WO2023123955A1 - 电池包接入检测装置、方法及电动车 - Google Patents

电池包接入检测装置、方法及电动车 Download PDF

Info

Publication number
WO2023123955A1
WO2023123955A1 PCT/CN2022/102680 CN2022102680W WO2023123955A1 WO 2023123955 A1 WO2023123955 A1 WO 2023123955A1 CN 2022102680 W CN2022102680 W CN 2022102680W WO 2023123955 A1 WO2023123955 A1 WO 2023123955A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication port
battery pack
powered
state
controller
Prior art date
Application number
PCT/CN2022/102680
Other languages
English (en)
French (fr)
Inventor
梁圣港
Original Assignee
广东高标电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东高标电子科技有限公司 filed Critical 广东高标电子科技有限公司
Publication of WO2023123955A1 publication Critical patent/WO2023123955A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the embodiments of the present application relate to the technical field of detection, and in particular to a battery pack access detection device and method, and an electric vehicle.
  • the battery management system only communicates with the equipment to be powered, and does not detect the insertion status of the battery pack. It cannot judge whether the battery pack is connected to the equipment to be powered. It only uses the external setting control switch to control the on-off of the battery power supply, and the battery pack is always in discharge. state, which increases the potential safety hazard of battery pack power supply.
  • the present application provides a battery pack access detection device, method and electric vehicle, so as to reduce potential safety hazards of battery pack power supply.
  • the embodiment of the present application provides a battery pack access detection device, the battery pack access detection device includes: a battery management system and a switching module; the battery management system includes a communication port;
  • the first pole of the communication port is respectively connected to the battery management system and a first power signal, and the first power signal is used to maintain the level state of the communication port as the first state;
  • the switching module is used to connect to the communication port when the device to be powered is connected to the battery pack, and is used to switch the level state of the communication port from the first state to the second state;
  • the battery management system is configured to determine that the battery pack is connected to the device to be powered when the level state of the communication port changes from the first state to the second state, and control the battery pack supplying power to the controller of the device to be powered, so that the controller of the device to be powered outputs an electrical signal;
  • the switching module is connected to the controller of the device to be powered, and the switching module is also used to disconnect the communication port when receiving the electrical signal, so that the battery management system Communicate with the controller of the device to be powered through the communication port.
  • the switching module includes: a second resistor, a third resistor and a transistor;
  • the first end of the transistor is electrically connected to the power module of the controller of the device to be powered, and the second end of the transistor is used to communicate with the power supply module of the device when the battery pack is connected to the controller of the device to be powered.
  • the second pole of the communication port is electrically connected, and the third end of the transistor is connected to the second power supply signal through the second resistor;
  • the first terminal of the third resistor is electrically connected to the first terminal of the transistor, and the second terminal of the third resistor is connected to the second power supply signal.
  • the switching module includes: an optocoupler unit and a fourth resistor; the optocoupler unit includes a normally closed optocoupler;
  • the first end of the optocoupler unit is used to electrically connect the second pole of the communication port when the battery pack is connected to the controller of the device to be powered, and the second end of the optocoupler unit is connected to The second power supply signal, the third end of the optocoupler unit is electrically connected to the first end of the fourth resistor, the second end of the fourth resistor is connected to the controller of the device to be powered, the optical The fourth terminal of the coupling unit is connected to the second power supply signal.
  • the transistor includes a P-type transistor.
  • the battery pack access detection device also includes a first resistor
  • the first pole of the communication port is connected to the first power signal through the first resistor.
  • the resistance value of the second resistor is smaller than the resistance value of the first resistor.
  • the communication port includes an asynchronous transceiver transmitter UART communication port, an integrated circuit bus IIC communication port or a serial peripheral interface SPI communication port.
