WO2021082964A1 - 自主移动装置及仓储物流系统 - Google Patents

自主移动装置及仓储物流系统 Download PDF

Info

Publication number
WO2021082964A1
WO2021082964A1 PCT/CN2020/121858 CN2020121858W WO2021082964A1 WO 2021082964 A1 WO2021082964 A1 WO 2021082964A1 CN 2020121858 W CN2020121858 W CN 2020121858W WO 2021082964 A1 WO2021082964 A1 WO 2021082964A1
Authority
WO
WIPO (PCT)
Prior art keywords
autonomous mobile
mobile device
obstacle avoidance
distance
processor
Prior art date
Application number
PCT/CN2020/121858
Other languages
English (en)
French (fr)
Inventor
张强
陈炯霖
Original Assignee
灵动科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 灵动科技(北京)有限公司 filed Critical 灵动科技(北京)有限公司
Priority to US17/768,474 priority Critical patent/US20240103518A1/en
Priority to EP20882501.8A priority patent/EP4026666A4/en
Priority to JP2022522381A priority patent/JP7385851B2/ja
Publication of WO2021082964A1 publication Critical patent/WO2021082964A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads

Definitions

  • the present invention relates to a device, in detail, it relates to an autonomous mobile device and a warehouse logistics system.
  • autonomous mobile devices on the market such as robots
  • the obstacle is a movable object, such as a human or another robot
  • the obstacle avoidance range is too small, it is likely that when the movable object starts to move, it will collide with the autonomous mobile device that is avoiding orbiting.
  • This application discloses an autonomous mobile device and a warehousing logistics system.
  • the technical means of determining the obstacle avoidance distance by judging whether the obstacle is a movable object solves the problems in the background art, so as to avoid the personnel caused by the too small obstacle avoidance distance. Or the problem of damage to the machine, and at the same time, to avoid the reduction of the working efficiency of the autonomous mobile device due to the excessive obstacle avoidance distance.
  • an autonomous mobile device includes a sensing component, a processor, and a driving component.
  • the sensing component is used for sensing the information of the object;
  • the processor is used for judging whether the object is a movable object according to the information, and generating a control signal according to the judgment result, wherein the control signal is used for indicating all The obstacle avoidance distance of the autonomous mobile device;
  • the driving component is used to drive the autonomous mobile device to move, wherein when the object is located on the travel path of the autonomous mobile device, the driving component is at least The obstacle avoidance distance drives the autonomous mobile device to avoid obstacles.
  • the obstacle avoidance distance when the object is a movable object is greater than the obstacle avoidance distance when the object is a static object.
  • the moving component controls the autonomous mobile device to use the object as the obstacle avoidance center and the obstacle avoidance distance as the radius
  • the semi-circular arc path is used as the obstacle avoidance path to avoid obstacles.
  • the sensing component includes an image sensor, and the information is an image of the object captured by the image sensor.
  • the processor determines whether the object is a movable object based on images captured by the image sensor at two time points.
  • the autonomous mobile device further includes a storage device for storing contrast images.
  • the autonomous mobile device further includes a communication device for transmitting location information of the autonomous mobile device to a remote server, and receiving the corresponding location information from the remote server Possible movable object features, and the possible movable object features are stored in the storage device as the contrast image.
  • the processor compares the image with the contrast image to determine whether the object is a movable object.
  • the sensing component includes a distance sensor, and the information is the distance between the object and the autonomous mobile device.
  • the processor determines whether the object is a movable object based on the distance sensed by the distance sensor at two time points.
  • the processor is further configured to determine the moving speed of the object according to the information sensed by the sensing component at two points in time, and select the autonomous movement according to the moving speed The obstacle avoidance path of the device.
  • the sensing component is further used to sense the load-bearing weight of the autonomous mobile device, and the processor adjusts the obstacle avoidance distance according to the load-bearing weight.
  • a warehouse logistics system which includes a plurality of autonomous mobile devices and a dispatch server.
  • the dispatch server is configured to receive obstacle avoidance information from one of the autonomous mobile devices, and send a travel signal to instruct the other autonomous mobile devices to continue or suspend the travel.
  • the autonomous mobile device and warehousing logistics system disclosed in the present invention can determine whether the object is a movable object through the sensing component and the processor, and thereby determine the obstacle avoidance distance. In this way, it can avoid the obstacle avoidance distance being too small.
  • the problem of personnel or machine damage at the same time, avoids the reduction of the working efficiency of the autonomous mobile device due to the excessive obstacle avoidance distance.
  • Fig. 1 is a schematic diagram of an autonomous mobile device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a comparison image according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of judging an object according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of communication between a communication device and a remote server according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of judging an object according to an embodiment of the present invention.
  • 6A and 6B are schematic diagrams of judging an object according to an embodiment of the invention.
  • FIG. 7A and 7B are schematic diagrams of judging an object according to an embodiment of the invention.
  • 8A and 8B are schematic diagrams of selecting the obstacle avoidance distance according to an embodiment of the present invention.
  • 9A and 9B are schematic diagrams of obstacle avoidance paths according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of selecting the obstacle avoidance distance according to the carrying weight according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of selecting an obstacle avoidance path according to the moving speed of an object according to an embodiment of the present invention.
  • Fig. 12 is a schematic diagram of an autonomous mobile device according to another embodiment of the present invention.
  • FIG. 13 is a block diagram of an autonomous mobile device according to an embodiment of the invention.
  • Fig. 14 is a schematic diagram of a warehouse logistics system according to an embodiment of the present invention.
  • first and second features are in direct contact with each other; and may also include
  • additional components are formed between the above-mentioned first and second features, so that the first and second features may not be in direct contact.
  • present disclosure may reuse component symbols and/or labels in multiple embodiments. Such repeated use is based on the purpose of brevity and clarity, and does not in itself represent the relationship between the different embodiments and/or configurations discussed.
  • spatially relative terms here such as “below”, “below”, “below”, “above”, “above” and similar, may be used to facilitate the description of the drawing in the figure
  • the relationship between one component or feature relative to another component or feature is shown.
  • the original meaning of these spatially-relative vocabulary covers a variety of different orientations of the device in use or operation, in addition to the orientation shown in the figure.
  • the device may be placed in other orientations (for example, rotated 90 degrees or in other orientations), and these spatially-relative description vocabulary should be explained accordingly.
  • Autonomous mobile devices on the market such as robots, use a fixed mode to avoid obstacles when avoiding obstacles.
  • the obstacles are movable objects, such as humans, animals or robots
  • the autonomous mobile devices are The obstacle avoidance mode is the same when the object is a static object. Once the movable object and the autonomous mobile device move at the same time, the autonomous mobile device may not be able to dodge as much as possible, which may cause damage to the person or the device.
  • the autonomous mobile device is set to avoid obstacles with a larger obstacle avoidance distance regardless of whether the obstacle is a movable object or a static object, it will cause the autonomous mobile device to spend more time avoiding obstacles and reduce work efficiency. .
  • the present invention discloses an autonomous mobile device and a warehouse logistics system.
  • the sensing component and the processor determine whether the object is a movable object, and thereby determine the obstacle avoidance distance. In this way, the obstacle avoidance distance can be avoided. It is a small problem that causes damage to personnel or machines, and at the same time, avoids the reduction of the working efficiency of the autonomous mobile device due to the excessive obstacle avoidance distance.
  • the autonomous mobile device may be an unmanned logistics vehicle used for carrying goods in a warehouse logistics system, or a suitcase with an autonomous mobile function.
  • the movable object may be a person, animal, mechanical device or object that is already in dynamic motion, or a person, animal, or mechanical device that can move at any time but is temporarily stationary.
  • FIG. 1 is a schematic diagram of an autonomous mobile device 10 according to an embodiment of the invention.
  • the autonomous mobile device 10 is an unmanned logistics vehicle for carrying goods.
  • the autonomous mobile device 10 includes a sensing component 110, a processor 120 and a driving component 130.
  • the sensing component 110 includes an image sensor 111 and a distance sensor 112 arranged in front of the autonomous mobile device 10.
  • the image sensor 111 is used to capture an image of an object.
  • the distance sensor 112 is used to sense the distance between the object and the autonomous mobile device 10.
  • the sensing component 110 can be used to sense the information of the object, where the object information can be the image of the object captured by the image sensor 111, or the object and autonomous movement sensed by the distance sensor 112 The distance between the devices 10, or a combination of the two. It should be noted that in other embodiments, the sensing component 110 may also include other sensors to implement other functions of the autonomous mobile device 10. Optionally, the sensing component 110 may further include a weight sensor 113 for sensing the carrying weight of the autonomous mobile device 10.
  • the image sensor 111 can be implemented by a general camera, and the distance sensor 112 can be a depth camera (or called an RGBD camera), a laser radar (Light Laser Detection and Ranging, LiDAR), an ultrasonic sensor, and an infrared sensor.
  • a depth camera or called an RGBD camera
  • LiDAR Laser Detection and Ranging
  • ultrasonic sensor or an ultrasonic sensor
  • infrared sensor a laser radar (Light Laser Detection and Ranging, LiDAR), an ultrasonic sensor, and an infrared sensor.
  • the processor 120 is disposed in the autonomous mobile device 10, and is used to determine whether the object is a movable object based on the object information sensed by the sensing component 110, such as the aforementioned object image or the distance between the object and the autonomous mobile device, and The control signal is generated according to the judgment result.
  • the control signal is used to indicate the obstacle avoidance distance of the autonomous mobile device 10 with respect to the object.
  • the driving component 130 is used to drive the autonomous mobile device 10 to move, wherein when an object is located on the traveling path of the autonomous mobile device 10, the driving component 130 performs obstacle avoidance by at least the obstacle avoidance distance.
  • the driving assembly 130 includes a motor (not shown) and the power wheel shown in FIG. 1, and the motor provides kinetic energy to the power wheel to drive the autonomous mobile device 10.
  • the autonomous mobile device 10 may also include other components and elements to implement other functions of the autonomous mobile device 10.
  • the autonomous mobile device 10 also includes a storage device 140 for storing information, a communication device 150 for communicating with a remote server, a battery 160 for providing power, and power for distributing power to various components.
  • the distribution module 170 and the display screen 180 for displaying information.
