WO2021082828A1 - 选择性催化还原脱硝设备和方法 - Google Patents

选择性催化还原脱硝设备和方法 Download PDF

Info

Publication number
WO2021082828A1
WO2021082828A1 PCT/CN2020/117672 CN2020117672W WO2021082828A1 WO 2021082828 A1 WO2021082828 A1 WO 2021082828A1 CN 2020117672 W CN2020117672 W CN 2020117672W WO 2021082828 A1 WO2021082828 A1 WO 2021082828A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
flue
gas
matrix
nitrogen oxide
Prior art date
Application number
PCT/CN2020/117672
Other languages
English (en)
French (fr)
Inventor
周川
袁亮
吴其荣
王琴
王进
罗鹏
熊健
周川雄
Original Assignee
国家电投集团远达环保工程有限公司重庆科技分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电投集团远达环保工程有限公司重庆科技分公司 filed Critical 国家电投集团远达环保工程有限公司重庆科技分公司
Publication of WO2021082828A1 publication Critical patent/WO2021082828A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present disclosure relates to the field of selective catalytic reduction denitration, and in particular, to a selective catalytic reduction denitration device and a selective catalytic reduction denitration method.
  • Nitrogen oxides are one of the main sources of air pollution. A large amount of nitrogen oxides in the exhaust gas of various industries. If the nitrogen oxides are not removed and discharged directly, it will cause serious harm to the atmospheric environment.
  • the selective catalytic reduction (SCR) denitration process is widely used to remove nitrogen oxides in exhaust gas.
  • the typical flow of the SCR denitration process is: flue gas containing nitrogen oxides is led from the outlet of the boiler economizer and enters the flue of the denitrification reactor; in the flue, After the flue gas comes into contact with the ammonia gas sprayed into the flue and fully mixed, it enters the reaction absorption tower; in the reaction absorption tower, under the action of a catalyst, the nitrogen oxides and NH3 in the mixed gas undergo oxidation-reduction reactions to oxidize the nitrogen The product is reduced to N2 to complete the denitrification; the denitrified gas is discharged from the reaction absorption tower.
  • ammonia gas is usually completed by a plurality of ammonia injection nozzles arranged at different positions of the flue section. It has been found that the flue gas is not uniform in the flue. In this regard, it has been proposed that after the reduction reaction is completed, a distributed nitrogen oxide detector is installed in the cross-section of the flue downstream of the reactor to detect the concentration of nitrogen oxide at multiple locations to learn different locations. Furthermore, according to this result, the demand for ammonia injection at each position is calculated, and the ammonia injection of the ammonia injection nozzle is adjusted to achieve precise ammonia injection in different regions.
  • the present disclosure provides a matrix-type selective catalytic reduction flue gas denitrification equipment, the equipment includes a catalytic reduction reactor, an inflow flue upstream of the catalytic reduction reactor, and the catalytic reduction reaction
  • the outflow flue downstream of the reactor, the inflow flue, the outflow flue and the catalytic reduction reactor have similar cross-sections, wherein the equipment further includes:
  • an ammonia injection device downstream of the flue gas flow meter and the inflow gas nitrogen oxide concentration detector, the ammonia injection device has an ammonia-air mixed gas main pipe and the ammonia-air mixture
  • the main pipe has a separate flow control valve;
  • a plurality of outflow gas nitrogen oxide concentration detectors distributed in a matrix in the outflow flue
  • a plurality of ammonia concentration detectors distributed in a matrix in the outflow flue
  • the distribution of the matrix of the ammonia injection branch mother pipe in the cross section of the inflow flue and the matrix of the outflow gas nitrogen oxide concentration detector and the matrix of the ammonia concentration detector in the outflow flue is the same.
  • the distance between the matrix of the outflow gas nitrogen oxide concentration detector and the matrix of the ammonia concentration detector in the length direction of the outflow flue is 500 mm-1000 mm.
  • the cross section of the outflow flue is a rectangle with a short side length d, and the distance between the matrix of the outflow gas nitrogen oxide detector and the ammonia concentration detector and the long side of the cross section of the flue The distance is more than 1/3d.
  • the flue gas flowmeter is a full-section matrix flowmeter.
  • the inflow gas nitrogen oxide concentration detector is a plurality of nitrogen oxide concentration detectors distributed in the cross section of the inflow flue.
  • the device further includes a processor and a controller, and the processor receives data from the flue gas flow meter, the inflow gas nitrogen oxide concentration detector, the outflow gas nitrogen oxide concentration detector, and the ammonia concentration detector.
  • the controller is configured to control the flow regulating valve and the ammonia provider.
  • the equipment further includes a zoned gas mixing device downstream of the ammonia injection device.
  • the present disclosure provides a matrix-type selective catalytic reduction method for flue gas denitration.
  • the method includes spraying ammonia into the flue gas in the inflow flue upstream of the catalytic reduction reactor to form a mixed gas, and the mixed gas Reducing denitrification in the catalytic reduction reactor, and discharging the denitrated gas from the catalytic reduction reactor to an outflow flue downstream of the catalytic reduction reactor, wherein the method further includes:
  • the following formula calculates the corrected total ammonia injection m w , and adjusts the ammonia injection according to the corrected total ammonia injection m w:
  • is the correction coefficient
  • B is the target ammonia concentration value
  • Z is the target nitrogen oxide concentration value
  • is a value of 1-1.05
  • V is the value in Nm 3 /h
  • E, o i and O are the value in mg/Nm 3
  • B, a i and A are the value in ppm
  • m w is kg/h Calculated value.
  • adjusting the ammonia injection according to the corrected total ammonia injection m w further includes:
  • the ammonia gas of the corrected total amount of ammonia injection m w is mixed with a constant flow of dilution air to form an ammonia-air mixture with a flow rate of T, and m w is converted to m v , where T and m v are Nm 3 /h value;
  • ammonia-air mixture is injected in the cross section of the inflow flue, and the ammonia-air mixture is injected in the same matrix as the matrix and the injection amount is p i , where p i is calculated by the following formula:
  • the method is performed by the above-mentioned equipment, wherein:
  • the ammonia-air mixed gas is injected with the injection amount p i using the ammonia injection branch main pipe.
  • Figure 1 shows a schematic diagram of an embodiment of the device of the present disclosure.
  • Figure 2 shows a schematic diagram of the ammonia injection mother pipe.
  • Figure 3 shows an inflow gas nitrogen oxide concentration detector matrix according to an embodiment of the present disclosure.
  • Figure 4 shows an effluent gas nitrogen oxide concentration detector matrix according to an embodiment of the present disclosure.
  • Figure 5 shows an ammonia concentration detector matrix according to an embodiment of the present disclosure.
  • the present disclosure proposes a selective catalytic reduction flue gas denitration device and method.
  • the present disclosure can realize accurate measurement and feedback control of flue gas flow rate, nitrogen oxide and ammonia concentration, thereby reducing the amount of ammonia injection to the greatest extent and eliminating the problem of high ammonia escape under the condition that the emission standard is met.
  • the present disclosure provides a matrix-type selective catalytic reduction flue gas denitration equipment.
  • the equipment includes a catalytic reduction reactor, an inflow flue upstream of the catalytic reduction reactor, and a downstream of the catalytic reduction reactor.
  • the outflow flue, the inflow flue, the outflow flue, and the catalytic reduction reactor have cross-sections of similar shapes, wherein the device further includes:
  • an ammonia injection device downstream of the flue gas flow meter and the inflow gas nitrogen oxide concentration detector, the ammonia injection device has an ammonia-air mixed gas main pipe and the ammonia-air mixture
  • the main pipe has a separate flow control valve;
  • a plurality of outflow gas nitrogen oxide concentration detectors distributed in a matrix in the outflow flue
  • a plurality of ammonia concentration detectors distributed in a matrix in the outflow flue
  • the distribution of the matrix of the ammonia injection branch mother pipe in the cross section of the inflow flue and the matrix of the outflow gas nitrogen oxide concentration detector and the matrix of the ammonia concentration detector in the outflow flue is the same.
  • the present disclosure adopts matrix measurement and ammonia injection, so that nitrogen oxides can be fully reduced and ammonia escape can be avoided.
  • the core of the equipment of the present disclosure is a selective catalytic reduction reactor or SCR reactor or catalytic reduction reactor for short, in which a catalyst can be installed to remove nitrogen oxides from the flue gas.
  • a catalyst can be installed to remove nitrogen oxides from the flue gas.
  • a conventional catalytic reduction reactor can be used.
  • the flue gas in the present disclosure generally refers to any gas that needs to be denitrated, which can come from, for example, boiler combustion. Because it flows in the flue upstream of the SCR reactor, it is called flue gas.
  • the upstream of the SCR reactor is the inflow flue, and the gas after reduction and denitration flows out of the outflow flue downstream of it.
  • the conventional SCR reactor and the design of the inflow and outflow flue can be used, as long as the inflow flue, the outflow flue and the catalytic reduction reactor have similar cross-sections. That is to say, in order to form a correspondence between the ammonia injection flowing into the flue and the gas composition flowing out of the flue, the cross-section of the entire flow path needs to be of similar shape.
  • the cross-sections of the inflow flue, the outflow flue, and the catalytic reduction reactor may all be round, all square, or all similarly rectangular. Among them, from the conventional design, a solution with a similar rectangular cross-section is preferable.
  • the similarity may not be extremely strict, and there may be a certain shape deviation.
  • the deviation of shape elements such as size and angle is preferably 10% or less, more preferably 5% or less, and more preferably 3% or less.
  • the deviation should not be too large, for example, it is not allowed for the inflow flue to have a circular cross-section and the outflow flue to have a rectangular cross-section.
  • the cross-sections of the outflow flue and the inflow flue are the same.
  • the device of the present disclosure includes a flue gas flow meter flowing into the flue gas duct for measuring the total flow of the flue gas flowing in.
