WO2019144676A1 - 一种基于防反接电路的车用抛负载防护电路 - Google Patents

一种基于防反接电路的车用抛负载防护电路 Download PDF

Info

Publication number
WO2019144676A1
WO2019144676A1 PCT/CN2018/115037 CN2018115037W WO2019144676A1 WO 2019144676 A1 WO2019144676 A1 WO 2019144676A1 CN 2018115037 W CN2018115037 W CN 2018115037W WO 2019144676 A1 WO2019144676 A1 WO 2019144676A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse
power supply
circuit
power source
protection circuit
Prior art date
Application number
PCT/CN2018/115037
Other languages
English (en)
French (fr)
Inventor
黄落成
Original Assignee
苏州汇川联合动力系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川联合动力系统有限公司 filed Critical 苏州汇川联合动力系统有限公司
Publication of WO2019144676A1 publication Critical patent/WO2019144676A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result

Definitions

  • the utility model relates to the field of automobiles, in particular to a vehicle load dump protection circuit based on an anti-reverse circuit.
  • Load-discharge test is the electrical performance test of current new energy vehicle electronic control system and electrical components (reference standard ISO) One of 16750).
  • the load dump pulse simulates that when the vehicle generator continuously charges the power supply (mainly the low voltage battery), the battery is instantaneously disconnected, and the large power energy output by the generator is superimposed on the power port of the device under test.
  • Power interference pulse In power systems with different voltage levels, the interference of this pulse can be as high as 100V and 200V, the rise time is about 5ms, the duration is up to 400ms, the transient power is up to the order of kilowatts, and it can be repeated about 10 times in one minute.
  • the current mainstream protection scheme is to add a transient suppression diode with a large instantaneous power at the power port of the device under test (Transient).
  • Voltage Suppressor (TVS) is used to clamp the load dump pulse (select the TVS with the appropriate clamp voltage according to the system supply voltage level).
  • the TVS tube is divided into one-way and two-way. Most of the two-way TVS currently used in the market are plug-in packages, while the one-way TVS mainly uses a chip package.
  • the one-way TVS can meet the load-shedding protection function, and its circuit is shown in Figure 1.
  • the unidirectional TVS is turned on at the moment of power-on, so that the battery is short-circuited through the wire and the TVS, and the instantaneous large current will burn the cable or the TVS. In severe cases, it will cause the whole vehicle to catch fire. This is also the reason why the one-way TVS is less used.
  • bidirectional TVS has the following drawbacks: the plug-in package is not conducive to the automatic production of the patch of the production line; at the same time, considering the bending radius of the pin, the plug-in package occupies a large mounting area on the single board, which is not conducive to the layout and routing of the single board. It is not conducive to increase the power density of the product; and the plug-in package makes it impossible to route the front and back of the board.
  • the bidirectional TVS device needs to be placed on the port, occupying a large single board area, which is not conducive to EMC (Electro Magnetic Compatibility, interface filter circuit layout design, reducing circuit EMC performance.
  • EMC Electro Magnetic Compatibility, interface filter circuit layout design, reducing circuit EMC performance.
  • the line forming loop (shown by the arrow in Figure 1) causes the device connected in series on the negative pole of the power supply to burn out or the circuit board trace of the negative electrode inside the electronic device is burned, or the path is formed by some devices, causing damage to the electronic device (damaged The equipment must be replaced to meet the requirements), reducing the robustness of the equipment.
  • the technical problem to be solved by the utility model is that, in view of the defects in the prior art that the two-way TVS is used for load-shedding protection, which causes troubles in production, assembly and wiring, a vehicle load-discharging protection circuit based on the anti-reverse circuit is provided.
  • the technical solution adopted by the utility model to solve the technical problem is: constructing a vehicle load-discharging protection circuit based on the anti-reverse circuit for protecting the electric equipment connected to the main circuit of the power supply, the protection The circuit includes a unidirectional TVS tube, a first anti-reverse switch and a second anti-reverse switch for turning on when the power supply is positively connected and disconnected when the power supply is reversed; wherein: the one-way The TVS tube is connected in parallel at the two ends of the power supply, the first anti-reverse switch is located between the positive power terminal of the power supply and the positive power terminal of the power device, and the second anti-reverse switch is located at the Between the negative power terminal of the power supply and the negative power terminal of the power device, and satisfying at least one of the following conditions: the first anti-reverse switch is also located at the positive power terminal of the power supply and the one-way Between the cathodes of the TVS tubes, the second anti-reverse switch is located between the negative power supply end of the power supply and the ano
  • the first anti-reverse switch is located between the cathode of the unidirectional TVS tube and the positive power terminal of the powered device.
  • the second anti-reverse switch is located between a negative power terminal of the power supply and an anode of the unidirectional TVS tube.
  • the first anti-reverse switch is located at a positive power terminal of the power supply and a cathode of the unidirectional TVS tube
  • the second anti-reverse switch is located between the anode of the unidirectional TVS and the anode of the unidirectional TVS tube.