  • the autonomous mobile device 10 shown in FIG. 1 is only an example, and the present invention does not limit the detailed architecture of the autonomous mobile device 10. In particular, the present invention does not limit the components shown in FIG. 1 such as the image sensor 111.
  • the distance sensor 112 is arranged at a position on the autonomous mobile device 10.
  • the autonomous mobile device 10 may include a plurality of image sensors 111 and a plurality of distance sensors 112, which are respectively distributed at different positions of the autonomous mobile device 10, so as to sense multi-directional object information. The detailed location of the image sensor 111 and the distance sensor 112 depends on actual design requirements.
  • FIGS. 2 to 5 illustrate that when an object appears in the sensing range of the image sensor 111, the processor 120 obtains the appearance characteristics of the object through the image of the object captured by the image sensor 111, and thereby determines whether the object is a movable object. Examples. In detail, in the embodiments of FIGS. 2 and 5, the processor 120 is used in conjunction with the image sensor 111 and the storage device 140 to determine whether the object is a movable object.
  • the storage device 140 can be used to store information.
  • the storage device 140 can be used to store location information of the autonomous mobile device 10, map information of the location, task information of the autonomous mobile device 10, and so on.
  • the storage device 140 can be used to store contrast images.
  • the storage device 140 may store the image and appearance feature information of a specific object as a comparison image before the autonomous mobile device 10 leaves the factory.
  • the storage device 140 may store images of a human body or an animal as shown in FIG. 2 in advance. The skeleton and appearance feature information is used as a contrast image.
  • the processor 120 can determine whether the object is a human body or not by comparing the object image captured by the image sensor 111 with the contrast image in the storage device 140. Movable objects such as animals. Referring to FIG. 3, when the object (person) in FIG. 3 appears in the sensing range of the image sensor 111, the image sensor 111 captures an image of the object (person). Since the storage device 140 has previously stored the image and appearance feature information of the specific object as the contrast image, the processor 120 can compare the object (person) image captured by the image sensor 111 with the contrast image previously stored in the storage device 140. And use this to determine that the object is a human body.
  • the storage device 140 may also store images and appearance characteristics of other movable objects as contrast images.
  • the storage device 140 can also store images of other autonomous mobile devices or known mechanical devices for the processor 120 to determine. The present invention is not limited to that shown in FIG. 2.
  • the contrast image stored in the storage device 140 is stored in advance, however, this is not a limitation of the present invention.
  • the autonomous mobile device 10 can communicate with a cloud server or a remote server through the communication device 150 to update the comparison image in the storage device 140 in real time. 4, the autonomous mobile device 10 transmits the location information of the autonomous mobile device 10 to the remote server 20 through the communication device 150, and the remote server 20 returns characteristic information to the autonomous mobile device 10 according to the location of the autonomous mobile device 10 , Where the feature information includes image and appearance feature information of possible movable objects in the location of the autonomous mobile device 10.
  • the autonomous mobile device 10 stores the characteristic information in the storage device 140 as a comparison image.
  • the processor 120 can determine whether the object is a human body or not by comparing the object image captured by the image sensor 111 with the contrast image in the storage device 140. Movable objects such as animals. For example, if the location information of the autonomous mobile device 10 indicates that the autonomous mobile device 10 is located in a warehouse, the remote server 20 may return characteristic information of other autonomous mobile devices or mechanical devices. For another example, if the location information of the autonomous mobile device 10 indicates that the autonomous mobile device 10 is located in an airport, the remote server 20 may return the characteristic information of the device such as the airport manned vehicle and sweeper.
  • the autonomous mobile device 10 can also communicate with the remote server 20 in a timely manner to make the determination.
  • the image sensor 111 captures an image of the object 30.
  • the processor 120 cannot determine whether the object 30 is a movable object based on the current contrast image in the storage device 140.
  • the autonomous mobile device 10 communicates with the remote server 20 through the communication device 150. After the communication device 150 transmits the location information of the autonomous mobile device 10 to the remote server 20, the location information is received from the remote server 20.
  • the image and appearance characteristics of possible movable objects are stored in the storage device 140 as a contrast image.
  • the processor 120 compares the image sensor 111 with the contrast image stored in the storage device 140 to determine whether the object 30 is a movable object according to the method of the embodiment shown in FIG. 2 and FIG. 3. It should be noted that, in other embodiments, the communication device 150 can directly send the image of the object 30 to the remote server 20, and the remote server 20 determines whether the object 30 is movable by means of manual identification or intelligent identification. Object, and transmit the judgment result to the processor 120 through the communication device 150.
  • the location information may be one or more of the IP address of the autonomous mobile device 10, 4G or 5G positioning information, or the global positioning system information of the autonomous mobile device 10. Combinations, the present invention is not limited to this.
  • the autonomous mobile device 10 may also use other image recognition methods to make judgments.
  • the image sensor 111 can capture images of the object at two different time points for the processor 120 to determine whether the object is a movable object in motion.
  • FIGS. 6A and 6B are respectively object images captured by the image sensor 111 at two different time points.
  • the image sensor 111 captures the first image of the object at the first time point.
  • the image sensor 111 captures the second image of the object at the second time point.
  • the image sensor 111 transmits the two images to the processor 120, and the processor 120 determines whether the object is a movable object according to the images captured at two time points.
  • the processor 120 intercepts the distance of the object (ball) relative to the multiple feature points in the image from the image shown in FIG. 6A.
  • the characteristic points may be the endpoints of the shelf in the background.
  • the processor 120 intercepts the distance of the object (ball) relative to the same feature point from the image shown in FIG.
  • the object (ball) determines whether the relative distance of the object (ball) relative to the multiple feature points in the two time points is If there is a change, the object (ball) is judged to be a movable object in motion; otherwise, the object (ball) is judged to be a static object.
  • the processor 120 will simultaneously correct the error caused by the movement of the autonomous mobile device 10 to make the judgment more accurate.
  • the autonomous mobile device 10 can also determine whether the object is a movable object by sensing the relative distance between the object and the autonomous mobile device 10.
  • the distance sensor 112 can sense the distance between the object and the autonomous mobile device 10 at two different time points, so that the processor 120 can determine whether the object is in progress. Moving movable objects.
  • FIGS. 7A and 7B respectively depict the distance between the object sensed by the distance sensor 112 and the autonomous mobile device 10 at two different time points.
  • the distance sensor 112 senses the distance between the object (ball) and the autonomous mobile device 10 at a first point in time.
  • FIG. 7A the distance sensor 112 senses the distance between the object (ball) and the autonomous mobile device 10 at a first point in time.
  • the distance sensor 112 senses the distance between the object (ball) and the autonomous mobile device 10 at the second time point.
  • the distance sensor 112 transmits the distance sensed at the two time points to the processor 120, and the processor 120 determines whether the object is a movable object according to the distance sensed at the two time points.
  • the distance sensor 112 senses the distance between an object (ball) and the autonomous mobile device 10, and at the same time senses the distance between a background object (such as a rear shelf) and the autonomous mobile device 10.
  • a background object such as a rear shelf
  • the distance sensor 112 again senses the distance between the object (ball) and the autonomous mobile device 10, and at the same time senses the distance between the background object (such as the rear shelf) and the autonomous mobile device 10.
  • the processor 120 uses the distance between the background object (such as the rear shelf) and the autonomous mobile device 10 as a reference to determine whether the relative distance between the object (ball) and the autonomous mobile device 10 has changed within two time points. If so, then The object (ball) is judged to be a movable object in motion; otherwise, the object (ball) is judged to be a static object.
  • the processor 120 will also correct the error caused by the movement of the autonomous mobile device 10, making the judgment more Precise.
  • the above embodiments respectively illustrate that the image sensor 111 or the distance sensor 112 is used for sensing to obtain the information of the object, and the processor 120 can determine whether the object is a movable object based on this.
  • the autonomous mobile device 10 can perform sensing in combination with the image sensor 111 and the distance sensor 112 to obtain more accurate judgment results.
  • the processor 120 determines whether the object is a movable object according to the above-mentioned embodiment, if the object is on the travel path of the autonomous mobile device 10, it selectively avoids obstacles at different obstacle avoidance distances according to whether the object is a movable object. barrier.
  • the processor 120 determines that the object is a movable object, the obstacle avoidance is performed with a larger obstacle avoidance distance, so as to avoid the movement of the object making the autonomous mobile device 10 unable to dodge, thereby causing personnel and device damage; Conversely, if the processor 120 determines that the object is a static object, it will avoid obstacles with a smaller obstacle avoidance distance, so as to shorten the obstacle avoidance time of the autonomous mobile device 10 and improve the working efficiency of the autonomous mobile device 10.
  • the processor 120 determines that the object 81 is a static object through the foregoing embodiment, the autonomous mobile device 10 only needs to avoid obstacles with a small obstacle avoidance distance D1. Therefore, the processor 120 sends a control signal to make the driving assembly 130 perform obstacle avoidance on the semi-circular arc obstacle avoidance path with the object 81 as the center and the obstacle avoidance distance D1 as the radius.
  • the processor 120 determines that the object 82 is a movable object through the foregoing embodiment, the autonomous mobile device 10 needs to avoid obstacles with a larger obstacle avoidance distance D2 to ensure safety. Therefore, the processor 120 sends a control signal to make the drive assembly 130 perform obstacle avoidance on the semi-circular arc obstacle avoidance path with the object 82 as the center and the obstacle avoidance distance D2 as the radius.
  • the autonomous mobile device 10 uses a semi-circular arc obstacle avoidance path to avoid obstacles.
  • the obstacle avoidance method adopted by the autonomous mobile device 10 is not a limitation of the present invention. In other embodiments, the autonomous mobile device 10 may adopt other obstacle avoidance paths to avoid obstacles.
  • the processor 120 determines that the object 82 is a movable object in the above-mentioned embodiment, the autonomous mobile device 10 needs to avoid the obstacle by the obstacle avoidance distance D2 to ensure safety. Then, the processor 120 sends a control signal to make the driving assembly 130 bypass the object 82 in a straight line avoiding obstacles. Referring to FIG.