  • the device of the present disclosure includes a full-section matrix flowmeter in the flue.
  • the full cross-section matrix flowmeter can more accurately measure the total amount and distribution of the flue gas flow in the full cross-section of the flue.
  • the matrix flowmeter can have multiple detectors, which are arranged in a dot matrix.
  • the entire flue section can be divided into corresponding matrices, so that each matrix unit (also called a region) has a detector to measure the flue gas flow, and then obtain the total amount of flue gas flow in the full section of the flue And distribution.
  • the distribution of flue gas in the full cross-section of the flue may be uneven.
  • the flue gas flow rate in the central part of the flue can be greater than the flue gas flow rate near the inner wall of the flue. Through multi-point measurement, the flue gas flow can be estimated more accurately.
  • An inflow gas nitrogen oxide concentration detector is also provided in the inflow flue gas for detecting the nitrogen oxide concentration of the inflow flue gas.
  • the influent nitrogen oxide concentration detector can be arranged upstream, downstream or near the flue gas flow meter.
  • the inflow nitrogen oxide is a plurality of nitrogen oxide concentration detectors distributed in the cross section of the inflow flue. Similar to the flue gas flowmeter, the nitrogen oxide concentration in the flue can be measured more comprehensively through multi-point measurement.
  • An ammonia injection device is provided downstream of the full-section matrix flowmeter, which is sometimes referred to as an ammonia injection grid in this disclosure.
  • the ammonia spray device is used to spray ammonia gas in the direction of flue gas flow, so that it enters the flue, and then mixes with the flowing flue gas.
  • the ammonia injection device has an ammonia-air mixed gas main pipe and a plurality of ammonia injection branch main pipes branched from the ammonia-air mixed gas main pipe and distributed in the cross section of the inflow flue in a matrix manner, the ammonia-air mixed gas main
  • the pipe is connected to the ammonia gas supplier and the air supplier, and each ammonia injection branch main pipe has a separate flow regulating valve.
  • a plurality of ammonia injection branch mother pipes are distributed in a matrix in different areas of the flue cross section.
  • the ammonia injection main pipe is configured such that the ammonia injection flow rate is independent of each other, so that the amount of ammonia injection in different areas in the flue section can be accurately controlled.
  • the total amount of ammonia injection is controlled by the flow rate in the main pipe of the ammonia-air mixture.
  • the ammonia-air mixed gas main pipe is connected to an ammonia gas supplier and an air supplier that are independent of each other.
  • the ammonia provider provides pure ammonia, and the air provider provides air as a dilution gas.
  • the ammonia-air mixed gas main pipe can be appropriately designed to actively or passively mix pure ammonia and air.
  • the ammonia-air mixed gas is supplied from the ammonia-air mixed gas main pipe to each ammonia injection branch main pipe, and the specific injection amount of each branch main pipe is controlled by the flow control valve.
  • the downstream of the ammonia injection grid of the present disclosure is also equipped with a partitioned gas mixing device.
  • the partitioned gas mixing device is used to ensure the mixing of gases that are basically independent of each other in a small area, so that the impact of ammonia injection on the flue gas is localized.
  • a zone of the corresponding gas mixing device is configured for each ammonia injection main pipe.
  • the number of zones can also be increased or decreased appropriately.
  • the device of the present disclosure also includes a catalytic reduction reactor for receiving a mixture of flue gas and ammonia gas and reducing nitrogen oxides in the flue gas to nitrogen.
  • the device of the present disclosure also includes a plurality of nitrogen oxide concentration detectors in the outflow gas distributed in a matrix in the outflow flue.
  • the effluent gas nitrogen oxide concentration detector is used to detect the distribution of nitrogen oxides in the denitrified gas in the full section.
  • the device of the present disclosure also includes a plurality of ammonia concentration detectors distributed in a matrix in the outflow flue.
  • the ammonia concentration detector is used to detect the distribution of the amount of gas ammonia after denitration in the full section.
  • the distribution of the matrix of the ammonia injection branch mother pipe in the cross section of the inflow flue and the matrix of the outflow gas nitrogen oxide concentration detector and the matrix of the ammonia concentration detector are in the The distribution in the cross section of the outflow flue is the same.
  • the ammonia injection branch main pipe, the outflow gas nitrogen oxide concentration detector and the ammonia concentration detector are distributed in the same matrix.
  • the same matrix means that the relative positions in the cross section of the inflow flue or the outflow flue are the same.
  • the outflow gas nitrogen oxide concentration detector and the ammonia concentration detector can detect the substance concentration at the same relative position in the cross section as compared with the ammonia injection branch main pipe.
  • the matrix can be a single row matrix.
  • the device of the present disclosure divides the cross section of the flue, and can accurately measure the nitrogen oxide concentration and the ammonia concentration of each subarea after reduction.
  • the corresponding relationship between the position of the ammonia injection and the measurement position is established.
  • Such measurements and corresponding relationships are particularly advantageous in the ammonia injection control detailed below.
  • the distribution of the ammonia injection amount can be adjusted through a plurality of ammonia injection branch main pipes according to the nitrogen oxide amount and the ammonia amount distribution in the cross section of the outflow flue, thereby realizing high-efficiency denitrification.
  • the flue gas denitration equipment further includes a pre-dust removal device upstream of the full-section matrix flowmeter.
  • a pre-dust removal device When the dust content in the flue gas is large, it will adversely affect the denitrification and equipment.
  • the dust content in the flue gas entering the ammonia injection step is greatly reduced, thereby reducing the risk of wear and blockage.
  • the pre-dust removal device is an inertial dust removal device arranged above the economizer ash hopper.
  • the inertial dust removal device has a good dust removal effect and has little disturbance to the flue gas flow. Dust particles fall directly into the ash hopper of the economizer below for easy collection and removal.
  • the full cross-section matrix flowmeter is located in the horizontal section of the flue, and the ammonia injection grid is located in the vertical section of the flue. This configuration is conducive to the progress of ammonia injection, and rational use of space, to avoid too close to different modules.
  • the ammonia injection branch mother pipe is provided with a flow meter. Through the cooperation of the flow meter and the flow regulating valve, the flow of ammonia injection can be accurately controlled.
  • the ammonia injection branch pipe is also connected to the ammonia injection branch pipe to further disperse the ammonia gas provided by the ammonia injection branch pipe.
  • the ammonia injection branch pipe can have multiple stages and connect to their respective nozzles.
  • the ammonia injection branch pipe can make the ammonia injection more uniform.
  • the equipment further includes a zoned gas mixing device downstream of the ammonia injection device for locally mixing ammonia and flue gas.
  • the distance between the zoned gas mixing device and the ammonia injection grid can be between 100mm and 500mm. This distance can ensure that the gas is fully mixed on the one hand, and on the other hand, it can ensure that the gas mixing is limited within a certain range.
  • each ammonia injection branch mother pipe corresponds to a zone of the partitioned gas mixing device. In this way, a plurality of uniformly mixed air streams can be formed.
  • the device of the present disclosure further includes a processor and a controller, the processor receiving from the flue gas flow meter, the inflow gas nitrogen oxide concentration detector, the outflow gas nitrogen oxide concentration detector and The measurement result of the ammonia concentration detector, and the controller is configured to control the flow regulating valve and the ammonia provider.
  • the processor and the controller it is possible to automatically complete the collection and calculation of the measurement results and the online control of the ammonia injection parameters.
  • the present disclosure also provides a matrix-type selective catalytic reduction flue gas denitration method.
  • the method includes spraying ammonia into the flue gas in the inflow flue upstream of the catalytic reduction reactor to form a mixed gas, and the mixed gas is subjected to the catalytic reduction reaction.
  • the following formula calculates the corrected total ammonia injection m, and adjusts the ammonia injection according to the corrected total ammonia injection m w:
  • is the correction coefficient
  • B is the target ammonia concentration value
  • Z is the target nitrogen oxide concentration value
  • is a value of 1-1.05
  • V is the value in Nm 3 /h
  • E, o i , and O are the value in mg/Nm 3
  • B, a i and A are the value in ppm
  • m is in kg/h The numerical value.
  • the inventors of the present disclosure found that by using the above calculation formula, the required amount of ammonia can be calculated as accurately as possible from the composition of the inflow gas and the outflow gas.
  • This formula also considers the concentration of nitrogen oxides in the inflow gas, the concentration of nitrogen oxides in the outflow gas, and the concentration of ammonia.
  • the present disclosure takes ammonia concentration into consideration.
  • Ammonia escape is an important issue in the denitration process. Previously, only sufficient reduction of nitrogen oxides was generally considered, or only reduction of ammonia escape was considered. The method of the present disclosure considers both at the same time.
  • the target ammonia concentration value is generally determined according to emission regulations.
  • the method of the present disclosure is basically exemplified with an ammonia concentration of 3 ppm as a boundary.
  • the target ammonia concentration value can also be changed according to specific circumstances.
  • the ammonia concentration is lower than the target ammonia concentration value, the main consideration is to fully remove nitrogen oxides; but when the ammonia concentration is higher than the target ammonia concentration value, ammonia escape will become a problem. At this time, the total ammonia injection should be reduced appropriately. the amount.