  • the first anti-reverse switch is a diode.
  • the first anti-reverse switch is a TVS tube.
  • the first anti-reverse switch is a MOS transistor having an anti-parallel diode connected thereto, and the gate of the MOS transistor is connected by a driving circuit.
  • the second anti-reverse switch is a MOS tube of an anti-parallel diode, and the gate of the MOS tube is connected by a driving circuit.
  • the second anti-reverse switch is a diode.
  • the second anti-reverse switch is a TVS tube.
  • the protection circuit further includes a first capacitor and a second capacitor, and the first capacitor is connected in parallel with the unidirectional TVS tube.
  • the second capacitor is connected in parallel with the powered device.
  • the vehicle load-discharging protection circuit based on the anti-reverse circuit of the utility model has the following beneficial effects: the utility model can simultaneously meet the demand of the load-shedding protection and the anti-reverse connection requirement of the power supply, and can be utilized for the reverse connection of the power supply.
  • the second anti-reverse switch added to the negative power supply terminal is used for suppression; for the reverse power connection when the jumper is started, the first anti-reverse switch added by the positive power supply end of the power supply is used for protection, and the power is realized Anti-reverse, do not worry about the problem of reverse power connection, so the load-shedding protection can use the one-way TVS tube in the form of patch, which can reduce the occupation of PCB space, make layout and wiring more convenient, improve power density; reduce the material cost, at the same time SMT production reduces the plug-in process, reduces production costs, and has a wider range of unidirectional TVS tube options in patch form.
  • FIG. 1 is a schematic diagram of a vehicle load dump protection circuit using a one-way TVS when the power is reversed;
  • FIG. 2 is a schematic structural view of a load-shedding protection circuit using a two-way TVS vehicle
  • FIG. 3 is a schematic structural view of a first embodiment of a load dump protection circuit for a vehicle according to the present invention
  • FIG. 4 is a schematic structural view of a second embodiment of the load dump protection circuit for a vehicle according to the present invention.
  • FIG. 5 is a schematic structural view of a third embodiment of the load dump protection circuit for a vehicle of the present invention.
  • first, second, and the like which are used in the specification, may be used to describe various constituent elements, but these constituent elements are not limited by these terms. The purpose of using these terms is simply to distinguish one component from another component.
  • first constituent element may be named as the second constituent element without departing from the scope of the invention, and similarly, the second constituent element may also be named as the first constituent element.
  • second constituent element may also be named as the first constituent element.
  • and/or used herein includes any and all combinations of one or more of the associated listed items.
  • the general idea of the utility model is: adding a first anti-reverse switch between the positive power terminal of the power supply and the positive power terminal of the power device, at the negative power terminal of the power supply and the negative power terminal of the power device Adding a second anti-reverse switch between and satisfying at least one of the following conditions: the first anti-reverse switch is further located between a positive power terminal of the power supply and a cathode of the unidirectional TVS tube The second anti-reverse switch is located between the negative power terminal of the power supply and the anode of the unidirectional TVS tube.
  • the TVS tube can select a single form in the form of a patch.
  • the utility model can simultaneously meet the requirements of the load-shedding protection and the power supply anti-reverse connection.
  • the second anti-reverse switch added by the negative power supply end of the power supply can be used for suppression;
  • the power supply reverse connection at startup can be protected by the first anti-reverse switch added by the positive power supply end of the power supply, and the unidirectional TVS tube is used to replace the bidirectional TVS tube in the prior art, thereby reducing the occupation of PCB space.
  • the layout and wiring are more convenient, the power density is improved, the material cost is reduced, the patch production reduces the plug-in process, the production cost is reduced, and the unidirectional TVS tube selection form in the form of a patch is wider.
  • the load-discharging protection circuit for a vehicle provided in the first embodiment is used for protecting a powered device that is connected in series with the power supply 300.
  • the capacitor C2 is connected in parallel at both ends of the power device.
  • the vehicle load dump protection circuit provided in the first embodiment specifically includes:
  • the unidirectional TVS tube TVS1 is connected in parallel to the two ends of the power supply 300.
  • the unidirectional TVS tube TVS1 selects a unidirectional TVS tube in the form of a patch, and the TVS tube TVS1 has a capacitor C1 connected in parallel.
  • the first anti-reverse switch 100 is connected in series to the dry path of the power supply 300 and between the cathode of the TVS tube TVS1 and the positive power terminal of the consumer.
  • the first anti-reverse switch 100 is a diode D1.
  • the anode of the specific diode D1 is simultaneously connected to the cathode of the TVS1 and the positive power terminal of the power supply 300, and the cathode of the diode D1 is connected to the positive power terminal of the electric device. .
  • the second anti-reverse switch 200 is connected in series on the dry path of the power supply 300 and between the anode of the TVS tube TVS1 and the negative power supply end of the power supply 300.