  • the processor 120 determines that the object 82 is a movable object through the above-mentioned embodiment, the autonomous mobile device 10 needs to avoid the obstacle by the obstacle avoidance distance D2 to ensure safety. Then, the processor 120 sends a control signal to make the driving assembly 130 bypass the object 82 in a right-angle turning manner.
  • the distance between the autonomous mobile device 10 and the object 82 is always greater than the obstacle avoidance distance D2, so as to prevent the sudden movement of the object 82 from causing damage to the personnel and the device.
  • the autonomous mobile device 10 can determine which obstacle avoidance method should be adopted for obstacle avoidance according to factors such as terrain, channel width, and the number of obstacles on the travel path. In some embodiments, the autonomous mobile device 10 avoids obstacles in a way that can quickly avoid obstacles and improve work efficiency. In some embodiments, the autonomous mobile device 10 avoids obstacles in a manner that best ensures the safety of personnel. The present invention is not limited to this.
  • the autonomous mobile device 10 can be used to carry goods.
  • the weight carried by the autonomous mobile device 10 is heavier, collisions with persons or other devices will cause more serious damage.
  • the weight sensor 113 is used to sense the carrying weight of the autonomous mobile device 10.
  • the processor 120 selectively selects the obstacle avoidance distance of the autonomous mobile device 10 according to the object information sensed by the sensing component 110 in the above-mentioned embodiment and the carrying weight of the autonomous mobile device 10.
  • the processor 120 can adjust the obstacle avoidance distance in a timely manner, so that the autonomous mobile device 10 can avoid obstacles with a larger obstacle avoidance distance to ensure safety.
  • the autonomous mobile device 10 moves with cargo and encounters obstacles on the travel path.
  • the processor 120 determines that the object is a movable object. Therefore, the autonomous mobile device 10 needs to avoid obstacles with a larger obstacle avoidance distance D2 to ensure safety.
  • the weight sensor 113 in the sensing component 110 senses the carrying weight of the autonomous mobile device 10, and the processor 120 determines whether the carrying weight of the autonomous mobile device 10 at this time is greater than a preset weight. If the carrying weight is greater than a preset weight, the processor 120 determines that the autonomous mobile device 10 needs to avoid the obstacle by the obstacle avoidance distance D3, where the obstacle avoidance distance D3 is greater than the obstacle avoidance distance D2. If the carrying weight is less than or equal to the preset weight, the processor 120 determines that the autonomous mobile device 10 performs obstacle avoidance at the obstacle avoidance distance D2.
  • the autonomous mobile device when the autonomous mobile device is unable to avoid obstacles with a large obstacle avoidance distance due to the narrow channel width or too many obstacles, the autonomous mobile device will move autonomously when the safety of personnel is prioritized.
  • the device 10 can stop traveling in a timely manner, and wait for the obstacle to be removed (such as a person leaving or an object being removed) before traveling.
  • the autonomous mobile device 10 may also include components such as speakers and warning lights. When the autonomous mobile device 10 is avoiding obstacles or cannot avoid obstacles, the effect of warning people is achieved by means of warning sounds or warning lights.
  • the image sensor 111 or the distance sensor 112 senses the object information.
  • the processor 120 determines whether the object is a movable object in motion. In order to accurately choose the obstacle avoidance path, the moving speed and direction of the object must be taken into consideration. Referring to FIG. 11, at the first time point T1, the object 82 is located within the sensing range of the image sensor 111 or the distance sensor 112. At the same time, according to the position of the object 82, the processor 120 defines the position coordinates of the object 82 at this time as (P XA , P YA ).
  • the coordinate position of the object 82 can be defined by taking the position of the autonomous mobile device 10 itself as the origin, and the distance between the object 82 sensed by the distance sensor 112 and the autonomous mobile device 10. Next, the object 82 moves to the position coordinates (P XB , P YB ) at the second time point T2. According to the first time point T1 and the corresponding coordinates (P XA , P YA ) and the second time point T2 and the corresponding coordinates (P XB , P YB ), the processor 120 can calculate the moving speed and direction of the object 82.
  • the processor 120 calculates the travel path that the object 82 will enter the autonomous mobile device 10 according to the moving speed and direction of the object 82 and the moving speed and direction of the autonomous mobile device 10 itself, and starts preparing for obstacle avoidance. Since the obstacle avoidance paths selectable by the autonomous mobile device 10 are the path P1 and the path P2 in the figure, the processor 120 matches two obstacle avoidance paths P1 and P1 according to the moving speed and direction of the object 82 and the moving speed of the autonomous mobile device 10 P2, choose one of the obstacle avoidance paths that can best ensure the safety of personnel. Taking FIG.
  • the processor 120 calculates that according to the moving speed and direction of the object 82 and the moving speed of the autonomous mobile device 10 itself, if the obstacle avoidance path P2 is selected for obstacle avoidance, it will interact with the object 82 at time T3. Collision at the position of coordinates (P XC , P YC ). Therefore, the processor 120 selects the obstacle avoidance path P1 for obstacle avoidance to avoid collision with the object 82.
  • FIG. 12 is a schematic diagram of an autonomous mobile device 40 according to another embodiment of the present invention.
  • the autonomous mobile device 40 is a luggage case with an autonomous mobile function.
  • the autonomous mobile device 40 includes a sensing component 410, a processor 420, a driving component 430, a storage device 440, a communication device 450, a battery 460, and a power distribution module 470.
  • the sensing component 410 includes an image sensor 411, a distance sensor 412, and a weight sensor 413.
  • the functions of the components included in the autonomous mobile device 40 are the same as the corresponding components of the autonomous mobile device 10 shown in FIG. 1.
  • the autonomous mobile device 40 can also apply the technical solutions disclosed in FIGS. 2 to 11, and the detailed description is omitted here to save space.
  • the autonomous mobile device 10 and the autonomous mobile device 40 may not include the weight sensors 113 and 413. Accordingly, the autonomous mobile device 10 and the autonomous mobile device 40 may be based on their own movement acceleration And the power provided to the driving components 130 and 430 calculates the bearing weight.
  • the autonomous mobile device of the present application is summarized in Fig. 13 to facilitate the understanding of the present invention.
  • 13 is a system block diagram of an autonomous mobile device according to an embodiment of the present application.
  • the autonomous mobile device 10 includes a sensing component 110, a processor 120, a driving component 130, a storage device 140, and a communication device. 150, a battery 160, a power distribution module 170, and a display screen 180.
  • the sensing component 110 includes an image sensor 111, a distance sensor 112 and a weight sensor 113.
  • the image sensor 111 can be implemented by a general camera, and the distance sensor 112 can be implemented by one of a depth camera, a laser radar, an ultrasonic sensor, and an infrared sensor, or a combination of multiple of them.
  • the sensing component 110 is electrically connected to the processor 120 (for example, a central processing unit CPU).
  • the sensing component 110 transmits the sensed object information to the processor 120.
  • the processor 120 determines whether the object is a movable object according to the object information, and sends a control signal.
  • the driving component 130 is electrically connected to the processor 120, which is used to drive the autonomous mobile device 10 to move. When the object is on the traveling path of the autonomous mobile device 10, the driving component 130 performs obstacle avoidance according to the obstacle avoidance distance indicated by the control signal .
  • the driving assembly 130 includes a motor and power wheels.
  • the storage device 140 is used to store information, such as movable object feature information, static object feature information, location information of the autonomous mobile device 10, map information of the location, task information of the autonomous mobile device 10, shelf information, and so on.
  • the communication device 150 is used to communicate with a cloud server or a remote server to update the characteristic information of the movable object in the storage device 140 or to receive the judgment result of the object by the remote server.
  • the storage device 140, the communication device 150 and the processor 120 are electrically connected.
  • the display screen 180 is used to display information.
  • the power distribution module 170 is electrically connected to each component of the autonomous mobile device 10, and is used to distribute the power provided by the battery 160 to each component.
  • FIG. 14 is a schematic diagram of a warehouse logistics system 50 according to an embodiment of the present invention.
  • the warehouse logistics system 50 includes a dispatch server 60 and autonomous mobile devices 71, 72, 73, and 74.
  • the autonomous mobile devices 71, 72, 73, and 74 can be implemented by the autonomous mobile device 10 shown in FIG. 1.
  • the warehouse logistics system 50 is used to control the movement of autonomous mobile devices 71, 72, 73, and 74 between shelves through the dispatch server 60.
  • the autonomous mobile device after determining that the object is a movable object or a static object, the autonomous mobile device will adopt different obstacle avoidance distances. However, the distance between shelves in general warehouses is limited.
  • autonomous mobile devices may enter the travel path of other autonomous mobile devices when avoiding obstacles, thereby causing autonomous mobile devices to collide with each other.
  • the dispatch server 60 receives the obstacle avoidance information from the autonomous mobile device, it performs autonomously based on factors such as the distance between the shelves, the obstacle avoidance distance adopted by the autonomous mobile device, the speed and distance between the autonomous mobile devices, etc. Dispatching of mobile devices, arranging other autonomous mobile devices to continue or stop traveling, to prevent autonomous mobile devices from colliding with each other.
  • the autonomous mobile device 72 encounters an object 81 on the path of travel.
  • the autonomous mobile device 72 determines that the object 81 is a static object, and therefore chooses a smaller obstacle avoidance path D1 Take obstacle avoidance.
  • the autonomous mobile device 72 transmits obstacle avoidance information about the obstacle avoidance path D1 to the dispatch server 60.
  • the dispatch server 60 determines that the autonomous mobile device 72 will not collide with the autonomous mobile device 71 during obstacle avoidance. Therefore, the dispatch server 60 sends a signal to the autonomous mobile device 71 indicating that the autonomous mobile device 72 can continue to travel.
  • the autonomous mobile device 74 encounters an object 82 on the path of travel. According to the embodiments of FIGS. 2 to 11, the autonomous mobile device 74 determines that the object 82 is a movable object, and therefore chooses to proceed with the larger obstacle avoidance path D2. Avoid obstacles for safety.
  • the autonomous mobile device 74 transmits obstacle avoidance information about the obstacle avoidance path D2 to the dispatch server 60. Based on factors such as the distance between the shelves, the obstacle avoidance distance D2, the speed and distance of the autonomous mobile devices 73 and 74, the dispatch server 60 determines that the autonomous mobile device 74 will enter the travel path of the autonomous mobile device 73 when avoiding obstacles. Therefore, the dispatch server 60 sends a signal to the autonomous mobile device 73 to instruct the autonomous mobile device 73 to stop traveling, and wait for the autonomous mobile device 74 to complete obstacle avoidance before proceeding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自主移动装置(10)及仓储物流系统(50),自主移动装置(10)包括:感测组件(110)、处理器(120)及驱动组件(130)。感测组件(110)用于感测物体的信息;处理器(120)用于依据信息判断物体是否为可移动物体,并依据判断结果来产生控制信号,其中控制信号用于指示自主移动装置(10)的避障距离;驱动组件(130)用于驱动自主移动装置(10)以进行移动,其中当物体位于自主移动装置(10)的行进路径上时,驱动组件(130)以至少避障距离驱动自主移动装置(10)进行避障。仓储物流系统(50)包括多个自主移动装置(10)以及调度伺服器(60)。调度伺服器(60)用于自其中一个自主移动装置(10)接收避障信息,并发送行进信号以指示其他自主移动装置(10)继续行进或暂停行进。

