WO2020216126A1 - 对接式充电电路与电子设备 - Google Patents

对接式充电电路与电子设备 Download PDF

Info

Publication number
WO2020216126A1
WO2020216126A1 PCT/CN2020/085169 CN2020085169W WO2020216126A1 WO 2020216126 A1 WO2020216126 A1 WO 2020216126A1 CN 2020085169 W CN2020085169 W CN 2020085169W WO 2020216126 A1 WO2020216126 A1 WO 2020216126A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
power supply
voltage
unit
receiving
Prior art date
Application number
PCT/CN2020/085169
Other languages
English (en)
French (fr)
Inventor
陶红霞
Original Assignee
上海爻火微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海爻火微电子有限公司 filed Critical 上海爻火微电子有限公司
Priority to US17/286,485 priority Critical patent/US11329492B2/en
Publication of WO2020216126A1 publication Critical patent/WO2020216126A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007186Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage obtained with the battery disconnected from the charge or discharge circuit
    • H02J7/0085
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange

Definitions

  • the invention relates to the field of electronic equipment, and in particular to a docking type charging circuit and electronic equipment.
  • wired charging can usually be charged through the contacts in the charging interface, or directly through the contacts.
  • the charging interface can be, for example, a USB interface or a traditional positive and negative two-pole power interface.
  • the contact charging method can be applied to a few mobile phones without a standard charging interface, some charging back clips, or other electronic devices that can support wired charging.
  • the electronic devices that can support wired charging can be wearable such as watches and bracelets. equipment.
  • the docking type charging circuit for wired charging can use the power supply side module to supply power to the battery power supply unit in the receiving side module to achieve the purpose of charging the battery, wherein the power supply side module can use the voltage output terminal Connect the voltage input terminal and the second ground terminal of the receiving side module with the first ground terminal to supply power to the battery power supply unit.
  • the voltage output terminal and the voltage input terminal can be connected by corresponding metal contacts.
  • the first ground terminal Corresponding metal contacts can be used to achieve conduction connection with the second ground terminal.
  • the voltage output terminal is connected to the second ground terminal
  • the voltage input terminal is connected to the first ground terminal
  • an accidental short circuit between the voltage output terminal of the power supply side module and the first ground terminal, or an accidental short circuit between the voltage input terminal of the receiving side module and the second ground terminal, may cause leakage and damage to the circuit module.
  • the power-supply-side module and the receiving-side module can be docked for charging, which may also cause unsuitable devices to be charged, unsuitable devices, or other unsafe charging situations that may occur.
  • the present invention provides a docking type charging circuit and electronic equipment to solve the problem that the reverse connection between the power supply side module and the receiving side module may cause damage to the devices in the power supply side module and the receiving side module.
  • the further optional solution can also help to solve the leakage and damage of the circuit module caused by accidental short circuit.
  • the further optional solution can also solve the problem of unsuitable devices being charged, being charged by unsuitable devices, or other possible causes. Unsafe charging conditions.
  • a docking type charging circuit including a power supply side module and a receiving side module that can be docked with each other, the power supply side module including a power supply, a voltage output terminal connected to the power supply, and a first A ground terminal, the receiving side module includes a battery power supply unit, a voltage input terminal connected to the battery power supply unit, and a second ground terminal;
  • the power supply side module further includes a power supply side drive unit, a power generating unit, a first switch unit, and a first intermediate end, and the receiving side module further includes a second intermediate end and a first resistance line;
  • the charging unit is connected between the first middle end and the power source to output a target current to the first middle end under the power supply of the power source;
  • the second middle end is connected to the first middle end The first end of the resistance line, and the second end of the first resistance line is grounded together with the second ground end;
  • the charging unit When the voltage output terminal is connected to the voltage input terminal, and the first ground terminal is connected to the second ground terminal, the charging unit, the first intermediate terminal, the second intermediate terminal, and the The first resistance circuit is connected to the ground in sequence to form a first loop;
  • the first switch unit is connected between the power supply and the voltage output terminal, the sampling terminal of the power supply side drive unit is connected to the first intermediate terminal, and the output terminal of the power supply side drive unit is connected to the first intermediate terminal.
  • a switch unit, the power supply side drive unit is used to control the on-off of the first switch unit according to the voltage of the first intermediate terminal, so as to control the first switch unit to be on when the first loop is formed, And: controlling the first switch unit to be turned off under at least a part of the circuit state where the first loop is not formed.
  • the receiving-side module further includes a second resistance line, the second intermediate end is also connected to the first end of the second resistance line, and the second end of the second resistance line is connected to the voltage Input terminal; when the voltage output terminal is connected to the second ground terminal, and the first ground terminal is connected to the voltage input terminal, the charging unit, the first intermediate terminal, and the second intermediate terminal , The second resistance line and the first ground terminal are connected to the ground in sequence to form a second loop;
  • At least part of the circuit state that does not form the first loop includes at least one of the following:
  • the first resistance circuit includes a first resistance, a first end of the first resistance is connected to the second middle end, and a second end of the first resistance is grounded together with the second ground end ;
  • the second resistance circuit includes a second resistor and a low forward voltage drop diode, a first end of the low forward voltage drop diode is connected to the second middle end, and the low forward voltage drop diode
  • the second terminal is connected to the voltage input terminal
  • the second resistor is connected between the low forward voltage drop diode and the second intermediate terminal or the low forward voltage drop diode and the Between voltage input terminals.
  • the position of the contact corresponding to the first intermediate end is at the midpoint position between the corresponding contact of the voltage output end and the corresponding contact of the first grounding end, and the second intermediate end corresponds to the contact The position of is at the midpoint position between the corresponding contact of the voltage input terminal and the corresponding contact of the second ground terminal.
  • the receiving-side module further includes a receiving-side driving unit and a second switch unit;
  • the second switch unit is connected between the voltage input terminal and the battery power supply unit, the sampling terminal of the receiving-side drive unit is directly or indirectly connected to the voltage input terminal, and the output terminal of the receiving-side drive unit
  • the second switch unit is connected, and the receiving-side drive unit is used to compare the voltage of the voltage input terminal with a preset safe voltage interval, and control the on and off of the second switch unit according to the comparison result.
  • the voltage interval is determined according to the overvoltage protection point and the minimum undervoltage protection point of the input voltage.
  • the receiving-side module further includes a capacitor, the power supply terminal of the receiving-side driving unit is connected to the first end of the capacitor, and the first end of the capacitor is also connected to the second middle end. The second end of and the second grounding end are grounded together.
  • the communication port of the driving unit on the receiving side is connected to the second intermediate end for receiving an authentication request sent by the power supply side module, and returning an authentication pass signal in response to the authentication request, so that the The power supply side drive unit of the power supply side module can control the on and off of the first switch unit according to the authentication pass signal.
  • the power supply side module is a circuit module in any one of the following electronic devices: mobile phones, wearable devices, tablet computers, computers, smart TVs, image acquisition devices, chargers, and smart sockets.
  • the receiving-side module is a circuit module in any one of the following electronic devices: mobile phones, wearable devices, tablet computers, computers, smart TVs, image acquisition devices, earphones.
  • an electronic device including a power supply side module, the power supply side module including a power supply, a voltage output terminal connected to the power supply, and a first ground terminal, the power supply side module further Including a power supply side drive unit, a power generating unit, a first switch unit, and a first intermediate end;
  • the charging unit is connected between the first intermediate terminal and the power source to use the first intermediate terminal to output a target current under the power of the power source; the first intermediate terminal is used to communicate with other electronics
  • the second middle end of the receiving-side module of the device is connected to each other, so that when the voltage output end is connected to the voltage input end of the receiving-side module, and the first grounding end is connected to the second grounding end of the receiving-side module, So that the first resistance circuit of the charging unit, the first middle end, the second middle end, and the receiving side module are connected to the ground in sequence to form a first loop;
  • the first switch unit is connected between the power supply and the voltage output terminal, the sampling terminal of the power supply side drive unit is connected to the first intermediate terminal, and the output terminal of the power supply side drive unit is connected to the first intermediate terminal.
  • a switch unit, the power supply side drive unit is used to control the on-off of the first switch unit according to the voltage of the first intermediate terminal, so as to control the first switch unit to be on when the first loop is formed, And: controlling the first switch unit to be turned off under at least a part of the circuit state where the first loop is not formed.
  • the charging unit when the voltage output terminal is connected to the second ground terminal, and the first ground terminal is connected to the voltage input terminal, the charging unit, the first middle terminal, the second middle terminal, The second resistance line and the first ground terminal are connected to the ground in sequence to form a second loop;
  • At least part of the circuit state that does not form the first loop includes at least one of the following:
  • an electronic device including a receiving side module for supplying power to a power supply side module of the electronic device related to the second aspect and its optional solutions, the receiving side module including a battery power supply unit , Connected to the voltage input terminal, the second ground terminal of the battery power supply unit, and the second intermediate terminal, the first resistance line, the receiving side drive unit and the second switch unit;
  • the second intermediate end is connected to the first end of the first resistance line, and the second end of the first resistance line is grounded together with the second ground end;
  • the second middle end is used to connect with the first middle end, so that when the voltage output end is connected to the voltage input end, and the first ground end is connected to the second ground end, the First loop
  • the second switch unit is connected between the voltage input terminal and the battery power supply unit, the sampling terminal of the receiving-side drive unit is directly or indirectly connected to the voltage input terminal, and the output terminal of the receiving-side drive unit
  • the second switch unit is connected, and the receiving-side drive unit is used to compare the voltage of the voltage input terminal with a preset safe voltage interval, and control the on and off of the second switch unit according to the comparison result.
  • the voltage interval is determined according to the overvoltage protection point and the minimum undervoltage protection point of the input voltage.
  • the power supply side module and the receiving side module can form a first loop including the first middle end, the second middle end, the first resistance circuit, etc. when they are connected directly, Therefore, the first loop is not formed, and the present invention can provide a circuit basis for judging the positive connection and the reverse connection. Furthermore, in combination with the control of the first switch unit by the power supply side drive unit, the first switch unit can be controlled to be turned on during the positive connection to achieve When power is supplied, the first switch unit is controlled to be turned off during reverse connection, so as to avoid damage to the components in the power supply side module and the receiving side module due to power supply during reverse connection, and play a positive and negative connection judgment and corresponding safety protection.
  • the present invention provides a hardware basis for external selective power supply through the control of the power supply side drive unit to the first switch unit, which can help avoid the occurrence of unsafe power supply situations and play a corresponding safety protection role.
  • the first switch unit is controlled to be turned off to avoid charging the unsuitable receiving side module or other situations that may cause unsafe conditions.
  • the position of the corresponding contact of the first intermediate end is at the midpoint position between the corresponding contact of the voltage output end and the corresponding contact of the first grounding end
  • the position of the corresponding contact of the second intermediate end is at voltage
  • the position of the midpoint between the corresponding contact of the input end and the corresponding contact of the second grounding end can facilitate the connection of the contacts of the two intermediate ends regardless of the positive connection or the reverse connection.
  • the receiving-side driving unit compares the voltage of the voltage input terminal with a preset safe voltage interval, and controls the on-off of the second switch unit according to the comparison result, and the safe voltage interval is Determined according to the overvoltage protection point and the lowest undervoltage protection point of the input voltage. It can use the safe voltage interval as a reference to determine whether the current input voltage is suitable for charging the battery, which can avoid damage to the device caused by charging when the voltage is not suitable for charging, and further improve the effect of safety protection.
