所述散斑模板的材质为锡箔薄片。
所述碳化硅微粉的粒度<0.7μm。
所述均匀化处理是:采用超声波清洗机进行超声波处理,超声波处理的时间为10~15min,所述超声波的频率为40kHz。
所述固化处理是:在70~80℃条件下保温2~3h,再于110~120℃条件下保温1~2h。
所述定型耐火材料为氧化铝陶瓷。
本发明与现有技术相比具如下积极效果:
(1)本发明采用平均灰度梯度δ
f对初始散斑图案的质量进行初评,再采用平均灰度二阶导数W
f对初评后的散斑图案的质量进行评估,确保制作的用于定型耐火材料形变测试的散斑具有高对比度与合适的密度,同时具有较高的测量精度。
(2)本发明采用锡箔薄片或铝箔薄片制作散斑模板,优化后的散斑图案中的散斑点所在位置作为散斑模板的开孔位置,加工简单。所制得的用于定型耐火材料形变测试的散斑大小和形状即为散斑模板开孔处大小和形状,制备的用于定型耐火材料形变测试的散斑大小和形状可控;所制备的用于定型耐火材料形变测试的散斑厚度即为散斑模板开孔处厚度,制备厚度可控,避免因用于定型耐火材料形变测试的散斑厚度过大导致的开裂剥落和厚度过小引起的与待测试件灰度区别不足等现象。
(3)本发明采用的碳化硅微粉不仅热导率高、热膨胀系数小和高温不易开裂,且在1300~1500℃条件下仍具有良好的抗氧化性能,不易褪色;在1100℃的高温条件下,碳化硅微粉会发生少量烧结现象,可改善用于定型耐火材料形变测试的散斑与基体材料的变形相适性,提高了与基体材料结合强度,所制得用于定型耐火材料形变测试的散斑不易脱落。
(4)本发明采用的碳化硅微粉和丙酮均为常规试剂,生产成本低;在待测定型耐火材料表面获得未固化的散斑经2~6小时固化处理即得用于定型耐火材料形变测试的散斑,制备时间短。
因此,本发明生产成本低和制备时间短,所制备的用于定型耐火材料形变测试的散斑的大小、形状和厚度可控,图案质量好和测量精度高,适用于1200℃条件下的定型耐火材料形变测试。
Claims (7)
- 一种用于定型耐火材料形变测试的散斑制备方法,其特征在于所述散斑制备方法的具体步骤是:步骤1、制作散斑图案采用MATLAB软件在二维平面随机生成初始散斑点或人工随机绘制初始散斑点,即得初始散斑图案;步骤2、优化初始散斑图案步骤2.1、采用平均灰度梯度δ f对初始散斑图案的质量进行初评:若初始散斑图案的平均灰度梯度δ f<20时,则表示初始散斑图案质量较差,需优化初始散斑图案;若初始散斑图案的平均灰度梯度δ f≥20时,则表示初始散斑图案质量较好,得到初评后的散斑图案;所述优化初始散斑图案的方法是,调整初始散斑图案中的初始散斑点数目和初始散斑点面积至平均灰度梯度δ f≥20;步骤2.2、用平均灰度二阶导数W f对初评后的散斑图案的质量进行评估:若平均灰度二阶导数W f<26,则得到优化后的散斑图案;若W f≥26,则表示初评后的散斑图案质量较差,再需优化初评后的散斑图案,得到优化后的散斑图案;所述优化初评后的散斑图案的方法是,调整初评后的散斑图案中的初评后的散斑点数目和初评后的散斑点面积至平均灰度二阶导数W f<26;步骤3、制备具有优化后的散斑图案的散斑模板先以优化后的散斑图案中的散斑点所在位置为散斑模板的开孔位置,再调控散斑模板打孔处的厚度至0.01~0.1mm,得到具有优化后的散斑图案的散斑模板;步骤4、按碳化硅微粉∶丙酮的质量比为1∶(0.5~1),将所述碳化硅微粉和所述丙酮混合,再均匀化处理,得到散斑混合液;步骤5、打磨待测定型耐火材料表面,用所述丙酮清洗表面杂质;将具有优化后的散斑图案的散斑模板覆在待测定型耐火材料表面,再将所述散斑混合液均匀涂覆在优化后的散斑图案的散斑模板上,刮去优化后的散斑图案的散斑模板表面多余的散斑混合液,取走优化后的散斑图案的散斑模板,在待测定型耐火材料表面获得未固化的散斑;步骤6、将待测定型耐火材料表面获得未固化的散斑进行固化处理,得到用于定型耐火材料形变测试的散斑。
- 如权利要求1所述的用于定型耐火材料形变测试的散斑制备方法,其特征在于所述散斑模板的材质为锡箔薄片或为铝箔薄片。
- 如权利要求1所述的用于定型耐火材料形变测试的散斑制备方法,其特征在于所述碳化硅微粉的粒度<0.7μm。
- 如权利要求1所述的用于定型耐火材料形变测试的散斑制备方法,其特征在于所述均匀化处理是:采用超声波清洗机进行超声波处理,超声波处理的时间为5~15min,所述超声波的频率为40kHz。
- 如权利要求1所述的用于定型耐火材料形变测试的散斑制备方法,其特征在于所述固化处理是:在60~80℃条件下保温1~3h,再于100~120℃条件下保温1~3h。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911061543.3A CN110986811B (zh) | 2019-11-01 | 2019-11-01 | 一种用于定型耐火材料形变测试的散斑制备方法 |
CN201911061543.3 | 2019-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021082991A1 true WO2021082991A1 (zh) | 2021-05-06 |
Family
ID=70083006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/122261 WO2021082991A1 (zh) | 2019-11-01 | 2020-10-20 | 一种用于定型耐火材料形变测试的散斑制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110986811B (zh) |
WO (1) | WO2021082991A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113588699A (zh) * | 2021-06-10 | 2021-11-02 | 北京航空航天大学 | 一种用于材料微区局部应变场测量的sem-dic纳米散斑制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110986811B (zh) * | 2019-11-01 | 2021-05-25 | 武汉科技大学 | 一种用于定型耐火材料形变测试的散斑制备方法 |