Description

自主移动装置及仓储物流系统 技术领域
本发明是有关一种装置,详细来说,是有关一种自主移动装置及仓储物流系统。
背景技术
目前市面上的自主移动装置,例如机器人,在进行自主移动时,会通过感测器来回避障碍物。然而,当障碍物为可移动物体,例如人或者另一台机器人时,若避障的范围太小,很可能在可移动物体开始移动时,将会撞上正在回避绕行的自主移动装置,造成人员或机器的损伤;然而对于静态物体而言,若避障范围太大又会产生不必要的绕行距离,造成自主移动装置的工作效率降低。
发明内容
本申请公开了一种自主移动装置及仓储物流系统,通过判断障碍物是否为可移动物体来决定避障距离的技术手段来解决背景技术中的问题,借以避免因为避障距离过小而造成人员或机器的损伤的问题,同时,避免因为避障距离过大而造成自主移动装置的工作效率降低。
依据本发明的一实施例,公开了一种自主移动装置,所述自主移动装置包括:感测组件、处理器及驱动组件。所述感测组件用于感测物体的信息;所述处理器用于依据所述信息判断所述物体是否为可移动物体,并依据判断结果来产生控制信号,其中所述控制信号用于指示所述自主移动装置的避障距离;所述驱动组件用于驱动所述自主移动装置以进行移动,其中当所述物体位于所述自主移动装置的行进路径上时,所述驱动组件以至少所述避障距离驱动所述自主移动装置进行避障。
依据本发明的一实施例,当所述物体为可移动物体时的避障距离大于当所 述物体为静态物体的避障距离。
依据本发明的一实施例,当所述物体位于所述自主移动装置的行进路径上时,所述移动组件控制所述自主移动装置以所述物体为避障中心、所述避障距离为半径的半圆弧路径作为避障路径来进行避障。
依据本发明的一实施例,所述感测组件包括影像传感器,所述信息是所述影像传感器捕捉所述物体的影像。
依据本发明的一实施例,所述处理器通过所述影像传感器于两个时间点所捕捉的影像来判断所述物体是否为可移动物体。
依据本发明的一实施例,所述自主移动装置还包括储存装置,用于储存对比影像。
依据本发明的一实施例,所述自主移动装置还包括通讯装置,用于传送所述自主移动装置的位置信息至远端伺服器,并自所述远端伺服器接收对应所述位置信息中可能的可移动物体特征,并将所述可能的可移动物体特征存入所述储存装置中以作为所述对比影像。
依据本发明的一实施例,所述处理器比较所述影像及所述对比影像以判断所述物体是否为可移动物体。
依据本发明的一实施例,所述感测组件包括距离传感器,所述信息是所述物体与所述自主移动装置之间的距离。
依据本发明的一实施例,所述处理器通过所述距离传感器于两个时间点所感测的距离来判断所述物体是否为可移动物体。
依据本发明的一实施例,所述处理器还用于依据所述感测组件于两个时间点所感测的信息来判断所述物体的移动速度,并依据所述移动速度选择所述自主移动装置的避障路径。
依据本发明的一实施例,所述感测组件还用于感测所述自主移动装置的承 载重量,所述处理器依据所述承载重量调整所述避障距离。
依据本发明的一实施例,公开一种仓储物流系统,包括多个自主移动装置及调度伺服器。所述调度伺服器用于自其中一个所述自主移动装置接收避障信息,并发送行进信号以指示所述其他自主移动装置继续行进或暂停行进。
本发明所公开的自主移动装置及仓储物流系统可通过感测组件及处理器判断物体是否为可移动物体,并借此决定避障距离,如此一来,可以避免因为避障距离过小而造成人员或机器的损伤的问题,同时,避免因为避障距离过大而造成自主移动装置的工作效率降低。
附图说明
图1是依据本发明一实施例之自主移动装置的示意图。
图2是依据本发明一实施例之对比影像的示意图。
图3是依据本发明一实施例之对物体进行判断的示意图。
图4是依据本发明一实施例之通讯装置与远端伺服器进行通讯的示意图。
图5是依据本发明一实施例之对物体进行判断的示意图。
图6A及图6B是依据本发明一实施例之对物体进行判断的示意图。
图7A及图7B是依据本发明一实施例之对物体进行判断的示意图。
图8A及图8B是依据本发明一实施例之选择避障距离的示意图。
图9A及图9B是依据本发明一实施例之避障路径的示意图。
图10是依据本发明一实施例之依据承载重量选择避障距离的示意图。
图11是依据本发明一实施例之依据物体移动速度选择避障路径的示意图。
图12是依据本发明另一实施例之自主移动装置的示意图。
图13是依据本发明一实施例之自主移动装置的方块示意图。
图14是依据本发明一实施例之仓储物流系统的示意图。
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见, 这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
市面上的自主移动装置,如机器人,在进行回避障碍物时,皆以固定模式 进行避障,然而,当障碍物是可移动物体,如人、动物或机器人时,若自主移动装置采取与障碍物是静态物体时相同的避障模式,一旦可移动物体与自主移动装置同时进行移动,可能造成自主移动装置闪避不及,进而造成人员或装置的损伤。另一方面,若设定自主移动装置不论障碍物是可移动物体或静态物体,皆以较大的避障距离进行避障,将使得自主移动装置花费较多时间进行避障,造成工作效率降低。据此,本发明公开一种自主移动装置及仓储物流系统,通过感测组件及处理器判断物体是否为可移动物体,并借此决定避障距离,如此一来,可以避免因为避障距离过小而造成人员或机器的损伤的问题,同时,避免因为避障距离过大而造成自主移动装置的工作效率降低。
在本发明中,自主移动装置可以是应用于仓储物流系统中用于承载货物的无人物流车,或者,具有自主移动功能的行李箱。然而只要是应用本发明所公开之技术方案的自主移动装置,皆应隶属于本发明的范畴。需说明的是,在本发明中,可移动物体可以是已经在动态运动中的人、动物、机械装置或物体、或者,可随时进行运动但暂时静止的人、动物或机械装置。
图1是依据本发明一实施例之自主移动装置10的示意图。在本实施例中,自主移动装置10是一种用于承载货物的无人物流车。自主移动装置10包括感测组件110、处理器120及驱动组件130。感测组件110包括设置于自主移动装置10前方的影像传感器111以及距离传感器112。影像传感器111用于捕捉物体的影像。距离传感器112用于感测物体与自主移动装置10间的距离。为了有效地使自主移动装置10避开物体,感测组件110可用于感测物体的信息,其中物体信息可以是影像传感器111所捕捉的物体影像,或是距离传感器112所感测的物体与自主移动装置10间的距离,或者两者的结合。需注意的是,在其他实施例中,感测组件110还可以包括其他感测器以实现自主移动装置10的其他功能。可选地,感测组件110还可包括重量感测器113,其用于感测自主移动装置10的承载重量。在本实施例中,影像传感器111可以用一般的相机来实现,距离传感器112可以用深度相机(或称为RGBD相机)、激光雷达(Light  Laser Detection and Ranging,LiDAR)、超声传感器、红外传感器的其中之一或其中多项的组合来实现,本发明并不以此为限。
处理器120设置于自主移动装置10中,是用于依据感测组件110所感测到的物体信息,如前述物体影像或物体与自主移动装置间的距离,来判断物体是否为可移动物体,并依据判断结果产生控制信号。控制信号用于指示自主移动装置10针对物体的避障距离。驱动组件130用于驱动自主移动装置10以进行移动,其中当物体位于自主移动装置10的行进路径上时,驱动组件130以至少避障距离来进行避障。在本实施例中,驱动组件130包括马达(图未示)以及图1中所示的动力轮,所述马达提供动能至动力轮来驱动自主移动装置10。
需说明的是,自主移动装置10还可包括其他组件、元件来实现自主移动装置10的其他功能。如图1所示,自主移动装置10还包括用于储存信息的储存装置140、用于与远端伺服器通讯的通讯装置150、用于提供功率的电池160、将功率分配至各个部件的功率分配模组170以及用于显示信息的显示屏180。
需注意的是,图1所示的自主移动装置10仅为范例说明,本发明并不限制自主移动装置10的详细架构,特别的是,本发明并不限制图1所示元件如影像传感器111及距离传感器112设置于自主移动装置10上的位置。在其他实施例中,自主移动装置10可以包括多个影像传感器111以及多个距离传感器112,分别分布在自主移动装置10的不同位置,以感测多方位的物体信息。影像传感器111及距离传感器112的详细设置位置取决于实际设计需要。
图2至图5描述当物体出现在影像感测器111的感测范围内时,处理器120通过影像传感器111捕捉的物体影像以获得物体外观特征,并借此判断物体是否是可移动物体的实施例。详细来说,在图2及图5实施例中,处理器120是搭配影像传感器111以及储存装置140来判断物体是否为可移动物体。