  • the power supply terminal of the receiving-side drive unit is connected to a capacitor that can store energy, if the connected circuit module does not have a first intermediate terminal, the capacitor cannot be charged to the required voltage, and further, The receiving-side driving unit cannot be controlled under the power supply of the capacitor, which can help avoid being charged by an unsuitable power-supply-side module, thereby avoiding unsafe charging that may be caused thereby.
  • the communication end of the driving unit on the receiving side can use the second intermediate end to interact, it provides a hardware foundation for the instruction communication mechanism. Further, since the communication end of the driving unit on the receiving side can use the second intermediate end to realize the interaction between the authentication request and the authentication pass signal, it can further ensure the adaptation between the power supply side and the receiving side.
  • combining the energy storage function of the capacitor and the energy storage function of the communication terminal can enable the receiving-side drive unit to still provide a certain amount of electrical energy to ensure the interaction of interactive commands when the receiving-side module is not powered.
  • FIG. 1 is a schematic diagram 1 of the circuit when a docking type charging circuit is connected in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a circuit when a docking type charging circuit is reversely connected in an embodiment of the present invention
  • FIG. 3 is a second schematic diagram of the circuit when a docking type charging circuit is connected in an embodiment of the present invention
  • FIG. 4 is a third circuit diagram of a docking type charging circuit in the embodiment of the present invention when it is connected;
  • FIG. 5 is a fourth schematic diagram of a circuit when a docking charging circuit in an embodiment of the present invention is connected;
  • FIG. 6 is a schematic circuit diagram of an electronic device including a power supply side module in an embodiment of the present invention.
  • Fig. 7 is a circuit diagram 1 of an electronic device including a receiving-side module in an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a circuit when a docking charging circuit is connected in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a circuit when a docking charging circuit is connected in an embodiment of the present invention.
  • the docking type charging circuit includes a power supply side module 1 and a receiving side module 2 that can be docked with each other.
  • the power supply side module 1 includes a power supply 11 and a voltage output terminal 15 connected to the power supply 11.
  • the first ground terminal 17, the receiving side module 2 includes a battery power supply unit 23, a voltage input terminal 24 connected to the battery power supply unit 23, and a second ground terminal 26.
  • the power supply of the power source can be supplied to the battery power supply unit 23 when both are connected , To charge the battery power supply unit 23.
  • the voltage output by the voltage output terminal 15 can be characterized as Vout
  • the voltage input by the voltage input terminal 24 can be characterized as Vin
  • the voltage across the power supply can be characterized as V1
  • the output voltage can be characterized as Vee.
  • the battery power supply unit 23 can be characterized as: Battery-Powered System, which can be connected to a battery, and then can supply electric energy to the battery to charge it.
  • Battery-Powered System can be connected to a battery, and then can supply electric energy to the battery to charge it.
  • it can be a circuit unit that can realize linear charging, switch charging, etc.
  • the circuit unit and the battery power supply unit 23 in any manner can be understood as an implementation of the solution involved in this embodiment.
  • the power supply side module 1 can be characterized as SourceSide, that is, the source end; the receiving side module 2, can be characterized as SinkSide, that is, the sink end.
  • the power supply side module 1 can be configured to supply power for charging other electronic devices, and the electronic device can also be only configured with the receiving side module 2 to be powered by other electronic devices to achieve charging.
  • the power supply-side module 1 and the receiving-side module 2 are configured to supply power for charging another electronic device, and can be charged by another electronic device.
  • the power supply side driving unit 14 can be characterized as: IdentifyingIndicatingGateDriving in an example.
  • the power supply side module 1 further includes a power supply side drive unit 14, a power generating unit 12, a first switch unit 13, and a first intermediate end 16, and the receiving side module 2 further includes a second intermediate end 25 With the first resistance line 21.
  • the charging unit 12 is connected between the first intermediate terminal 16 and the power source 12 to output a target current to the first intermediate terminal 16 under the power supply of the power source 11; therefore, the charging unit 12
  • the current source 121 may be included, and in another example, a voltage dividing unit may be included, and the voltage dividing unit may be implemented by, for example, resistor dividing voltage. It can be seen that the target current can be a fixed current value or a variable current value.
  • the second intermediate end 25 is connected to the first end of the first resistance line 21, and the second end of the first resistance line 21 is grounded together with the second grounding end 26.
  • the charging unit 12 When the voltage output terminal 15 is connected to the voltage input terminal 24, and the first ground terminal 15 is connected to the second ground terminal 26, the charging unit 12, the first intermediate terminal 16, the first The two middle ends 25 and the first resistance circuit 22 are connected to the ground in sequence to form a first loop, which can be shown in FIG. 1.
  • the first switch unit 13 is connected between the power supply 11 and the voltage output terminal 15, the sampling terminal of the power supply side drive unit 14 is connected to the first intermediate terminal 16, and the power supply side drive unit 14
  • the output terminal is connected to the first switch unit 13, and the power supply side drive unit 14 is used to control the on and off of the first switch unit 13 according to the voltage of the first intermediate terminal 16, so as to form the first loop
  • the first switch unit 13 is controlled to be turned on at the time, and the first switch unit 13 is controlled to be turned off when at least part of the circuit state of the first loop is not formed.
  • the theoretical voltage of the first intermediate terminal 16 should be a first voltage value.
  • the first voltage value may be determined according to the voltage drop value and/or the resistance value of the first resistance line 21, the current value of the target current, and the voltage value such as Vee output from the power supply.
  • the first voltage value is the voltage value when the first loop is formed, and when the first loop is not formed, the voltage at the first intermediate terminal 16 will be different from that of the first loop.
  • the first voltage value by judging whether the collected voltage value of the first intermediate terminal 16 is the first voltage value, or judging whether the difference between it and the first voltage value is less than the threshold, it can be judged whether the first loop is currently formed, for example If the voltage value of the first intermediate terminal 16 is the first voltage value, or the difference between the voltage value and the first voltage value is less than the threshold value, it is determined that the first loop is formed.
  • the first resistance circuit 21 when the first resistance circuit 21 can provide a resistance of 5.1K ⁇ , the current value of the target current is fixed 330 ⁇ A, and the first voltage value can be 1.68V.
  • the voltage of the first intermediate terminal 16 will be a second voltage value different from the first voltage value, which can also be determined by Whether the collected voltage value of the first intermediate terminal 16 is the second voltage value, or whether the difference between the second voltage value and the second voltage value is less than the threshold value, it is judged whether it is currently in a circuit state other than the first loop, and if so, it can be inferred that the current Did not form the first loop. For example: if the voltage value of the first intermediate terminal 16 is the second voltage value, or the difference between the voltage value and the first voltage value is less than the threshold value, it is determined that the first loop is not formed.
  • the second resistance circuit 22 provides a resistance of 100 ⁇
  • the second voltage value may be, for example, 0.233V, which is the theoretical voltage of the first middle terminal 16 when the second loop is formed.
  • other second voltage values can also be designed for at least the occurrence of a short circuit, external conductor connection, etc., and further, it can be determined by referring to logic whether the first loop is formed. According to the different situations under consideration, its specific implementation logic can be diverse.
  • first voltage value and the second voltage value can also be combined to realize the judgment.
  • the judgment of whether the first loop is formed can be a direct judgment or an indirect judgment.
  • whether the target current is a fixed current value or a changing current value, it can be determined whether the first loop is formed according to the change of the voltage value of the first intermediate terminal 16. For example, when the target current is a fixed current value, it can be determined whether the voltage value of the first intermediate terminal 16 has changed from the first voltage value to the second voltage value, and/or whether it has changed from the second voltage value to the first voltage value. Value to determine whether the first loop is formed. In the specific example, it can be further determined which circuit state is when the first loop is not formed.
  • the judgment logic can determine an interval that can be beneficial to characterize the normal range of the voltage value of the first intermediate terminal 16 in the first loop by setting the parameter values of the corresponding circuit elements and then calculating the circuit principle. If it falls in this interval, it can be determined that the first loop is formed.
  • the power supply-side module and the receiving-side module can form a first loop including the first middle end, the second middle end, the first resistance circuit, etc. when they are positively connected, the first loop is not formed when they are reversely connected.
  • the present invention can provide a circuit basis for the judgment of the positive connection and the reverse connection, and further, combined with the control of the first switch unit by the power supply side drive unit, the first switch unit can be controlled to be turned on during the positive connection to achieve power supply, and the second switch unit can be controlled during the reverse connection.
  • a switch unit is turned off to avoid damage to the components in the power supply side module and the receiving side module due to power supply during reverse connection, which plays a role in judging the positive and negative connections and corresponding safety protection.
  • the above embodiments provide a hardware basis for selective external power supply through the control of the power supply side drive unit to the first switch unit, which can help avoid unsafe power supply situations and play a corresponding safety protection role.
  • the first switch unit is controlled to be turned off to avoid charging the unsuitable receiving side module or other situations that may cause unsafe conditions.
  • the receiving side module 2 further includes a second resistance line 22, and the second intermediate end 25 is also connected to the first end of the second resistance line 22, The second end of the second resistance line 22 is connected to the voltage input terminal 24; the voltage output terminal 15 is connected to the second ground terminal 26, and the first ground terminal 17 is connected to the voltage input terminal 24
  • the first intermediate terminal 16, the second intermediate terminal 25, the second resistance line 22, the voltage input terminal 24, and the first ground terminal 17 are connected to the ground sequentially Turn on to form a second loop.
  • At least a part of the circuit state that does not form the first loop may include the circuit state that forms the second loop. It can be seen that when the power supply side module 1 and the receiving side module 2 are positively connected, as shown in Figure 1, the first loop can be formed, and when the power supply side module 1 and the receiving side module 2 are reversely connected, as shown in Figure 2, the second loop can be formed .
  • the power supply-side drive unit 14 can also be connected to an alarm component to control the alarm component to alarm when a second loop is formed, that is, when a reverse connection occurs.
  • the alarm component may include, for example, a light-emitting diode for alarm indication.
  • the alarm mode of the device can be, for example, controlling the light emitting diode to emit light or controlling the light emitting diode to blink.
  • At least a part of the circuit state that does not form the first loop may include: the circuit state of the first intermediate terminal 16 not forming a loop to the outside; The state of the circuit.
  • the power supply-side driving unit 14 can control the first switch unit 13 to turn off, which can prevent the voltage output terminal 15 from outputting electricity to the outside and causing leakage, and further improve safety.
  • At least part of the circuit state that does not form the first loop may include: at least two of the voltage output terminal 15, the first intermediate terminal 16, and the first ground terminal 17.
  • At least part of the circuit state that does not form the first loop may include: a circuit state in which at least two of the voltage input terminal 24, the second intermediate terminal 25, and the second ground terminal 26 are short-circuited.
  • the first switch unit 13 can be turned off in time to avoid overcurrent damage caused by excessive current, which further improves safety.
  • At least part of the circuit state that does not form the first loop may include: at least one of the voltage output terminal 15, the first intermediate terminal 16, the first ground terminal 17 and the The state of the circuit in which conductors other than the receiving-side module touch; at least part of the circuit state that does not form the first loop may include: the voltage input terminal 24, the second intermediate terminal 25, and the second ground terminal 26 A circuit state in which at least one of them is in contact with a conductor other than the receiving side module 1.
  • the first switch unit 13 can be turned off in time to avoid overcurrent damage caused by excessive current, and further improve safety.
  • the position of the corresponding contact of the first intermediate terminal 16 is at the midpoint position between the corresponding contact of the voltage output terminal 15 and the corresponding contact of the first ground terminal 17, and the first The positions of the corresponding contacts of the two middle ends 25 are at the midpoint between the corresponding contacts of the voltage input end 24 and the second grounding end 26.