  • the second anti-reverse switch is an N-channel MOS transistor Q1 having a diode connected in anti-parallel.
  • the source of the MOS transistor Q1 is simultaneously connected to the anode of the TVS1 and the negative power terminal of the power device, and the drain is connected to the negative power terminal of the power supply 300.
  • the driving circuit 400 is connected between the gate of the MOS transistor Q1 and the cathode of the TVS1 for outputting a driving voltage to the MOS transistor Q1.
  • the drive circuit 400 may be a step-down circuit such as a step-down resistor, or the circuit may be omitted.
  • the working principle of this embodiment is: when the power supply 300 is positively connected, the diode D1 and the MOS transistor Q1 are turned on (on the instant of power-on, the anti-parallel diode of Q1 is turned on, and then the Q1 channel is turned on by the driving circuit 400, and the driving circuit
  • the positive voltage LV+ output from the positive power supply terminal of the power supply 300 can be used to supply a positive voltage to the Q1 gate to drive the Q1 to be turned on. Since the conduction channel of the Q1 can satisfy a large current, the load dump test is performed. Since the system has been powered on, after the load pulse is superimposed on the power port, the TVS1 avalanche breakdown will interfere with the voltage spike clamp.
  • the difference from the first embodiment is that the positions of the first anti-reverse switch 100 and the second anti-reverse switch 200 are modified in the second embodiment. specific:
  • the first anti-reverse switch 100 is connected in series on the dry path of the power supply 300 and is located between the cathode of the TVS1 and the positive power supply terminal of the power supply 300. That is, the anode of the diode D1 is connected to the positive power terminal of the power supply 300, and the cathode of the diode D1 is simultaneously connected to the cathode of the TVS1 and the positive power terminal of the consumer.
  • the second anti-reverse switch 200 is connected in series on the trunk of the power supply 300 and between the anode of the TVS1 and the negative power terminal of the consumer. That is, the source of the MOS transistor Q1 is connected to the negative power supply terminal of the electric device, and the drain is connected to the anode of the TVS1 and the negative power supply terminal of the power supply 300.
  • the diode D1 is connected in series with the TVS1.
  • the diode D1 is turned on at the time of power-on, and the TVS1 is reverse-punctured to work in the clamp state, protecting the rear-stage circuit from overvoltage damage. , to ensure that the circuit meets the load dump test.
  • the disadvantage is that the diode D1 may need to select a device with a large instantaneous current withstand capability, which may increase the cost of the material, and may be slightly inferior to the embodiment in the overall cost reduction effect.
  • the third embodiment differs from the second embodiment in that the diode D1 in the second embodiment is replaced with a TVS tube TVS2, and the TVS2 can be a unidirectional TVS tube for 5a protection.
  • the TVS also has the unidirectional conductivity of the diode
  • the TVS1 is normally turned on under the normal wiring condition, the circuit works normally, and the anti-reverse function of the circuit is not affected; when the circuit has load-discharge interference, the TVS1 and the TVS2 work in series.
  • TVS1 works in the reverse breakdown state, clamping the interference voltage. Because TVS1 can resist the instantaneous pulse interference energy, the same type of TVS2 can also meet the requirements of the load-loading condition.
  • the third embodiment may have a problem that the cost of the TVS2 may be higher than that of the ordinary diode D1.
  • first anti-reverse switch 100 can also be set in the position of the second embodiment, and the second anti-reverse switch 200 adopts the position setting of the first embodiment, which can also achieve the anti-reverse connection effect, and can realize the one-way use.
  • the effect of the TVS1 clamp may not be comparable to the above three embodiments in overall effect, but is also within the scope of the present invention.
  • the diode D1 of the above embodiment can also be replaced by a switching device such as a MOS transistor.
  • the gate of the MOS transistor can be connected to the anode of the TVS1 through a driving circuit, and the MOS transistor Q1 can also be replaced by a diode or a TVS tube in theory.
  • the vehicle load-discharging protection circuit based on the anti-reverse circuit of the present invention has the following beneficial effects: the utility model can simultaneously meet the load-shedding protection demand and the power supply anti-reverse connection requirement, and the power supply reverse connection,
  • the second anti-reverse switch added by the negative power supply end of the power supply can be used for suppression;
  • the first anti-reverse switch added by the positive power supply end of the power supply can be used for protection.
  • the power supply is anti-reverse, there is no need to worry about the reverse connection of the power supply.
  • the load-shedding protection can be implemented by using a unidirectional TVS tube in the form of a patch, which can reduce the occupation of the PCB space, make the layout and wiring more convenient, and improve the power density; At the same time, the production of the patch reduces the plug-in process, reduces the production cost, and the unidirectional TVS tube selection in the form of a patch is wider.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种基于防反接电路的车用抛负载防护电路,用于对串联于供电电源的干路上的用电设备进行保护,防护电路包括单向TVS管(TVS1)、用于在供电电源正接时导通且在供电电源反接时断开的第一防反接开关(D1)和第二防反接开关(Q1);可以同时满足抛负载防护需求和电源防反接需求,针对电源反接,可以利用供电电源的负电源端增加的第二防反接开关来进行抑制;针对跳线启动时的电源反接,可通过供电电源的正电源端增加的第一防反接开关来进行防护,而且由于实现了电源防反,所以抛负载防护采用贴片形式的单向TVS管即可,可减少对PCB空间的占用,布局布线更加方便,提高功率密度;降低了料本,同时贴片生产减少了插件工艺,降低了生产成本。