  • the unit Nm 3 represents the volume of the gas in a standard state.
  • the coefficient ⁇ can be freely selected from a value of 1-1.05.
  • the ammonia injection amount of the present disclosure may have a 5% floating margin.
  • Z is the target nitrogen oxide concentration value, which can be determined according to the emission standards at the time when the method is implemented.
  • the total amount of corrected ammonia injection is calculated according to multiple parameters of the flue gas before and after the ammonia injection and selective catalytic reduction.
  • the revised total amount of ammonia injection is used to adjust the amount of ammonia injection, so that both nitrogen oxide and ammonia in the exhaust gas can meet the standard.
  • the amount of ammonia injection can be adjusted in real time. However, when the inflow and reaction fluctuations are not large, it can also be adjusted after a period of time. Can continuously measure, calculate and adjust. However, considering the cost of control, measurement, calculation, and adjustment can also be performed intermittently.
  • adjusting the ammonia injection according to the corrected total ammonia injection m w includes:
  • the ammonia gas of the corrected total amount of ammonia injection m w is mixed with a constant flow of dilution air to form an ammonia-air mixture with a flow rate of T, and m w is converted to m v , where T and m v are Nm 3 /h value;
  • ammonia-air mixture is injected in the cross section of the inflow flue, and the ammonia-air mixture is injected in the same matrix as the matrix and the injection amount is p i , where p i is calculated by the following formula:
  • p i [1-(a i -B) ⁇ V ⁇ 10 -6 /m v ] ⁇ (T/n).
  • the amount of ammonia injection in each area in the cross section can be further accurately controlled.
  • the district ammonia injection amount can be selected according to the concentration of nitrogen oxides in the area.
  • the ammonia injection amount m v calculated from the nitrogen oxide concentration is used as the target nitrogen oxide concentration value, and the ammonia injection amount is also adjusted according to the ammonia excess value.
  • m v by volume can be converted from m w by weight.
  • the air flow rate can be appropriately selected so that the amount of ammonia sprayed is about 3% to 5% of the total ammonia-air mixture T.
  • Figure 1 shows a schematic diagram of an embodiment of the device of the present disclosure.
  • the left side of Figure 1 is the economizer outlet.
  • the flue gas is drawn from the economizer outlet, and part of the dust in the flue gas is removed when it passes through the pre-dust removal device, reducing the dust content of the denitrification device, thereby reducing the risk of wear and blockage.
  • the removed dust particles fall into the economizer ash hopper.
  • the flue gas flows through the economizer outlet flue, it enters the denitrification inlet flue, and when it flows through the full-section matrix flowmeter, it realizes the accurate measurement of the total amount and distribution of the flue gas flow, which is used to guide the total amount and sum of ammonia injection. Distributed control.
  • the flue gas continues to move forward, passes through the deflector, and contacts the ammonia gas (usually in the form of ammonia-air mixture) sprayed from the ammonia injection grid in the vertical flue.
  • the baffle helps to keep the gas flow in the flue smoothly.
  • a plurality of spray heads are shown leading from a branch mother pipe for ammonia spraying. In other words, this shows the case of a single-row matrix.
  • the ammonia-air mixed gas main pipe is not shown in FIG. 1, and it can extend perpendicular to the paper surface.
  • the amount of ammonia injection in each part of the flue cross section is controlled by the ammonia injection main pipe regulating valve corresponding to the area where it is located. After the flue gas and the ammonia gas contact, they are mixed under the action of the partitioned gas mixing device.
  • the partitioned gas mixing device corresponds to the ammonia injection branch mother pipe, which invisibly divides the entire flue into several units. The flue gas flow in each unit is relatively independent, and the flue gas inside the unit disturbs each other and mixes violently.
  • the mixed gas comes into contact with the catalyst.
  • nitrogen oxides and ammonia gas reversely generate oxidation-reduction reactions, and nitrogen oxides are reduced to nitrogen, and the nitrogen oxides in the flue gas are removed from the surface.
  • the purified flue gas flows out from the outlet flue. During the outflow process, contact with the detection sampling probes of the matrix-type nitrogen oxide detector and ammonia detector to measure the distribution of the amount of nitrogen oxides and ammonia.
  • the cross section of the paper shows one effluent nitrogen oxide concentration detector and one ammonia concentration detector, corresponding to the ammonia injection branch main pipe shown upstream of the reactor; In the direction, it can also have an outflow gas nitrogen oxide concentration detector and an ammonia concentration detector corresponding to other ammonia injection branch main pipes.
  • these distribution measurement values as feedback values, guide the adjustment of the corresponding zone ammonia injection main pipe valve to adjust the distribution of ammonia injection. For example, when the measured nitrogen oxide value is higher than the preset value, increase the valve opening of the corresponding ammonia injection main pipe and increase the amount of ammonia injection; if it is lower than the expected setting value, reduce the corresponding ammonia injection main pipe The valve opening reduces the amount of local ammonia injection.
  • FIG. 2 shows a schematic diagram of the ammonia injection branch mother pipe.
  • the three ammonia injection branch mother pipes in the figure are all connected to the ammonia-air mixed gas mother pipe from the ammonia-air mixer.
  • ammonia spraying refers to spraying ammonia gas or ammonia-air mixture.
  • the ammonia injection main pipe is provided with a flow regulating valve and a flow meter, so that the ammonia injection flow of each ammonia injection main pipe can be independently controlled.
  • the ammonia injection main pipe is also connected with a horizontal primary ammonia injection branch pipe and a vertical secondary ammonia injection branch pipe, thereby achieving uniform ammonia injection.
  • Fig. 2 may be a left side view of Fig. 1, that is, the ammonia-air mixed gas mother pipe extends in a direction perpendicular to the paper surface of Fig. 1.
  • the device of Fig. 1 has three ammonia injection branch mother pipes (1 ⁇ 3 matrix) arranged perpendicular to the paper surface.
  • Figures 3-5 respectively show an inflow gas nitrogen oxide concentration detector matrix, an outflow gas nitrogen oxide concentration detector matrix, and an ammonia concentration detector matrix according to an embodiment of the present disclosure.
  • the size of the flue where the ammonia injection grid is located is 14250 ⁇ 3600mm, and the full cross-section flowmeter is arranged in the horizontal section of the inlet flue.
  • the sampling probe of the inlet nitrogen oxide detector is arranged at 1.5m upstream of the ammonia injection grid, and there are three sampling probes, as shown in Figure 3.
  • the ammonia injection grid has three divisional ammonia injection main pipes, and each main pipe is equipped with an ammonia-air mixer regulating valve.
  • a deflector is arranged in the inlet flue, and a rectifying grid and a three-layer catalyst are arranged in the denitration reactor.
  • the air volume of the ammonia-air mixture is 4000Nm 3 /h; the emission standard requires the outlet nitrogen oxide concentration to be 50mg/Nm 3 ; the outlet nitrogen oxide concentration in the control system is set to 30mg/Nm 3 , and the emission standard requires the outlet ammonia concentration to be low ⁇ 3ppm.
  • the flue gas volume measured by the full cross-section flow at a certain moment is 1968350Nm 3 /h
  • the concentration of probe 1 of the inlet nitrogen oxide detection device is 288mg/Nm 3
  • the concentration value of probe 2 is 312mg/Nm 3
  • the concentration of probe 3 is 266mg /Nm 3
  • the inlet nitrogen oxide concentration is 288.7mg/Nm 3
  • the outlet nitrogen oxides are measured to be 25, 28, and 37 mg/Nm 3 respectively, and the outlet nitrogen oxide concentration is calculated to be 30 mg/Nm 3
  • the ammonia concentration measured by the ammonia concentration detector is 2ppm, 3ppm, 1ppm (all less than or equal to 3ppm)
  • the average ammonia concentration is calculated as 2ppm (less than 3ppm)
  • the corresponding correction coefficient ⁇ is taken as 1, then the calculation
  • the amount of ammonia sprayed out is:
  • the flow rate of each ammonia injection branch main pipe is:
  • the measured outlet nitrogen oxide concentration at this time is 24mg/Nm 3 , 26mg/Nm 3 , 36mg/Nm 3 , and the inlet nitrogen If the oxide concentration is unchanged, the calculated average outlet nitrogen oxide concentration is 29.6mg/Nm 3 ; the ammonia concentration is 10ppm, 4ppm, 3ppm (all greater than 3ppm), then the calculated average ammonia concentration is 5.6ppm (greater than 3ppm);
  • the target nitrogen oxide concentration value is 50mg/Nm 3 , then the total amount of ammonia injection at this time is:
  • the corresponding flow rate of the ammonia injection branch main pipe is:
  • the measured outlet nitrogen oxide concentration at a certain time is 24mg/Nm 3 , 26mg/Nm 3 , 36mg/Nm 3 , then the average outlet nitrogen oxide concentration is calculated to be 29.6mg/Nm 3 ; basically It is within the design value range, but the outlet ammonia concentration is actually 10ppm, 4ppm, 3ppm, respectively, which exceeds the design value of 3ppm; although the nitrogen oxide meets the standard, there is always a problem of large ammonia escape, which will cause damage to subsequent equipment.
  • the ammonia injection amount is reduced to 266.2kg/h. Under the condition of ensuring that the emission standard is met, the risk of ammonia escape from the source is reduced.
  • the proportion of ammonia-air mixture in the zone is further reduced to eliminate the risk of ammonia escape.
  • the calculated amount of ammonia injection is:
  • ammonia feedback reduces the amount of local injection while ensuring that the concentration of nitrogen oxides does not exceed the standard, thereby reducing ammonia slip.
  • the present disclosure realizes accurate measurement and feedback control of flue gas flow rate, nitrogen oxide and ammonia concentration through the proposed device and method, so as to minimize the amount of ammonia injection and eliminate the problem of high ammonia escape under the condition that the emission standard is met. problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本公开提供一种矩阵式选择性催化还原烟道气脱硝设备,具有分布相同的在催化还原反应器上游的喷氨分支母管矩阵和在催化还原反应器下游的流出气氮氧化物浓度检测器矩阵和氨浓度检测器矩阵。本公开还提供一种矩阵式选择性催化还原烟道气脱硝方法。本公开可以实现烟气流量、氮氧化物和氨浓度的精确测量和反馈控制,从而可以在满足排放达标的要求条件下,最大程度减少喷氨量,消除氨逃逸高的问题。