  • the distance between the corresponding contact of the voltage output terminal 15 and the corresponding contact of the first ground terminal 17 is usually the same as the distance between the corresponding contact of the voltage input terminal 24 and the corresponding contact of the second ground terminal 26.
  • the contact is a metal contact in the interface, you can choose the contact that meets the requirements of the above position as the contact of the middle end. If the contact is not the contact in the interface, you can adjust the middle in the hardware design of the contact. The contact position of the end is configured to meet the above position requirements.
  • FIG. 3 is a second schematic diagram of the circuit when a docking type charging circuit is connected in an embodiment of the present invention.
  • the first resistance line 21 includes a first resistance R1, a first end of the first resistance R1 is connected to the second middle end 25, and a second end of the first resistance R1 is connected to the The second ground terminal 26 is also grounded.
  • the second resistance line 22 includes a second resistor R2 and a low forward voltage drop diode D1.
  • the first end of the low forward voltage drop diode D1 is connected to the second middle end 25, and the low forward voltage drop diode D1
  • the second terminal of the conducting voltage drop diode D1 is connected to the voltage input terminal 24, and the second resistor R2 is connected between the low forward conducting voltage drop diode D1 and the second intermediate terminal 25 or the Between the low forward voltage drop diode D1 and the voltage input terminal 24.
  • resistors may be connected in series or in parallel in the first resistance line 21 and the second resistance line 22.
  • Fig. 4 is the third circuit diagram of a docking type charging circuit in the embodiment of the present invention when it is connected.
  • the receiving-side module 2 further includes a receiving-side driving unit 28 and a second switching unit 27.
  • the second switch unit 27 is connected between the voltage input terminal 24 and the battery power supply unit 23, the sampling terminal of the receiving-side driving unit 28 is directly or indirectly connected to the voltage input terminal 24, and the receiving side
  • the output terminal of the driving unit 28 is connected to the second switch unit 27, and the receiving-side driving unit 28 is used to compare the voltage of the voltage input terminal with a preset safe voltage interval, and control the second switch according to the comparison result
  • the safe voltage interval is determined according to the overvoltage protection point and the minimum undervoltage protection point of the input voltage, which can be specifically for example: the safe voltage interval in which the lower limit is the minimum undervoltage protection point, which The upper limit is the overvoltage protection point.
  • the receiving side driving unit 28 can produce a protective effect, and therefore, according to its function, it can be characterized as: ProtectionGateDriving or GateDrivingProtection.
  • the receiving-side driving unit compares the voltage of the voltage input terminal with the preset safe voltage interval, and controls the on-off of the second switch unit according to the comparison result, and the safe voltage interval is based on the input
  • the voltage overvoltage protection point and the lowest undervoltage protection point are determined. It can use the safe voltage interval as a reference to determine whether the current input voltage is suitable for charging the battery, which can avoid damage to the device caused by charging when the voltage is not suitable for charging, and further improve the effect of safety protection.
  • the receiving-side module 2 further includes a capacitor C1, the power supply terminal of the receiving-side driving unit 28 is connected to the first end of the capacitor C1, and the first terminal of the capacitor C1 The terminal is also connected to the second middle terminal 25, and the second terminal of the capacitor C1 is grounded together with the second ground terminal 26.
  • the power supply terminal of the receiving-side drive unit is connected to a capacitor that can store energy, if the connected circuit module does not have a first intermediate terminal, the capacitor cannot be charged to the required voltage. Furthermore, the receiving-side drive unit cannot be The control is implemented under the power supply of, which can help avoid being charged by unsuitable power supply side modules, thereby avoiding unsafe charging that may be caused by this.
  • the communication port of the receiving-side driving unit 28 is connected to the second middle end 25, so as to use the second middle end 25 to interact with the power supply side module 1.
  • the communication port can be characterized as an input and output port, that is, an I/O port.
  • the communication end of the receiving-side drive unit can use the second intermediate end to interact, it provides a hardware basis for the instruction communication mechanism. For example, it can realize the instruction interaction when it is not used for power supply, which can provide more complex and diverse control possibilities. Sex provides a basis, and can also provide a basis for further safety certification.
  • the receiving-side driving unit 28 may be specifically configured to receive an authentication request sent by the power-supply-side driving unit 14 or other circuit units of the power-supply-side module 1, and return an authentication pass signal in response to the authentication request, so that the power-supply side
  • the power supply side driving unit 14 of the module 1 can control the on and off of the first switch unit according to the authentication pass signal.
  • the communication end of the driving unit on the receiving side can use the second intermediate end to realize the interaction between the authentication request and the authentication pass signal, it can further ensure the adaptation between the power supply side and the receiving side.
  • the receiving-side driving unit can still provide a certain amount of electrical energy to ensure the interaction of interactive commands.
  • the power supply side drive unit 14 or other circuit units of the power supply side module 1 can be configured to be able to pass through the first intermediate terminal 16 and
  • the second intermediate terminal 25 sends a corresponding logic level command, which can be understood as a kind of authentication request.
  • the receiving-side drive unit 25 can recognize the logic level instruction through the communication port and respond, for example, feedback an authentication pass signal, and the power-supply-side drive unit 14 can further determine whether it is necessary to keep the first switch unit 13 conducting according to the received signal. For example, if an authentication pass signal is received, the first switch unit 13 is controlled to be turned on.
  • the receiving-side driving unit 25 can be specifically characterized as: ProtectionRespondGateDriving.
  • Fig. 5 is a fourth schematic diagram of a circuit when a docking type charging circuit is connected in an embodiment of the present invention.
  • Det1 can be used to represent the first middle terminal 16, Det2 to represent the second middle terminal 25, GND1 to represent the first ground terminal 17, and GND2 to represent the second ground terminal 26.
  • the first switch unit 13 may include a first field effect transistor FET1, which may be an N-channel field effect transistor, the source of which is connected to the voltage output terminal 15, the drain of which is connected to the power supply 11, and the gate of which is connected to the power supply side driving unit 14.
  • FET1 field effect transistor
  • the second switch unit 27 may include a second field effect transistor FET2, which may be an N-channel field effect transistor.
  • the source is connected to the battery power supply unit 23, the drain is connected to the voltage input terminal 24, and the gate is connected to the receiving side.
  • Drive unit 28 may include a second field effect transistor FET2, which may be an N-channel field effect transistor.
  • the second switch unit 27 may further include a third field effect transistor FET3, which may be an N-channel field effect transistor, the source of which is connected to the voltage input terminal 24, and the drain of which is connected to the battery power supply unit 23. , The gate is connected to the receiving side driving unit 28.
  • the third field effect transistor FET3 can prevent leakage of the internal power supply of the receiving terminal to the voltage input terminal 24.
  • the receiving-side driving unit 28 may be equipped with a circuit part for placing leakage, therefore, the third field effect transistor FET3 may not be provided.
  • Fig. 6 is a schematic circuit diagram of an electronic device including a power supply side module in an embodiment of the present invention.
  • an electronic device 3 including a power supply side module 1, including a power supply side module 1, which can be understood with reference to the embodiments shown in FIGS. 1 to 5, which can be specifically understood as the power supply side module 1 of the docking charging circuit .
  • the power supply side module 1 may include a power supply 11, a voltage output terminal 15 connected to the power supply 11, and a first ground terminal 17.
  • the power supply side module 1 further includes a power supply side driving unit 14 and a power generating unit 12 , The first switch unit 13, and the first intermediate terminal 16.
  • the charging unit 12 is connected between the first intermediate terminal 15 and the power source 11, so that the first intermediate terminal 16 is used to output a target current under the power supply of the power source 11; the first intermediate terminal 16 is used for docking with the second middle end of the receiving-side module of other electronic equipment, so as to connect the voltage input terminal of the receiving-side module at the voltage output terminal 16, and the first grounding terminal 17 is connected to the receiving side
  • the charging unit 12, the first intermediate terminal 16, the second intermediate terminal, and the first resistance circuit of the receiving side module are connected to the ground in sequence to form a first Loop.
  • the first switch unit 13 is connected between the power supply 11 and the voltage output terminal 15, the sampling terminal of the power supply side drive unit 14 is connected to the first intermediate terminal 16, and the power supply side drive unit 14
  • the output terminal is connected to the first switch unit 13, and the power supply side drive unit 14 is used to control the on and off of the first switch unit 13 according to the voltage of the first intermediate terminal 16, so as to form the first loop
  • the first switch unit 13 is controlled to be turned on at the time, and the first switch unit 13 is controlled to be turned off when at least part of the circuit state of the first loop is not formed.
  • the charging unit when the voltage output terminal is connected to the second ground terminal, and the first ground terminal is connected to the voltage input terminal, the charging unit, the first middle terminal, the second middle terminal, The second resistance line and the first ground terminal are connected to the ground in sequence to form a second loop;
  • At least part of the circuit state that does not form the first loop includes at least one of the following:
  • the power supply side module 1 may be a circuit module in any one of the following electronic devices: mobile phones, wearable devices, tablet computers, computers, smart TVs, image acquisition devices, chargers, and smart sockets. That is, the electronic device 3 can be any one of the above.
  • Fig. 7 is a schematic circuit diagram of an electronic device including a receiving-side module in an embodiment of the present invention.
  • the electronic device 4 including the receiving side module includes the receiving side module 2 for supplying power to the power supply side module 1 of the above-mentioned electronic device.
  • the receiving side module 2 includes a battery power supply unit 23 and is connected to The voltage input terminal 24, the second ground terminal 26, and the second intermediate terminal 25, the first resistance line 21, the receiving side driving unit 25 and the second switch unit 24 of the battery power supply unit 23.
  • the second intermediate end 25 is connected to the first end of the first resistance line 21, and the second end of the first resistance line 21 is grounded together with the second grounding end 26.
  • the second intermediate terminal 25 is used to connect with the first intermediate terminal 16 to connect with the voltage input terminal 24 at the voltage output terminal 15, and the first ground terminal 17 connects with the second ground terminal At 26 o'clock, the first loop is formed.
  • the second switch unit 27 is connected between the voltage input terminal 2 and the battery power supply unit 23, the sampling terminal of the receiving side driving unit 28 is directly or indirectly connected to the voltage input terminal 24, and the receiving side
  • the output terminal of the driving unit 28 is connected to the second switch unit 27, and the receiving-side driving unit 28 is used to compare the voltage of the voltage input terminal with a preset safe voltage interval, and control the second switch according to the comparison result
  • the safe voltage interval is determined according to the overvoltage protection point and the minimum undervoltage protection point of the input voltage.
  • the receiving-side module 2 may be a circuit module in any one of the following electronic devices: mobile phones, wearable devices, tablet computers, computers, smart TVs, image acquisition devices, earphones. That is, the electronic device 4 can be any one of the above.
  • the power supply side module and the receiving side module can form a first intermediate terminal, a second intermediate terminal, a first resistance circuit, etc.
  • the first loop is not formed in the case of reverse connection.
  • the present invention can provide a circuit basis for the judgment of positive connection and reverse connection.
  • the first switch unit in combination with the control of the power supply side drive unit on the first switch unit, the first switch unit can be controlled during the forward connection. Turn on to achieve power supply.
  • reverse connection the first switch unit is controlled to be turned off to avoid damage to the power supply side module and the receiving side module due to the power supply during reverse connection, which plays a positive and negative connection judgment and corresponding safety Protective effects.
  • the present invention provides a hardware basis for selective external power supply through the control of the power supply side drive unit to the first switch unit, which can help avoid the occurrence of unsafe power supply situations and play a corresponding safety protection effect.
  • the first switch unit is controlled to be turned off to avoid charging the unsuitable receiving side module or other situations that may cause unsafe conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供了一种对接式充电电路与电子设备,包括能够互相对接的供电侧模块与接受侧模块,所述供电侧模块还包括供电侧驱动单元、赋电单元、第一开关单元,以及第一中间端,所述接受侧模块还包括第二中间端,以及第一电阻线路与第二电阻线路;本发明可为正接与反接的判断提供电路依据,进而,结合供电侧驱动单元对第一开关单元的控制,可以在正接时控制第一开关单元导通,以实现供电,反接时控制第一开关单元关断,以避免反接时供电而导致对供电侧模块与接受侧模块中的器件造成损坏,起到了正反接判断及对应的安全保护作用。同时,为对外的选择性供电提供了硬件基础,其可有利于避免不安全供电情形的发生,起到了对应的安全保护作用。