如前所述,储存装置140可用于储存信息。举例来说,储存装置140可用于可以储存自主移动装置10的位置信息、所在位置的地图信息、自主移动装置10的任务信息等等。特别地,储存装置140可用于储存对比影像。详细来说, 储存装置140可以在自主移动装置10出厂前就先储存特定物体的影像及外观特征信息作为对比影像,举例来说,储存装置140可事先储存如图2所示的人体或动物的骨架及外观特征信息作为对比影像。在如此设置下,当物体出现在影像感测器111的感测范围时,处理器120可以通过比较影像感测器111捕捉的物体影像以及储存装置140中的对比影像来判断物体是否是人体或动物等的可移动物体。参考图3,当图3中的物体(人)出现在影像传感器111的感测范围时,影像感测器111捕捉物体(人)的影像。由于储存装置140已事先储存特定物体的影像及外观特征信息作为对比影像,因此,处理器120可通过比较影像传感器111所捕捉的物体(人)影像以及事先储存在储存装置140中的对比影像,并借此判断物体是人体。
在其他实施例中,储存装置140还可储存其他可移动物体的影像及外观特征作为对比影像。举例来说,储存装置140还可储存其他自主移动装置或已知的机械装置的影像,以供处理器120判断,本发明并不以图2所示为限。
在图2及图3的实施例中,储存装置140所储存的对比影像为事先所储存,然而,此并非本发明的一限制。在其他实施例中,自主移动装置10可通过通讯装置150与云端伺服器或远端伺服器进行通讯,以实时地更新储存装置140中的对比影像。参考图4,自主移动装置10通过通讯装置150将自主移动装置10的位置信息传送至远端伺服器20,远端伺服器20依据自主移动装置10的位置,回传特征信息至自主移动装置10,其中特征信息包括了自主移动装置10的所在位置中可能的可移动物体的影像及外观特征信息。自主移动装置10将特征信息存入储存装置140中作为对比影像。在如此设置下,当物体出现在影像感测器111的感测范围时,处理器120可以通过比较影像感测器111捕捉的物体影像以及储存装置140中的对比影像来判断物体是否是人体或动物等的可移动物体。举例来说,若自主移动装置10的位置信息指示自主移动装置10位在一仓库中,则远端伺服器20可以回传其他自主移动装置或机械装置的特征信息。以另一例子而言,若自主移动装置10的位置信息指示自主移动装置10 位在一机场中,则远端伺服器20可以回传如机场载人车、清扫车等装置的特征信息。
在其他实施例中,在无法通过上述实施例的方式来判断物体时,自主移动装置10还可以及时地与远端伺服器20进行通讯来进行判断。参考图5,当物体30出现在影像传感器111的感测范围时,影像传感器111捕捉物体30的影像。然而,处理器120无法通过目前储存装置140中的对比影像来判断物体30是否为可移动物体。据此,自主移动装置10通过通讯装置150与远端伺服器20进行通讯,通讯装置150将自主移动装置10的位置信息传送至远端伺服器20后,自远端伺服器20接收所在位置中可能的可移动物体的影像及外观特征,并存入储存装置140作为对比影像。处理器120再依据图2及图3所示实施例的方式,比较影像传感器111与储存于储存装置140的对比影像来判断物体30是否是可移动物体。需说明的是,在其他实施例中,通讯装置150可以直接将物体30的影像传送至远端伺服器20,远端伺服器20再以人工辨识或智能辨识的方式判断物体30是否为可移动物体,并将判断结果通过通讯装置150传送至处理器120。
在图4及图5的实施例中,位置信息可以是自主移动装置10的IP位址、4G或5G定位信息、或是自主移动装置10的全球定位系统资讯的其中之一或者其中多个的组合,本发明并不以此为限。
在本发明中,自主移动装置10还可以通过其他影像辨识方式来进行判断。详细来说,当物体出现在影像传感器111的感测范围时,影像传感器111可于两个不同时间点捕捉物体的影像,以供处理器120判断物体是否是正在进行运动的可移动物体。参考图6A及图6B,图6A及图6B分别是影像传感器111于两个不同时间点所捕捉的物体影像。在图6A中,影像传感器111于第一时间点捕捉物体的第一张影像。在图6B中,影像传感器111于第二时间点捕捉物体的第二张影像。影像传感器111将两张影像传至处理器120,处理器120依据两个时间点所捕捉的影像来判断物体是否为可移动物体。详细来说,处理器 120自图6A所示的影像中截取物体(球)相对于影像中多个特征点的距离。在本实施例中,特征点可以是背景中货架的各个端点。接着,处理器120自图6B所示的影像中截取物体(球)相对于同样的特征点的距离,并判断在两个时间点内,物体(球)相对于多个特征点的相对距离是否有改变,若有,则判断物体(球)为正在运动中的可移动物体;否则,判断物体(球)为静态物体。
需说明的是,若自主移动装置10正在移动,在截取物体(球)与影像中特征点的距离时,处理器120会同时校正因自主移动装置10移动所造成的误差,使得判断更加精准。
在本发明中,自主移动装置10还可以通过感测物体与自主移动装置10间的相对距离来判断物体是否是可移动物体。详细来说,当物体出现在距离传感器112的感测范围时,距离传感器112可于两个不同时间点感测物体与自主移动装置10间的距离,以供处理器120判断物体是否是正在进行运动的可移动物体。参考图7A及图7B,图7A及图7B分别描绘距离传感器112于两个不同时间点所感测到的物体与自主移动装置10间的距离。在图7A中,距离传感器112于第一时间点感测物体(球)与自主移动装置10间的距离。在图7B中,距离传感器112于第二时间点感测物体(球)与自主移动装置10间的距离。距离传感器112将两个时间点所感测到的距离传至处理器120,处理器120依据两个时间点所感测到的距离来判断物体是否为可移动物体。详细来说,在图7A所示的时间点中,距离传感器112感测物体(球)与自主移动装置10的距离,并且同时感测背景物(如后方货架)与自主移动装置10的距离。接着,在图7B所示的时间点中,距离传感器112再次感测物体(球)与自主移动装置10的距离,同时感测背景物(如后方货架)与自主移动装置10的距离。处理器120以背景物(如后方货架)与自主移动装置10的距离作为基准,判断在两个时间点内物体(球)与自主移动装置10之间的相对距离是否有改变,若有,则判断物体(球)为正在运动中的可移动物体;否则,判断物体(球)为静态物体。
需说明的是,若自主移动装置10正在移动,在感测物体(球)与自主移动装置10间的距离时,处理器120会同时校正因自主移动装置10移动所造成的误差,使得判断更加精准。
另外,上述实施例分别说明以影像传感器111或距离传感器112来进行感测以获得物体的信息,并使得处理器120可据此判断物体是否为可移动物体。本领域具有通常知识者应能轻易理解,自主移动装置10可以结合影像传感器111以及距离传感器112共同进行感测,以获得更精准的判断结果。
处理器120依据上述实施例的方式判断物体是否为可移动物体后,若物体位在自主移动装置10的行进路径上,则依据物体是否为可移动物体选择性地以不同的避障距离进行避障。详细来说,若处理器120判断物体是可移动物体,则以较大的避障距离进行避障,以避免因为物体的移动使得自主移动装置10闪避不及,进而造成的人员及装置的损伤;反之,若处理器120判断物体是静态物体,则以较小的避障距离进行避障,以缩短自主移动装置10的避障时间,提升自主移动装置10的工作效率。
参考图8A,在图8A的实施例中,当处理器120通过上述实施例判断物体81为静态物体时,自主移动装置10仅需以较小的避障距离D1进行避障。因此,处理器120发出控制信号,使得驱动组件130以物体81为中心、避障距离D1为半径的半圆弧避障路径进行避障。参考图8B,在图8B的实施例中,当处理器120通过上述实施例判断物体82为可移动物体时,自主移动装置10需要以较大的避障距离D2进行避障以策安全。因此,处理器120发出控制信号,使得驱动组件130以物体82为中心、避障距离D2为半径的半圆弧避障路径进行避障。
在图8A及图8B的实施例中,自主移动装置10以半圆弧避障路径进行避障。然而,自主移动装置10采取的避障方式并非本发明的一限制,在其他实施例中,自主移动装置10可以采取其他避障路径进行避障。参考图9A,当处理器120通过上述实施例的方式判断物体82为可移动物体时,自主移动装置 10需以避障距离D2进行避障以策安全。接着,处理器120发出控制信号,使得驱动组件130以直线避障的方式绕过物体82。参考图9B,当处理器120通过上述实施例判断物体82为可移动物体时,自主移动装置10需以避障距离D2进行避障以策安全。接着,处理器120发出控制信号,使得驱动组件130以直角转弯的方式绕过物体82。在图9A及图9B的实施例中,自主移动装置10与物体82之间的距离自始大于避障距离D2,避免物体82的突然移动造成人员及装置的损伤。
在本发明中,自主移动装置10可以依据地形、通道宽度、行进路径上障碍物数量等因素判断应该采取何种避障方式来进行避障。在某些实施例中,自主移动装置10采取可以最快避障提升工作效率的方式进行避障。在某些实施例中,自主移动装置10以最能确保人员安全的方式进行避障。本发明并不以此为限。