CN115265398B (zh) * | 2022-07-28 | 2024-06-25 | 成都理工大学 | 多期次地震作用下斜坡损伤累积的监测方法 |
CN116608776B (zh) * | 2022-09-14 | 2023-10-13 | 北京航空航天大学 | 一种高温多尺度散斑自动点涂装置及点涂方法 |
CN116429002A (zh) * | 2023-03-01 | 2023-07-14 | 北京航空航天大学 | 一种强粘接、耐高温散斑制备方法及制备系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102679899A (zh) * | 2012-05-11 | 2012-09-19 | 北京理工大学 | 用于界面高温变形测量的微尺度散斑制作方法 |
CN102981360A (zh) * | 2012-11-29 | 2013-03-20 | 清华大学 | 一种微纳米散斑制作方法 |
CN103808440A (zh) * | 2014-02-18 | 2014-05-21 | 清华大学 | 微纳米散斑的制备方法和系统 |
CN106289089A (zh) * | 2016-07-29 | 2017-01-04 | 东南大学 | 实验散斑场的优化制备方法 |
CN108036919A (zh) * | 2017-12-28 | 2018-05-15 | 中国航天空气动力技术研究院 | 一种应用于高超声速飞行器风洞试验的高温散斑制作方法 |
CN108195298A (zh) * | 2017-12-14 | 2018-06-22 | 清华大学 | 一种高温散斑及其可调控制备方法 |
CN108665511A (zh) * | 2018-05-18 | 2018-10-16 | 中原工学院 | 一种基于二次填补法的模拟散斑图制作方法 |
US20190271537A1 (en) * | 2018-03-02 | 2019-09-05 | Drexel University | Multiscale Deformation Measurements Leveraging Tailorable and Multispectral Speckle Patterns |
CN110986811A (zh) * | 2019-11-01 | 2020-04-10 | 武汉科技大学 | 一种用于定型耐火材料形变测试的散斑制备方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4682892A (en) * | 1982-08-13 | 1987-07-28 | The Goodyear Tire & Rubber Company | Method and apparatus for speckle-shearing interferometric deformation analysis |
CN101240996B (zh) * | 2008-03-14 | 2010-06-23 | 清华大学 | 一种制作高温微米尺度散斑的方法 |
CN101655352B (zh) * | 2009-09-15 | 2011-02-09 | 西安交通大学 | 一种三维散斑应变测量装置的测量方法 |
CN101832759B (zh) * | 2010-04-06 | 2012-06-27 | 清华大学 | 一种微纳米尺度散斑的制作方法 |
CN101905210B (zh) * | 2010-06-11 | 2012-06-06 | 北京航空航天大学 | 一种用于高温环境变形测量的散斑制作方法 |
US8848200B2 (en) * | 2011-10-05 | 2014-09-30 | Daniel Feldkhun | Systems and methods for suppressing coherent structured illumination artifacts |
CN103453850B (zh) * | 2013-08-15 | 2015-10-21 | 北京理工大学 | 基于数字散斑相关技术的透明液面微形貌测量方法和系统 |
CN104864819B (zh) * | 2015-01-19 | 2017-08-01 | 华中科技大学 | 一种基于数字散斑的高速三维应变测量方法 |
CN105043835A (zh) * | 2015-08-20 | 2015-11-11 | 哈尔滨工业大学 | 一种用于高温变形测试实验的散斑的制作方法 |
-
2019
- 2019-11-01 CN CN201911061543.3A patent/CN110986811B/zh active Active
-
2020
- 2020-10-20 WO PCT/CN2020/122261 patent/WO2021082991A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102679899A (zh) * | 2012-05-11 | 2012-09-19 | 北京理工大学 | 用于界面高温变形测量的微尺度散斑制作方法 |
CN102981360A (zh) * | 2012-11-29 | 2013-03-20 | 清华大学 | 一种微纳米散斑制作方法 |
CN103808440A (zh) * | 2014-02-18 | 2014-05-21 | 清华大学 | 微纳米散斑的制备方法和系统 |
CN106289089A (zh) * | 2016-07-29 | 2017-01-04 | 东南大学 | 实验散斑场的优化制备方法 |
CN108195298A (zh) * | 2017-12-14 | 2018-06-22 | 清华大学 | 一种高温散斑及其可调控制备方法 |