Description

选择性催化还原脱硝设备和方法
相关申请的交叉引用
本公开要求2019年10月28日提交的中国专利申请号201911034562.7的优先权,其通过引用以其全部结合在此。
技术领域
本公开涉及选择性催化还原脱硝领域,特别地,涉及一种选择性催化还原脱硝设备和选择性催化还原脱硝方法。
背景技术
氮氧化物是主要的大气污染源之一。多种行业的废气中大量的氮氧化物。氮氧化物若不进行脱除直接排出,会对大气环境造成严重危害。选择性催化还原(SCR)脱硝工艺广泛应用于脱除废气中的氮氧化物。
以燃煤发电厂锅炉燃烧产生的废气脱硝为例,SCR脱硝工艺的典型流程为:含氮氧化物的烟道气从锅炉省煤器出口引出后,进入脱硝反应器烟道;在烟道中,烟道气与喷入烟道的氨气接触和充分混合后,进入反应吸收塔;在反应吸收塔中,在催化剂作用下,混合气体中的氮氧化物和NH3发生氧化还原反应,将氮氧化物还原为N2,从而完成脱硝;脱硝后的气体从反应吸收塔排出。
氨气的引入通常由多个设置在烟道截面不同位置的喷氨喷嘴完成。已经发现,烟道气在烟道内不是均匀的。对此,已经提出了:在还原反应完成后,在反应器下游的烟道的横截面中设置分布式的氮氧化物探测器,探测多个位置的氮氧化物的浓度,以得知不同位置的脱硝效果;进而,根据此结果计算各个位置喷氨量需求,并调节喷氨喷嘴的喷氨量,以实现分区精确喷氨。
不过,对于更精确的SCR喷氨控制,仍存在改进的需要。
概述
在一个方面,本公开提供一种矩阵式选择性催化还原烟道气脱硝设备, 所述设备包括催化还原反应器,在所述催化还原反应器上游的流入烟道,和在所述催化还原反应器下游的流出烟道,所述流入烟道、流出烟道和催化还原反应器具有相似形状的横截面,其中,所述设备还包括:
在所述流入烟道中的烟道气流量计;
在所述流入烟道中的流入气氮氧化物浓度检测器;
在所述流入烟道中在所述烟道气流量计和所述流入气氮氧化物浓度检测器下游的喷氨装置,所述喷氨装置具有氨空混合气母管和从所述氨空混合气母管分支的矩阵式分布在所述流入烟道横截面中的多个喷氨分支母管,所述氨空混合气母管连接至氨气提供器和空气提供器,每个喷氨分支母管具有单独的流量调节阀;
在所述流出烟道中的矩阵式分布的多个流出气氮氧化物浓度检测器;
在所述流出烟道中的矩阵式分布的多个氨浓度检测器;
其中,所述喷氨分支母管的矩阵在所述流入烟道横截面中的分布与所述流出气氮氧化物浓度检测器的矩阵及所述氨浓度检测器的矩阵在所述流出烟道横截面中的分布是相同的。
可选地,所述流出气氮氧化物浓度检测器的矩阵与所述氨浓度检测器的矩阵在所述流出烟道长度方向的间距为500mm-1000mm。
可选地,所述流出烟道的横截面为短边长度为d的矩形,并且所述流出气氮氧化物检测器的矩阵和所述氨浓度检测器距离烟道的横截面的长边的距离为1/3d以上。
可选地,所述烟道气流量计是全截面矩阵式流量计。
可选地,所述流入气氮氧化物浓度检测器是多个分布在所述流入烟道的横截面中的氮氧化物浓度检测器。
可选地,所述设备还包括处理器和控制器,所述处理器接收来自所述烟道气流量计、流入气氮氧化物浓度检测器、流出气氮氧化物浓度检测器和氨浓度检测器的测量结果,并且所述控制器被配置为控制所述流量调节阀和氨气提供器。
可选地,所述设备还包括在所述喷氨装置下游的分区气体混合装置。
在另一个方面,本公开提供一种矩阵式选择性催化还原烟道气脱硝方法,所述方法包括在催化还原反应器上游的流入烟道中向烟道气中喷氨形 成混合气,将混合气在所述催化还原反应器中还原脱硝,以及将脱硝后的气体从所述催化还原反应器中排出至所述催化还原反应器下游的流出烟道,其中,所述方法还包括:
检测所述流入烟道中的烟道气流量V和流入气氮氧化物浓度E;
在所述流出烟道的横截面中以同一矩阵方式检测流出气氮氧化物浓度o i和氨浓度a i,并计算o i的平均值O和a i的平均值A,其中,i为1至n的整数;
以下式计算修正喷氨总量m w,并且根据所述修正喷氨总量m w调节喷氨:
m w=α×(V×17/30)×10 -6×(E-O)×ε
其中,α为修正系数,
当A≤B时,α=1;
当A>B时:
α=(E-Z)/(E-O);
其中B为目标氨浓度值,Z为目标氮氧化物浓度值,ε为1-1.05的值,
其中,V是以Nm 3/h计的数值,E、o i、O是以mg/Nm 3计的数值,B、a i和A是以ppm计的数值,并且m w是以kg/h计的数值。
可选地,其中根据所述修正喷氨总量m w调节喷氨还包括:
将所述修正喷氨总量m w的氨气与恒定流量的稀释用空气混合,形成流量为T的氨空混合气,并且将m w换算为m v,其中,T和m v是以Nm 3/h计的数值;
在所述流入烟道的横截面中喷射所述氨空混合气,所述氨空混合气以与所述矩阵相同的矩阵方式喷射并且喷射量为p i,其中,p i通过下式计算:
当a i≤B时,
p i=(E-T)/(E-o i)×(T/n)
当a i>B时,
p i=[1-(a i-B)×V×10 -6/m]×(T/n)。
可选地,B=3。
可选地,所述方法通过上述设备进行,其中,
使用所述烟道气流量计测量所述V,
使用所述流入气氮氧化物浓度检测器测量所述E,
使用所述流出气氮氧化物浓度检测器测量所述o i
使用所述氨浓度检测器测量所述a i
使用所述氨气提供器提供所述修正喷氨总量m w或m v的氨,以及
使用所述喷氨分支母管以所述喷射量p i喷射所述氨空混合气。
附图说明
图1示出了本公开的设备的一种实施方案的示意图。
图2示出了喷氨母管的示意图。
图3示出了根据本公开的一个实施方案的流入气氮氧化物浓度检测器矩阵。
图4示出了根据本公开的一个实施方案的流出气氮氧化物浓度检测器矩阵。
图5示出了根据本公开的一个实施方案的氨浓度检测器矩阵。
具体实施方式
本公开提出了一种选择性催化还原烟道气脱硝设备和方法。本公开可以实现烟气流量、氮氧化物和氨浓度的精确测量和反馈控制,从而在满足排放达标的要求条件下,最大程度减少喷氨量,消除氨逃逸高的问题。
本公开提供了一种矩阵式选择性催化还原烟道气脱硝设备,所述设备包括催化还原反应器,在所述催化还原反应器上游的流入烟道,和在所述催化还原反应器下游的流出烟道,所述流入烟道、流出烟道和催化还原反应器具有相似形状的横截面,其中,所述设备还包括:
在所述流入烟道中的烟道气流量计;
在所述流入烟道中的流入气氮氧化物浓度检测器;
在所述流入烟道中在所述烟道气流量计和所述流入气氮氧化物浓度检测器下游的喷氨装置,所述喷氨装置具有氨空混合气母管和从所述氨空混合气母管分支的矩阵式分布在所述流入烟道横截面中的多个喷氨分支母管,所述氨空混合气母管连接至氨气提供器和空气提供器,每个喷氨分支母管具有单独的流量调节阀;
在所述流出烟道中的矩阵式分布的多个流出气氮氧化物浓度检测器;
在所述流出烟道中的矩阵式分布的多个氨浓度检测器;
其中,所述喷氨分支母管的矩阵在所述流入烟道横截面中的分布与所述流出气氮氧化物浓度检测器的矩阵及所述氨浓度检测器的矩阵在所述流出烟道横截面中的分布是相同的。
本公开采用矩阵式测量和喷氨,从而可以对氮氧化物的充分还原并避免氨逃逸。
与常规SCR烟道气脱硝设备相同,本公开的设备的核心是选择性催化还原反应器或简称为SCR反应器或催化还原反应器,其中可以设置催化剂,用于将烟道气中氮氧化物的还原并使烟道气脱硝。可以使用常规的催化还原反应器。
本公开中的烟道气泛指任何需要脱硝的气体,其可以来自例如锅炉燃烧。因其在SCR反应器上游的烟道中流动,因此称为烟道气。
SCR反应器上游为流入烟道,并且还原脱硝后的气体从其下游的流出烟道流出。
可以使用常规的SCR反应器和流入及流出烟道的设计,只需述流入烟道、流出烟道和催化还原反应器具有相似形状的横截面即可。也就是说,为了在流入烟道的喷氨和流出烟道的气体成分之间形成对应关系,在整个流路中,横截面需要是相似形状。例如,流入烟道、流出烟道和催化还原反应器的横截面可以都是圆形的、都是正方形的,或都是相似的矩形的。其中,从常规设计来说,具有相似矩形截面的方案是优选的。相似性可以不是极为严格的,并且可以有一定的形状偏差。形状要素如尺寸和角度的偏差优选在10%以下,更优选5%以下,更优选3%以下。偏差不能过大,例如,不允许流入烟道是圆形截面而流出烟道是矩形截面。优选地,流出烟道和流入烟道的横截面是相同的。
本公开的设备包括流入烟道中的烟道气流量计,用于测量流入的烟道气的总流量。
优选地,本公开的设备包括在烟道中的全截面矩阵式流量计。全截面矩阵式流量计可以更加精确地测量烟道气流量在烟道全截面中的总量和分布。矩阵式流量计可以具有多个探测器,这些探测器呈点阵式排布。整 个烟道截面可以被划分为相应的矩阵,从而每个矩阵单元(也可称为区域)中均有探测器测量烟道气流量,进而得到烟道气流量在烟道全截面中的总量和分布。烟道气在烟道全截面中的分布可以是不均匀的。例如,烟道中央部分的烟道气流量可以大于烟道内壁附近的烟道气流量。通过多点测量,可以更精确地估算烟道气流量。