在本发明中,自主移动装置10可以用于承载货物,当自主移动装置10所承载的重量较重时,与人员或其他装置的碰撞将造成更严重的损伤。如图1实施例所述,重量感测器113用于感测自主移动装置10的承载重量。在如此设置下,处理器120依据上述实施例中感测组件110所感测到的物体信息以及自主移动装置10的承载重量选择性地选择自主移动装置10的避障距离。详细来说,当自主移动装置10所承载的重量大于预设重量时,处理器120可适时地调节避障距离,使得自主移动装置10以更大的避障距离进行避障以策安全。
参考图10,在图10的实施例中,自主移动装置10承载着货物移动,并在行经路径上遇到障碍物。通过上述实施例,处理器120判断物体是可移动物体,因此,自主移动装置10需以较大的避障距离D2进行避障以策安全。同时,感测组件110中的重量感测器113感测自主移动装置10的承载重量,处理器120判断此时自主移动装置10的承载重量是否大于一预设重量。若承载重量大于一预设重量,处理器120判断自主移动装置10需以避障距离D3进行避障,其中避障距离D3大于避障距离D2。若承载重量小于或等于预设重量,处理器 120判断自主移动装置10以避障距离D2进行避障。
在某些实用情境中,由于通道宽度过窄或是障碍物数量太多等原因,使得自主移动装置无法以较大的避障距离进行避障时,在优先考量人员安全的情况下,自主移动装置10可以适时地停止行进,等待障碍物移除(如人员离开或物体被搬离)后再行行进。在某些实施例中,自主移动装置10还可包括扬声器、警示灯等组件,在自主移动装置10进行避障或无法避障时,以警示音或警示灯的方式达到警示人员的效果。
当物体出现在影像传感器111或距离传感器112的感测范围内时,影像传感器111或距离传感器112感测物体信息。接着,依据图6A、图6B、图7A及图7B实施例,处理器120判断物体是否是正在运动中的可移动物体。为了精确的选择避障路径,物体的移动速率及方向必须纳入考虑。参考图11,在第一时间点T1时,物体82位在影像传感器111或距离传感器112的感测范围内。同时,依据物体82所在位置,处理器120定义物体82此时的位置坐标为(P XA,P YA)。在本实施例中,物体82的坐标位置可以以自主移动装置10本身位置为原点,搭配距离传感器112所感测的物体82与自主移动装置10之间的距离加以定义。接着,物体82在第二时间点T2时,移动至位置坐标(P XB,P YB)。依据第一时间点T1与对应的坐标(P XA,P YA)以及第二时间点T2与对应的坐标(P XB,P YB),处理器120可计算出物体82的移动速率及方向。接着,处理器120依据物体82的移动速率与方向以及自主移动装置10自身的移动速率与方向,计算出物体82将会进入自主移动装置10的行进路径,并且开始准备进行避障。由于自主移动装置10可选择的避障路径有图示中的路径P1以及路径P2,处理器120依据物体82的移动速率与方向以及自主移动装置10的移动速率,搭配两种避障路径P1与P2,选择其中一种最能保障人员安全的避障路径。以图11为例,处理器120计算得知,依据物体82的移动速率与方向以及自主移动装置10自身的移动速率,若选择避障路径P2进行避障,将会在时间点T3与物体82在坐标(P XC,P YC)的位置上碰撞。因此,处理器120 选择避障路径P1进行避障,以避免与物体82的碰撞。
图12是依据本发明另一实施例之自主移动装置40的示意图。在本实施例中,自主移动装置40是一种具有自主移动功能的行李箱。自主移动装置40包括感测组件410、处理器420、驱动组件430、储存装置440、通讯装置450、电池460以及功率分配模组470。感测组件410包括影像传感器411、距离传感器412以及重量感测器413。在本实施例中,自主移动装置40所包括的元件的用途功能与图1所示自主移动装置10的对应元件相同。本领域具有通常知识者在阅读完上述实施例后应能轻易理解,自主移动装置40同样可应用图2至图11所公开的技术方案,详细说明在此省略以省篇幅。
需说明的是,在某些实施例中,自主移动装置10及自主移动装置40可以不包括重量感测器113及413,相应地,自主移动装置10及自主移动装置40可以依据自身的移动加速度以及提供给驱动组件130及430的动力计算承载重量。
归纳本申请的自主移动装置于图13,以方便理解本发明。图13是依据本申请实施例的自主移动装置的系统方块图,以自主移动装置10为例说明,自主移动装置10包括感测组件110、处理器120、驱动组件130、储存装置140、通讯装置150、电池160、功率分配模组170以及显示屏180。感测组件110包括影像传感器111、距离传感器112以及重量感测器113。在本实施例中,影像传感器111可以用一般的相机来实现,距离传感器112可以用深度相机、激光雷达、超声传感器、红外传感器的其中之一或其中多项的组合来实现。感测组件110与处理器120(例如是中央处理单元CPU)电性连接。感测组件110将所感测到的物体信息传送至处理器120。处理器120依据物体信息判断物体是否是可移动物体,并发出控制信号。驱动组件130与处理器120电性连接,其用于驱动自主移动装置10进行移动,当物体位在自主移动装置10的行进路径上时,驱动组件130依据控制信号指示的避障距离进行避障。驱动组件130包括马达以及动力轮。
储存装置140用于储存信息,例如,可移动物体特征信息、静态物体特征信息、自主移动装置10的位置信息、所在位置的地图信息、自主移动装置10的任务信息、货架信息等等。通讯装置150用于与云端伺服器或远端伺服器进行通讯,以更新储存装置140中的可移动物体特征信息或接收远端伺服器对于物体的判断结果。储存装置140、通讯装置150与处理器120电性连接。显示屏180用于显示信息。功率分配模组170与自主移动装置10的各部件电性连接,其用于将电池160所提供的功率分配至各个部件。
图14是依据本发明一实施例之仓储物流系统50的示意图。仓储物流系统50包括调度伺服器60、自主移动装置71、72、73及74。在本实施例中,自主移动装置71、72、73及74可以以图1所示的自主移动装置10来实现。在本实施例中,仓储物流系统50用于通过调度伺服器60控制自主移动装置71、72、73及74在货架间的行进。详细来说,依据图2至图11的实施例,当判断物体是可移动物体或静态物体后,自主移动装置将会采取不同的避障距离。然而,一般仓库中货架间的距离有所限制,因此,自主移动装置在进行避障时可能进入其他自主移动装置的行进路径,进而造成自主移动装置彼此碰撞。在本实施例中,调度伺服器60接受来自自主移动装置的避障信息后,依据货架间的距离、自主移动装置所采取的避障距离、自主移动装置间的速度与距离等因素,进行自主移动装置的调度,安排其他自主移动装置继续行进或停止行进,避免自主移动装置彼此碰撞。
如图14所示,自主移动装置72在行进路径上遇到物体81,依据图2至图11的实施例,自主移动装置72判断物体81是静态物体,因此选择以较小的避障路径D1进行避障。自主移动装置72将即将以避障路径D1进行避障的避障信息传送至调度伺服器60。依据货架间的距离、避障距离D1、自主移动装置71与72的速度与距离等因素,调度伺服器60判断自主移动装置72进行避障时将不会与自主移动装置71碰撞。因此,调度伺服器60发送信号至自主移动装置71,指示在自主移动装置72可以继续行进。
另一方面,自主移动装置74在行进路径上遇到物体82,依据图2至图11的实施例,自主移动装置74判断物体82是可移动物体,因此选择以较大的避障路径D2进行避障以策安全。自主移动装置74将即将以避障路径D2进行避障的避障信息传送至调度伺服器60。依据货架间的距离、避障距离D2、自主移动装置73与74的速度与距离等因素,调度伺服器60判断自主移动装置74进行避障时将会进入自主移动装置73的行进路径。因此,调度伺服器60发送信号至自主移动装置73以指示自主移动装置73停止行进,等待自主移动装置74完成避障后再前进。
上文概述若干实施例的特征,使得所属领域的技术人员可较佳理解本申请的方面。所属领域的技术人员应了解,其可容易使用本申请作为用于设计或修改用于实行相同目的及/或实现本文中介绍的实施例的相同优点的其它工艺及结构的基础。所属领域的技术人员还应意识到,这些等效构造不脱离本揭露的精神及范围且其可在本文中做出各种改变、替代及更改而不脱离本揭露的精神及范围。
再者,本申请的范围不旨在限于本说明书中描述的工艺、机器、制造、物质组成、构件、方法及步骤的特定实施例。所属领域的一般技术人员将根据本揭露的揭示内容容易了解,可根据本揭露利用大体上执行与本文中描述的对应实施例相同的功能或大体上实现与其相同的结果的目前存在或后续发展的工艺、机器、制造、物质组成、构件、方法或步骤。因此,随附权利要求书旨在将这些工艺、机器、制造、物质组成、构件、方法或步骤包含于其范围内。

