WO2021082748A1 - 车辆控制装置、系统和车辆 - Google Patents

车辆控制装置、系统和车辆 Download PDF

Info

Publication number
WO2021082748A1
WO2021082748A1 PCT/CN2020/114120 CN2020114120W WO2021082748A1 WO 2021082748 A1 WO2021082748 A1 WO 2021082748A1 CN 2020114120 W CN2020114120 W CN 2020114120W WO 2021082748 A1 WO2021082748 A1 WO 2021082748A1
Authority
WO
WIPO (PCT)
Prior art keywords
comparator
terminal
voltage
control unit
vehicle
Prior art date
Application number
PCT/CN2020/114120
Other languages
English (en)
French (fr)
Inventor
郭腾飞
高泽霖
孟伟
邢鹏飞
赵超
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP20880917.8A priority Critical patent/EP4015279A4/en
Priority to US17/640,614 priority patent/US11970065B2/en
Publication of WO2021082748A1 publication Critical patent/WO2021082748A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0027Post collision measures, e.g. notifying emergency services

Definitions

  • the embodiments of the present invention relate to the field of vehicle technology, and in particular, to a vehicle control device, a system, and a vehicle.
  • the collision control unit when it recognizes that a vehicle has collided, it can send CAN signals to the vehicle control unit and the power battery control unit through the Controller Area Network (CAN) bus respectively.
  • the CAN signal represents When the vehicle collides, the power battery control unit cuts off the power supply according to the CAN signal, thereby powering off the vehicle.
  • the power battery control unit cannot receive the CAN signal in time, and even cause power The battery control unit cannot receive the CAN signal; thus, the power battery control unit cannot disconnect the power supply in time, and the vehicle cannot be stopped in time, and the safety of personnel cannot be guaranteed.
  • Embodiments of the present invention provide a vehicle control device, system, and vehicle to solve the current problem that the power battery control unit cannot be powered off in time when the vehicle collides.
  • an embodiment of the present invention provides a vehicle control device, including:
  • a first resistance structure a comparator, a control switch and a second resistance structure
  • the first end of the comparator is connected to the collision control unit, the second end of the comparator is connected to the first end of the first resistance structure, the third end of the comparator is connected to a power supply, and the comparison
  • the fourth terminal of the comparator is grounded, and the fifth terminal of the comparator is connected to the first terminal of the control switch; the second terminal of the control switch is connected to the power battery control unit, and the third terminal of the control switch is grounded ;
  • the second end of the first resistance structure is connected to the power source, and the third end of the first resistance structure is grounded; the first end of the second resistance structure is connected to the power source, and the second resistance structure The second end of is connected to the power battery control unit;
  • the comparator is configured to receive a first voltage output by the collision control unit, where the first voltage is sent when the collision control unit detects that the vehicle has a collision event, and sends it to the control
  • the switch outputs a high-level signal so that the control switch is controlled to be turned on according to the high-level signal, and after the control switch is turned on, the power battery control unit is grounded, and the power battery controls After the unit is grounded, the power battery control unit is powered off.
  • the first terminal of the comparator when the first terminal of the comparator is a forward input terminal and the second terminal of the comparator is a reverse input terminal, the first voltage is greater than the second voltage, so
  • the second voltage is the voltage input from the first terminal of the first resistance structure to the second terminal of the comparator; the first terminal of the comparator is the inverting input terminal, the first terminal of the comparator When the two terminals are positive input terminals, the first voltage is less than the second voltage.
  • the comparator is further configured to receive a third voltage output by the collision control unit, where the third voltage is that the collision control unit detects that the vehicle does not collide.
  • the comparator When an event occurs, and output a low-level signal to the control switch, so that the control switch is turned off according to the low-level signal, and after the control switch is turned off, the power battery
  • the control unit receives power from the power supply;
  • the third voltage is smaller than the second voltage;
  • the third voltage is greater than the second voltage.
  • the first resistance structure includes a first resistance and a second resistance
  • the first end of the first resistor is connected to the power source, the second end of the first resistor is connected to the first end of the second resistor, and the second end of the second resistor is grounded;
  • the second terminal of the comparator is connected between the first resistor and the second resistor.
  • the comparator includes a comparator unit and a third resistor
  • the first end of the comparator unit is connected to the collision control unit, the second end of the comparator unit is connected to the first end of the first resistance structure, and the third end of the comparator unit is connected to the collision control unit.
  • the first end of the third resistor is connected, the fourth end of the comparator unit is grounded, and the fifth end of the comparator unit is connected to the second end of the third resistor; the third end of the comparator unit is connected to the The terminal is connected to the power source, and the fifth terminal of the comparator unit is connected to the first terminal of the control switch.
  • the device further includes a first interface for grounding
  • the third terminal of the first resistance structure is connected to the first interface
  • the fourth terminal of the comparator is connected to the first interface
  • the third terminal of the control switch is connected to the first interface
  • the comparator is configured to output a high-level signal to the control switch when the first voltage is received, so that the control switch conducts the first interface and the control switch according to the received high-level signal
  • the power battery control unit
  • the device also includes a second interface for connecting with the power battery control unit;
  • the second end of the second resistance structure is connected to the second interface, and the second end of the control switch is connected to the second interface.
  • the device also includes a third interface for connecting with the power source and a fourth interface for connecting with the collision control unit;
  • the third end of the comparator is connected to the third interface, the second end of the first resistance structure is connected to the third interface, and the first end of the second resistance structure is connected to the third interface;
  • the first end of the comparator is connected to the fourth interface.
  • control switch is a triode
  • control switch is a photocoupler; and the photocoupler further includes a fourth terminal that is grounded.
  • an embodiment of the present invention provides a vehicle control system, including:
  • the collision control unit is configured to output a first voltage to the collision control unit when a collision event of the vehicle is detected, so as to power off the power battery control unit through the vehicle control device;
  • the first voltage is greater than the second terminal.
  • the second voltage is the voltage input from the first end of the first resistance structure in the vehicle control device to the second end of the comparator; the first voltage of the comparator in the vehicle control device When the terminal is a negative input terminal and the second terminal of the comparator in the vehicle control device is a positive input terminal, the first voltage is smaller than the second voltage.
  • the collision control unit is further configured to output a third voltage to the collision control unit when the collision event of the vehicle is not detected, so that the power battery control unit can pass through
  • the vehicle control device receives power from the power supply;
  • the third voltage is less than the Second voltage; when the first terminal of the comparator in the vehicle control device is a negative input terminal, and the second terminal of the comparator in the vehicle control device is a positive input terminal, the third voltage is greater than The second voltage.
  • an embodiment of the present invention provides a vehicle in which the vehicle control system as described in the first aspect and various possible implementation manners of the first aspect is provided in the vehicle.
  • the embodiments of the present invention provide a vehicle control device, a system, and a vehicle.
  • the device includes a first resistance structure, a comparator, a control switch, and a second resistance structure; the comparator receives the collision control unit to send out when a vehicle collision event is detected Output a high-level signal to the control switch so that the control switch is turned on according to the high-level signal, and after the control switch is turned on, the power battery control unit is grounded, and the power battery control unit is grounded after the control switch is turned on. After the power battery control unit is grounded, the power battery control unit is powered off, which can quickly cut off the power of the vehicle in the event of a vehicle collision without being affected by signal interference, reducing the time required for switching, and improving reliability.
  • Figure 1 is a schematic diagram of an existing vehicle control technology
  • FIG. 2 is a schematic diagram of the structure of a vehicle control device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a vehicle control device provided by another embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a vehicle control device provided by another embodiment of the present invention.
  • R1 the first resistance
  • R2 second resistance
  • R3 the third resistor
  • R4 the fourth resistor
  • Fig. 1 is a schematic diagram of an existing vehicle control technology.
  • ABM stands for AirBag Module
  • VCU stands for Vehicle Control Unit
  • BMS Battery Management System.
  • ABM AirBag Module
  • VCU Vehicle Control Unit
  • BMS Battery Management System