  • the embodiment of the present application also provides a battery pack access detection method, the battery pack access detection method is implemented by any of the battery pack access detection devices described in the first aspect; the battery pack access Detection methods include:
  • the switching module When the device to be powered is connected to the battery pack, the switching module is connected to the communication port of the battery management system, and switches the level state of the communication port from the first state to the second state;
  • the battery management system determines that the battery pack is connected to the device to be powered, and supplies power to the controller of the device to be powered, so that the The controller of the equipment to be powered outputs an electrical signal to the switching module;
  • the switching module When the switching module receives the electrical signal, it disconnects from the communication port;
  • the battery management system communicates with the controller of the device to be powered through the communication port.
  • the embodiment of the present application further provides an electric vehicle, the electric vehicle includes the battery pack access detection device described in any of the first aspects.
  • the battery management system determines whether the device to be powered is connected to the battery pack through the change of the level state of the communication port, and only discharges the device to be powered when the level of the communication port changes.
  • the discharge state reduces the potential safety hazard of the battery pack and achieves the effect of safe power supply.
  • the application disconnects the connection between the switching module and the communication port after it is determined that the battery pack is connected to the device to be powered, so that the battery management system can communicate with the device to be powered through the communication port, realizing the integration of the battery insertion detection logic into the communication harness , no need to add additional ports and MCU IO resources to detect whether the battery pack is connected to the device to be powered, and the battery insertion detection function can be realized with at least one port (except power supply and ground).
  • FIG. 1 is a schematic diagram of a circuit structure of a battery pack access detection device provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the circuit structure of another battery pack access detection device provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the circuit structure of another battery pack access detection device provided by the embodiment of the present application.
  • Fig. 4 is a flow chart of a battery pack access detection method provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the circuit structure of a battery pack access detection device provided in the embodiment of the present application.
  • the battery pack access detection device includes: a battery management system 101 and a switching module 102; the battery management system 101 includes a communication port 1011; the first pole of the communication port 1011 is respectively connected to the battery management system 101 and the first power signal V1, and the first power signal V1 is used to maintain the level state of the communication port 1011 as the first state; the switching module 102 is used to When the power supply device 2 is connected to the battery pack 1, it is connected to the communication port 1011, and is used to switch the level state of the communication port 1011 from the first state to the second state; When the state changes from the first state to the second state, it is determined that the battery pack 1 is connected to the device to be powered 2, and the battery pack 1 is controlled to supply power to the controller 20 of the device to be powered, so that the controller 20 of the device to be powered outputs an electrical signal
  • the switching module 102 is connected to the controller 20 of the device to
  • the first power signal V1 can maintain the level state of the communication port 1011 as the first state, and the first power signal V1 is, for example, a positive voltage signal, and the first state is a high level state; when the battery pack 1 is connected to the standby When the power supply device is 2, the second pole of the communication port 1011 is electrically connected to the second power signal V2 through the switching module 102, and the switching module 102 switches the level state of the communication port 1011 from the first state to the second state, and the second power signal V2 V2 is, for example, grounded, and the second power signal V2 pulls down the voltage of the communication port 1011, then the second state is a low level state; the battery management system 101 detects that the level state of the communication port 1011 is converted from a high level state to a low power state In the normal state, if it is confirmed that the battery pack 1 is connected to the device 2 to be powered, the battery pack 1 will be controlled to supply power to the controller 20 of the device to be powered, and the controller 20 of the device to
  • the battery management system determines whether the device to be powered is connected to the battery pack through the change of the level state of the communication port, and only discharges the device to be powered when the level of the communication port changes.
  • the discharge state reduces the potential safety hazard of the battery pack and achieves the effect of safe power supply.
  • the application disconnects the connection between the switching module and the communication port after it is determined that the battery pack is connected to the device to be powered, so that the battery management system can communicate with the device to be powered through the communication port, realizing the integration of the battery insertion detection logic into the communication harness , no need to add additional ports and MCU IO resources to detect whether the battery pack is connected to the device to be powered, and the battery insertion detection function can be realized with at least one port (except power supply and ground).