Description

一种基于防反接电路的车用抛负载防护电路 技术领域
本实用新型涉及汽车领域,尤其涉及一种基于防反接电路的车用抛负载防护电路。
背景技术
抛负载测试(5a脉冲测试)是当前新能源汽车电控系统和电气零部件的电气性能测试(参考标准ISO 16750)中的一种。抛负载脉冲模拟的是车载发电机对供电电源(主要是低压蓄电池)持续充电时,电池瞬间断开,发电机输出的较大功率能量瞬间叠加在被测设备的电源端口时形成的瞬态大功率干扰脉冲。在电压等级不同的电源系统中,该脉冲的干扰可以高达100V和200V,上升时间约5ms,持续时间长达400ms,瞬态功率高至千瓦数量级,1分钟的时间内可能重复10次左右。为抑制抛负载瞬态脉冲的巨大能量,当前的主流的防护方案是在被测设备的电源端口增加具有较大瞬时功率的瞬态抑制二极管(Transient Voltage Suppressor,简称TVS)来对抛负载脉冲进行钳位(根据系统电源电压等级来选择具有合适钳位电压的TVS)。
TVS管分单向和双向两种,当前市面上使用的双向TVS绝大部分为插件封装,而单向TVS则主要采用贴片封装。
在正常的情况下,采用单向的TVS可以满足抛负载防护功能,其电路如图1所示。但是在电源线缆极性反接或者产生的脉冲为持续的负极性脉冲时,单向TVS在上电瞬间导通,使得电池通过导线、TVS形成短路,瞬间的大电流会烧毁线缆或者TVS,严重时会引起整车起火,这也是目前较少采用单向TVS的原因。
采用双向TVS可以避免上述问题,提高产品的可靠性,如图2所示,为采用双向TVS的电路。但是,采用双向TVS存在如下缺陷:插件封装不利于产线的贴片自动化生产;同时,考虑到引脚弯折半径,插件封装在单板上占用较大安装面积,不利于单板布局布线,不利于提高产品功率密度;并且插件封装使得单板正面和背面都无法布线。此外,该双向TVS器件需放置在端口,占用较大的单板面积,不利于EMC(Electro Magnetic Compatibility,电磁兼容性)接口滤波电路布局设计,降低电路EMC性能。
另外,继续参考图1,考虑到汽车蓄电池的负极直接与车架连接,并且当前众多新能源零部件为了满足EMC标准,将被测设备参考地直接与机壳连接,机壳通过接地线再与车架连接搭铁。当车载电子设备的电源线缆极性被反接,或者在电池严重亏电而采用外部电池跳线启动并出现反接时,其电池的能量会经过车架,被测设备参考地与低压配线形成回路(如图1中箭头所示),引起电源负极上串联的器件烧毁或者电子设备内部负极的电路板走线被烧毁,或者通过某些器件形成通路,引起电子器件的损坏(损坏的设备必须要更换才能满足要求),降低了设备的鲁棒性。
技术问题
本实用新型要解决的技术问题在于,针对现有技术中采用双向TVS进行抛负载防护给生产、组装、布线带来麻烦的缺陷,提供一种基于防反接电路的车用抛负载防护电路。
技术解决方案
本实用新型解决其技术问题所采用的技术方案是:构造一种基于防反接电路的车用抛负载防护电路,用于对串联于供电电源的干路上的用电设备进行保护,所述防护电路包括单向TVS管、用于在所述供电电源正接时导通且在所述供电电源反接时断开的第一防反接开关和第二防反接开关;其中:所述单向TVS管并联连接在所述供电电源两端,所述第一防反接开关位于所述供电电源的正电源端和用电设备的正电源端之间,所述第二防反接开关位于所述供电电源的负电源端和用电设备的负电源端之间,且满足以下条件中的至少一个:所述第一防反接开关还位于所述供电电源的正电源端和所述单向TVS管的阴极之间、所述第二防反接开关位于所述供电电源的负电源端和所述单向TVS管的阳极之间。
在本实用新型所述的基于防反接电路的车用抛负载防护电路中,所述第一防反接开关位于所述单向TVS管的阴极与所述用电设备的正电源端之间,所述第二防反接开关位于所述供电电源的负电源端和所述单向TVS管的阳极之间。
在本实用新型所述的基于防反接电路的车用抛负载防护电路中,所述第一防反接开关位于所述供电电源的正电源端和所述单向TVS管的阴极,所述第二防反接开关位于单向TVS的阳极和所述单向TVS管的阳极之间。
在本实用新型所述的基于防反接电路的车用抛负载防护电路中,所述第一防反接开关为二极管。
在本实用新型所述的基于防反接电路的车用抛负载防护电路中,所述第一防反接开关为TVS管。
在本实用新型所述的基于防反接电路的车用抛负载防护电路中,所述第一防反接开关为反并联了二极管的MOS管,MOS管的栅极通过一驱动电路连接所述单向TVS管的阳极。
在本实用新型所述的基于防反接电路的车用抛负载防护电路中,所述第二防反接开关为反并联了二极管的MOS管,MOS管的栅极通过一驱动电路连接所述单向TVS管的阴极。