  • the ABM detects a vehicle collision event, it sends a message to the VCU and the BMS via the CAN signal at the same time. After receiving the message, the BMS waits for several cycles to confirm that the collision event is valid. , And then control to disconnect the battery contactor and power off the whole vehicle. It takes more than 100ms from the collision event issued by the ABM to the power failure of the whole vehicle.
  • the CAN signal is susceptible to interference and has certain instability. If the BMS does not receive the CAN signal sent by ABM, the BMS can also receive the CAN signal sent by the VCU, and then the BMS controls the disconnection of the battery contactor.
  • an embodiment of the present invention provides a vehicle control device, a system, and a vehicle.
  • the device includes a first resistance structure 100, a comparator 200, a control switch 300, and a second resistance structure 400;
  • the first voltage emitted when a vehicle collision event is detected outputs a high-level signal to the control switch 300, so that the control switch 300 is controlled to be turned on according to the high-level signal, and after the control switch is turned on, Grounding the power battery control unit 600, and powering off the power battery control unit 600 after the power battery control unit is grounded, can quickly cut off the power of the vehicle in the event of a vehicle collision, without being affected by signal interference, and reducing the need for switching Time to improve reliability.
  • Fig. 2 is a schematic structural diagram of a vehicle control device provided by an embodiment of the present invention.
  • the vehicle control device provided in this embodiment includes a first resistance structure 100, a comparator 200, a control switch 300 and a second resistance structure 400.
  • the first end of the comparator 200 is connected to the collision control unit 500, the second end of the comparator 200 is connected to the first end of the first resistance structure 100, the third end of the comparator 200 is connected to the power supply, and the fourth end of the comparator 200 is connected to the power supply.
  • the terminal is grounded, and the fifth terminal of the comparator 200 is connected to the first terminal of the control switch 300.
  • the second end of the control switch 300 is connected to the power battery control unit 600, and the third end of the control switch 300 is grounded.
  • the second end of the first resistance structure 100 is connected to the power source, and the third end of the first resistance structure 100 is grounded.
  • the first end of the second resistance structure 400 is connected to the power source, and the second end of the second resistance structure 400 is connected to the power battery control unit 600.
  • the comparator 200 is configured to receive the first voltage output by the collision control unit 500, where the first voltage is sent when the collision control unit 500 detects a vehicle collision event, and outputs a high-level signal to the control switch 300 to The control switch 300 is turned on according to the high-level signal, and after the control switch 300 is turned on, the power battery control unit 600 is grounded, and after the power battery control unit 600 is grounded, the power battery control unit 600 is turned off.
  • the third end of the comparator 200, the second end of the first resistance structure 100, and the first end of the second resistance structure 400 are all connected to a power source.
  • the VCC Volt Current Condenser in FIG. Voltage
  • the comparator 200 includes at least five ports. Among them, the first terminal and the second terminal are input terminals for connecting two voltage signals participating in the comparison; the third terminal is the power terminal of the comparator 200, the fourth terminal is the ground terminal of the comparator 200; the fifth terminal It is the output terminal of the comparator 200.
  • the second terminal of the comparator 200 is connected to a second voltage obtained by the voltage division of the first resistance structure 100, the second voltage is used as a reference voltage, and the first terminal of the comparator 200 is connected to the voltage output by the collision control unit 500.
  • the comparator 200 obtains a corresponding level signal by comparing the voltage output by the collision control unit 500 with the second voltage, and outputs the level signal to the control switch 300.
  • the comparator 200 may be realized by connecting multiple devices, or may be realized by a single integrated circuit chip, which is not limited herein.
  • the comparator 200 may be an integrated chip with a model of LM393, LM239, etc.
  • the control switch 300 includes at least three ports. Wherein, the first end of the control switch 300 is connected to the level signal output by the comparator 200, the second end is connected to the power battery control unit 600, and the third end of the control switch 300 is grounded.
  • the control switch 300 controls the on-off between the second terminal and the third terminal according to the level signal output by the comparator 200, thereby controlling whether the power battery control unit 600 is grounded.
  • the specific form of the control switch 300 is not limited here, for example, it may be a triode, an optocoupler, or the like.
  • the vehicle control device includes a first resistance structure 100, a comparator 200, a control switch 300, and a second resistance structure 400; the comparator 200 receives the collision control unit 500 when a vehicle collision event is detected
  • the issued first voltage outputs a high-level signal to the control switch 300, so that the control switch 300 is turned on according to the high-level signal, and after the control switch is turned on, the power battery control unit 600 is grounded , And after the power battery control unit is grounded, the power battery control unit 600 is turned off, which can quickly cut off the power of the vehicle in the event of a vehicle collision without being affected by signal interference, reducing the time required for switching, and improving reliability.
  • the first terminal of the comparator 200 when the first terminal of the comparator 200 is the forward input terminal and the second terminal of the comparator 200 is the reverse input terminal, the first voltage is greater than the second voltage, and the second voltage is the first A voltage input from the first terminal of the resistance structure 100 to the second terminal of the comparator 200.
  • the first terminal of the comparator 200 is a negative input terminal and the second terminal of the comparator 200 is a positive input terminal, the first voltage is smaller than the second voltage.
  • the first terminal of the comparator 200 may be a forward input terminal and the second terminal may be a reverse input terminal; or the first terminal may be a reverse input terminal, and the second terminal may be a forward input terminal.
  • the device can be implemented in one of the following two implementation modes:
  • the collision control unit 500 detects the collision event and outputs the first terminal to the control switch 300 One voltage. Wherein, the first voltage is greater than the second voltage.
  • the comparator 200 compares the first voltage connected to the forward input terminal with the second voltage connected to the reverse input terminal. Since the first voltage is greater than the second voltage, the comparator 200 outputs a high-level signal to the control switch 300. After receiving the high-level signal, the control switch 300 connects its second end to the third end, so that the power battery control unit 600 is grounded, and the power battery control unit 600 controls to disconnect the battery contactor to power off the entire vehicle.
  • the first terminal of the comparator 200 is a negative input terminal, and the second terminal is a positive input terminal. If the vehicle collides, the collision control unit 500 detects the collision event and outputs the first voltage to the control switch 300. Wherein, the first voltage is less than the second voltage.
  • the comparator 200 compares the first voltage connected to the reverse input terminal with the second voltage connected to the forward input terminal. Since the first voltage is smaller than the second voltage, the comparator 200 outputs a high-level signal to the control switch 300. After receiving the high-level signal, the control switch 300 connects its second end with the third end, so that the power battery control unit 600 is grounded, and the power battery control unit 600 controls to disconnect the battery contactor to power off the entire vehicle.
  • the comparator 200 is further configured to receive the third voltage output by the collision control unit 500, where the third voltage is sent when the collision control unit 500 detects that the vehicle has not involved in a collision event, and A low-level signal is output to the control switch 300, so that the control switch 300 is turned off according to the low-level signal, and after the control switch 300 is turned off, the power battery control unit 600 receives power from the power source.
  • the third voltage is less than the second voltage; when the first terminal of the comparator 200 is a reverse input terminal, the third voltage is greater than the second voltage.
  • the first terminal of the comparator 200 may be a forward input terminal and the second terminal may be a reverse input terminal; or the first terminal may be a reverse input terminal, and the second terminal may be a forward input terminal. This is not limited. The descriptions are made separately below.
  • the collision control unit 500 detects that the vehicle does not collide, and outputs the third voltage to the comparator. ⁇ 200. Wherein, the third voltage is less than the second voltage.
  • the comparator 200 compares the third voltage connected to the forward input terminal with the second voltage connected to the reverse input terminal. Since the third voltage is smaller than the second voltage, the comparator 200 outputs a low-level signal to the control switch 300. After the control switch 300 receives the low-level signal, it disconnects its second end from the third end, so that the power battery control unit 600 receives power from the power source, and the power battery control unit 600 controls to close the battery contactor to power up the entire vehicle .
  • the specific value of the third voltage is not limited here, and only needs to be less than the third voltage, and the third voltage can also be taken as 0.
  • the collision control unit 500 continuously outputs the third voltage to the comparator 200 during the period when the vehicle is not in a collision, so as to ensure that the entire vehicle can be powered on.
  • the collision control unit 500 detects that the vehicle does not collide, and outputs the third voltage to the comparator. ⁇ 200. Wherein, the third voltage is greater than the second voltage.