  • both the battery management system 101 and the communication port 1011 are located in the battery pack 1 , and the switching module 102 and the controller 20 of the device to be powered are both located in the device to be powered 2 .
  • the switching module 102 controls the connection between the second pole of the communication port 1011 and the second power signal V2 to be disconnected, and the second pole of the communication port 1011 passes through the switching module 102 and
  • the communication terminals of the controller 20 of the device to be powered are connected to each other, and the communication terminal of the controller 20 of the device to be powered can pull up the potential of the communication port 1011, and the level state of the communication port 1011 is converted from the second state to the third state.
  • the third state is, for example, a high level state, when the battery management system 101 detects that the level state of the communication port 1011 has changed from the second state to the third state, the battery management system 101 will communicate with the controller of the device to be powered 20 to communicate.
  • FIG. 1 only shows the circuit connection situation after the battery pack 1 is connected to the device 2 to be powered.
  • the communication port 1011 can be connected to multiple communication lines, and the number of communication lines of different types of communication ports 1011 is different.
  • FIG. 1 only shows the situation that the battery management system 101 is connected to the controller 20 of the device to be powered by one communication line. But not limited.
  • the communication port 1011 includes an asynchronous transceiver transmitter UART communication port, an integrated circuit bus IIC communication port or a serial peripheral interface SPI communication port.
  • the communication port 1011 may include an asynchronous transceiver transmitter UART communication port, may be a receiving end in the UART communication port, may be a sending end in the UART communication port; the communication port 1011 may also be an integrated circuit bus IIC communication port, It may also be a serial peripheral interface SPI communication port, or other communication ports, which are not limited here.
  • the battery management system 101 can configure the communication port 1011.
  • the switching module 102 controls the connection between the second pole of the communication port 1011 and the second power signal V2 to be disconnected, and the battery management system
  • the system 101 will configure the communication port 1011 to the communication state, so that the battery management system 101 can communicate with the controller through the communication port 1011, and the controller 20 of the device to be powered can control whether the battery pack 1 supplies power to the device 2 to be powered.
  • the first power signal when the battery pack is not connected to the device to be powered, the first power signal can maintain the level state of the communication port as the first state;
  • the second end of the communication port is electrically connected to the second power supply signal through the switching module, and the switching module switches the level state of the communication port from the first state to the second state, and the battery management system detects that When the level state of the communication port changes from the first state to the second state, the battery management system knows that the battery pack is connected to the device to be powered.
  • the battery management system can communicate with the controller through the communication port, and the controller of the device to be powered can control whether the battery pack supplies power to the device to be powered, thereby realizing the control of whether the battery pack is discharged and preventing the battery pack from being kept on The discharge state reduces the safety hazard of the battery pack and achieves the effect of safe power supply.
  • the technical solution of this embodiment solves the problem of only using an externally set control switch to control the on-off of the battery power supply, so that the battery pack is always in a discharge state, which increases the potential safety hazard of the battery pack power supply, and achieves a reduction in the safety of the battery pack power supply.
  • the effect of hidden dangers is achieved, and a safe power supply is realized.
  • Fig. 2 is a schematic circuit structure diagram of another battery pack access detection device provided in the embodiment of the present application.
  • the battery pack access detection device further includes a first resistor R1; the first resistor R1 of the communication port 1011 The pole is connected to the first power signal V1 through the first resistor R1.
  • the first resistor R1 is a pull-up resistor, so that when the battery pack 1 is not connected to the device 2 to be powered, the first power signal V1 and the first resistor R1 connect the communication port 1011 is pulled up to a high level state.
  • the switching module 102 includes: a second resistor R2, a third resistor R3, and a transistor Q1; the first end of the transistor Q1 is electrically connected to the output terminal A1 of the power module of the controller 20 of the device to be powered, The second terminal of the transistor Q1 is used to electrically connect the second terminal of the communication port 1011 when the battery pack 1 is connected to the controller 20 of the device to be powered, and the third terminal of the transistor Q1 is connected to the second power signal through the second resistor R2 V2; the first end of the third resistor R3 is electrically connected to the first end of the transistor Q1, and the second end of the third resistor R3 is connected to the second power signal V2.