Description

对接式充电电路与电子设备 技术领域
本发明涉及电子设备领域,尤其涉及一种对接式充电电路与电子设备。
背景技术
在各种电子产品中,有线充电通常可通过充电接口中的触点进行充电,或者通过触点直接进行充电,其中的充电接口可例如USB接口或传统正负两极式电源接口等,其中直接通过触点进行充电的方式可应用于少数没有标准充电接口的手机、某些充电背夹,或者其他可支持有线充电的电子设备,该可支持有线充电的电子设备可例如手表、手环的可穿戴设备。
现有相关技术中,用于有线充电的对接式充电电路可利用供电侧模块对接受侧模块中的电池供电单元进行供电,以达到为电池充电的目的,其中,供电侧模块可利用电压输出端与第一接地端对接接受侧模块的电压输入端与第二接地端,进而为电池供电单元供电,电压输出端与电压输入端间可利用相应的金属触点实现导通连接,第一接地端与第二接地端间可利用相应的金属触点实现导通连接。
然而,若供电侧模块与接受侧模块间被反接,例如电压输出端对接至第二接地端,电压输入端对接至第一接地端,则可能会对供电侧模块与接受侧模块中的器件造成损坏。
同时,供电侧模块的电压输出端与第一接地端之间发生意外短路,或者接受侧模块的电压输入端与第二接地端之间发生意外短路,均可能会造成电路模块的漏电、损坏等情况。
此外,供电侧模块与接受侧模块对接即可进行充电,其还会造成不适配的设备被充电、被不适配的设备充电或者其他可能造成不安全充电情况发生。
发明内容
本发明提供一种对接式充电电路与电子设备,以解决供电侧模块与接受侧模块间被反接可能会对供电侧模块与接受侧模块中的器件造成损坏的问 题。进一步可选方案中还可有利于解决意外短路而造成的电路模块漏电、损坏等情况,进一步可选方案中还可解决不适配的设备被充电、被不适配的设备充电或者其他可能造成不安全充电的情况。
根据本发明的第一方面,提供了一种对接式充电电路,包括能够互相对接的供电侧模块与接受侧模块,所述供电侧模块包括电源、连接至所述电源的电压输出端,以及第一接地端,所述接受侧模块包括电池供电单元、连接至所述电池供电单元的电压输入端,以及第二接地端;
所述供电侧模块还包括供电侧驱动单元、赋电单元、第一开关单元,以及第一中间端,所述接受侧模块还包括第二中间端与第一电阻线路;
所述赋电单元连接于所述第一中间端与所述电源之间,以在所述电源的供电下向所述第一中间端输出目标电流;所述第二中间端连接所述第一电阻线路的第一端,所述第一电阻线路的第二端与所述第二接地端一同接地;
所述电压输出端对接所述电压输入端,且所述第一接地端对接所述第二接地端时,所述赋电单元、所述第一中间端、所述第二中间端、所述第一电阻线路与地依次导通,形成第一回路;
所述第一开关单元连接于所述电源与所述电压输出端之间,所述供电侧驱动单元的采样端连接所述第一中间端,所述供电侧驱动单元的输出端连接所述第一开关单元,所述供电侧驱动单元用于根据所述第一中间端的电压控制所述第一开关单元的通断,以在形成所述第一回路时控制所述第一开关单元导通,以及:在未形成所述第一回路的至少部分电路状态下控制所述第一开关单元关断。
可选的,所述接受侧模块还包括第二电阻线路,所述第二中间端还连接所述第二电阻线路的第一端,所述第二电阻线路的第二端连接至所述电压输入端;所述电压输出端对接所述第二接地端,且所述第一接地端对接所述电压输入端时,所述赋电单元、所述第一中间端、所述第二中间端、所述第二电阻线路、所述第一接地端与地依次导通,形成第二回路;
未形成所述第一回路的至少部分电路状态包括以下至少之一:
形成所述第二回路的电路状态;
所述第一中间端未对外形成回路的电路状态;
所述电压输出端、所述第一中间端、所述第一接地端至少之二发生短路 的电路状态;
所述电压输出端、所述第一中间端、所述第一接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态;
所述电压输入端、所述第二中间端、所述第二接地端至少之二发生短路的电路状态;
所述电压输入端、所述第二中间端、所述第二接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态。
可选的,所述第一电阻线路包括第一电阻,所述第一电阻的第一端连接所述第二中间端,所述第一电阻的第二端与所述第二接地端一同接地;
所述第二电阻线路包括第二电阻与低正向导通压降二极管,所述低正向导通压降二极管的第一端连接至所述第二中间端,所述低正向导通压降二极管的第二端连接至所述电压输入端,所述第二电阻连接于所述低正向导通压降二极管与所述第二中间端之间或者所述低正向导通压降二极管与所述电压输入端之间。
可选的,所述第一中间端对应触点的位置处于所述电压输出端对应触点与所述第一接地端对应触点之间的中点位置,所述第二中间端对应触点的位置处于所述电压输入端对应触点与所述第二接地端对应触点之间的中点位置。
可选的,所述接受侧模块还包括接受侧驱动单元与第二开关单元;
所述第二开关单元连接于所述电压输入端与所述电池供电单元之间,所述接受侧驱动单元的采样端直接或间接连接所述电压输入端,所述接受侧驱动单元的输出端连接所述第二开关单元,所述接受侧驱动单元用于比较所述电压输入端的电压与预设的安全电压区间,并根据比较的结果控制所述第二开关单元的通断,所述安全电压区间是根据输入电压的过压保护点与最低欠压保护点确定的。
可选的,所述接受侧模块还包括电容,所述接受侧驱动单元的供电端连接所述电容的第一端,所述电容的第一端还连接所述第二中间端,所述电容的第二端与所述第二接地端一同接地。
可选的,所述接受侧驱动单元的通讯端口连接所述第二中间端,用于接收所述供电侧模块发送的认证请求,并响应于所述认证请求返回认证通过信 号,以使得所述供电侧模块的供电侧驱动单元能够根据所述认证通过信号控制所述第一开关单元的通断。
可选的,所述供电侧模块为以下任意之一电子设备中的电路模块:手机、可穿戴设备、平板电脑、计算机、智能电视、图像采集设备、充电器、智能插座。
可选的,所述接受侧模块为以下任意之一电子设备中的电路模块:手机、可穿戴设备、平板电脑、计算机、智能电视、图像采集设备、耳机。
根据本发明的第二方面,提供了一种电子设备,包括供电侧模块,所述供电侧模块包括电源、连接至所述电源的电压输出端,以及第一接地端,所述供电侧模块还包括供电侧驱动单元、赋电单元、第一开关单元,以及第一中间端;
所述赋电单元连接于所述第一中间端与所述电源之间,以在所述电源的供电下利用所述第一中间端输出目标电流;所述第一中间端用于与其他电子设备的接受侧模块的第二中间端对接,以在所述电压输出端对接所述接受侧模块的电压输入端,且所述第一接地端对接所述接受侧模块的第二接地端时,使得所述赋电单元、所述第一中间端、所述第二中间端、所述接受侧模块的第一电阻线路与地依次导通,形成第一回路;
所述第一开关单元连接于所述电源与所述电压输出端之间,所述供电侧驱动单元的采样端连接所述第一中间端,所述供电侧驱动单元的输出端连接所述第一开关单元,所述供电侧驱动单元用于根据所述第一中间端的电压控制所述第一开关单元的通断,以在形成所述第一回路时控制所述第一开关单元导通,以及:在未形成所述第一回路的至少部分电路状态下控制所述第一开关单元关断。
可选的,所述电压输出端对接所述第二接地端,且所述第一接地端对接所述电压输入端时,所述赋电单元、所述第一中间端、第二中间端、所述第二电阻线路、所述第一接地端与地依次导通,形成第二回路;
未形成所述第一回路的至少部分电路状态包括以下至少之一:
形成所述第二回路的电路状态;
所述第一中间端未对外形成回路的电路状态;
所述电压输出端、所述第一中间端、所述第一接地端至少之二发生短路 的电路状态;
所述电压输出端、所述第一中间端、所述第一接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态;
所述电压输入端、所述第二中间端、所述第二接地端至少之二发生短路的电路状态;
所述电压输入端、所述第二中间端、所述第二接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态。
根据本发明的第三方面,提供了一种电子设备,包括用于为第二方面及其可选方案涉及的电子设备的供电侧模块供电的接受侧模块,所述接受侧模块包括电池供电单元、连接至所述电池供电单元的电压输入端、第二接地端,以及第二中间端、第一电阻线路、接受侧驱动单元与第二开关单元;
所述第二中间端连接所述第一电阻线路的第一端,所述第一电阻线路的第二端与所述第二接地端一同接地;
所述第二中间端用于与所述第一中间端对接,以在所述电压输出端对接所述电压输入端,且所述第一接地端对接所述第二接地端时,形成所述第一回路;
所述第二开关单元连接于所述电压输入端与所述电池供电单元之间,所述接受侧驱动单元的采样端直接或间接连接所述电压输入端,所述接受侧驱动单元的输出端连接所述第二开关单元,所述接受侧驱动单元用于比较所述电压输入端的电压与预设的安全电压区间,并根据比较的结果控制所述第二开关单元的通断,所述安全电压区间是根据输入电压的过压保护点与最低欠压保护点确定的。
本发明提供的对接式充电电路与电子设备中,由于供电侧模块与接受侧模块在正接时可形成包含第一中间端、第二中间端、第一电阻线路等的第一回路,反接时则未形成第一回路,本发明可为正接与反接的判断提供电路依据,进而,结合供电侧驱动单元对第一开关单元的控制,可以在正接时控制第一开关单元导通,以实现供电,反接时控制第一开关单元关断,以避免反接时供电而导致对供电侧模块与接受侧模块中的器件造成损坏,起到了正反接判断及对应的安全保护作用。
同时,本发明通过供电侧驱动单元对第一开关单元的控制,为对外的选 择性供电提供了硬件基础,其可有利于避免不安全供电情形的发生,起到了对应的安全保护作用。例如,在可选方案中,若形成了第二回路、所述第一中间端未对外形成回路、部分端口发生短路,又或者部分端口与其他不适配的外部导体发生接触等情况,均可控制第一开关单元关断,以避免对不适配的接受侧模块进行充电,或者其他可能会造成不安全的情形。
本发明可选方案中,由于第一中间端对应触点的位置处于电压输出端对应触点与第一接地端对应触点之间的中点位置,第二中间端对应触点的位置处于电压输入端对应触点与第二接地端对应触点之间的中点位置,其可便于使得不论正接还是反接,两个中间端的触点均能够实现连接。