  • the comparator 200 compares the third voltage connected to the reverse input terminal with the second voltage connected to the forward input terminal. Since the third voltage is greater than the second voltage, the comparator 200 outputs a low-level signal to the control switch 300.
  • the control switch 300 After the control switch 300 receives the low-level signal, it disconnects its second end from the third end, so that the power battery control unit 600 receives power from the power source, and the power battery control unit 600 controls to close the battery contactor to power up the entire vehicle .
  • the specific value of the third voltage is not limited here, and it may be greater than the second voltage.
  • the collision control unit 500 continuously outputs the third voltage to the comparator 200 to ensure that the entire vehicle can be powered on.
  • FIG. 3 is a schematic structural diagram of a vehicle control device provided by another embodiment of the present invention.
  • the control switch 300 is a transistor Q as an example for description, but it is not a limitation.
  • the first end of the transistor Q is the base
  • the second end is the collector
  • the third end is the emitter.
  • the transistor Q is turned on, that is, the collector and the emitter are turned on.
  • the transistor Q is disconnected, that is, the collector and the emitter are disconnected.
  • the first resistance structure 100 includes a first resistance R1 and a second resistance R2.
  • the first end of the first resistor R1 is connected to the power source, the second end of the first resistor R1 is connected to the first end of the second resistor R2, and the second end of the second resistor R2 is grounded.
  • the second terminal of the comparator 200 is connected between the first resistor R1 and the second resistor R2.
  • the first resistor R1 and the second resistor R2 are connected in series between the power supply and the ground to divide the voltage of the power supply to obtain the second voltage.
  • the second terminal of the comparator 200 is connected between the first resistor R1 and the second resistor R2, and the second voltage is connected to the second terminal of the comparator 200.
  • the second voltage can be obtained as a reference voltage through the voltage division effect of the first resistor R1 and the second resistor R2 for comparison with the voltage output by the collision control unit 500.
  • the resistance values of the first resistor R1 and the second resistor R2 are not limited here, and can be determined according to the value of the second voltage actually required and the value of the voltage of the power supply.
  • the first resistor R1 and the second resistor R2 may be adjustable voltage dividing resistors for adjusting the input voltage of the second terminal of the comparator 200 as required.
  • the comparator 200 includes a comparator unit A and a third resistor R3.
  • the first end of the comparator unit A is connected to the collision control unit 500, the second end of the comparator unit A is connected to the first end of the first resistance structure 100, and the third end of the comparator unit A is connected to the first end of the third resistor R3.
  • One end is connected, the fourth end of the comparator unit A is grounded, the fifth end of the comparator unit A is connected to the second end of the third resistor R3; the third end of the comparator unit A is connected to the power supply, and the comparator unit A’s
  • the fifth terminal is connected to the first terminal of the control switch 300.
  • the third resistor R3 acts as a current limiter.
  • the third resistor R3 is connected between the power source and the first terminal of the control switch 300 to limit the current on the line formed by the power source and the first terminal of the control switch 300.
  • the second resistance structure 400 may include a fourth resistance R4.
  • the fourth resistor R4 is connected between the power source and the second end of the control switch 300.
  • the fourth resistor R4 is a current-limiting resistor, which acts as a current-limiting resistor.
  • the device further includes a first interface P1 for grounding.
  • the third terminal of the first resistance structure 100 is connected to the first interface P1
  • the fourth terminal of the comparator 200 is connected to the first interface P1
  • the third terminal of the control switch 300 is connected to the first interface P1.
  • the comparator 200 is specifically configured to output a high-level signal to the control switch 300 when the first voltage is received, so that the control switch 300 conducts the first interface P1 and the power battery control unit 600 according to the received high-level signal .
  • the first interface P1 of the device is used for grounding.
  • the third terminal of the first resistance structure 100, the fourth terminal of the comparator 200, and the third terminal of the control switch 300 are all connected to the ground through the first interface P1.
  • the comparator 200 receives the first voltage, it outputs a high-level signal to the control switch 300, so that the control switch 300 conducts the first interface P1 and the power battery control unit 600 according to the received high-level signal, thereby turning the power
  • the battery control unit 600 is grounded, so that the power battery control unit 600 is powered off.
  • the comparator 200 When the comparator 200 receives the third voltage, it outputs a low-level signal to the control switch 300, so that the control switch 300 disconnects the first interface P1 and the power battery control unit 600 according to the received low-level signal, so that the power The battery control unit 600 receives power from the power source.
  • the device further includes a second interface P2 for connecting with the power battery control unit 600.
  • the second end of the second resistance structure 400 is connected to the second port P2, and the second end of the control switch 300 is connected to the second port P2.
  • the second interface P2 of the device is used to connect the power battery control unit 600 externally.
  • the second end of the second resistance structure 400 and the second end of the control switch 300 are both connected to the power battery control unit 600 through the second interface P2.
  • the device further includes a third interface P3 for connecting with a power source, and a fourth interface P4 for connecting with the collision control unit 500.
  • the third end of the comparator 200 is connected to the third port P3, the second end of the first resistance structure 100 is connected to the third port P3, and the first end of the second resistance structure 400 is connected to the third port P3.
  • the first end of the comparator 200 is connected to the fourth interface P4.
  • the third interface P3 of the device is used for external power supply.
  • the third end of the comparator 200, the second end of the first resistance structure 100, and the first end of the second resistance structure 400 are all connected to a power source through a third interface P3.
  • the fourth interface P4 of the device is used to connect the collision control unit 500 externally.
  • the first end of the comparator 200 is connected to the collision control unit 500 through the fourth interface P4.
  • Fig. 4 is a schematic structural diagram of a vehicle control device provided by another embodiment of the present invention. 4, in a possible implementation manner, the control switch 300 is a photocoupler U; the fourth terminal of the photocoupler U is grounded.
  • the model of the photocoupler U is not limited here, and may be PC817, PC922, etc., for example.
  • the first terminal and the fourth terminal of the photocoupler U are control terminals. When a high-level signal is connected to the first end of the photocoupler U, the first end and the fourth end form a path, thereby controlling the conduction between the second end and the third end, and grounding the power battery control unit 600. When a low-level signal is connected to the first terminal of the photocoupler U, the first terminal and the fourth terminal are not conducted, so that the second terminal and the third terminal are controlled to be disconnected, so that the power battery control unit 600 receives power supply .
  • the control circuit of the collision control unit 500 can be isolated from the control circuit of the power battery control unit 600, which plays a role of safety protection and improves the reliability of the device.
  • the vehicle control device of the embodiment of the present invention enables the collision control unit (ABM) to directly control the high-voltage power-off of the vehicle based on the hardware circuit when a vehicle collision event occurs, without going through the CAN bus and the vehicle control unit (VCU), It has at least the following advantages:
  • the solution of the embodiment of the present invention can shorten the time from the ABM recognition of the collision event to the power failure of the entire vehicle to 30 ms or less.
  • the hardware circuit corresponding to the vehicle control device designed in the embodiment of the present invention has a simple structure, is easy to implement, and has low device cost.
  • the embodiment of the present invention improves the safety of the vehicle as a whole, and can better guarantee the safety of personnel.
  • the embodiment of the present invention also provides a vehicle control system.
  • the vehicle control system includes a collision control unit 500, a power source, and the vehicle control device of the above embodiment.
  • the collision control unit 500 is configured to output a first voltage to the collision control unit 500 when a vehicle collision event is detected, so that the power battery control unit 600 is powered off.
  • the first voltage is greater than the second voltage
  • the second The voltage is the voltage input from the first terminal of the first resistance structure 100 to the second terminal of the comparator 200 in the vehicle control device.
  • the first terminal of the comparator 200 in the vehicle control device is a negative input terminal and the second terminal of the comparator 200 in the vehicle control device is a positive input terminal, the first voltage is less than the second voltage.
  • the collision control unit 500 is further configured to output a third voltage to the collision control unit 500 when a vehicle collision event is not detected, so that the power battery control unit 600 receives power from the power source.
  • the third voltage is less than the second voltage.
  • the third voltage is greater than the second voltage.
  • the embodiment of the present invention also provides a vehicle.
  • the vehicle control system includes the vehicle control system system provided with the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air Bags (AREA)