  • the controller 20 of the device to be powered is not powered, the output terminal A1 of the power module of the controller has no output voltage, and the voltage of the first terminal of the transistor Q1 is relatively low.
  • the transistor Q1 is turned on, the second end of the communication port 1011 is connected to the second power signal V2 through the second resistor R2, and the second power signal V2 pulls down the voltage of the communication port 1011, so that after the battery pack 1 is connected to the device 2 to be powered, the communication
  • the level state of the port 1011 changes from the first state to the second state; the battery management system 101 detects that the level state of the communication port 1011 changes from the first state to the second state, and the battery management system 101 determines that the battery pack 1 is connected to the second state.
  • the device 2 to be powered will control the battery pack 1 to supply power to the controller 20 of the device to be powered, and the output terminal A1 of the power module of the controller 20 of the device to be powered can output an electrical signal, and the voltage of the first terminal of the transistor Q1 is relatively large , the transistor Q1 is turned off, and the connection between the communication port 1011 and the second power signal V2 is disconnected, the battery management system 101 can communicate with the controller 20 of the device to be powered through the communication port 1011, and the controller 20 of the device to be powered It is possible to control whether the battery pack 1 supplies power to the device 2 to be powered, thereby realizing the control of whether the battery pack 1 is discharged.
  • the transistor Q1 includes a P-type transistor.
  • the transistor Q1 includes, for example, a P-type transistor.
  • the transistor Q1 When the battery pack 1 is just connected to the device 2 to be powered, and the battery pack 1 has no output voltage, the output terminal A1 of the power module of the controller 20 of the device to be powered has no voltage output, and the output terminal A1 of the transistor Q1 The voltage at the first end is low, the transistor Q1 can be turned on, and the communication port 1011 can be connected to the second power signal V2 when the battery pack 1 is just connected to the device 2 to be powered, and the second power signal V2 can pull down the voltage of the communication port 1011.
  • the level state of the communication port 1011 is converted from the first state to the second state; when the battery management system 101 learns that the battery pack 1 is connected to the device 2 to be powered, it will control the battery pack 1 to the controller 20 of the device to be powered power supply, the controller 20 of the device to be powered can output an electrical signal, the voltage of the first terminal of the transistor Q1 is relatively high, and the transistor Q1 can be disconnected, so that the connection between the second pole of the communication port 1011 and the second power signal V2 is disconnected , the battery management system 101 can communicate with the controller 20 of the device to be powered through the communication port 1011 .
  • the resistance value of the second resistor R2 is smaller than the resistance value of the first resistor R1.
  • the first power signal V1 is, for example, a positive voltage signal
  • the second power signal V2 is, for example, grounded.
  • the level state of the communication port 1011 is high; when the battery pack 1 1 When the device 2 to be powered is connected, by setting the resistance value of the second resistor R2 to be smaller than the resistance value of the first resistor R1, so that the voltage division of the first resistor R1 is smaller, the potential of the communication port 1011 can be close to that of the second power signal V2 Potential, the level state of the communication port 1011 is a low level state, which can ensure that after the battery pack 1 is connected to the device 2 to be powered, the level state of the communication port 1011 can be converted from the first state to the second state, thereby ensuring
  • the battery management system 101 accurately knows the level status of the communication port 1011 , and can accurately determine whether the battery pack 1 is connected to the device 2 to be powered.
  • FIG. 3 is a schematic diagram of the circuit structure of another battery pack access detection device provided in the embodiment of the present application.