在流入烟道中还设置有流入气氮氧化物浓度检测器,用于检测流入的烟道气的氮氧化物浓度。流入气氮氧化物浓度检测器可以设置在烟道气流量计的上游、下游或附近。
优选地,流入氮氧化物是多个分布在所述流入烟道的横截面中的氮氧化物浓度检测器。与烟道气流量计类似,通过多点测量,可以更全面地测量烟道中的氮氧化物浓度。
在全截面矩阵式流量计下游设置有喷氨装置,在本公开中有时也称为喷氨格栅。喷氨装置用于在烟道气流动方向上将氨气喷出,使其进入烟道,并进而与流动的烟道气混合。
喷氨装置具有氨空混合气母管和从所述氨空混合气母管分支的矩阵式分布在所述流入烟道横截面中的多个喷氨分支母管,所述氨空混合气母管连接至氨气提供器和空气提供器,每个喷氨分支母管具有单独的流量调节阀。
多个喷氨分支母管矩阵式分布在烟道截面中的不同区域。喷氨母管被配置为喷氨流量彼此独立,从而可以对烟道截面中不同区域的喷氨量进行精确控制。
喷氨总量由氨空混合气母管中的流量控制。氨空混合气母管连接至彼此独立的氨气提供器和空气提供器。氨气提供器提供纯氨气,空气提供器则提供作为稀释气体的空气。可以适当地设计氨空混合气母管,从而主动地或被动地将纯氨气和空气充分混合。
将氨空混合气从氨空混合气母管向各个喷氨分支母管提供,而各个分支母管的具体喷射量由流量调节阀控制。
优选地,本公开的喷氨栅格下游还配以分区式气体混合装置。分区式气体混合装置用于保证小区域内彼此基本上独立的气体混合,从而使得喷氨对烟道气的影响局域化。优选地,对于每个喷氨母管配置相应的气体混 合装置的一个区。不过,也可以适当地增减小区数量。
本公开的设备还包括催化还原反应器,用于接收烟道气和氨气的混合物并且将烟道气中的氮氧化物还原成氮气。
本公开的设备还包括在所述流出烟道中的矩阵式分布的多个流出气氮氧化物浓度检测器。流出气氮氧化物浓度检测器用于检测脱硝后的气体中氮氧化物的量在全截面中的分布。
本公开的设备还包括在所述流出烟道中的矩阵式分布的多个氨浓度检测器。氨浓度检测器用于检测脱硝后的气体氨的量在全截面中的分布。
在本公开中,所述喷氨分支母管的矩阵在所述流入烟道横截面中的分布与所述流出气氮氧化物浓度检测器的矩阵及所述氨浓度检测器的矩阵在所述流出烟道横截面中的分布是相同的。
换言之,喷氨分支母管、流出气氮氧化物浓度检测器和氨浓度检测器以相同的矩阵分布。在本公开中,相同矩阵是指在流入烟道或流出烟道的横截面中的相对位置相同。这样,流出气氮氧化物浓度检测器和氨浓度检测器即可检测与喷氨分支母管相比在横截面中相同的相对位置处的物质浓度。矩阵可以是单行矩阵。
本公开的设备对烟道截面进行了分区,并可以精确测量还原后各个分区的氮氧化物浓度和氨浓度。此外,建立了喷氨位置与测量位置的对应关系。这样的测量和对应关系在下文详述的喷氨控制中是特别有利的。进而,可以根据流出烟道截面中的氮氧化物量和氨量的分布通过多个喷氨分支母管调节喷氨量的分布,从而可以实现高效脱硝。
在一个实施方案中,烟道气脱硝设备还包括在全截面矩阵式流量计上游的预除尘装置。烟道气中的粉尘含量大时,对脱硝和设备造成不利影响。通过设置预除尘装置,使进入喷氨步骤的烟道气中的粉尘含量大大下降,从而降低磨损、堵塞风险。
在一个实施方案中,预除尘装置是布置在省煤器灰斗上方的惯性除尘装置。惯性除尘装置除尘效果良好,且对烟道气流扰动较小。粉尘颗粒直接掉入到下方的省煤器灰斗内,便于收集和清除。
在一个实施方案中,全截面矩阵式流量计位于烟道的水平段,且喷氨格栅位于烟道的竖直段。这种配置有利于喷氨的进行,并且合理利用空间, 避免不同模块过于靠近。
在一个实施方案中,喷氨分支母管设有流量计。通过流量计和流量调节阀配合,可以对喷氨流量进行精确的控制。
在一个实施方案中,喷氨分支母管上还连接有喷氨支管,将喷氨分支母管提供的氨气进一步分散。喷氨支管可以有多级并连接各自的喷嘴。喷氨支管可以使氨气喷出更均匀。
在一个实施方案中,所述设备还包括在所述喷氨装置下游的分区气体混合装置,用于将氨和烟道气局域性地混合。分区气体混合装置与喷氨格栅的距离可以在100mm至500mm之间。该距离可以一方面保证气体的充分混合,另一方面保证气体混合局限在一定范围之内。
在一个实施方案中,每个喷氨分支母管对应于分区式气体混合装置的一个区。这样,可以形成多股各自均匀的混合气流。
在一个实施方案中,本公开的设备还包括处理器和控制器,所述处理器接收来自所述烟道气流量计、流入气氮氧化物浓度检测器、流出气氮氧化物浓度检测器和氨浓度检测器的测量结果,并且所述控制器被配置为控制所述流量调节阀和氨气提供器。通过处理器和控制器,可以自动化地完成测量结果的采集、计算和对喷氨参数的在线控制。
本公开还提供矩阵式选择性催化还原烟道气脱硝方法,所述方法包括在催化还原反应器上游的流入烟道中向烟道气中喷氨形成混合气,将混合气在所述催化还原反应器中还原脱硝,以及将脱硝后的气体从所述催化还原反应器中排出至所述催化还原反应器下游的流出烟道,其中,所述方法还包括:
检测所述流入烟道中的烟道气流量V和流入气氮氧化物浓度E;
在所述流出烟道的横截面中以同一矩阵方式检测流出气氮氧化物浓度o i和氨浓度a i,并计算o i的平均值O和a i的平均值A,其中,i为1至n的整数;
以下式计算修正喷氨总量m,并且根据所述修正喷氨总量m w调节喷氨:
m w=α×(V×E×17/30)×10 -6×(E-O)/E×ε,
即m w=α×(V×17/30)×10 -6×(E-O)×ε
其中,α为修正系数,
当A≤B时,α=1;
当A>B时:
α=(E-Z)/(E-O);
其中B为目标氨浓度值,Z为目标氮氧化物浓度值,ε为1-1.05的值,
其中,V是以Nm 3/h计的数值,E、o i、O是以mg/Nm 3计的数值,B、a i和A是以ppm计的数值,并且m是以kg/h计的数值。
本公开的发明人发现,采用以上计算式,可以从流入气体和流出气体的成分尽可能准确地计算所需的氨气量。该算式同时考虑了流入气中的氮氧化物浓度,流出气中的氮氧化物浓度和氨浓度。特别是,本公开将氨浓度考虑在内。氨逃逸是脱硝过程中的重要问题。此前,通常仅考虑对氮氧化物的充分还原,或仅考虑减小氨逃逸。本公开的方法同时考虑了两者。目标氨浓度值一般地根据排放法规来确定。当前,氨逃逸的行业标准为3ppm,因此可以将目标氨浓度值设定为B=3。在本文中,本公开的方法基本上以3ppm的氨浓度为分界来举例。当然,目标氨浓度值也可以根据具体情况进行变更。当氨的浓度低于目标氨浓度值时,主要考虑氮氧化物的充分去除;但当氨的浓度高于目标氨浓度值时,氨逃逸将成为问题,此时要适量减小总的喷氨量。
计算式中,单位Nm 3表示气体处于标准状态下时的体积。
系数ε可以自由选择1-1.05的值。换言之,本公开的喷氨量可以有5%的浮动余地。
Z为目标氮氧化物浓度值,其可以根据方法实施当时的排放标准确定。
本公开的方法中,根据烟道气在经过喷氨和选择性催化还原前后的多个参数,计算出修正喷氨总量。该修正喷氨总量用于调节喷氨量,从而使排放的气体中氮氧化物和氨均可符合标准。在算得修正喷氨总量后,可以实时调节喷氨量。不过,当流入气和反应波动不大时,也可以在一段时间后进行调节。可以连续地进行测量、计算和调节。不过考虑到控制成本,也可以间歇性地进行测量、计算和调节。
在一个实施方案中,根据所述修正喷氨总量m w调节喷氨包括:
将所述修正喷氨总量m w的氨气与恒定流量的稀释用空气混合,形成 流量为T的氨空混合气,并且将m w换算为m v,其中,T和m v是以Nm 3/h计的数值;
在所述流入烟道的横截面中喷射所述氨空混合气,所述氨空混合气以与所述矩阵相同的矩阵方式喷射并且喷射量为p i,其中,p i通过下式计算:
当a i≤B时,
p i=(E-T)/(E-o i)×(T/n)
当a i>B时,
p i=[1-(a i-B)×V×10 -6/m v]×(T/n)。
采用这一方法,可以在控制喷氨总量的基础上,进一步精确控制横截面中每个区域的喷氨量。当某个区域还原后的氨逃逸量较低时,可以根据该区域氮氧化物的浓度选择分区喷氨量。然而,当氨逃逸量较高时,则在从氮氧化物浓度算得的喷氨量m v为目标氮氧化物浓度值的基础上,还根据氨过量的值来调整喷氨量。
其中,按体积计的m v可以由按重量计的m w换算得到。
可以适当地选择空气流量,使得喷氨量为氨空混合气总量T的约3%至5%。
图1示出了本公开的设备的一种实施方案的示意图。