Abstract

一种车辆控制装置、系统和车辆。该装置包括:第一电阻结构(100)、比较器(200)、控制开关(300)和第二电阻结构(400);该比较器(200)用于接收碰撞控制单元(500)输出的第一电压,其中,该第一电压为该碰撞控制单元(500)检测到车辆发生碰撞事件时所发出的,并向该控制开关(300)输出高电平信号,以使该控制开关(300)依据该高电平信号控制导通,并在该控制开关(300)导通后,使得动力电池控制单元(600)接地,以及在该动力电池控制单元(600)接地后,使得该动力电池控制单元(600)断电。该车辆控制装置、系统和车辆能够在车辆发生碰撞事件时快速切断车辆电源,减少切换所需的时间,提高可靠性。

Description

车辆控制装置、系统和车辆
相关申请的交叉引用
本申请要求2019年10月31日提交的中国专利申请201911052991.7的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明实施例涉及车辆技术领域,尤其涉及一种车辆控制装置、系统和车辆。
背景技术
随着社会的发展和进步,车辆已经成为人们出行的必需工具;并且,随着人们对于能源和环境的关注,电动车辆开始得到应用和发展。在电动车辆发生碰撞的时候,需要控制电动车辆进行断电,进而使得电动车辆不再运行,以保障人员的安全。
现有技术中,碰撞控制单元在识别到车辆发生碰撞的时候,可以通过控制器局域网络(Controller Area Network,简称CAN)总线分别向整车控制单元和动力电池控制单元发送CAN信号,CAN信号表征了车辆发生碰撞,进而使得动力电池控制单元根据CAN信号断开电源,进而使得车辆断电。
然而现有技术中,由于CAN信号的不稳定性,以及在车辆发生碰撞的时候CAN信号会受到干扰,以及CAN信号传输较慢,会导致动力电池控制单元不能及时接收到CAN信号,甚至导致动力电池控制单元不能接收到CAN信号;从而,导致动力电池控制单元无法及时地断开电源,进而车辆不能及时停止,无法保障人员的安全。
发明内容
本发明实施例提供一种车辆控制装置、系统和车辆,用以解决目前车辆发生碰撞时动力电池控制单元无法及时断电的问题。
第一方面,本发明实施例提供一种车辆控制装置,包括:
第一电阻结构、比较器、控制开关和第二电阻结构;
所述比较器的第一端与碰撞控制单元连接,所述比较器的第二端与所述第一电阻结构的第一端连接,所述比较器的第三端与电源连接,所述比较器的第四端接地,所述比较器的第五端与所述控制开关的第一端连接;所述控制开关的第二端与动力电池控制单元连接,所述控制开关的第三端接地;
所述第一电阻结构的第二端与所述电源连接,所述第一电阻结构的第三端接地;所述第二电阻结构的第一端与所述电源连接,所述第二电阻结构的第二端与动力电池控制单元连接;
所述比较器,用于接收所述碰撞控制单元输出的第一电压,其中,所述第一电压为所述碰撞控制单元检测到所述车辆发生碰撞事件时所发出的,并向所述控制开关输出高电平信号,以使所述控制开关依据所述高电平信号控制导通,并在所述控制开关导通后,使得所述动力电池控制单元接地,以及在所述动力电池控制单元接地后,使得所述动力电池控制单元断电。
在一种可能的实施方式中,在所述比较器的第一端为正向输入端、所述比较器的第二端为反向输入端时,所述第一电压大于第二电压,所述第二电压为所述第一电阻结构的第一端向所述比较器的第二端所输入的电压;在所述比较器的第一端为反向输入端、所述比较器的第二端为正向输入端时,所述第一电压小于所述第二电压。
在一种可能的实施方式中,所述比较器,还用于接收所述碰撞控 制单元输出的第三电压,其中,所述第三电压为所述碰撞控制单元检测到所述车辆未发生碰撞事件时所发出的,并向所述控制开关输出低电平信号,以使所述控制开关依据所述低电平信号控制断开,并在所述控制开关断开后,使得所述动力电池控制单元接收所述电源的供电;
其中,在所述比较器的第一端为正向输入端、所述比较器的第二端为反向输入端时,所述第三电压小于所述第二电压;在所述比较器的第一端为反向输入端、所述比较器的第二端为正向输入端时,所述第三电压大于所述第二电压。
在一种可能的实施方式中,所述第一电阻结构包括第一电阻和第二电阻;
所述第一电阻的第一端与所述电源连接,所述第一电阻的第二端与所述第二电阻的第一端连接,所述第二电阻的第二端接地;
所述比较器的第二端连接在所述第一电阻与所述第二电阻之间。
在一种可能的实施方式中,所述比较器包括比较器单元和第三电阻;
所述比较器单元的第一端与所述碰撞控制单元连接,所述比较器单元的第二端与所述第一电阻结构的第一端连接,所述比较器单元的第三端与所述第三电阻的第一端连接,所述比较器单元的第四端接地,所述比较器单元的第五端与所述第三电阻的第二端连接;所述比较器单元的第三端与所述电源连接,所述比较器单元的第五端与所述控制开关的第一端连接。
在一种可能的实施方式中,所述装置还包括用于接地的第一接口;
所述第一电阻结构的第三端与所述第一接口连接,所述比较器的第四端与所述第一接口连接,所述控制开关的第三端与所述第一接口连接;
所述比较器,用于在接收到所述第一电压时,向所述控制开关输出高电平信号,以使所述控制开关依据接收到的高电平信号导通所述第一接口与所述动力电池控制单元;
所述装置还包括用于与所述动力电池控制单元连接的第二接口;
所述第二电阻结构的第二端与所述第二接口连接,所述控制开关的第二端与所述第二接口连接。
所述装置还包括用于与所述电源连接的第三接口、用于与所述碰撞控制单元连接的第四接口;
所述比较器的第三端与所述第三接口连接,所述第一电阻结构的第二端与所述第三接口连接,第二电阻结构的第一端与所述第三接口连接;
所述比较器的第一端与所述第四接口连接。
在一种可能的实施方式中,所述控制开关为三极管;
或者,所述控制开关为光电耦合器;且所述光电耦合器还包括接地的第四端。
第二方面,本发明实施例提供一种车辆控制系统,包括:
碰撞控制单元、电源以及如上第一方面以及第一方面各种可能的实施方式所述的车辆控制装置;
所述碰撞控制单元,用于在检测到所述车辆发生碰撞事件时,向所述碰撞控制单元输出第一电压,以通过所述车辆控制装置使所述动力电池控制单元断电;
其中,在所述车辆控制装置中的比较器的第一端为正向输入端、所述车辆控制装置中的比较器的第二端为反向输入端时,所述第一电压大于第二电压,所述第二电压为所述车辆控制装置中的第一电阻结构的第一端向所述比较器的第二端所输入的电压;在所述车辆控制装 置中的比较器的第一端为反向输入端、所述车辆控制装置中的比较器的第二端为正向输入端时,所述第一电压小于所述第二电压。
在一种可能的实施方式中,所述碰撞控制单元,还用于在未检测到所述车辆发生碰撞事件时,向所述碰撞控制单元输出第三电压,以使所述动力电池控制单元通过所述车辆控制装置接收所述电源的供电;
其中,在所述车辆控制装置中的比较器的第一端为正向输入端、所述车辆控制装置中的比较器的第二端为反向输入端时,所述第三电压小于所述第二电压;在所述车辆控制装置中的比较器的第一端为反向输入端、所述车辆控制装置中的比较器的第二端为正向输入端时,所述第三电压大于所述第二电压。
第三方面,本发明实施例提供一种车辆,所述车辆中设置有如上第一方面以及第一方面各种可能的实施方式所述的车辆控制系统。
本发明实施例提供了车辆控制装置、系统和车辆,该装置包括第一电阻结构、比较器、控制开关和第二电阻结构;通过比较器接收碰撞控制单元在检测到车辆发生碰撞事件时所发出的第一电压,向控制开关输出高电平信号,以使控制开关依据所述高电平信号控制导通,并在所述控制开关导通后,使得动力电池控制单元接地,以及在所述动力电池控制单元接地后,使得动力电池控制单元断电,能够在车辆发生碰撞事件时快速切断车辆电源,不受信号干扰影响,减少切换所需的时间,提高可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域 普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有的车辆控制技术的示意图;