在本实用新型所述的基于防反接电路的车用抛负载防护电路中,所述第二防反接开关为二极管。
在本实用新型所述的基于防反接电路的车用抛负载防护电路中,所述第二防反接开关为TVS管。
在本实用新型所述的基于防反接电路的车用抛负载防护电路中,所述防护电路还包括第一电容和第二电容,所述第一电容与所述单向TVS管并联,所述第二电容与所述用电设备并联。
有益效果
实施本实用新型的基于防反接电路的车用抛负载防护电路,具有以下有益效果:本实用新型可以同时满足抛负载防护需求和电源防反接需求,针对电源反接,可以利用供电电源的负电源端增加的第二防反接开关来进行抑制;针对跳线启动时的电源反接,可通过供电电源的正电源端增加的第一防反接开关来进行防护,而且由于实现了电源防反,不用担心电源反接的问题,所以抛负载防护采用贴片形式的单向TVS管即可,可减少对PCB空间的占用,布局布线更加方便,提高功率密度;降低了料本,同时贴片生产减少了插件工艺,降低了生产成本,而且贴片形式的单向TVS管选型范围更广。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图:
图1是采用单向TVS的车用抛负载防护电路在电源反接时的示意图;
图2是采用双向TVS车用抛负载防护电路的结构示意图;
图3是本实用新型的车用抛负载防护电路的实施例一的结构示意图;
图4是本实用新型的车用抛负载防护电路的实施例二的结构示意图;
图5是本实用新型的车用抛负载防护电路的实施例三的结构示意图。
本发明的实施方式
为了便于理解本实用新型,下面将参照相关附图对本实用新型进行更全面的描述。附图中给出了本实用新型的典型实施例。但是,本实用新型可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本实用新型的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型。
本说明书中使用的“第一”、“第二”等包含序数的术语可用于说明各种构成要素,但是这些构成要素不受这些术语的限定。使用这些术语的目的仅在于将一个构成要素区别于其他构成要素。例如,在不脱离本发明的权利范围的前提下,第一构成要素可被命名为第二构成要素,类似地,第二构成要素也可以被命名为第一构成要素。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本实用新型总的思路是:在供电电源的正电源端和用电设备的正电源端之间增设第一防反接开关,在所述供电电源的负电源端和用电设备的负电源端之间增设第二防反接开关,且满足以下条件中的至少一个:所述第一防反接开关还位于所述供电电源的正电源端和所述单向TVS管的阴极之间、所述第二防反接开关位于所述供电电源的负电源端和所述单向TVS管的阳极之间。
由于第一防反接开关、第二防反接开关在供电电源正接时导通且在电源反接时断开,所以不会存在电源反接的问题,因此TVS管可以选取贴片形式的单向TVS管,因此本实用新型可以同时满足抛负载防护需求和电源防反接需求,针对电源反接,可以利用供电电源的负电源端增加的第二防反接开关来进行抑制;针对跳线启动时的电源反接,可通过供电电源的正电源端增加的第一防反接开关来进行防护,而且采用单向TVS管替代现有技术中的双向TVS管,可减少对PCB空间的占用,布局布线更加方便,提高功率密度;降低了料本,同时贴片生产减少了插件工艺,降低了生产成本,而且贴片形式的单向TVS管选型范围更广。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明,应当理解本实用新型实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本实用新型实施例以及实施例中的技术特征可以相互组合。
实施例一
参考图3,实施例一提供的车用抛负载防护电路,用于对串联于供电电源300的干路上的带负载的用电设备进行防护,本实施例中,用电设备两端并联电容C2。实施例一提供的车用抛负载防护电路具体包括:
单向TVS管TVS1,并联于所述供电电源300两端,本实施例中单向TVS管TVS1选取的是贴片形式的单向TVS管,且TVS管TVS1两端并联电容C1。
第一防反接开关100,串联于所述供电电源300的干路上,且位于所述TVS管TVS1的阴极和用电设备的正电源端之间。本实施例中,所述第一防反接开关100为二极管D1,具体的二极管D1的阳极同时连接TVS1的阴极以及供电电源300的正电源端,二极管D1的阴极连接用电设备的正电源端。