图1左侧为省煤器出口。烟道气从省煤器出口引出,在烟道气经过预除尘装置时脱除掉其中的部分粉尘,减少进行脱硝装置的粉尘含量,从而降低磨损、堵塞风险。脱除掉的粉尘颗粒掉入到省煤器灰斗内。烟道气流经省煤器出口烟道后,进入脱硝入口烟道,流经全截面矩阵式流量计时,实现对烟道气流量的总量和分布的准确测量,用于指导喷氨总量和分布的控制。烟道气继续向前运动,经过导流板导流,在竖起烟道内与喷氨格栅喷出的氨气(通常是以氨空混合气的形式)接触。导流板有利于保持烟道内气体流动的平稳。在图1中,示出的多个喷头是从一个喷氨分支母管引出的。也就是说,这显示的是单行矩阵的情况,在垂直纸面的方向上,排列有多个喷氨分支母管,但纸面所示剖面仅由一个喷氨分支母管负责。氨空混合气母管在图1中未示出,其可以垂直于纸面延伸。烟道横截面各部分的喷氨量由所处区域所对应的喷氨母管调节阀控制。烟道气和氨气接触后, 在分区式气体混合装置的作用下混合。分区式气体混合装置对应于喷氨分支母管将整个烟道隐形分为若干单元,每个单元内烟道气流动相对独立,而在单元内部烟道气相互扰动,剧烈混合。图中的示意性示出了一个被动型分区气体混合装置。烟道气和氨气充分混合后,再经过导流板导流,进入反应器本体。混合气经整流格栅整流后,与催化剂接触。在催化剂作用下,氮氧化物和氨气反生氧化还原反应,氮氧化物被还原成为氮气,从面实现烟道气中的氮氧化物脱除。净化后的烟道气,从出口烟道流出。其流出过程中,与矩阵式氮氧化物检测器和氨检测器的检测采样探头接触,以测量氮氧化物和氨的量的分布。在图1中,纸面所在剖面中显示了1个流出气氮氧化物浓度检测器和1个氨浓度检测器,与反应器上游的所示喷氨分支母管对应;而在垂直纸面的方向上,还可与具有与其他喷氨分支母管对应的流出气氮氧化物浓度检测器和氨浓度检测器。根据这些分布测量值作为反馈值,指导对应分区喷氨母管阀门的调节,以调节喷氨量的分布。例如,如当所测氮氧化物值高于预先设定值时,加大对应喷氨母管阀门开度,增加喷氨量;若低于预期设定值时,则减少对应喷氨母管阀门开度,降低当地喷氨量。通过上述逻辑实现对整个烟道截面喷氨的分区精确控制。
图2示出了喷氨分支母管的示意图。图中三个喷氨分支母管都连接到来自氨空混合器的氨空混合气母管。在本公开中,喷氨指的是喷出氨气或氨气-空气混合气。喷氨母管上设置有流量调节阀和流量计,从而每个喷氨母管的喷氨流量均可独立控制。喷氨母管上还连接有水平的一级喷氨支管和竖直的二级喷氨支管,从而可以实现均匀喷氨。
图2可以为图1的左视图,即其中氨空混合气母管沿图1的垂直于纸面的方向延伸。若将图2的实施方案用于图1中,则图1的装置具有垂直于纸面排列的三个喷氨分支母管(1×3的矩阵)。相应地,其应具有垂直于纸面排列的三个流出气氮氧化物检测器和垂直于纸面排列的三个氨检测器,并且流入气氮氧化物检测器也可以具有相同矩阵式排列(如图3-5所示)。
图3-5分别示出了根据本公开的一个实施方案的流入气氮氧化物浓度检测器矩阵、流出气氮氧化物浓度检测器矩阵和氨浓度检测器矩阵。
以下通过实施例,进一步说明本公开的设备和方法。
实施例
如图1所示,喷氨格栅所在烟道尺寸为14250×3600mm,全截面流量计布置在入口烟道水平段。入口氮氧化物检测器采样探头布置在喷氨格栅上游1.5m处,采样探头共三个,如图3所示。喷氨格栅有三支喷氨分区母管,每个母管上配有氨空混合器调节阀。在入口烟道布置有导流板,在脱硝反应器内布置有整流格栅和三层催化剂。在出口烟道水平段布置有如图4和图5所示的出口氮氧化物检测器和出口氨浓度检测器各3个。氨空混合气的风量为4000Nm 3/h;排放标准要求出口氮氧化物浓度为50mg/Nm 3;控制系统中出口氮氧化物浓度设定为30mg/Nm 3,排放标准要求出口氨浓度为低于3ppm。
某时刻全截面流量测出的烟气量为1968350Nm 3/h,入口氮氧化物检测装置探头1的浓度为288mg/Nm 3,探头2的浓度值为312mg/Nm 3,探头3的浓度为266mg/Nm 3,得出进口氮氧化物浓度为288.7mg/Nm 3;测得出口氮氧化物分别为25、28、37mg/Nm 3,则计算出出口氮氧化物浓度为30mg/Nm 3;此时氨浓度检测器测得的氨浓度分别为2ppm,3ppm,1ppm(均小于或等于3ppm),则计算出氨浓度平均值为2ppm(小于3ppm),对应的修正系数ε取为1,则计算出的喷氨量为:
m=α×(V×17/30)×10 -6×(E-O)×ε
=1×(1968350×17/30)×0.000001×(288.7-30)=287.6kg/h
各喷氨分支母管的流量为:
p i=(E-T)/(E-o i)×(T/n)
p 1=(288.7-30)/(288.7-25)×(4000/3)=1313Nm3/h
p 2=(288.7-30)/(288.7-28)×(4000/3)=1323Nm 3/h
p 3=(288.7-30)/(288.7-37)×(4000/3)=1370Nm 3/h
若某时刻,由于还原情况变化,流出气氮氧化物浓度发生波动变化,,此时测得的出口的氮氧化物浓度分别为24mg/Nm 3,26mg/Nm 3,36mg/Nm 3,入口氮氧化物浓度不变,则计算出出口氮氧化物平均浓度为29.6mg/Nm 3;氨浓度10ppm,4ppm,3ppm(均大于3ppm),则计算出的平均氨浓度为5.6ppm(大于3ppm);
取ε为1,目标氮氧化物浓度值为50mg/Nm 3,则此时的喷氨总量为:
m w=[(288.7-50)/(288.7-29.6)]×(1968350×17/30)×0.000001×(288.7-29.6)=266.2kg/h
m w换算为m v后为350Nm 3/h。
喷氨分支母管对应的流量为:
p 1=[1-(10-3)×1968350×10 -6/350]×4000/3=1281Nm 3/h
p 2=[1-(4-3)×1968350×10 -6/350]×4000/3=1325Nm 3/h
p 3=(288.7-30)/(288.7-36)×(4000/3)=1364Nm 3/h
经过上述调节后,出口氮氧化物浓度为30mg/Nm3、38mg/Nm3、40mg/Nm 3;氨浓度为2ppm,1ppm,2ppm;在满足排放达标的情况下,出口氨浓度控制在3ppm以内。
比较例1:若出口未布置氨浓度检测器
在上述案例中,某时刻测得的出口的氮氧化物浓度分别为24mg/Nm 3,26mg/Nm 3,36mg/Nm 3,则计算出出口氮氧化物平均浓度为29.6mg/Nm 3;基本处于设计值范围内,但出口氨浓度实际上分别为10ppm,4ppm,3ppm,超过了设计值3ppm;虽然氮氧化物达标,但始终存在氨逃逸大的问题,将对后续设备造成损害。
比较例2:若氨浓度检测器未参与氨反馈控制
再以上述案例数据为例:
某时刻测得的出口的氮氧化物浓度分别为24mg/Nm 3,26mg/Nm 3,36mg/Nm 3,则计算出出口氮氧化物平均浓度为29.6mg/Nm 3;基本处于设计值范围内,但测得出口氨浓度分别为10ppm,4ppm,3ppm,若氨浓度未参与反馈控制,则仅基于氮氧化物浓度测量值算出的喷氨量(即α=1的情况)为287.6kg/h,此时存在氨逃逸问题。
与此相反,利用尾部氨浓度值参与反馈控制后,喷氨量降为266.2kg/h,在保证排放达标的情况下,从源头降低的氨逃逸高的风险。
同时,对于采样点1所在分区,若仅采用氮氧化物浓度反馈计算出分支母管的喷氨量(即按a i≤3的式子计算):
(288.7-30)/(288.7-24)×(4000/3)=1303Nm 3/h
而采用氨反馈后,考虑到氨浓度过高的风险,进一步降低所在分区的氨空混合气比例,消除氨逃逸风险,此时计算出的喷氨量:
[1-(10-3)×1968350×10 -6/(0.05×8000)]×8000/3=1241Nm 3/h
同样,对于采样点2所在分区,两种公式计算出的值分别为:
(288.7-30)/(288.7-26)×(4000/3)=1313Nm 3/h
[1-(4-3)×1968350×10-6/(0.05×8000)]×8000/3=1320Nm 3/h
使用氨反馈在保证氮氧化物浓度不超标的情况下减少了局部喷射量,从而减少了氨逃逸。
另外可以看到,测得的氨浓度与3ppm差距越大,对降低局部喷射量的要求越明显。
本公开通过所提出的装置和方法,实现烟气流量、氮氧化物和氨浓度的精确测量和反馈控制,从而在满足排放达标的要求条件下,最大程度减少喷氨量,消除氨逃逸高的问题。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (11)