CN108036919A (zh) * | 2017-12-28 | 2018-05-15 | 中国航天空气动力技术研究院 | 一种应用于高超声速飞行器风洞试验的高温散斑制作方法 |
US20190271537A1 (en) * | 2018-03-02 | 2019-09-05 | Drexel University | Multiscale Deformation Measurements Leveraging Tailorable and Multispectral Speckle Patterns |
CN108665511A (zh) * | 2018-05-18 | 2018-10-16 | 中原工学院 | 一种基于二次填补法的模拟散斑图制作方法 |
CN110986811A (zh) * | 2019-11-01 | 2020-04-10 | 武汉科技大学 | 一种用于定型耐火材料形变测试的散斑制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113588699A (zh) * | 2021-06-10 | 2021-11-02 | 北京航空航天大学 | 一种用于材料微区局部应变场测量的sem-dic纳米散斑制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110986811B (zh) | 2021-05-25 |
CN110986811A (zh) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021082991A1 (zh) | 一种用于定型耐火材料形变测试的散斑制备方法 | |
Stábile et al. | Viscosity and thermal evolution of density and wetting angle of a commercial glaze by means of hot stage microscopy | |
US10436577B2 (en) | Full-field statistical and characterizing method of fluid micro-explored strain for alloy microstructure | |
CN114912832A (zh) | 一种镁钛合金表面涂装工艺质量的评估方法及系统 | |
CN105759017A (zh) | 一种水泥基材料外方内圆抗开裂性能评价装置及评价方法 | |
CN111982806A (zh) | 一种沥青胶浆-集料界面抗水损害性能的评价方法 | |
CN108558395A (zh) | 一种氧化锆陶瓷材料组合物及其应用 | |
Huang et al. | Study on the surface quality of marble tiles polished with Sol-Gel derived pads | |
CN109425698A (zh) | 一种钢板成形后涂装外观质量的快速预判方法 | |
CN115753713B (zh) | 一种基于激光共聚焦扫描显微镜的集料抗滑预测方法 | |
CN107631928A (zh) | 一种手提硬度计校验试块的制作方法 | |
JP2002014039A (ja) | コンクリート用細骨材の含水率測定方法および装置 | |
Hotař et al. | Objective evaluation of the corrugation test for sheet glass surfaces | |
CN110749617A (zh) | 玻璃实用软化点温度的测量方法 | |
Zecchino et al. | Thin film stress measurement using dektak stylus profilers | |
JP7005892B2 (ja) | 粉末試料の分析方法 | |
CN106189476B (zh) | 一种矿物辐射粉体的制备及在建筑隔热涂料中的应用 | |
CN109116004A (zh) | 一种采用rpa定量表征硫化胶动态能量损耗密度的方法 | |
Silvestru et al. | Structural behaviour and micro-structural characteristics of coloured kilned glass panels | |
Lawniczak et al. | Characterization of Sinter Materials and Processes by Scratch Test | |
Tchórz et al. | Evaluation of the internal structure of the multilayer ceramic mould for precision casting critical parts of aircraft engines by X-ray computed tomography | |
JP3844115B2 (ja) | アクリル樹脂被覆金属板およびその製造方法 | |
JP2511061B2 (ja) | アルミナ質耐火物の製造方法 | |
CN118090721A (zh) | 一种陶瓷砖生产工艺的调整方法 | |
Fang et al. | Effects of coke calcination level on pore structure in carbon anodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20882405 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20882405 Country of ref document: EP Kind code of ref document: A1 |