图2为本发明一实施例提供的车辆控制装置的结构示意图;
图3为本发明又一实施例提供的车辆控制装置的结构示意图;
图4为本发明另一实施例提供的车辆控制装置的结构示意图。
附图标记说明:
100:第一电阻结构;
200:比较器;
300:控制开关;
400:第二电阻结构;
500:碰撞控制单元;
600:动力电池控制单元;
R1:第一电阻;
R2:第二电阻;
R3:第三电阻;
R4:第四电阻;
P1:第一接口;
P2:第二接口;
P3:第三接口;
P4:第四接口;
A:比较器单元;
Q:三极管;
U:光电耦合器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体的实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为现有的车辆控制技术的示意图。图1中,ABM表示碰撞控制单元(AirBag Module),VCU表示整车控制单元(Vehicle Control Unit),BMS表示动力电池控制单元(Battery Management System)。如图1所示,现有技术中,当ABM检测到车辆发生碰撞事件后,通过CAN信号向VCU及BMS同时发送报文,BMS收到此报文后,等待若干个周期以确认碰撞事件有效,然后控制断开电池接触器,整车下电。从ABM发出碰撞事件到整车断电,需要100ms以上。且CAN信号容易受到干扰,存在一定的不稳定性。如果BMS没有接收 到ABM发送的CAN信号,BMS也可以接收到VCU发送的CAN信号,进而BMS控制断开电池接触器。
然而现有技术中,由于CAN信号的不稳定性,以及在车辆发生碰撞的时候CAN信号会受到干扰,并且,CAN信号传输较慢,会导致动力电池控制单元不能及时接收到CAN信号,甚至导致动力电池控制单元能接收到CAN信号;从而,导致动力电池控制单元无法及时的断电电源,进而车辆不能及时的停止,无法保障人员的安全。
对此,本发明实施例提供了车辆控制装置、系统和车辆,该装置包括第一电阻结构100、比较器200、控制开关300和第二电阻结构400;通过比较器200接收碰撞控制单元500在检测到车辆发生碰撞事件时所发出的第一电压,向控制开关300输出高电平信号,以使控制开关300依据所述高电平信号控制导通,并在所述控制开关导通后,使得动力电池控制单元600接地,以及在所述动力电池控制单元接地后,使得动力电池控制单元600断电,能够在车辆发生碰撞事件时快速切断车辆电源,不受信号干扰影响,减少切换所需的时间,提高可靠性。
图2为本发明一实施例提供的车辆控制装置的结构示意图。参照图2,本实施例提供的一种车辆控制装置,包括第一电阻结构100、比较器200、控制开关300和第二电阻结构400。
比较器200的第一端与碰撞控制单元500连接,比较器200的第二端与第一电阻结构100的第一端连接,比较器200的第三端与电源连接,比较器200的第四端接地,比较器200的第五端与控制开关300的第一端连接。控制开关300的第二端与动力电池控制单元600连接,控制开关300的第三端接地。
第一电阻结构100的第二端与电源连接,第一电阻结构100的第 三端接地。第二电阻结构400的第一端与电源连接,第二电阻结构400的第二端与动力电池控制单元600连接。
比较器200,用于接收碰撞控制单元500输出的第一电压,其中,第一电压为碰撞控制单元500检测到车辆发生碰撞事件时所发出的,并向控制开关300输出高电平信号,以使控制开关300依据该高电平信号控制导通,并在控制开关300导通后,使得动力电池控制单元600接地,以及在动力电池控制单元600接地后,使得动力电池控制单元600断电。
在本实施例中,比较器200的第三端、第一电阻结构100的第二端、第二电阻结构400的第一端均与电源连接,图2中的VCC(Volt Current Condenser,电路供电电压)即表示该电源,该电源用于为该车辆控制装置供电。比较器200包括至少五个端口。其中,第一端和第二端为输入端,用于接入参与比较的两个电压信号;第三端为比较器200的电源端,第四端为比较器200的接地端;第五端为比较器200的输出端。比较器200的第二端接入通过第一电阻结构100分压作用得到的第二电压,该第二电压作为参考电压,比较器200的第一端接入碰撞控制单元500输出的电压。比较器200通过比较碰撞控制单元500输出的电压与第二电压得到相应的电平信号,将电平信号输出到控制开关300。比较器200可以由多个器件连接实现,也可以由单个集成电路芯片实现,在此不作限定,例如比较器200可以为型号为LM393、LM239等的集成芯片。
控制开关300包括至少三个端口。其中,控制开关300的第一端接入比较器200输出的电平信号,第二端与动力电池控制单元600连接,控制开关300的第三端接地。控制开关300根据比较器200输出的电平信号来控制第二端与第三端之间的通断,从而控制动力电池控 制单元600是否接地。控制开关300的具体形式在此不作限定,例如可以为三极管、光耦合器等。
本发明实施例提供的车辆控制装置,该装置包括第一电阻结构100、比较器200、控制开关300和第二电阻结构400;通过比较器200接收碰撞控制单元500在检测到车辆发生碰撞事件时所发出的第一电压,向控制开关300输出高电平信号,以使控制开关300依据所述高电平信号控制导通,并在所述控制开关导通后,使得动力电池控制单元600接地,以及在所述动力电池控制单元接地后,使得动力电池控制单元600断电,能够在车辆发生碰撞事件时快速切断车辆电源,不受信号干扰影响,减少切换所需的时间,提高可靠性。
在一种可能的实施方式中,在比较器200的第一端为正向输入端、比较器200的第二端为反向输入端时,第一电压大于第二电压,第二电压为第一电阻结构100的第一端向比较器200的第二端所输入的电压。在比较器200的第一端为反向输入端、比较器200的第二端为正向输入端时,第一电压小于第二电压。
在本实施例中,比较器200的第一端可以为正向输入端,第二端为反向输入端;或者第一端可以为反向输入端,第二端为正向输入端,在此不作限定。该装置可以采用以下两种实现方式中的一种来实现:
第一种实现方式,在比较器200的第一端为正向输入端,第二端为反向输入端时,若车辆发生碰撞,碰撞控制单元500检测到碰撞事件,向控制开关300输出第一电压。其中,第一电压大于第二电压。比较器200比较正向输入端接入的第一电压和反向输入端接入的第二电压,由于第一电压大于第二电压,因此比较器200输出高电平信号给控制开关300。控制开关300接收到高电平信号后将其第二端与第三端连通,从而使动力电池控制单元600接地,动力电池控制单元 600控制断开电池接触器,使整车下电。
第二种实现方式,比较器200的第一端为反向输入端,第二端为正向输入端。若车辆发生碰撞,碰撞控制单元500检测到碰撞事件,向控制开关300输出第一电压。其中,第一电压小于第二电压。比较器200比较反向输入端接入的第一电压和正向输入端接入的第二电压,由于第一电压小于第二电压,因此比较器200输出高电平信号给控制开关300。控制开关300接收到高电平信号后将其第二端与第三端连通,从而使动力电池控制单元600接地,动力电池控制单元600控制断开电池接触器,使整车下电。
在一种可能的实施方式中,比较器200,还用于接收碰撞控制单元500输出的第三电压,其中,第三电压为碰撞控制单元500检测到车辆未发生碰撞事件时所发出的,并向控制开关300输出低电平信号,以使控制开关300依据该低电平信号控制断开,并在控制开关300断开后,使得动力电池控制单元600接收电源的供电。
其中,在比较器200的第一端为正向输入端、比较器200的第二端为反向输入端时,第三电压小于第二电压;在比较器200的第一端为反向输入端、比较器200的第二端为正向输入端时,第三电压大于第二电压。