  1. 一种矩阵式选择性催化还原烟道气脱硝设备,所述设备包括催化还原反应器,在所述催化还原反应器上游的流入烟道,和在所述催化还原反应器下游的流出烟道,所述流入烟道、流出烟道和催化还原反应器具有相似形状的横截面,其中,所述设备还包括:
    在所述流入烟道中的烟道气流量计;
    在所述流入烟道中的流入气氮氧化物浓度检测器;
    在所述流入烟道中在所述烟道气流量计和所述流入气氮氧化物浓度检测器下游的喷氨装置,所述喷氨装置具有氨空混合气母管和从所述氨空混合气母管分支的矩阵式分布在所述流入烟道横截面中的多个喷氨分支母管,所述氨空混合气母管连接至氨气提供器和空气提供器,每个喷氨分支母管具有单独的流量调节阀;
    在所述流出烟道中的矩阵式分布的多个流出气氮氧化物浓度检测器;
    在所述流出烟道中的矩阵式分布的多个氨浓度检测器;
    其中,所述喷氨分支母管的矩阵在所述流入烟道横截面中的分布与所述流出气氮氧化物浓度检测器的矩阵及所述氨浓度检测器的矩阵在所述流出烟道横截面中的分布是相同的。
  2. 根据权利要求1所述的设备,其中,所述流出气氮氧化物浓度检测器的矩阵与所述氨浓度检测器的矩阵在所述流出烟道长度方向的间距为500mm-1000mm。
  3. 根据权利要求1所述的设备,其中,所述流出烟道的横截面为短边长度为d的矩形,并且所述流出气氮氧化物检测器的矩阵和所述氨浓度检测器距离烟道的横截面的长边的距离为1/3 d以上。
  4. 根据权利要求1所述的设备,其中,所述烟道气流量计是全截面矩阵式流量计。
  5. 根据权利要求1所述的设备,其中,所述流入气氮氧化物浓度检测器是多个分布在所述流入烟道的横截面中的氮氧化物浓度检测器。
  6. 根据权利要求1所述的设备,其中,所述设备还包括处理器和控制器,所述处理器接收来自所述烟道气流量计、流入气氮氧化物浓度检测器、 流出气氮氧化物浓度检测器和氨浓度检测器的测量结果,并且所述控制器被配置为控制所述流量调节阀和氨气提供器。
  7. 根据权利要求1所述的设备,其中,所述设备还包括在所述喷氨装置下游的分区气体混合装置。
  8. 一种矩阵式选择性催化还原烟道气脱硝方法,所述方法包括在催化还原反应器上游的流入烟道中向烟道气中喷氨形成混合气,将混合气在所述催化还原反应器中还原脱硝,以及将脱硝后的气体从所述催化还原反应器中排出至所述催化还原反应器下游的流出烟道,其中,所述方法还包括:
    检测所述流入烟道中的烟道气流量V和流入气氮氧化物浓度E;
    在所述流出烟道的横截面中以同一矩阵方式检测流出气氮氧化物浓度o i和氨浓度a i,并计算o i的平均值O和a i的平均值A,其中,i为1至n的整数;
    以下式计算修正喷氨总量m w,并且根据所述修正喷氨总量m w调节喷氨:
    m w=α×(V×17/30)×10 -6×(E-O)×ε
    其中,α为修正系数,
    当A≤B时,α=1;
    当A>B时:
    α=(E-Z)/(E-O);
    其中B为目标氨浓度值,Z为目标氮氧化物浓度值,ε为1-1.05的值,
    其中,V是以Nm 3/h计的数值,E、o i、O是以mg/Nm 3计的数值,B、a i和A是以ppm计的数值,并且m w是以kg/h计的数值。
  9. 根据权利要求8的方法,其中根据所述修正喷氨总量m w调节喷氨包括:
    将所述修正喷氨总量m w的氨气与恒定流量的稀释用空气混合,形成流量为T的氨空混合气,并且将m w换算为m v,其中,T和m v是以Nm 3/h计的数值;
    在所述流入烟道的横截面中喷射所述氨空混合气,所述氨空混合气以与所述矩阵相同的矩阵方式喷射并且喷射量为p i,其中,p i通过下式计算:
    当a i≤B时,
    p i=(E-T)/(E-o i)×(T/n)
    当a i>B时,
    p i=[1-(a i-B)×V×10 -6/m v]×(T/n)。
  10. 根据权利要求8-9中任一项所述的方法,其中,B=3。
  11. 根据权利要求9的方法,其中,所述方法通过根据权利要求1-7中任一项所述的设备进行,其中,
    使用所述烟道气流量计测量所述V,
    使用所述流入气氮氧化物浓度检测器测量所述E,
    使用所述流出气氮氧化物浓度检测器测量所述o i
    使用所述氨浓度检测器测量所述a i
    使用所述氨气提供器提供所述修正喷氨总量m w或m v的氨,以及
    使用所述喷氨分支母管以所述喷射量p i喷射所述氨空混合气。
PCT/CN2020/117672 2019-10-28 2020-09-25 选择性催化还原脱硝设备和方法 WO2021082828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911034562.7 2019-10-28
CN201911034562.7A CN112717689B (zh) 2019-10-28 2019-10-28 选择性催化还原脱硝设备和方法