Claims (13)

  1. 一种自主移动装置,其特征在于,包括:
    感测组件,用于感测物体的信息;
    处理器,用于依据所述信息判断所述物体是否为可移动物体,并依据判断结果来产生控制信号,其中所述控制信号用于指示所述自主移动装置的避障距离;及
    驱动组件,用于驱动所述自主移动装置以进行移动,其中当所述物体位于所述自主移动装置的行进路径上时,所述驱动组件以至少所述避障距离驱动所述自主移动装置进行避障。
  2. 如权利要求1所述的自主移动装置,其特征在于,当所述物体为可移动物体时的避障距离大于当所述物体为静态物体的避障距离。
  3. 如权利要求1所述的自主移动装置,其特征在于,当所述物体位于所述自主移动装置的行进路径上时,所述移动组件控制所述自主移动装置以所述物体为避障中心、所述避障距离为半径的半圆弧路径作为避障路径来进行避障。
  4. 如权利要求1所述的自主移动装置,其特征在于,所述感测组件包括影像传感器,所述信息是所述影像传感器捕捉所述物体的影像。
  5. 如权利要求4所述的自主移动装置,其特征在于,所述处理器通过所述影像传感器于两个时间点所捕捉的影像来判断所述物体是否为可移动物体。
  6. 如权利要求4所述的自主移动装置,其特征在于,还包括:
    储存装置,用于储存对比影像。
  7. 如权利要求5所述的自主移动装置,其特征在于,还包括:
    通讯装置,用于传送所述自主移动装置的位置信息至远端伺服器,并自所述远端伺服器接收对应所述位置信息中可能的可移动物体特 征,并将所述可能的可移动物体特征存入所述储存装置中以作为所述对比影像。
  8. 如权利要求6至7中任一项所述的自主移动装置,其特征在于,所述处理器比较所述影像及所述对比影像以判断所述物体是否为可移动物体。
  9. 如权利要求1所述的自主移动装置,其特征在于,所述感测组件包括距离传感器,所述信息是所述物体与所述自主移动装置之间的距离。
  10. 如权利要求9所述的自主移动装置,其特征在于,所述处理器通过所述距离传感器于两个时间点所感测的距离来判断所述物体是否为可移动物体。
  11. 如权利要求1所述的自主移动装置,其特征在于,所述处理器还用于依据所述感测组件于两个时间点所感测的信息来判断所述物体的移动速度,并依据所述移动速度选择所述自主移动装置的避障路径。
  12. 如权利要求1所述的自主移动装置,其特征在于,所述感测组件还用于感测所述自主移动装置的承载重量,所述处理器依据所述承载重量调整所述避障距离。
  13. 一种仓储物流系统,其特征在于,包括:
    多个如权利要求1所述的自主移动装置;及
    调度伺服器,用于自其中一个所述自主移动装置接收避障信息,并发送行进信号以指示所述其他自主移动装置继续行进或暂停行进。
PCT/CN2020/121858 2019-10-31 2020-10-19 自主移动装置及仓储物流系统 WO2021082964A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/768,474 US20240103518A1 (en) 2019-10-31 2020-10-19 Autonomous mobile device and warehouse logistics system
EP20882501.8A EP4026666A4 (en) 2019-10-31 2020-10-19 AUTONOMOUS MOBILE DEVICE AND WAREHOUSE LOGISTICS SYSTEM
JP2022522381A JP7385851B2 (ja) 2019-10-31 2020-10-19 自律移動装置及び倉庫物流システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911052829.5A CN110653837B (zh) 2019-10-31 2019-10-31 自主移动装置及仓储物流系统
CN201911052829.5 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082964A1 true WO2021082964A1 (zh) 2021-05-06

Family

ID=69042512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121858 WO2021082964A1 (zh) 2019-10-31 2020-10-19 自主移动装置及仓储物流系统

Country Status (5)