在本实施例中,比较器200的第一端可以为正向输入端,第二端为反向输入端;或者第一端可以为反向输入端,第二端为正向输入端,在此不作限定。下面分别进行说明。
在比较器200的第一端为正向输入端,第二端为反向输入端时,在车辆未发生碰撞的时候,碰撞控制单元500检测到车辆未发生碰撞事件,输出第三电压给比较器200。其中,第三电压小于第二电压。比较器200比较正向输入端接入的第三电压和反向输入端接入的第 二电压,由于第三电压小于第二电压,因此比较器200输出低电平信号给控制开关300。控制开关300接收到低电平信号后将其第二端与第三端断开,从而使得动力电池控制单元600接收电源的供电,动力电池控制单元600控制闭合电池接触器,使整车上电。其中,第三电压的具体取值在此不作限定,小于第三电压即可,第三电压也可以取为0。在第三电压不为0时,车辆未发生碰撞期间碰撞控制单元500持续向比较器200输出第三电压,以保证整车能够上电。
在比较器200的第一端为反向输入端,第二端为正向输入端时,在车辆未发生碰撞的时候,碰撞控制单元500检测到车辆未发生碰撞事件,输出第三电压给比较器200。其中,第三电压大于第二电压。比较器200比较反向输入端接入的第三电压和正向输入端接入的第二电压,由于第三电压大于第二电压,因此比较器200输出低电平信号给控制开关300。控制开关300接收到低电平信号后将其第二端与第三端断开,从而使得动力电池控制单元600接收电源的供电,动力电池控制单元600控制闭合电池接触器,使整车上电。其中,第三电压的具体取值在此不作限定,大于第二电压即可。车辆未发生碰撞期间碰撞控制单元500持续向比较器200输出第三电压,以保证整车能够上电。
图3为本发明又一实施例提供的车辆控制装置的结构示意图。在图3中以控制开关300为三极管Q为例进行说明,但并不作为限定。其中,三极管Q的第一端为基极,第二端为集电极,第三端为发射极。在基极接入高电平信号时,三极管Q导通,即集电极与发射极之间导通。在基极接入低电平信号时,三极管Q断开,即集电极与发射极之间断开。参照图3,在一种可能的实施方式中,第一电阻结构100包括第一电阻R1和第二电阻R2。
第一电阻R1的第一端与电源连接,第一电阻R1的第二端与第二电阻R2的第一端连接,第二电阻R2的第二端接地。
比较器200的第二端连接在第一电阻R1与第二电阻R2之间。
在本实施例中,第一电阻R1和第二电阻R2串联在电源与地之间,对电源的电压进行分压,得到第二电压。比较器200的第二端连接在第一电阻R1与第二电阻R2之间,将第二电压接入到比较器200的第二端。通过第一电阻R1和第二电阻R2的分压作用可以得到第二电压作为参考电压,以便与碰撞控制单元500输出的电压进行比较。第一电阻R1和第二电阻R2的阻值在此不作限定,可以根据实际所需的第二电压的值以及电源的电压的值进行确定。
可选地,第一电阻R1、第二电阻R2可以为可调分压电阻,用于根据需要调整比较器200的第二端的输入电压。
在一种可能的实施方式中,比较器200包括比较器单元A和第三电阻R3。
比较器单元A的第一端与碰撞控制单元500连接,比较器单元A的第二端与第一电阻结构100的第一端连接,比较器单元A的第三端与第三电阻R3的第一端连接,比较器单元A的第四端接地,比较器单元A的第五端与第三电阻R3的第二端连接;比较器单元A的第三端与电源连接,比较器单元A的第五端与控制开关300的第一端连接。
在本实施例中,第三电阻R3起限流作用。第三电阻R3连接于电源与控制开关300的第一端之间,以限制电源与控制开关300的第一端所连形成的线路上的电流。
在一种可能的实施方式中,第二电阻结构400可以包括第四电阻R4。第四电阻R4连接于电源与控制开关300的第二端之间。第四电 阻R4为限流电阻,起限流作用。
在一种可能的实施方式中,该装置还包括用于接地的第一接口P1。
第一电阻结构100的第三端与第一接口P1连接,比较器200的第四端与第一接口P1连接,控制开关300的第三端与第一接口P1连接。
比较器200,具体用于在接收到第一电压时,向控制开关300输出高电平信号,以使控制开关300依据接收到的高电平信号导通第一接口P1与动力电池控制单元600。
在本实施例中,该装置的第一接口P1用于接地。第一电阻结构100的第三端、比较器200的第四端、控制开关300的第三端均通过第一接口P1与地连接。比较器200在接收到第一电压时,向控制开关300输出高电平信号,以使控制开关300依据接收到的高电平信号导通第一接口P1与动力电池控制单元600,从而将动力电池控制单元600接地,以使所述动力电池控制单元600断电。比较器200在接收到第三电压时,向控制开关300输出低电平信号,以使控制开关300依据接收到的低电平信号断开第一接口P1与动力电池控制单元600,从而使得动力电池控制单元600接收电源的供电。
在一种可能的实施方式中,该装置还包括用于与动力电池控制单元600连接的第二接口P2。
第二电阻结构400的第二端与第二接口P2连接,控制开关300的第二端与第二接口P2连接。
在本实施例中,该装置的第二接口P2用于外接动力电池控制单元600。第二电阻结构400的第二端、控制开关300的第二端均通过第二接口P2与动力电池控制单元600连接。
在一种可能的实施方式中,该装置还包括用于与电源连接的第三接口P3、用于与碰撞控制单元500连接的第四接口P4。
比较器200的第三端与第三接口P3连接,第一电阻结构100的第二端与第三接口P3连接,第二电阻结构400的第一端与第三接口P3连接。
比较器200的第一端与第四接口P4连接。
在本实施例中,该装置的第三接口P3用于外接电源。比较器200的第三端、第一电阻结构100的第二端、第二电阻结构400的第一端均通过第三接口P3与电源连接。该装置的第四接口P4用于外接碰撞控制单元500。比较器200的第一端通过第四接口P4与碰撞控制单元500连接。
图4为本发明另一实施例提供的车辆控制装置的结构示意图。参照图4,在一种可能的实施方式中,控制开关300为光电耦合器U;光电耦合器U的第四端接地。
其中,光电耦合器U的型号在此不作限定,例如可以为PC817、PC922等。光电耦合器U的第一端和第四端为控制端。在光电耦合器U的第一端接入高电平信号时,第一端与第四端形成通路,从而控制第二端与第三端导通,使动力电池控制单元600接地。在光电耦合器U的第一端接入低电平信号时,第一端与第四端不导通,从而控制第二端与第三端断开,使得动力电池控制单元600接收电源的供电。
本实施例通过采用光电耦合器作为控制开关300,可以将碰撞控制单元500的控制电路与动力电池控制单元600的控制电路相隔离,起到安全保护的作用,提高装置的可靠性。
综上,本发明实施例的车辆控制装置在车辆发生碰撞事件时,使 得碰撞控制单元(ABM)能够基于硬件电路直接控制车辆高压下电,不需要经过CAN总线和整车控制单元(VCU),从而至少具有以下方面的优势:
1)由于是ABM直接控制车辆高压下电,从而大大缩短了从ABM识别碰撞事件到整车断电的时间。通过实验,本发明实施例的方案从ABM识别碰撞事件到整车断电的时间可缩短至30ms及以下。
2)由于不经CAN总线,从而可避免因CAN信号的不稳定、易被干扰和/或传输慢带来的断电不及时的问题。
3)由于不经VCU,从而可减轻VCU承担的数据处理量,使得VCU可进行更多其他工作。
4)本发明实施例所设计的车辆控制装置对应的硬件电路结构简单,易于实现,且器件成本较低。
5)本发明实施例从整体上提高了车辆的安全性,更能保障人员的安全。
本发明实施例还提供一种车辆控制系统。该车辆控制系统包括碰撞控制单元500、电源以及如上实施例的车辆控制装置。
碰撞控制单元500,用于在检测到车辆发生碰撞事件时,向碰撞控制单元500输出第一电压,以使动力电池控制单元600断电。