Publications (1)

Publication Number Publication Date
WO2021082828A1 true WO2021082828A1 (zh) 2021-05-06

Family

ID=75588983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117672 WO2021082828A1 (zh) 2019-10-28 2020-09-25 选择性催化还原脱硝设备和方法

Country Status (2)

Country Link
CN (1) CN112717689B (zh)
WO (1) WO2021082828A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680206A (zh) * 2021-08-19 2021-11-23 成都达奇环境科技有限公司 一种催化脱硝设备的控制方法及系统
CN113952838A (zh) * 2021-09-10 2022-01-21 国网河北省电力有限公司电力科学研究院 一种scr烟气脱硝系统的喷氨格栅自动优化调整装置及方法
CN114177773A (zh) * 2021-12-07 2022-03-15 大唐东北电力试验研究院有限公司 火电厂scr脱硝系统混合器
CN114307602A (zh) * 2021-12-28 2022-04-12 中建材环保研究院(江苏)有限公司 一种烟气脱硝系统喷氨调节装置
CN114811589A (zh) * 2021-12-31 2022-07-29 华南理工大学 基于大数据技术的垃圾焚烧脱硝反应动态控制方法及系统
CN114887485A (zh) * 2022-05-30 2022-08-12 西安热工研究院有限公司 一种燃煤电厂scr脱硝喷氨测量控制系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578042B (zh) * 2021-08-04 2022-10-04 河南工业职业技术学院 一种多级喷氨高效scr烟气脱硝系统
CN114870627B (zh) * 2022-05-30 2023-08-01 西安热工研究院有限公司 一种燃煤电厂scr脱硝分区精准喷氨控制方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654776A (zh) * 2012-04-16 2012-09-05 北京华能新锐控制技术有限公司 烟气脱硝的喷氨量控制方法和装置
CN103657374A (zh) * 2013-12-12 2014-03-26 武汉华敏测控技术股份有限公司 脱硝装置喷氨分区实时优化控制系统及方法
CN103728994A (zh) * 2013-12-30 2014-04-16 北京工业大学 一种水泥厂scr脱硝效率监测控制方法
CN104102138A (zh) * 2014-07-16 2014-10-15 北京中合实创电力科技有限公司 一种基于软测量的喷氨格栅分区控制方法
US20140356236A1 (en) * 2013-05-31 2014-12-04 Babcock-Hitachi Kabushiki Kaisha Denitrification apparatus
CN105854597A (zh) * 2016-04-14 2016-08-17 国网河南省电力公司电力科学研究院 Scr脱硝装置喷氨格栅智能优化调整系统及方法
CN106621738A (zh) * 2016-12-09 2017-05-10 吉林电力股份有限公司科技开发分公司 一种降低脱硝逃逸氨控制方法
CN107252630A (zh) * 2017-05-31 2017-10-17 国家电网公司 一种优化scr脱硝系统氨氮摩尔比分布的方法
CN208553759U (zh) * 2018-07-27 2019-03-01 国家电投集团远达环保工程有限公司重庆科技分公司 一种分区精准喷氨烟气处理系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079414B2 (ja) * 2002-04-03 2008-04-23 三菱重工業株式会社 窒素酸化物の処理装置及び窒素酸化物の処理方法
US7166262B2 (en) * 2002-09-25 2007-01-23 Mitsubishi Power Systems, Inc. Control for ammonia slip in selective catalytic reduction
KR101048125B1 (ko) * 2008-11-14 2011-07-08 현대자동차주식회사 차량의 요소 분사량 제어장치 및 방법
JP2011144766A (ja) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd 排ガス脱硝システムおよびこれを備えた船舶ならびに排ガス脱硝システムの制御方法
CN202146712U (zh) * 2011-06-27 2012-02-22 南京龙源环保有限公司 一种均混均流导流的烟气催化还原脱硝装置
CN102527233A (zh) * 2012-01-05 2012-07-04 北京龙电宏泰环保科技有限公司 一种用于工业烟气选择性催化还原脱硝装置中具有分区调节功能的双层喷氨格栅
CN202569946U (zh) * 2012-04-27 2012-12-05 四川君和环保工程有限公司 一种用于sncr法烟气脱硝的氨喷射自控装置
CN102688629B (zh) * 2012-06-04 2014-09-03 东方电气集团东方锅炉股份有限公司 一种scr脱硝除尘装置
CN104826493B (zh) * 2015-04-23 2016-11-23 华北电力大学(保定) 一种选择性催化还原法烟气脱硝系统的控制方法
CN204799107U (zh) * 2015-07-06 2015-11-25 北京峰业电力环保工程有限公司 用于工业烟气选择性催化还原脱硝装置的喷氨格栅
CN105547388B (zh) * 2015-12-07 2018-10-09 华北电力大学(保定) 一种用于脱硫脱硝控制的烟气流量在线标定方法
CN105597538B (zh) * 2015-12-22 2017-12-22 河北省电力建设调整试验所 一种基于时差匹配的脱硝还原剂加入控制方法及其控制装置
US10391448B2 (en) * 2016-05-25 2019-08-27 Florida Power & Light Company Selective catalytic reduction (SCR) control optimization
CN206638282U (zh) * 2017-01-12 2017-11-14 中电投远达环保工程有限公司重庆科技分公司 气体流量测量装置
CN107243257B (zh) * 2017-05-08 2019-11-05 浙江大学 适合全负荷的智能喷氨控制系统
CN109248562A (zh) * 2017-07-12 2019-01-22 清华大学 烟气的选择性催化还原脱硝方法
CN108211790A (zh) * 2018-02-09 2018-06-29 河南环碧环保工程设备有限公司 一种采用喷氨格栅的scr脱硝装置及脱硝工艺
CN208465627U (zh) * 2018-05-25 2019-02-05 大唐环境产业集团股份有限公司 一种scr脱硝系统喷氨控制装置
CN109304086B (zh) * 2018-10-31 2020-11-24 华中科技大学 一种电站锅炉scr脱硝精细化喷氨控制方法
CN209501369U (zh) * 2018-12-29 2019-10-18 福建龙净环保股份有限公司 一种具有混烟除尘作用的烟气scr脱硝装置
CN109876658B (zh) * 2019-04-08 2023-07-07 国电环境保护研究院有限公司 分区涡流卷吸喷氨系统及喷氨调节方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654776A (zh) * 2012-04-16 2012-09-05 北京华能新锐控制技术有限公司 烟气脱硝的喷氨量控制方法和装置
US20140356236A1 (en) * 2013-05-31 2014-12-04 Babcock-Hitachi Kabushiki Kaisha Denitrification apparatus
CN103657374A (zh) * 2013-12-12 2014-03-26 武汉华敏测控技术股份有限公司 脱硝装置喷氨分区实时优化控制系统及方法
CN103728994A (zh) * 2013-12-30 2014-04-16 北京工业大学 一种水泥厂scr脱硝效率监测控制方法
CN104102138A (zh) * 2014-07-16 2014-10-15 北京中合实创电力科技有限公司 一种基于软测量的喷氨格栅分区控制方法
CN105854597A (zh) * 2016-04-14 2016-08-17 国网河南省电力公司电力科学研究院 Scr脱硝装置喷氨格栅智能优化调整系统及方法
CN106621738A (zh) * 2016-12-09 2017-05-10 吉林电力股份有限公司科技开发分公司 一种降低脱硝逃逸氨控制方法
CN107252630A (zh) * 2017-05-31 2017-10-17 国家电网公司 一种优化scr脱硝系统氨氮摩尔比分布的方法
CN208553759U (zh) * 2018-07-27 2019-03-01 国家电投集团远达环保工程有限公司重庆科技分公司 一种分区精准喷氨烟气处理系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680206A (zh) * 2021-08-19 2021-11-23 成都达奇环境科技有限公司 一种催化脱硝设备的控制方法及系统
CN113952838A (zh) * 2021-09-10 2022-01-21 国网河北省电力有限公司电力科学研究院 一种scr烟气脱硝系统的喷氨格栅自动优化调整装置及方法
CN113952838B (zh) * 2021-09-10 2023-10-20 国网河北省电力有限公司电力科学研究院 一种scr烟气脱硝系统的喷氨格栅自动优化调整装置及方法
CN114177773A (zh) * 2021-12-07 2022-03-15 大唐东北电力试验研究院有限公司 火电厂scr脱硝系统混合器
CN114307602A (zh) * 2021-12-28 2022-04-12 中建材环保研究院(江苏)有限公司 一种烟气脱硝系统喷氨调节装置
CN114811589A (zh) * 2021-12-31 2022-07-29 华南理工大学 基于大数据技术的垃圾焚烧脱硝反应动态控制方法及系统
CN114811589B (zh) * 2021-12-31 2023-12-05 华南理工大学 基于大数据技术的垃圾焚烧脱硝反应动态控制方法及系统
CN114887485A (zh) * 2022-05-30 2022-08-12 西安热工研究院有限公司 一种燃煤电厂scr脱硝喷氨测量控制系统及方法
CN114887485B (zh) * 2022-05-30 2023-11-03 西安热工研究院有限公司 一种燃煤电厂scr脱硝喷氨测量控制系统及方法

Also Published As

Publication number Publication date
CN112717689B (zh) 2022-07-08
CN112717689A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2021082828A1 (zh) 选择性催化还原脱硝设备和方法
CN105126616B (zh) 一种基于权重阀调控的scr脱硝系统喷氨优化方法
CN112657333B (zh) 喷氨均布装置及脱硝喷氨系统
CN102179171B (zh) 具有前置流场均匀装置的多级热解耦合脱硝方法及其装置
CN202844884U (zh) 烟气脱硝系统的喷氨与涡流混合装置
CN112604500A (zh) 一种燃煤机组scr烟气脱硝系统用双级喷氨混合装置
CN206064121U (zh) 一种sncr脱硝系统
CN105465109B (zh) 一种旋流叶片和烟气喷氨脱硝的装置
CN108816043A (zh) 一种脱硝设备及其自动控制方法
CN214051165U (zh) 脱硝余热锅炉
EP2772301B1 (en) Process and apparatus for reducing the content of nitrogen oxides
CN109876658B (zh) 分区涡流卷吸喷氨系统及喷氨调节方法
CN112370964B (zh) 一种改善燃煤电站锅炉scr系统综合性能的方法及系统
CN109647193A (zh) 一种氨气分段供给的scr脱硝方法及装置
CN106582285A (zh) 一种多级喷氨高效scr烟气脱硝系统
CN102698579A (zh) 烟气脱硝系统的喷氨与涡流混合装置及方法
CN101450278B (zh) 整体机翼型均流与分区可调喷氨装置
CN109821379B (zh) 用于提高氨气分布均匀度的喷氨装置
CN107166376A (zh) 基于旋风分离器的流化床锅炉脱硝装置和脱硝方法
CN214635422U (zh) 一种基于脱硝氨逃逸控制的空预器防堵治理装置
JP2004243228A (ja) 還元剤注入調整機能付排煙脱硝装置および排煙脱硝方法
CN112657334B (zh) 脱硝余热锅炉
CN110624412A (zh) 一种scr脱硝系统及其喷氨控制方法
CN204911185U (zh) 一种选择性非催化还原sncr反应系统
CN108940126A (zh) 一种多喷嘴气体喷管喷速调整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880506

Country of ref document: EP

Kind code of ref document: A1