第二防反接开关200,串联于所述供电电源300的干路上,且位于所述TVS管TVS1的阳极和供电电源300的负电源端之间。本实施例中,所述第二防反接开关为反并联了二极管的N沟道的MOS管Q1。MOS管Q1的源极同时连接TVS1的阳极以及用电设备的负电源端,漏极连接供电电源300的负电源端。
驱动电路400,驱动电路400连接于MOS管Q1的栅极和TVS1的阴极之间,用于输出驱动电压给MOS管Q1。驱动电路400可以采用降压电阻等降压电路,也可以省略该电路。
本实施例的工作原理是:当供电电源300正接时,二极管D1和MOS管Q1导通(上电瞬间,Q1的反并联二极管导通,后通过驱动电路400控制Q1沟道导通,驱动电路可以利用供电电源300的正电源端输出的正压LV+给Q1栅极提供正压实现驱动Q1导通),由于Q1的导通沟道可以满足较大的电流通过,因此在进行抛负载测试时,由于系统已经完成上电,抛负载脉冲叠加到电源端口后,TVS1雪崩击穿,将干扰电压尖峰钳位,此时较大的电流流过TVS1和MOS管Q1的沟道,如图3中带箭头的虚线所示,可以避免瞬时大电流导致开关器件损坏。当供电电源300反接时,二极管D1和MOS管Q1均截止,因此可以实现防反接。
实施例二
参考图4,与实施例一的不同在于,实施例二中修改了第一防反接开关100、第二防反接开关200的位置。具体的:
第一防反接开关100,串联于所述供电电源300的干路上,且位于TVS1的阴极和供电电源300的正电源端之间。即,二极管D1的阳极连接供电电源300的正电源端,二极管D1的阴极同时连接TVS1的阴极和用电设备的正电源端。
第二防反接开关200,串联于所述供电电源300的干路上,且位于TVS1的阳极和用电设备的负电源端之间。即MOS管Q1的源极连接用电设备的负电源端,漏极连接TVS1的阳极以及供电电源300的负电源端。
在进行抛负载测试时,二极管D1与TVS1串联,产生抛负载脉冲时,二极管D1在上电时已经开通,TVS1被反向击穿工作在钳位状态,保护后级电路不会出现过电压损坏,保证电路满足抛负载测试。不过实施例二与实施例一相比,缺点是二极管D1可能需要选择具有较大瞬时电流承受能力的器件,可能会增加该物料的成本,在总体降本的效果上可能会稍逊于实施例一。
实施例三
参考图5,实施例三与实施例二的不同在于,将实施例二中的二极管D1替换为TVS管TVS2,TVS2可以采用5a防护用的单向TVS管。
由于TVS也具有二极管所具有的单向导电性,所以正常接线情况下,TVS1正常导通,电路正常工作,电路防反功能不受影响;当电路存在抛负载干扰时,TVS1和TVS2串联工作,TVS1工作在反向击穿状态,钳位干扰电压,由于TVS1能够抗击瞬时脉冲干扰能量,因此,相同型号的TVS2也可以满足抛负载工况时的需求。与实施例二相比,实施例三可能存在的问题是TVS2的成本可能比普通的二极管D1成本高。
另外,还可以将第一防反接开关100采用实施例二的位置设置,第二防反接开关200采用实施例一的位置设置,同样可以实现防反接的效果,可以实现采用单向的TVS1钳位的效果,虽然可能整体效果上可能比不上以上三个实施例,但是也在本实用新型的保护范围之内。
可以理解的是,还可以将以上实施例的二极管D1替换为MOS管等开关器件,MOS管的栅极可以通过驱动电路连接TVS1的阳极,MOS管Q1理论上也可以采用二极管或者TVS管替换,这些都是属于本实用新型的实施例的简单变形,落入本实用新型的保护范围之内。
综上所述,实施本实用新型的基于防反接电路的车用抛负载防护电路,具有以下有益效果:本实用新型可以同时满足抛负载防护需求和电源防反接需求,针对电源反接,可以利用供电电源的负电源端增加的第二防反接开关来进行抑制;针对跳线启动时的电源反接,可通过供电电源的正电源端增加的第一防反接开关来进行防护,而且由于实现了电源防反,不用担心电源反接的问题,所以抛负载防护采用贴片形式的单向TVS管即可,可减少对PCB空间的占用,布局布线更加方便,提高功率密度;降低了料本,同时贴片生产减少了插件工艺,降低了生产成本,而且贴片形式的单向TVS管选型范围更广。
工业实用性
上面结合附图对本实用新型的实施例进行了描述,但是本实用新型并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本实用新型的启示下,在不脱离本实用新型宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本实用新型的保护之内。