本发明可选方案中,由于接受侧驱动单元比较所述电压输入端的电压与预设的安全电压区间,并根据比较的结果控制所述第二开关单元的通断,且其中的安全电压区间是根据输入电压的过压保护点与最低欠压保护点确定的。其可以安全电压区间作为参考依据,判断当前的输入电压是否适于对电池进行充电,其可避免电压不适于充电时实施充电而造成对器件的损伤,进一步提高安全保护的作用。
本发明可选方案中,由于接受侧驱动单元的供电端连接了可以储能的电容,若所接入的电路模块未具有第一中间端,则无法使得电容被充电至所需电压,进而,接受侧驱动单元无法在电容的供电下实施控制,其可有利于避免被不适配的供电侧模块进行充电,进而避免了因此而可能造成的不安全充电。
本发明可选方案中,由于接受侧驱动单元的通讯端可利用第二中间端交互,其为指令沟通的机制提供了硬件基础。进一步的,由于接受侧驱动单元的通讯端可利用第二中间端实现认证请求与认证通过信号的交互,其可以进一步保障供电侧与接受侧的适配。
本发明可选方案中,结合电容的储能作用与通讯端的储能作用,可以使得接受侧模块未被供电时,接受侧驱动单元依旧能提供一定的电能来保障交互指令的交互。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中一种对接式充电电路正接时的电路示意图一;
图2是本发明实施例中一种对接式充电电路反接时的电路示意图;
图3是本发明实施例中一种对接式充电电路正接时的电路示意图二;
图4是本发明实施例中一种对接式充电电路正接时的电路示意图三;
图5是本发明实施例中一种对接式充电电路正接时的电路示意图四;
图6是本发明实施例中一种包括供电侧模块的电子设备的电路示意图;
[根据细则91更正 07.05.2020] 
图7是本发明实施例中一种包括接受侧模块的电子设备的电路示意图一。
[根据细则91更正 07.05.2020] 
附图标记说明:
1-供电侧模块;
11-电源;
12-赋电单元;
121-电流源;
13-第一开关单元;
14-供电侧驱动单元;
15-电压输出端;
16-第一中间端;
17-第一接地端;
2-接受侧模块;
21-第一电阻线路;
22-第二电阻线路;
23-电池供电单元;
24-电压输入端;
25-第二中间端;
26-第二接地端;
27-第二开关单元;
28-接受侧驱动单元;
R1-第一电阻;
R2-第二电阻;
D1-低正向导通压降二极管;
D2-二极管;
C1-电容;
FET1-第一场效应管;
FET2-第二场效应管;
FET3-第三场效应管。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1是本发明实施例中一种对接式充电电路正接时的电路示意图一;图2是本发明实施例中一种对接式充电电路反接时的电路示意图。
请参考图1和图2,对接式充电电路,包括能够互相对接的供电侧模块1与接受侧模块2,所述供电侧模块1包括电源11、连接至所述电源11的电压输出端15,以及第一接地端17,所述接受侧模块2包括电池供电单元23、连接至所述电池供电单元23的电压输入端24,以及第二接地端26。
通过电压输出端15与电压输入端24之间的对接,以及第一接地端17与第二接地端26的对接,在均实现导通的情况下,可将电源的供电供应至电池供电单元23,以对电池供电单元23进行充电。
其中,电压输出端15输出的电压可被表征为Vout,电压输入端24输入的电压可被表征为Vin,电源两端的电压可被表征为V1,其对应的向电压输出端15与赋电单元12输出的电压可被表征为Vee。
电池供电单元23,可被表征为:Battery-PoweredSystem,其可连接于电池,进而能够将电能供应至电池,以对其进行充电的电路单元,例如可以为能够实现线性充电、开关充电等方式的电路单元,任意方式的电池供电单元23均可理解为是对本实施例所涉及方案的一种实施。
供电侧模块1,可被表征为SourceSide,即源端;接受侧模块2,可被表征为SinkSide,即接受端。对于电子设备可以仅配置有供电侧模块1,从而为其他电子设备的充电进行供电,电子设备也可仅配置有接受侧模块2,从而被其他电子设备供电,从而实现充电,电子设备还可同时配置有供电侧模块1与接受侧模块2,进而可以为另一电子设备的充电进行供电,并可以被再一电子设备充电。
供电侧驱动单元14,根据其产生的作用,一种举例中,可以被表征为:IdentifyingIndicatingGateDriving。
本实施例中,所述供电侧模块1还包括供电侧驱动单元14、赋电单元12、第一开关单元13,以及第一中间端16,所述接受侧模块2还包括第二中间端25与第一电阻线路21。
所述赋电单元12连接于所述第一中间端16与所述电源12之间,以在所述电源11的供电下向所述第一中间端16输出目标电流;故而,赋电单元12在一种举例中可以包括电流源121,在另一种举例中可以包括分压单元,该分压单元可例如是通过电阻分压来实现的。可见,该目标电流可以是固定的电流值,也可以是变化的电流值。
所述第二中间端25连接所述第一电阻线路21的第一端,所述第一电阻线路21的第二端与所述第二接地端26一同接地。
所述电压输出端15对接所述电压输入端24,且所述第一接地端15对接所述第二接地端26时,所述赋电单元12、所述第一中间端16、所述第二中间端25、所述第一电阻线路22与地依次导通,形成第一回路,其可如图1所示。
所述第一开关单元13连接于所述电源11与所述电压输出端15之间,所述供电侧驱动单元14的采样端连接所述第一中间端16,所述供电侧驱动单元14的输出端连接所述第一开关单元13,所述供电侧驱动单元14用于根据所述第一中间端16的电压控制所述第一开关单元13的通断,以在形成所述第一回路时控制所述第一开关单元13导通,以及:在未形成所述第一回路的至少部分电路状态下控制所述第一开关单元13关断。
形成第一回路后,在目标电流的供电下,第一中间端16的理论电压应是一个第一电压值。该第一电压值可根据第一电阻线路21的压降数值和/或电阻数值、目标电流的电流值,以及电源对外输出的例如Vee的电压值确定。
其中一种实施方式中,若目标电流为固定的电流值,第一电压值为形成第一回路时的电压值,在未形成第一回路时,第一中间端16的电压会是不同于第一电压值的,通过判断所采集到的第一中间端16的电压值是否为第一电压值,或者判断其与第一电压值的差别是否小于阈值,可以判断当前是否形成第一回路,例如若第一中间端16的电压值为第一电压值,或者其与第一电压值的差值小于阈值,则确定形成了所述第一回路。
具体实施过程中,当第一电阻线路21可提供5.1KΩ的电阻,目标电流的电流值为固定的330μA,该第一电压值可以为1.68V。
另一种实施方式中,若目标电流为固定的电流值,在未形成第一回路时,则第一中间端16的电压会是不同于第一电压值的第二电压值,也可通过判断所采集到的第一中间端16的电压值是否为第二电压值,或者与第二电压值的差别是否小于阈值,判断当前是否处于非第一回路的其他电路状态,若是,即可推断当前并未形成第一回路。例如:若第一中间端16的电压值为第二电压值,或者其与第一电压值的差值小于阈值,则确定未形成所述第一回路。
具体实施过程中,若第一电压值为1.68V,且后文所涉及的第二回路中 的第二电阻线路22中的低正向压降二极管的正向电压为0.2V,第二电阻线路22提供100Ω的电阻,则该第二电压值可以例如为0.233V,其为形成第二回路时第一中间端16的理论电压。在可选实施过程中,也可针对于发生短路、连接外部导体等至少情况设计其他第二电压值,进而,可参照逻辑判断是否形成了第一回路。根据所考虑的情况不同,其具体的实现逻辑可以是多样的。
此外,也可同时结合第一电压值与第二电压值来实现判断。
可见,对是否形成第一回路的判断,可以是直接判断,也可以是间接判断。
再一种实施方式中,不论目标电流为固定的电流值还是变化的电流值,均可根据第一中间端16的电压值的变化来判断是否形成第一回路。例如在目标电流为固定的电流值时,可通过判断第一中间端16的电压值是否从第一电压值变化到了第二电压值,和/或判断是否从第二电压值变化到了第一电压值来判断是否形成了第一回路,具体举例中还可进一步判断未形成第一回路时,究竟是哪一种电路状态。
而其判断逻辑可以通过设置相应电路元件的参数值后通过电路原理的计算来确定一个可有利于表征第一回路时第一中间端16电压值正常范围的区间。若落在该区间,则可确定形成了第一回路。
以上各实施方式中,由于供电侧模块与接受侧模块在正接时可形成包含第一中间端、第二中间端、第一电阻线路等的第一回路,反接时则未形成第一回路,本发明可为正接与反接的判断提供电路依据,进而,结合供电侧驱动单元对第一开关单元的控制,可以在正接时控制第一开关单元导通,以实现供电,反接时控制第一开关单元关断,以避免反接时供电而导致对供电侧模块与接受侧模块中的器件造成损坏,起到了正反接判断及对应的安全保护作用。
同时,以上实施方式通过供电侧驱动单元对第一开关单元的控制,为对外的选择性供电提供了硬件基础,其可有利于避免不安全供电情形的发生,起到了对应的安全保护作用。例如,在可选方案中,若形成了第二回路、所述第一中间端未对外形成回路、部分端口发生短路,又或者部分端口与其他不适配的外部导体发生接触等情况,均可控制第一开关单元关断,以避免对不适配的接受侧模块进行充电,或者其他可能会造成不安全的情形。
其中一种实施方式中,请参考图1和图2,所述接受侧模块2还包括第二电阻线路22,所述第二中间端25还连接所述第二电阻线路22的第一端,所述第二电阻线路22的第二端连接至所述电压输入端24;所述电压输出端15对接所述第二接地端26,且所述第一接地端17对接所述电压输入端24时,所述赋电单元12、所述第一中间端16、所述第二中间端25、所述第二电阻线路22、所述电压输入端24、所述第一接地端17与地依次导通,形成第二回路。
故而,未形成所述第一回路的至少部分电路状态可以包括形成所述第二回路的电路状态。可见,供电侧模块1与接受侧模块2正接时,如图1所示,可形成第一回路,供电侧模块1与接受侧模块2反接时,如图2所示,可形成第二回路。
在形成第二回路时,可理解为发生了反接,供电侧驱动单元14可将第一开关单元13关断。
具体实施过程中,供电侧驱动单元14还可连接报警组件,以在形成第二回路,即发生了反接时,控制报警组件报警,该报警组件可以例如包括用于报警指示的发光二极管,控制器报警的方式可例如控制该发光二极管发光或者控制该发光二极管闪烁。