  • the switching module 102 includes: an optocoupler unit 1021 and a fourth resistor R4; Including a normally closed optocoupler; the first end of the optocoupler unit 1021 is used to electrically connect the second pole of the communication port 1011 when the battery pack 1 is connected to the controller 20 of the device to be powered, and the second end of the optocoupler unit 1021 end connected to the second power signal V2, the third end of the optocoupler unit 1021 is electrically connected to the first end of the fourth resistor R4, the second end of the fourth resistor R4 is connected to the controller 20 of the device to be powered, the optocoupler unit 1021 The fourth end of the second power supply signal V2 is connected.
  • the first power signal V1 maintains the level state of the communication port 1011 in the first state, and the first state is, for example, a high level state.
  • the battery pack 1 When the battery pack 1 is just connected to Into the equipment to be powered 2, the battery pack 1 has no output voltage, the output terminal A1 of the power module of the controller 20 of the equipment to be powered has no voltage output, the voltage of the third terminal of the optocoupler unit 1021 is relatively low, and the optocoupler unit 1021 is in the conduction state , that is, the conduction between the first end of the optocoupler unit 1021 and the second end of the optocoupler unit 1021, the second pole of the communication port 1011 can be connected to the second power supply signal V2, the second power supply signal V2 is, for example, grounded, and can be pulled The voltage of the communication port 1011 is low, so that when the battery pack 1 is connected to the device 2 to be powered, the level state of the communication port 1011 is converted to a
  • the battery management system 101 can communicate with the controller 20 of the device to be powered through the communication port 1011, so as to control whether the battery pack 1 is discharged, and realize the controllable discharge of the battery pack 1 , to prevent the battery pack 1 from being in a discharge state all the time, reducing the potential safety hazard of the battery pack 1 power supply.
  • Fig. 4 is a flow chart of a battery pack access detection method provided in the embodiment of the present application.
  • the battery pack access detection method is implemented by the battery pack access detection device described in any of the above implementations. See Fig. 4, the battery pack connection Ingress detection methods include:
  • the switching module is connected to the communication port of the battery management system, and switches the level state of the communication port from the first state to the second state.
  • the first power signal V1 maintains the level state of the communication port 1011 as the first state, and the battery management system 101 will detect that the level state of the communication port 1011 is The first state, the first state is, for example, a high level state; when the battery pack 1 is connected to the device 2 to be powered, the second pole of the communication port 1011 is electrically connected to the second power signal V2 through the switching module 102, and the second power signal For example, if V2 is grounded, it will pull down the potential of the communication port 1011, so that the level state of the communication port 1011 is the second state.
  • the second state is, for example, a low level state, and the battery management system 101 will detect the level state of the communication port 1011.
  • the battery management system 101 knows that the battery pack 1 is connected to the device 2 to be powered.
  • the battery management system determines that the battery pack is connected to the device to be powered, and supplies power to the controller of the device to be powered, so that the controller of the device to be powered An electrical signal is output to the switching module.
  • the battery management system 101 when the battery management system 101 detects that the level state of the communication port 1011 has changed from the first state to the second state, the battery management system 101 confirms that the battery pack 1 is connected to the device 2 to be powered, and will control the battery pack 1 to the standby device 2.
  • the controller 20 of the power supply device supplies power, the controller 20 of the device to be powered can output an electrical signal, and the switching module 102 will be powered.
  • the connection with the communication port 1011 is disconnected, that is, the connection between the communication port 1011 and the second power signal V2 is disconnected.
  • the battery management system communicates with the controller of the device to be powered through the communication port.
  • the battery management system 101 can communicate with the controller 20 of the device to be powered through the communication port 1011, and the controller 20 of the device to be powered It is possible to control whether the battery pack 1 supplies power to the power supply device 2, thereby controlling whether the battery pack 1 is discharged, avoiding the battery pack 1 being in a discharge state all the time, reducing the safety hazard of the battery pack 1, and achieving the effect of safe power supply.
  • This embodiment also provides an electric vehicle, which includes the battery pack access detection device described in any of the above embodiments.