Claims (10)

  1. 一种基于防反接电路的车用抛负载防护电路,用于对串联于供电电源的干路上的用电设备进行保护,其特征在于,所述防护电路包括单向TVS管、用于在所述供电电源正接时导通且在所述供电电源反接时断开的第一防反接开关和第二防反接开关;其中:所述单向TVS管并联连接在所述供电电源两端,所述第一防反接开关位于所述供电电源的正电源端和用电设备的正电源端之间,所述第二防反接开关位于所述供电电源的负电源端和用电设备的负电源端之间,且满足以下条件中的至少一个:所述第一防反接开关还位于所述供电电源的正电源端和所述单向TVS管的阴极之间、所述第二防反接开关位于所述供电电源的负电源端和所述单向TVS管的阳极之间。
  2. 根据权利要求1所述的基于防反接电路的车用抛负载防护电路,其特征在于,所述第一防反接开关位于所述单向TVS管的阴极与所述用电设备的正电源端之间,所述第二防反接开关位于所述供电电源的负电源端和所述单向TVS管的阳极之间。
  3. 根据权利要求1所述的基于防反接电路的车用抛负载防护电路,其特征在于,所述第一防反接开关位于所述供电电源的正电源端和所述单向TVS管的阴极,所述第二防反接开关位于单向TVS的阳极和所述单向TVS管的阳极之间。
  4. 根据权利要求1所述的基于防反接电路的车用抛负载防护电路,其特征在于,所述第一防反接开关为二极管。
  5. 根据权利要求1所述的基于防反接电路的车用抛负载防护电路,其特征在于,所述第一防反接开关为TVS管。
  6. 根据权利要求1所述的基于防反接电路的车用抛负载防护电路,其特征在于,所述第一防反接开关为反并联了二极管的MOS管,MOS管的栅极通过一驱动电路连接所述单向TVS管的阳极。
  7. 根据权利要求1所述的基于防反接电路的车用抛负载防护电路,其特征在于,所述第二防反接开关为反并联了二极管的MOS管,MOS管的栅极通过一驱动电路连接所述单向TVS管的阴极。
  8. 根据权利要求1所述的基于防反接电路的车用抛负载防护电路,其特征在于,所述第二防反接开关为二极管。
  9. 根据权利要求1所述的基于防反接电路的车用抛负载防护电路,其特征在于,所述第二防反接开关为TVS管。
  10. 根据权利要求1所述的基于防反接电路的车用抛负载防护电路,其特征在于, 所述防护电路还包括第一电容和第二电容,所述第一电容与所述单向TVS管并联,所述第二电容与所述用电设备并联。
PCT/CN2018/115037 2018-01-29 2018-11-12 一种基于防反接电路的车用抛负载防护电路 WO2019144676A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820146281.5U CN207853467U (zh) 2018-01-29 2018-01-29 一种基于防反接电路的车用抛负载防护电路
CN201820146281.5 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019144676A1 true WO2019144676A1 (zh) 2019-08-01