其中一种实施方式中,未形成所述第一回路的至少部分电路状态可以包括:所述第一中间端16未对外形成回路的电路状态;其可理解为第一中间端16对外空接时的电路状态。
进而,在第一中间端16对外空接时,供电侧驱动单元14可控制第一开关单元13关断,其可避免电压输出端15对外输出电而造成漏电等情况,进一步提高安全性。
其中一种实施方式中,未形成所述第一回路的至少部分电路状态可以包括:所述电压输出端15、所述第一中间端16、所述第一接地端17至少之二之间发生短路的电路状态。未形成所述第一回路的至少部分电路状态可以包括:所述电压输入端24、所述第二中间端25、所述第二接地端26至少之二之间发生短路的电路状态。
进而,在端口发生短路时,可及时关断第一开关单元13,避免电流过大而造成过流损坏等情况,进一步提高了安全性。
其中一种实施方式中,未形成所述第一回路的至少部分电路状态可以包括:所述电压输出端15、所述第一中间端16、所述第一接地端17至少之一与所述接受侧模块以外的导体发生触碰的电路状态;未形成所述第一回路的至少部分电路状态可以包括:所述电压输入端24、所述第二中间端25、所述第二接地端26至少之一与所述接受侧模块1以外的导体发生触碰的电路状态。
进而,在端口对外触碰其他导体时,可及时关断第一开关单元13,避免电流过大而造成过流损坏等情况,进一步提高了安全性。
其中一种实施方式中,所述第一中间端16对应触点的位置处于所述电压输出端15对应触点与所述第一接地端17对应触点之间的中点位置,所述第二中间端25对应触点的位置处于所述电压输入端24对应触点与所述第二接地端26对应触点之间的中点位置。
其中,电压输出端15对应触点与第一接地端17对应触点之间的距离通常也与电压输入端24对应触点与第二接地端26对应触点之间的距离相同。
若该触点为接口中的金属触点,则可选择满足以上位置需求的触点作为中间端的触点,若该触点非接口中的触点,则可在触点的硬件设计时对中间端的触点位置进行配置,使其满足以上位置需求。
图3是本发明实施例中一种对接式充电电路正接时的电路示意图二。
请参考图3,所述第一电阻线路21包括第一电阻R1,所述第一电阻R1的第一端连接所述第二中间端25,所述第一电阻R1的第二端与所述第二接地端26一同接地。
所述第二电阻线路22包括第二电阻R2与低正向导通压降二极管D1,所述低正向导通压降二极管D1的第一端连接至所述第二中间端25,所述低正向导通压降二极管D1的第二端连接至所述电压输入端24,所述第二电阻R2连接于所述低正向导通压降二极管D1与所述第二中间端25之间或者所述低正向导通压降二极管D1与所述电压输入端24之间。
具体实施过程中,在第一电阻线路21与第二电阻线路22中还可串联、并联有其他电阻。
图4是本发明实施例中一种对接式充电电路正接时的电路示意图三。
请参考图4,所述接受侧模块2还包括接受侧驱动单元28与第二开关单 元27。
所述第二开关单元27连接于所述电压输入端24与所述电池供电单元23之间,所述接受侧驱动单元28的采样端直接或间接连接所述电压输入端24,所述接受侧驱动单元28的输出端连接所述第二开关单元27,所述接受侧驱动单元28用于比较所述电压输入端的电压与预设的安全电压区间,并根据比较的结果控制所述第二开关单元27的通断,所述安全电压区间是根据输入电压的过压保护点与最低欠压保护点确定的,具体可例如:其中的安全电压区间,其下限为该最低欠压保护点,其上限为过压保护点。
该接受侧驱动单元28可产生保护作用,故而,根据其作用,可被表征为:ProtectionGateDriving或者GateDrivingProtection。
以上实施方式中,由于接受侧驱动单元比较所述电压输入端的电压与预设的安全电压区间,并根据比较的结果控制所述第二开关单元的通断,且其中的安全电压区间是根据输入电压的过压保护点与最低欠压保护点确定的。其可以安全电压区间作为参考依据,判断当前的输入电压是否适于对电池进行充电,其可避免电压不适于充电时实施充电而造成对器件的损伤,进一步提高安全保护的作用。
其中一种实施方式中,请参考图4,所述接受侧模块2还包括电容C1,所述接受侧驱动单元28的供电端连接所述电容C1的第一端,所述电容C1的第一端还连接所述第二中间端25,所述电容C1的第二端与所述第二接地端26一同接地。
由于接受侧驱动单元的供电端连接了可以储能的电容,若所接入的电路模块未具有第一中间端,则无法使得电容被充电至所需电压,进而,接受侧驱动单元无法在电容的供电下实施控制,其可有利于避免被不适配的供电侧模块进行充电,进而避免了因此而可能造成的不安全充电。
其中一种实施方式中,请参考图4,所述接受侧驱动单元28的通讯端口连接所述第二中间端25,以利用所述第二中间端25与供电侧模块1交互。
其中的通讯端口可被表征为输入输出端口,即I/O端口。
由于接受侧驱动单元的通讯端可利用第二中间端交互,其为指令沟通的机制提供了硬件基础,例如在未用于供电时实现指令的交互,其可以为进一步复杂的、多样的控制可能性提供基础,也可以为进一步的安全认证提供基 础。
所述接受侧驱动单元28具体可用于接收所述供电侧模块1的供电侧驱动单元14或其他电路单元发送的认证请求,并响应于所述认证请求返回认证通过信号,以使得所述供电侧模块1的供电侧驱动单元14能够根据所述认证通过信号控制所述第一开关单元的通断。
由于接受侧驱动单元的通讯端可利用第二中间端实现认证请求与认证通过信号的交互,其可以进一步保障供电侧与接受侧的适配。
在图4所示实施方式中,结合电容的储能作用与通讯端的储能作用,可以使得接受侧模块未被供电时,接受侧驱动单元依旧能提供一定的电能来保障交互指令的交互。
具体实施过程中,如果供电侧模块1向接受侧模块2供电需要更高的安全认证需求,供电侧模块1的供电侧驱动单元14或其他电路单元可以被配置为能够通过第一中间端16与第二中间端25发送相应的逻辑电平指令,其可理解为一种认证请求。接受侧驱动单元25可以通过通讯端口识别到该逻辑电平指令并进行响应,例如反馈认证通过信号,供电侧驱动单元14可根据接收到的信号,进一步可确定是否需要保持第一开关单元13导通,例如,若接收到认证通过信号,则控制第一开关单元13导通。
基于以上功能,接受侧驱动单元25具体可被表征为:ProtectionRespondGateDriving。
图5是本发明实施例中一种对接式充电电路正接时的电路示意图四。
请参考图5,其中可利用Det1表征第一中间端16,Det2表征第二中间端25,GND1表征第一接地端17,GND2表征第二接地端26。
其中的第一开关单元13可以包括第一场效应管FET1,其可以为N型沟道场效应管,其源极连接至电压输出端15,漏极连接至电源11,栅极连接供电侧驱动单元14。
其中的第二开关单元27可以包括第二场效应管FET2,其可以为N型沟道场效应管,其源极连接至电池供电单元23,漏极连接至电压输入端24,栅极连接接受侧驱动单元28。
一种具体实施过程中,第二开关单元27还可以包括第三场效应管FET3,其可以为N型沟道场效应管,其源极连接至电压输入端24,漏极连接至电池 供电单元23,栅极连接接受侧驱动单元28。通过第三场效应管FET3,可以防止接受端内部电源向电压输入端24的漏电。
另一具体实施过程中,接收侧驱动单元28内部可配置有用于放置漏电的电路部分,故而,可不再设置第三场效应管FET3。
图6是本发明实施例中一种包括供电侧模块的电子设备的电路示意图。
请参考图6,包括供电侧模块1的电子设备3,包括供电侧模块1,其可参考图1至图5所示的实施方式理解,具体可理解为其中对接式充电电路的供电侧模块1。
故而,所述供电侧模块1可以包括电源11、连接至所述电源11的电压输出端15,以及第一接地端17,所述供电侧模块1还包括供电侧驱动单元14、赋电单元12、第一开关单元13,以及第一中间端16。
所述赋电单元12连接于所述第一中间端15与所述电源11之间,以在所述电源11的供电下利用所述第一中间端16输出目标电流;所述第一中间端16用于与其他电子设备的接受侧模块的第二中间端对接,以在所述电压输出端16对接所述接受侧模块的电压输入端,且所述第一接地端17对接所述接受侧模块的第二接地端时,使得所述赋电单元12、所述第一中间端16、所述第二中间端、所述接受侧模块的第一电阻线路与地依次导通,形成第一回路。
所述第一开关单元13连接于所述电源11与所述电压输出端15之间,所述供电侧驱动单元14的采样端连接所述第一中间端16,所述供电侧驱动单元14的输出端连接所述第一开关单元13,所述供电侧驱动单元14用于根据所述第一中间端16的电压控制所述第一开关单元13的通断,以在形成所述第一回路时控制所述第一开关单元13导通,以及:在未形成所述第一回路的至少部分电路状态下控制所述第一开关单元13关断。
可选的,所述电压输出端对接所述第二接地端,且所述第一接地端对接所述电压输入端时,所述赋电单元、所述第一中间端、第二中间端、所述第二电阻线路、所述第一接地端与地依次导通,形成第二回路;
未形成所述第一回路的至少部分电路状态包括以下至少之一:
形成所述第二回路的电路状态;
所述第一中间端未对外形成回路的电路状态;
所述电压输出端、所述第一中间端、所述第一接地端至少之二发生短路 的电路状态;
所述电压输出端、所述第一中间端、所述第一接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态;
所述电压输入端、所述第二中间端、所述第二接地端至少之二发生短路的电路状态;
所述电压输入端、所述第二中间端、所述第二接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态。
此外,图1至图5所示所有实施方式的任意描述均可适用于图6所示实施例,故而,对于其他重复的技术特征与技术效果,在此不再累述。
具体实施过程中,所述供电侧模块1可以为以下任意之一电子设备中的电路模块:手机、可穿戴设备、平板电脑、计算机、智能电视、图像采集设备、充电器、智能插座。即电子设备3可以为以上任意之一。
图7是本发明实施例中一种包括接受侧模块的电子设备的电路示意图。
请参考图7,包括接受侧模块的电子设备4,包括用于为以上所涉及的电子设备的供电侧模块1供电的接受侧模块2,所述接受侧模块2包括电池供电单元23、连接至所述电池供电单元23的电压输入端24、第二接地端26,以及第二中间端25、第一电阻线路21、接受侧驱动单元25与第二开关单元24。
所述第二中间端25连接所述第一电阻线路21的第一端,所述第一电阻线路21的第二端与所述第二接地端26一同接地。