  • the implementation principle and technical effect of the electric vehicle provided in this embodiment are similar to those of the above embodiment, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电池包接入检测装置及电动车,电池包接入检测装置包括电池管理系统(101)和切换模块(102);电池管理系统(101)包括通信端口(1011);第一电源信号(V1)用于维持通信端口(1011)的电平状态为第一状态;切换模块(102)用于在待供电设备(2)接入电池包(1)时,与通信端口(1011)连接,以及用于将通信端口(1011)的电平状态由第一状态切换为第二状态;电池管理系统(101)用于在通信端口(1011)的电平状态由第一状态转化为第二状态时,确定电池包(1)接入待供电设备(2),并控制电池包(1)向待供电设备的控制器(20)供电,以使待供电设备的控制器(20)输出电信号;切换模块(102)用于在接收到电信号时,断开与通信端口(1011)之间的连接,以使电池管理系统(101)通过通信端口(1011)与待供电设备的控制器(20)进行通信。

Description

电池包接入检测装置、方法及电动车
本申请要求在2021年12月30日提交中国专利局、申请号为202111659928.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及检测技术领域,尤其涉及一种电池包接入检测装置、方法及电动车。
背景技术
随着电气化的应用越来越广泛,使用大功率电池供电的应用场景越来越多,例如两轮电动车、电动摩托车和三轮电动车等,这也使得电池包供电安全也越来越受重视。
电池管理系统只与待供电设备进行通信,并不检测电池包插入状态,无法判断电池包是否接入待供电设备,只是利用外部设置控制开关来控制电池供电的通断,而电池包一直处于放电状态,增大了电池包供电的安全隐患。
发明内容
本申请提供一种电池包接入检测装置、方法及电动车,以实现降低电池包供电的安全隐患。
第一方面,本申请实施例提供了一种电池包接入检测装置,电池包接入检测装置包括:电池管理系统和切换模块;所述电池管理系统包括通信端口;
所述通信端口的第一极分别与所述电池管理系统和第一电源信号连接,所述第一电源信号用于维持所述通信端口的电平状态为第一状态;
所述切换模块用于在待供电设备接入所述电池包时,与所述通信端口连接,以及用于将所述通信端口的电平状态由第一状态切换为第二状态;
所述电池管理系统用于在所述通信端口的电平状态由所述第一状态转化为所述第二状态时,确定所述电池包接入所述待供电设备,并控制所述电池包向所述待供电设备的控制器供电,以使所述待供电设备的控制器输出电信号;
所述切换模块与所述待供电设备的控制器连接,所述切换模块还用于在接收到所述电信号时,断开与所述通信端口之间的连接,以使所述电池管理系统通过所述通信端口与所述待供电设备的控制器进行通信。
可选地,所述切换模块包括:第二电阻、第三电阻和晶体管;
所述晶体管的第一端与所述待供电设备的控制器的电源模块电连接,所述晶体管的第二端用于在所述电池包接入所述待供电设备的控制器时,与所述通信端口的第二极电连接,所述晶体管的第三端通过所述第二电阻连接第二电源信号;
所述第三电阻的第一端与所述晶体管的第一端电连接,所述第三电阻的第二端连接所述第二电源信号。
可选地,所述切换模块包括:光耦单元和第四电阻;所述光耦单元包括常闭光耦器;
所述光耦单元的第一端用于在所述电池包接入所述待供电设备的控制器时,与所述通信端口的第二极电连接,所述光耦单元的第二端连接第二电源信号,所述光耦单元的第三端与所述第四电阻的第一端电连接,所述第四电阻的第二端与所述待供电设备的控制器连接,所述光耦单元的第四端连接所述第二电源信号。