Family

ID=63413247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115037 WO2019144676A1 (zh) 2018-01-29 2018-11-12 一种基于防反接电路的车用抛负载防护电路

Country Status (2)

Country Link
CN (1) CN207853467U (zh)
WO (1) WO2019144676A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207853467U (zh) * 2018-01-29 2018-09-11 苏州汇川联合动力系统有限公司 一种基于防反接电路的车用抛负载防护电路
CN115767836B (zh) * 2023-01-09 2023-06-27 深圳北极之光科技有限公司 一种灯具电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043386A (zh) * 2011-01-19 2011-05-04 中国重汽集团济南动力有限公司 数字式重型汽车动力输出调节控制器
CN202363894U (zh) * 2011-11-11 2012-08-01 郑州宇通客车股份有限公司 一种车用电源保护电路及带有抗瞬态电压干扰功能的电源
JP2013090367A (ja) * 2011-10-13 2013-05-13 Toyota Boshoku Corp 電源保護回路
CN103982306A (zh) * 2014-04-08 2014-08-13 潍柴动力股份有限公司 柴油机的电熄火器及其电路板控制系统、方法
CN207853467U (zh) * 2018-01-29 2018-09-11 苏州汇川联合动力系统有限公司 一种基于防反接电路的车用抛负载防护电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043386A (zh) * 2011-01-19 2011-05-04 中国重汽集团济南动力有限公司 数字式重型汽车动力输出调节控制器
JP2013090367A (ja) * 2011-10-13 2013-05-13 Toyota Boshoku Corp 電源保護回路
CN202363894U (zh) * 2011-11-11 2012-08-01 郑州宇通客车股份有限公司 一种车用电源保护电路及带有抗瞬态电压干扰功能的电源
CN103982306A (zh) * 2014-04-08 2014-08-13 潍柴动力股份有限公司 柴油机的电熄火器及其电路板控制系统、方法
CN207853467U (zh) * 2018-01-29 2018-09-11 苏州汇川联合动力系统有限公司 一种基于防反接电路的车用抛负载防护电路

Also Published As

Publication number Publication date
CN207853467U (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
CN101409048B (zh) 背光保护电路
CN105472821A (zh) 一种灯具的移动电源电路及灯具
CN203313144U (zh) 一种防逆流电路
CN103872716A (zh) 一种冗余电源供电系统
WO2019144676A1 (zh) 一种基于防反接电路的车用抛负载防护电路
CN107682961A (zh) 一种led集鱼灯电源输出切换电路
CN204271638U (zh) 一种直流输入防反接和开机防浪涌的电路
CN215934520U (zh) 电源切换系统及双电源供电设备
CN203368003U (zh) Boost电路双重保护装置
CN106411360A (zh) 一种通信设备和通信系统
CN209375126U (zh) 一种浪涌电流抑制电路
CN206020543U (zh) 三相缺相检测电路及电气设备
CN203911459U (zh) 一种直流电压输出短路保护电路
CN109038804A (zh) 一种供电切换电路及电子设备
CN213043879U (zh) 一种非隔离电源的关断电路及led驱动电源
CN203206380U (zh) 一种启动控制电路以及显示面板驱动电路及显示装置
CN108233520A (zh) 一种光伏发电储电装置
CN203788205U (zh) 无外加驱动电源的驱动电路
CN210536309U (zh) 车辆蓄电池及车辆
CN204030577U (zh) 一种用于直流电机的浪涌冲击防护电路和空调器
CN203086330U (zh) 一种升降压电路
CN203788237U (zh) 一种接线盒和太阳能电池装置
CN105577167A (zh) 极性自动转换电路及电子设备
CN2836295Y (zh) 车载移动终端的欠压保护电路
CN216564511U (zh) 一种低内阻防电源线反接电路和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902869

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18902869

Country of ref document: EP

Kind code of ref document: A1