所述第二中间端25用于与所述第一中间端16对接,以在所述电压输出端15对接所述电压输入端24,且所述第一接地端17对接所述第二接地端26时,形成所述第一回路。
所述第二开关单元27连接于所述电压输入端2与所述电池供电单元23之间,所述接受侧驱动单元28的采样端直接或间接连接所述电压输入端24,所述接受侧驱动单元28的输出端连接所述第二开关单元27,所述接受侧驱动单元28用于比较所述电压输入端的电压与预设的安全电压区间,并根据比较的结果控制所述第二开关单元的通断,所述安全电压区间是根据输入电压的过压保护点与最低欠压保护点确定的。
此外,图1至图5所示所有实施方式的任意描述均可适用于图7所示实 施例,故而,对于其他重复的技术特征与技术效果,在此不再累述。
具体实施过程中,所述接受侧模块2可以为以下任意之一电子设备中的电路模块:手机、可穿戴设备、平板电脑、计算机、智能电视、图像采集设备、耳机。即电子设备4可以为以上任意之一。
综上所述,本发明提供的对接式充电电路与电子设备中,由于供电侧模块与接受侧模块在正接时可形成包含第一中间端、第二中间端、第一电阻线路等的第一回路,反接时则未形成第一回路,本发明可为正接与反接的判断提供电路依据,进而,结合供电侧驱动单元对第一开关单元的控制,可以在正接时控制第一开关单元导通,以实现供电,反接时控制第一开关单元关断,以避免反接时供电而导致对供电侧模块与接受侧模块中的器件造成损坏,起到了正反接判断及对应的安全保护作用。
同时,本发明通过供电侧驱动单元对第一开关单元的控制,为对外的选择性供电提供了硬件基础,其可有利于避免不安全供电情形的发生,起到了对应的安全保护作用。例如,在可选方案中,若形成了第二回路、所述第一中间端未对外形成回路、部分端口发生短路,又或者部分端口与其他不适配的外部导体发生接触等情况,均可控制第一开关单元关断,以避免对不适配的接受侧模块进行充电,或者其他可能会造成不安全的情形。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种对接式充电电路,包括能够互相对接的供电侧模块与接受侧模块,所述供电侧模块包括电源、连接至所述电源的电压输出端,以及第一接地端,所述接受侧模块包括电池供电单元与连接至所述电池供电单元的电压输入端;
    其特征在于,所述供电侧模块还包括供电侧驱动单元、赋电单元、第一开关单元,以及第一中间端,所述接受侧模块还包括第二中间端,以及第一电阻线路与第二电阻线路;
    所述赋电单元连接于所述第一中间端与所述电源之间,以在所述电源的供电下向所述第一中间端输出目标电流;所述第二中间端连接所述第一电阻线路的第一端,所述第一电阻线路的第二端与所述第二接地端一同接地;
    所述电压输出端对接所述电压输入端,且所述第一接地端对接所述第二接地端时,所述赋电单元、所述第一中间端、所述第二中间端、所述第一电阻线路与地依次导通,形成第一回路;
    所述第一开关单元连接于所述电源与所述电压输出端之间,所述供电侧驱动单元的采样端连接所述第一中间端,所述供电侧驱动单元的输出端连接所述第一开关单元,所述供电侧驱动单元用于根据所述第一中间端的电压控制所述第一开关单元的通断,以在形成所述第一回路时控制所述第一开关单元导通,以及:在未形成所述第一回路的至少部分电路状态下控制所述第一开关单元关断。
  2. 根据权利要求1所述的对接式充电电路,其特征在于,所述接受侧模块还包括第二电阻线路,所述第二中间端还连接所述第二电阻线路的第一端,所述第二电阻线路的第二端连接至所述电压输入端;所述电压输出端对接所述第二接地端,且所述第一接地端对接所述电压输入端时,所述赋电单元、所述第一中间端、所述第二中间端、所述第二电阻线路、所述第一接地端与地依次导通,形成第二回路;
    未形成所述第一回路的至少部分电路状态包括以下至少之一:
    形成所述第二回路的电路状态;
    所述第一中间端未对外形成回路的电路状态;
    所述电压输出端、所述第一中间端、所述第一接地端至少之二发生短路 的电路状态;
    所述电压输出端、所述第一中间端、所述第一接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态;
    所述电压输入端、所述第二中间端、所述第二接地端至少之二发生短路的电路状态;
    所述电压输入端、所述第二中间端、所述第二接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态。
  3. 根据权利要求2所述的对接式充电电路,其特征在于,所述第一电阻线路包括第一电阻,所述第一电阻的第一端连接所述第二中间端,所述第一电阻的第二端与所述第二接地端一同接地;
    所述第二电阻线路包括第二电阻与低正向导通压降二极管,所述低正向导通压降二极管的第一端连接至所述第二中间端,所述低正向导通压降二极管的第二端连接至所述电压输入端,所述第二电阻连接于所述低正向导通压降二极管与所述第二中间端之间或者所述低正向导通压降二极管与所述电压输入端之间。
  4. 根据权利要求1至3任一项所述的对接式充电电路,其特征在于,所述第一中间端对应触点的位置处于所述电压输出端对应触点与所述第一接地端对应触点之间的中点位置,所述第二中间端对应触点的位置处于所述电压输入端对应触点与所述第二接地端对应触点之间的中点位置。
  5. 根据权利要求1至3任一项所述的对接式充电电路,其特征在于,所述接受侧模块还包括接受侧驱动单元与第二开关单元;
    所述第二开关单元连接于所述电压输入端与所述电池供电单元之间,所述接受侧驱动单元的采样端直接或间接连接所述电压输入端,所述接受侧驱动单元的输出端连接所述第二开关单元,所述接受侧驱动单元用于比较所述电压输入端的电压与预设的安全电压区间,并根据比较的结果控制所述第二开关单元的通断,所述安全电压区间是根据输入电压的过压保护点与最低欠压保护点确定的。
  6. 根据权利要求5所述的对接式充电电路,其特征在于,所述接受侧模块还包括电容,所述接受侧驱动单元的供电端连接所述电容的第一端,所述电容的第一端还连接所述第二中间端,所述电容的第二端与所述第二接地端 一同接地。
  7. 根据权利要求5所述的对接式充电电路,其特征在于,所述接受侧驱动单元的通讯端口连接所述第二中间端,用于接收所述供电侧模块发送的认证请求,并响应于所述认证请求返回认证通过信号,以使得所述供电侧模块的供电侧驱动单元能够根据所述认证通过信号控制所述第一开关单元的通断。
  8. 一种电子设备,包括供电侧模块,所述供电侧模块包括电源、连接至所述电源的电压输出端,以及第一接地端,其特征在于,所述供电侧模块还包括供电侧驱动单元、赋电单元、第一开关单元,以及第一中间端;
    所述赋电单元连接于所述第一中间端与所述电源之间,以在所述电源的供电下利用所述第一中间端输出目标电流;所述第一中间端用于与其他电子设备的接受侧模块的第二中间端对接,以在所述电压输出端对接所述接受侧模块的电压输入端,且所述第一接地端对接所述接受侧模块的第二接地端时,使得所述赋电单元、所述第一中间端、所述第二中间端、所述接受侧模块的第一电阻线路与地依次导通,形成第一回路;
    所述第一开关单元连接于所述电源与所述电压输出端之间,所述供电侧驱动单元的采样端连接所述第一中间端,所述供电侧驱动单元的输出端连接所述第一开关单元,所述供电侧驱动单元用于根据所述第一中间端的电压控制所述第一开关单元的通断,以在形成所述第一回路时控制所述第一开关单元导通,以及:在未形成所述第一回路的至少部分电路状态下控制所述第一开关单元关断。
  9. 根据权利要求8所述的电子设备,其特征在于,所述电压输出端对接所述第二接地端,且所述第一接地端对接所述电压输入端时,所述赋电单元、所述第一中间端、所述第二中间端、第二电阻线路、所述电压输入端、所述第一接地端与地依次导通,形成第二回路;
    未形成所述第一回路的至少部分电路状态包括以下至少之一:
    形成所述第二回路的电路状态;
    所述第一中间端未对外形成回路的电路状态;
    所述电压输出端、所述第一中间端、所述第一接地端至少之二发生短路的电路状态;
    所述电压输出端、所述第一中间端、所述第一接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态;
    所述电压输入端、所述第二中间端、所述第二接地端至少之二发生短路的电路状态;
    所述电压输入端、所述第二中间端、所述第二接地端至少之一与所述接受侧模块以外的导体发生触碰的电路状态。
  10. 一种电子设备,其特征在于,包括用于接收权利要求8或9所述电子设备的供电侧模块供电的接受侧模块,所述接受侧模块包括电池供电单元、连接至所述电池供电单元的电压输入端、第二接地端,以及第二中间端、第一电阻线路、接受侧驱动单元与第二开关单元;
    所述第二中间端连接所述第一电阻线路的第一端,所述第一电阻线路的第二端与所述第二接地端一同接地;
    所述第二中间端用于与所述第一中间端对接,以在所述电压输出端对接所述电压输入端,且所述第一接地端对接所述第二接地端时,形成所述第一回路;
    所述第二开关单元连接于所述电压输入端与所述电池供电单元之间,所述接受侧驱动单元的采样端直接或间接连接所述电压输入端,所述接受侧驱动单元的输出端连接所述第二开关单元,所述接受侧驱动单元用于比较所述电压输入端的电压与预设的安全电压区间,并根据比较的结果控制所述第二开关单元的通断,所述安全电压区间是根据输入电压的过压保护点与最低欠压保护点确定的。
PCT/CN2020/085169 2019-04-26 2020-04-16 对接式充电电路与电子设备 WO2020216126A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/286,485 US11329492B2 (en) 2019-04-26 2020-04-16 Docking charing circuit and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910343818.6 2019-04-26
CN201910343818.6A CN110112800B (zh) 2019-04-26 2019-04-26 对接式充电电路与电子设备