可选地,所述晶体管包括P型晶体管。
可选地,电池包接入检测装置还包括第一电阻;
所述通信端口的第一极通过所述第一电阻连接所述第一电源信号。
可选地,所述第二电阻的阻值小于所述第一电阻的阻值。
可选地,所述通信端口包括异步收发传输器UART通信端口、集成电路总线IIC通信端口或串行外设接口SPI通信端口。
第二方面,本申请实施例还提供了一种电池包接入检测方法,所述电池包接入检测方法由第一方面任意所述的电池包接入检测装置实现;所述电池包接入检测方法包括:
当待供电设备接入电池包时,切换模块与电池管理系统的通信端口连接,以及将所述通信端口的电平状态由第一状态切换为第二状态;
在通信端口的电平状态由第一状态转化为第二状态时,所述电池管理系统确定所述电池包接入所述待供电设备,并向待供电设备的控制器供电,以使所述待供电设备的控制器向切换模块输出电信号;
所述切换模块在接收到所述电信号时,断开与所述通信端口之间的连接;
所述电池管理系统通过所述通信端口与所述待供电设备的控制器进行通信。
第三方面,本申请实施例还提供了一种电动车,该电动车包括第一方面任意所述的电池包接入检测装置。
本申请中,电池管理系统通过通信端口的电平状态变化来确定待供电设备是否接入电池包,在通信端口的电平发生变化时,才向待供电设备放电,实现了避免电池包一直处于放电状态,降低了电池包的安全隐患,达到了安全供电的效果。而且,本申请在确定电池包接入待供电设备后断开切换模块与通信端口的连接,使得电池管理系统可以通过通信端口与待供电设备通信,实现了将电池插入检测逻辑集成到通信线束上,不需要额外增添端口和MCU IO资源来检测电池包是否接入待供电设备,能在最少1个端口(电源、地除外)下实现电池插入检测功能。
附图说明
图1是本申请实施例提供的一种电池包接入检测装置的电路结构示意图;
图2是本申请实施例提供的又一种电池包接入检测装置的电路结构示意图;
图3是本申请实施例提供的又一种电池包接入检测装置的电路结构示意图;
图4是本申请实施例提供的一种电池包接入检测方法的流程图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1是本申请实施例提供的一种电池包接入检测装置的电路结构示意图,参见图1,电池包接入检测装置包括:电池管理系统101和切换模块102;电池管理系统101包括通信端口1011;通信端口1011的第一极分别与电池管理系统101和第一电源信号V1连接,第一电源信号V1用于维持通信端口1011的电平状态为第一状态;切换模块102用于在待供电设备2接入电池包1时,与通信端口1011连接,以及用于将通信端口1011的电平状态由第一状态切换为第二状态;电池管理系统101用于在通信端口1011的电平状态由第一状态转化为第二状态时,确定电池包1接入待供电设备2,并控制电池包1向待供电设备的控制器20供电,以使待供电设备的控制器20输出电信号;切换模块102与待供电设备的控制器20连接,切换模块102还用于在接收到电信号时,断开与通信端口1011之间的连接,以使电池管理系统101通过通信端口1011与待供电设备的控制器20进行通信。
具体地,第一电源信号V1可以维持通信端口1011的电平状态为第一状态,第一电源信号V1例如为正电压信号,则第一状态为高电平状态;当电池包1接入待供电设备2时,通信端口1011的第二极通过切换模块102与第二电源信号V2电连接,切换模块102将通信端口1011的电平状态由第一状态切换为第二状态,第二电源信号V2例如为接地,第二电源信号V2拉低通信端口1011的电压,则第二状态为低电平状态;电池管理系统101检测到通信端口1011的电平状态由高电平状态转换为低电平状态时,确认电池包1接入待供电设备2,就会控制电池包1向待供电设备的控制器20供电,待供电设备的控制器20向切换模块102输出电信号,切换模块102就会得电,切换模块102得电后断开与通信端口1011之间的连接,即通信端口1011与第二电源信号V2之间的连接断开,电池管理系统101就可以通过通信端口1011与待供电设备的控制器20进行通信。