其中,在车辆控制装置中的比较器200的第一端为正向输入端、车辆控制装置中的比较器200的第二端为反向输入端时,第一电压大于第二电压,第二电压为车辆控制装置中的第一电阻结构100的第一端向比较器200的第二端所输入的电压。在车辆控制装置中的比较器200的第一端为反向输入端、车辆控制装置中的比较器200的第二端为正向输入端时,第一电压小于第二电压。
在一种可能的实施方式中,碰撞控制单元500,还用于在未检测 到车辆发生碰撞事件时,向碰撞控制单元500输出第三电压,以使动力电池控制单元600接收电源的供电。
其中,在车辆控制装置中的比较器200的第一端为正向输入端、车辆控制装置中的比较器200的第二端为反向输入端时,第三电压小于第二电压。在车辆控制装置中的比较器200的第一端为反向输入端、车辆控制装置中的比较器200的第二端为正向输入端时,第三电压大于第二电压。
本发明实施例提供的车辆控制系统,具体实现过程可参见上述车辆控制装置的实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
本发明实施例还提供一种车辆。该车辆控制系统包括设置有如上实施例的车辆控制系统系统。
本发明实施例提供的车辆,具体实现过程可参见上述车辆控制装置及车辆控制系统的实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种车辆控制装置,其特征在于,所述装置包括:
    第一电阻结构、比较器、控制开关和第二电阻结构;
    所述比较器的第一端与碰撞控制单元连接,所述比较器的第二端与所述第一电阻结构的第一端连接,所述比较器的第三端与电源连接,所述比较器的第四端接地,所述比较器的第五端与所述控制开关的第一端连接;
    所述控制开关的第二端与动力电池控制单元连接,所述控制开关的第三端接地;
    所述第一电阻结构的第二端与所述电源连接,所述第一电阻结构的第三端接地;
    所述第二电阻结构的第一端与所述电源连接,所述第二电阻结构的第二端与动力电池控制单元连接;
    所述比较器,用于接收所述碰撞控制单元输出的第一电压,其中,所述第一电压为所述碰撞控制单元检测到所述车辆发生碰撞事件时所发出的,并向所述控制开关输出高电平信号,以使所述控制开关依据所述高电平信号控制导通,并在所述控制开关导通后,使得所述动力电池控制单元接地,以及在所述动力电池控制单元接地后,使得所述动力电池控制单元断电。
  2. 根据权利要求1所述的装置,其特征在于,在所述比较器的第一端为正向输入端、所述比较器的第二端为反向输入端时,所述第一电压大于第二电压,所述第二电压为所述第一电阻结构的第一端向所述比较器的第二端所输入的电压;在所述比较器的第一端为反向输 入端、所述比较器的第二端为正向输入端时,所述第一电压小于所述第二电压。
  3. 根据权利要求2所述的装置,其特征在于,所述比较器,还用于接收所述碰撞控制单元输出的第三电压,其中,所述第三电压为所述碰撞控制单元检测到所述车辆未发生碰撞事件时所发出的,并向所述控制开关输出低电平信号,以使所述控制开关依据所述低电平信号控制断开,并在所述控制开关断开后,使得所述动力电池控制单元接收所述电源的供电;
    其中,在所述比较器的第一端为正向输入端、所述比较器的第二端为反向输入端时,所述第三电压小于所述第二电压;在所述比较器的第一端为反向输入端、所述比较器的第二端为正向输入端时,所述第三电压大于所述第二电压。
  4. 根据权利要求1所述的装置,其特征在于,所述第一电阻结构包括第一电阻和第二电阻;
    所述第一电阻的第一端与所述电源连接,所述第一电阻的第二端与所述第二电阻的第一端连接,所述第二电阻的第二端接地;
    所述比较器的第二端连接在所述第一电阻与所述第二电阻之间。
  5. 根据权利要求1所述的装置,其特征在于,所述比较器包括比较器单元和第三电阻;
    所述比较器单元的第一端与所述碰撞控制单元连接,所述比较器单元的第二端与所述第一电阻结构的第一端连接,所述比较器单元的第三端与所述第三电阻的第一端连接,所述比较器单元的第四端接地,所述比较器单元的第五端与所述第三电阻的第二端连接;所述比较器 单元的第三端与所述电源连接,所述比较器单元的第五端与所述控制开关的第一端连接。
  6. 根据权利要求1所述的装置,其特征在于,所述装置还包括用于接地的第一接口;
    所述第一电阻结构的第三端与所述第一接口连接,所述比较器的第四端与所述第一接口连接,所述控制开关的第三端与所述第一接口连接;
    所述比较器,用于在接收到所述第一电压时,向所述控制开关输出高电平信号,以使所述控制开关依据接收到的高电平信号导通所述第一接口与所述动力电池控制单元;
    所述装置还包括用于与所述动力电池控制单元连接的第二接口;
    所述第二电阻结构的第二端与所述第二接口连接,所述控制开关的第二端与所述第二接口连接;
    所述装置还包括用于与所述电源连接的第三接口、用于与所述碰撞控制单元连接的第四接口;
    所述比较器的第三端与所述第三接口连接,所述第一电阻结构的第二端与所述第三接口连接,第二电阻结构的第一端与所述第三接口连接;
    所述比较器的第一端与所述第四接口连接。
  7. 根据权利要求1-6任一项所述的装置,其特征在于,所述控制开关为三极管;
    或者,所述控制开关为光电耦合器,且所述光电耦合器还包括接地的第四端。
  8. 一种车辆控制系统,其特征在于,所述系统包括:碰撞控制单元、电源以及如权利要求1-7任一项所述的车辆控制装置;
    所述碰撞控制单元,用于在检测到所述车辆发生碰撞事件时,向所述碰撞控制单元输出第一电压,以通过所述车辆控制装置使所述动力电池控制单元断电;
    其中,在所述车辆控制装置中的比较器的第一端为正向输入端、所述车辆控制装置中的比较器的第二端为反向输入端时,所述第一电压大于第二电压,所述第二电压为所述车辆控制装置中的第一电阻结构的第一端向所述比较器的第二端所输入的电压;在所述车辆控制装置中的比较器的第一端为反向输入端、所述车辆控制装置中的比较器的第二端为正向输入端时,所述第一电压小于所述第二电压。
  9. 根据权利要求8所述的系统,其特征在于,所述碰撞控制单元,还用于在未检测到所述车辆发生碰撞事件时,向所述碰撞控制单元输出第三电压,以使所述动力电池控制单元通过所述车辆控制装置接收所述电源的供电;
    其中,在所述车辆控制装置中的比较器的第一端为正向输入端、所述车辆控制装置中的比较器的第二端为反向输入端时,所述第三电压小于所述第二电压;在所述车辆控制装置中的比较器的第一端为反向输入端、所述车辆控制装置中的比较器的第二端为正向输入端时,所述第三电压大于所述第二电压。
  10. 一种车辆,其特征在于,所述车辆中设置有如权利要求8或9所述车辆控制系统。
PCT/CN2020/114120 2019-10-31 2020-09-09 车辆控制装置、系统和车辆 WO2021082748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20880917.8A EP4015279A4 (en) 2019-10-31 2020-09-09 VEHICLE CONTROL METHOD AND SYSTEM AND VEHICLE
US17/640,614 US11970065B2 (en) 2019-10-31 2020-09-09 Vehicle control device, vehicle control system and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911052991.7 2019-10-31
CN201911052991.7A CN111645523B (zh) 2019-10-31 2019-10-31 车辆控制装置、系统和车辆