Country Link
US (1) US20240103518A1 (zh)
EP (1) EP4026666A4 (zh)
JP (1) JP7385851B2 (zh)
CN (2) CN110653837B (zh)
WO (1) WO2021082964A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653837B (zh) * 2019-10-31 2021-08-13 灵动科技(北京)有限公司 自主移动装置及仓储物流系统
CN113219969A (zh) * 2021-04-22 2021-08-06 深圳拓邦股份有限公司 洗地机器人避障控制方法、装置及洗地机器人
CN117961909A (zh) * 2024-03-15 2024-05-03 东莞市库崎智能科技有限公司 上下料复合机器人任务分配方法、系统和可读存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288657A (ja) * 2004-04-05 2005-10-20 Matsushita Electric Ind Co Ltd ロボット
CN106054881A (zh) * 2016-06-12 2016-10-26 京信通信系统(广州)有限公司 一种执行终端的避障方法及执行终端
CN106156742A (zh) * 2016-07-06 2016-11-23 尚艳燕 一种平衡车障碍物规避方法和装置
CN107092252A (zh) * 2017-04-11 2017-08-25 杭州光珀智能科技有限公司 一种基于机器视觉的机器人主动避障方法及其装置
CN107894773A (zh) * 2017-12-15 2018-04-10 广东工业大学 一种移动机器人的导航方法、系统及相关装置
CN108958263A (zh) * 2018-08-03 2018-12-07 江苏木盟智能科技有限公司 一种机器人避障方法及机器人
CN109753070A (zh) * 2019-01-16 2019-05-14 深圳市海柔创新科技有限公司 一种避障方法、装置及仓储机器人
CN109955245A (zh) * 2017-12-26 2019-07-02 深圳市优必选科技有限公司 一种机器人的避障方法、系统及机器人
CN209086755U (zh) * 2018-12-11 2019-07-09 上海智臻智能网络科技股份有限公司 一种机器人及其控制系统
JP2019114129A (ja) * 2017-12-25 2019-07-11 株式会社ダイヘン 移動体
CN110045739A (zh) * 2019-05-10 2019-07-23 湖北汽车工业学院 一种智能仓储物料机器人、控制系统及控制方法
CN110045364A (zh) * 2019-03-01 2019-07-23 上海大学 基于渐进式畸变图像特征识别的动态目标跟踪和静态目标检测系统与方法
CN110653837A (zh) * 2019-10-31 2020-01-07 灵动科技(北京)有限公司 自主移动装置及仓储物流系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672175B2 (ja) * 2000-05-26 2011-04-20 本田技研工業株式会社 位置検出装置、位置検出方法、及び位置検出プログラム
US8050863B2 (en) * 2006-03-16 2011-11-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
KR100811886B1 (ko) * 2006-09-28 2008-03-10 한국전자통신연구원 장애물 회피 진행이 가능한 자율이동로봇 및 그 방법
JP4717105B2 (ja) * 2008-08-29 2011-07-06 株式会社日立製作所 自律移動ロボット装置及びかかる装置における飛び出し衝突回避方法
CN101685100B (zh) * 2008-09-24 2011-07-20 华晶科技股份有限公司 检测被摄物移动速度的摄像装置及其方法
CN102131076B (zh) * 2011-01-19 2015-05-20 中兴通讯股份有限公司 视频监控方法及监控终端
CN102708474A (zh) * 2012-05-04 2012-10-03 成都智汇科技有限公司 基于物联网的智慧物流系统
JP5891314B2 (ja) * 2012-12-13 2016-03-22 株式会社日立製作所 自律走行装置
US8965561B2 (en) * 2013-03-15 2015-02-24 Cybernet Systems Corporation Automated warehousing using robotic forklifts
US9607285B1 (en) * 2015-03-17 2017-03-28 Amazon Technologies, Inc. Entity monitoring for kiva robotic floors
US10213082B2 (en) * 2016-08-30 2019-02-26 Samsung Electronics Co., Ltd. Robot cleaner
CN106959696B (zh) * 2017-05-10 2020-03-03 北京京东尚科信息技术有限公司 运动目标的控制方法和装置
US10429847B2 (en) * 2017-09-22 2019-10-01 Locus Robotics Corp. Dynamic window approach using optimal reciprocal collision avoidance cost-critic
KR102532741B1 (ko) * 2018-02-28 2023-05-16 삼성전자주식회사 자율 주행 장치 및 그 주행 방법
CN108501947A (zh) * 2018-04-03 2018-09-07 西藏帝亚维新能源汽车有限公司 一种纯电动车辆自动制动的控制方法
WO2020077481A1 (en) * 2018-10-15 2020-04-23 Lingdong Technology (Beijing) Co. Ltd Self-driving vehicle system with steerable camera and indicator
CN109240313A (zh) * 2018-11-26 2019-01-18 智久(厦门)机器人科技有限公司上海分公司 无人驾驶叉车的避障方法、装置及系统
CN110262482A (zh) * 2019-06-10 2019-09-20 华东师范大学 一种无人船航速控制方法及无人船
CN112445222B (zh) * 2019-09-05 2024-07-16 浙江未来精灵人工智能科技有限公司 导航方法、装置、存储介质以及终端

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288657A (ja) * 2004-04-05 2005-10-20 Matsushita Electric Ind Co Ltd ロボット
CN106054881A (zh) * 2016-06-12 2016-10-26 京信通信系统(广州)有限公司 一种执行终端的避障方法及执行终端
CN106156742A (zh) * 2016-07-06 2016-11-23 尚艳燕 一种平衡车障碍物规避方法和装置
CN107092252A (zh) * 2017-04-11 2017-08-25 杭州光珀智能科技有限公司 一种基于机器视觉的机器人主动避障方法及其装置
CN107894773A (zh) * 2017-12-15 2018-04-10 广东工业大学 一种移动机器人的导航方法、系统及相关装置
JP2019114129A (ja) * 2017-12-25 2019-07-11 株式会社ダイヘン 移動体
CN109955245A (zh) * 2017-12-26 2019-07-02 深圳市优必选科技有限公司 一种机器人的避障方法、系统及机器人
CN108958263A (zh) * 2018-08-03 2018-12-07 江苏木盟智能科技有限公司 一种机器人避障方法及机器人
CN209086755U (zh) * 2018-12-11 2019-07-09 上海智臻智能网络科技股份有限公司 一种机器人及其控制系统
CN109753070A (zh) * 2019-01-16 2019-05-14 深圳市海柔创新科技有限公司 一种避障方法、装置及仓储机器人
CN110045364A (zh) * 2019-03-01 2019-07-23 上海大学 基于渐进式畸变图像特征识别的动态目标跟踪和静态目标检测系统与方法
CN110045739A (zh) * 2019-05-10 2019-07-23 湖北汽车工业学院 一种智能仓储物料机器人、控制系统及控制方法
CN110653837A (zh) * 2019-10-31 2020-01-07 灵动科技(北京)有限公司 自主移动装置及仓储物流系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4026666A4 *

Also Published As

Publication number Publication date
EP4026666A4 (en) 2023-02-08
JP7385851B2 (ja) 2023-11-24
CN110653837B (zh) 2021-08-13
CN113580155A (zh) 2021-11-02
US20240103518A1 (en) 2024-03-28
CN113580155B (zh) 2023-07-18
JP2022552335A (ja) 2022-12-15
EP4026666A1 (en) 2022-07-13
CN110653837A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2021082964A1 (zh) 自主移动装置及仓储物流系统
KR102107555B1 (ko) 차량용 센서 궤적 플래닝
US10875448B2 (en) Visually indicating vehicle caution regions
US10429847B2 (en) Dynamic window approach using optimal reciprocal collision avoidance cost-critic
US10725471B2 (en) Virtual line-following and retrofit method for autonomous vehicles
US9870002B1 (en) Velocity control of position-controlled motor controllers
US20200257311A1 (en) Cart having leading and following function
CN107992091B (zh) 一种基于信号强度的平衡车跟随方法和系统
WO2021109890A1 (zh) 具有追踪功能的自动驾驶系统
AU2021230331B2 (en) Robot obstacle collision prediction and avoidance
KR102315678B1 (ko) 잔디 깎기 로봇 및 그 제어 방법
JP2022518012A (ja) 自動運転車用自律放送システム
WO2021008371A1 (zh) 结合无人机的智能物流车盘点系统
CN109895825A (zh) 自动运输装置
CN111717843A (zh) 一种物流搬运机器人
US20230195124A1 (en) Management method for mobile object, control method for mobile object, mobile object, and recording medium storing computer program
CN106354142A (zh) 一种基于物联网的智能搬运系统及应用
KR102171934B1 (ko) 양방향 선도 추미 대차
CN114815809A (zh) 移动机器人的避障方法、系统、终端设备及存储介质
KR20200055164A (ko) 매핑기반 자율주행 카트 및 그 제어 방법
JP2022067224A (ja) 自律移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522381

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17768474

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2020882501

Country of ref document: EP

Effective date: 20220404

NENP Non-entry into the national phase

Ref country code: DE