Publications (1)

Publication Number Publication Date
WO2020216126A1 true WO2020216126A1 (zh) 2020-10-29

Family

ID=67486911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085169 WO2020216126A1 (zh) 2019-04-26 2020-04-16 对接式充电电路与电子设备

Country Status (3)

Country Link
US (1) US11329492B2 (zh)
CN (1) CN110112800B (zh)
WO (1) WO2020216126A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112800B (zh) 2019-04-26 2023-11-21 上海爻火微电子有限公司 对接式充电电路与电子设备
JP7515314B2 (ja) * 2020-06-24 2024-07-12 キヤノン株式会社 電子機器および制御方法
CN112531832A (zh) * 2020-11-26 2021-03-19 Tcl通力电子(惠州)有限公司 充电路径管理电路及装置
CN113270921A (zh) * 2021-05-27 2021-08-17 山东建筑大学 变电站巡检机器人的自动充电系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402495A (zh) * 2001-08-10 2003-03-12 精工爱普生株式会社 电源控制电路、电子仪器、及其充电方法
CN101861574A (zh) * 2007-11-15 2010-10-13 诺基亚公司 串行接口之间的电源连接
US20140152237A1 (en) * 2012-11-30 2014-06-05 Hon Hai Precision Industry Co., Ltd. Charger and electronic device
CN108631373A (zh) * 2017-03-17 2018-10-09 苏州宝时得电动工具有限公司 对接充电系统
CN110112800A (zh) * 2019-04-26 2019-08-09 上海爻火微电子有限公司 对接式充电电路与电子设备
CN209994125U (zh) * 2019-04-26 2020-01-24 上海爻火微电子有限公司 对接式充电电路与电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201639290U (zh) * 2010-02-27 2010-11-17 比亚迪股份有限公司 一种后备电池的防止主回路反接的装置
EP2754341A4 (en) * 2011-09-06 2015-04-29 Dana Innovations LOAD DOCKING SYSTEM
CN103490374B (zh) * 2013-09-25 2017-05-17 山东贞明光电科技有限公司 一种量产测试设备及其短路过流保护电路
JP6806987B2 (ja) * 2016-06-30 2021-01-06 アイコム株式会社 電源スイッチ回路
CN106787251B (zh) * 2017-03-02 2019-11-12 北京空间飞行器总体设计部 一种航天器交会对接并网供电的无线电能及信号传输系统
CN207354057U (zh) * 2017-10-23 2018-05-11 广州极飞科技有限公司 一种开关驱动电路、电池控制电路、电池和无人机
JP6756754B2 (ja) * 2018-02-09 2020-09-16 ミツミ電機株式会社 充電制御装置、充電システム及び充電制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402495A (zh) * 2001-08-10 2003-03-12 精工爱普生株式会社 电源控制电路、电子仪器、及其充电方法
CN101861574A (zh) * 2007-11-15 2010-10-13 诺基亚公司 串行接口之间的电源连接
US20140152237A1 (en) * 2012-11-30 2014-06-05 Hon Hai Precision Industry Co., Ltd. Charger and electronic device
CN108631373A (zh) * 2017-03-17 2018-10-09 苏州宝时得电动工具有限公司 对接充电系统
CN110112800A (zh) * 2019-04-26 2019-08-09 上海爻火微电子有限公司 对接式充电电路与电子设备
CN209994125U (zh) * 2019-04-26 2020-01-24 上海爻火微电子有限公司 对接式充电电路与电子设备

Also Published As

Publication number Publication date
US11329492B2 (en) 2022-05-10
CN110112800B (zh) 2023-11-21
US20220037896A1 (en) 2022-02-03
CN110112800A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020216126A1 (zh) 对接式充电电路与电子设备
US12057731B2 (en) Charging control apparatus and method for electronic device
US10461556B2 (en) Charger, electronic device, and charging method
US10476283B2 (en) Bi-directional charger for battery device with control logic based on sensed voltage and device type
US20150357836A1 (en) Fast charging terminal
US9812861B2 (en) Power adapter and method of adapting power for electronic devices
TW201910967A (zh) 電子機器
US20140091752A1 (en) USB Charging System
CN104092451A (zh) 一种功耗切换控制电路
CN209994125U (zh) 对接式充电电路与电子设备
US9941804B1 (en) Power supply system
TWI649939B (zh) 電源裝置運作方法、電源裝置及電源裝置管理系統
WO2019144676A1 (zh) 一种基于防反接电路的车用抛负载防护电路
CN103997101A (zh) 一种充电电路及一种电子设备
TWI527339B (zh) 充電裝置
US11121563B2 (en) Power control circuit
TWI683199B (zh) 適應性放電電路以及電源供應器
CN112531829A (zh) 充电检测电路、显示屏及充电系统
KR20170098461A (ko) 휴대 단말을 이용한 외부 기기의 전원 공급 장치
CN111463853A (zh) 电源电路和机器人设备
EP3260948B1 (en) Expansion base for mobile terminal and power supply management method therefor
WO2019071388A1 (zh) 电池控制电路及电子设备
KR20130128705A (ko) 급속 충전이 가능한 유에스비 케이블
CN215772585U (zh) 一种充电电路
CN210839024U (zh) 一种多功能移动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794281

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20794281

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28.04.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20794281

Country of ref document: EP

Kind code of ref document: A1