Publications (1)

Publication Number Publication Date
WO2021082748A1 true WO2021082748A1 (zh) 2021-05-06

Family

ID=72342500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114120 WO2021082748A1 (zh) 2019-10-31 2020-09-09 车辆控制装置、系统和车辆

Country Status (4)

Country Link
US (1) US11970065B2 (zh)
EP (1) EP4015279A4 (zh)
CN (1) CN111645523B (zh)
WO (1) WO2021082748A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053762A (ko) * 2020-10-22 2022-05-02 현대자동차주식회사 운전자의 안전 지원 장치 및 그 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050007083A (ko) * 2003-07-11 2005-01-17 현대자동차주식회사 차량의 배터리 제어장치
CN201385585Y (zh) * 2009-04-09 2010-01-20 海马(郑州)汽车有限公司 电动汽车动力电池的断电控制装置
CN202480896U (zh) * 2012-01-13 2012-10-10 浙江吉利汽车研究院有限公司 一种汽车动力电池系统的安全冗余装置
CN104494544A (zh) * 2014-12-25 2015-04-08 东风汽车公司 一种电动汽车碰撞断电保护系统
CN105150854A (zh) * 2015-09-08 2015-12-16 莆田市云驰新能源汽车研究院有限公司 一种电动汽车高压安全保护系统
CN205168210U (zh) * 2015-12-07 2016-04-20 北京新能源汽车股份有限公司 动力电池高压输出断电装置
CN110103716A (zh) * 2019-04-23 2019-08-09 甘肃南洋新能源科技发展有限公司 一种新能源汽车发生碰撞时动力电池断电保护方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251905B2 (ja) * 2010-03-09 2013-07-31 三菱自動車工業株式会社 車両用側面衝突判定装置および高電圧電源遮断装置
US20110304202A1 (en) * 2010-05-13 2011-12-15 Coda Automotive, Inc. Battery disconnection in electric vehicles
JP5389730B2 (ja) * 2010-05-14 2014-01-15 株式会社デンソー 電力変換システムの放電装置
CN102069717B (zh) * 2010-12-24 2012-08-29 南京金城机械有限公司 一种机动车防失火装置
US9954548B2 (en) * 2016-04-08 2018-04-24 Infineon Technologies Ag Electronic switching and protection circuit with a logarithmic ADC
JP6378267B2 (ja) * 2016-08-12 2018-08-22 株式会社Subaru 車両
CN109910807B (zh) * 2019-02-21 2021-02-23 东软睿驰汽车技术(沈阳)有限公司 一种碰撞检测电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050007083A (ko) * 2003-07-11 2005-01-17 현대자동차주식회사 차량의 배터리 제어장치
CN201385585Y (zh) * 2009-04-09 2010-01-20 海马(郑州)汽车有限公司 电动汽车动力电池的断电控制装置
CN202480896U (zh) * 2012-01-13 2012-10-10 浙江吉利汽车研究院有限公司 一种汽车动力电池系统的安全冗余装置
CN104494544A (zh) * 2014-12-25 2015-04-08 东风汽车公司 一种电动汽车碰撞断电保护系统
CN105150854A (zh) * 2015-09-08 2015-12-16 莆田市云驰新能源汽车研究院有限公司 一种电动汽车高压安全保护系统
CN205168210U (zh) * 2015-12-07 2016-04-20 北京新能源汽车股份有限公司 动力电池高压输出断电装置
CN110103716A (zh) * 2019-04-23 2019-08-09 甘肃南洋新能源科技发展有限公司 一种新能源汽车发生碰撞时动力电池断电保护方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4015279A4 *

Also Published As

Publication number Publication date
EP4015279A4 (en) 2022-10-19
CN111645523B (zh) 2021-11-02
EP4015279A1 (en) 2022-06-22
CN111645523A (zh) 2020-09-11
US20220340009A1 (en) 2022-10-27
US11970065B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
KR101986679B1 (ko) 쾌속 충전 방법, 전원 어댑터 및 모바일 단말기
TWI501586B (zh) 用於組合的乙太網路供電系統之極性校正橋接控制器
US9837855B2 (en) Uninterruptible power supply control
US20180054074A1 (en) Charger, electronic device, and charging method
JP2017507637A (ja) 電源アダプター、端末及び充電回路のインピーダンス異常の処理方法
US20110125945A1 (en) Communications module apparatus, integrated circuit and method of communicating data
JP5960966B2 (ja) 電子制御装置
US11524602B2 (en) Charge control device and charge control method
US10355506B2 (en) Power supplying system and method
WO2021082748A1 (zh) 车辆控制装置、系统和车辆
WO2020216126A1 (zh) 对接式充电电路与电子设备
EP3667860A1 (en) Charging output protection circuit and method thereof
KR20200010053A (ko) 전기적 제어 시스템 및 통신 고장을 판정하기 위한 방법
TW201934375A (zh) 電動汽車充電控制裝置和方法
CN115208041A (zh) 双电池切换电路、电池切换方法、电子设备及存储介质
CN209659257U (zh) 一种车载电子系统的acc off延时关机电路及装置
US11528154B2 (en) Control method, powered device, and system
KR20230045651A (ko) 전기차 충전 제어 장치
WO2023123955A1 (zh) 电池包接入检测装置、方法及电动车
CN104135374A (zh) 受电端设备
WO2024055586A1 (zh) 交流动力电池总成、控制方法
US10880106B1 (en) Active power over ethernet control apparatus with low power consumption
CN216625280U (zh) 一种过流保护电路及电系统
CN214069927U (zh) 一种通过直流电力载波方式传输信号的电路
TW202025637A (zh) 連接電路及其連接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020880917

Country of ref document: EP

Effective date: 20220314

NENP Non-entry into the national phase

Ref country code: DE