本申请中,电池管理系统通过通信端口的电平状态变化来确定待供电设备是否接入电池包,在通信端口的电平发生变化时,才向待供电设备放电,实现了避免电池包一直处于放电状态,降低了电池包的安全隐患,达到了安全供电的效果。而且,本申请在确定电池包接入待供电设备后断开切换模块与通信端口的连接,使得电池管理系统可以通过通信端口与待供电设备通信,实现了将电池插入检测逻辑集成到通信线束上,不需要额外增添端口和MCU IO资源来检测电池包是否接入待供电设备,能在最少1个端口(电源、地除外)下实现电池插入检测功能。
需要说明的是,参见图1,电池管理系统101和通信端口1011均位于电池包1中,切换模块102和待供电设备的控制器20均位于待供电设备2中。
此外,当电池包1接入待供电设备2后,切换模块102控制通信端口1011的第二极与第二电源信号V2之间的连接断开,通信端口1011的第二极通过切换模块102与待供电设备的控制器20的通信端之间连接导通,待供电设备的控制器20的通信端可以拉升通信端口1011的电位,通信端口1011的电平状态从第二状态转换为第三状态,第三状态例如为高电平状态,当电池管理系统101检测到通信端口1011的电平状态从第二状态转换为第三状态时,电池管理系统101就会与待供电设备的控制器20进行通信。
需要说明的是,图1中只示出了电池包1接入待供电设备2后的电路连接情况。并且,通信端口1011可以连接多条通信线,不同类型的通信端口1011的通信线数量不同,图1只示出了电池管理系统101与待供电设备的控制器20通过一条通信线连接的情况,但并不进行限定。
可选地,通信端口1011包括异步收发传输器UART通信端口、集成电路总 线IIC通信端口或串行外设接口SPI通信端口。
具体地,通信端口1011例如可以包括异步收发传输器UART通信端口,可以是UART通信端口中的接收端,可以是UART通信端口中的发送端;通信端口1011也可以是集成电路总线IIC通信端口,也可以是串行外设接口SPI通信端口,还可以是其他通信端口,此处并不进行限定。
电池管理系统101可以对通信端口1011进行配置,当电池包1接入待供电设备2后,切换模块102控制通信端口1011的第二极与第二电源信号V2之间的连接断开,电池管理系统101就会将通信端口1011配置为通信状态,使得电池管理系统101可以通过通信端口1011与控制器进行通信,待供电设备的控制器20就可以控制电池包1是否对待供电设备2进行供电。
本实施例的技术方案,通过在通信端口的第一极连接第一电源信号,当电池包未接入待供电设备时,第一电源信号可以维持通信端口的电平状态为第一状态;当电池包接入待供电设备时,通信端口的第二端通过切换模块与第二电源信号电连接,切换模块将通信端口的电平状态由第一状态切换为第二状态,电池管理系统检测到通信端口的电平状态由第一状态转换为第二状态,电池管理系统就获知电池包接入待供电设备。当电池包接入待供电设备时,通信端口的第二极与待供电设备的控制器的通信端电连接,切换模块在电池包接入待供电设备后得电,断开与通信端口之间的连接,电池管理系统就可以通过通信端口与控制器进行通信,待供电设备的控制器就可以控制电池包是否对待供电设备进行供电,从而实现了控制电池包是否进行放电,避免电池包一直处于放电状态,降低了电池包的安全隐患,达到了安全供电的效果。本实施例的技术方案解决了只利用外部设置控制开关来控制电池供电的通断,使得电池包一直处于放电状态,增大了电池包供电的安全隐患的问题,达到了降低电池包供电的安全隐患的效果,实现了安全供电。
图2是本申请实施例提供的又一种电池包接入检测装置的电路结构示意图,可选地,参见图2,电池包接入检测装置还包括第一电阻R1;通信端口1011的第一极通过第一电阻R1连接第一电源信号V1。
具体地,当第一电源信号V1为正电压信号时,第一电阻R1为上拉电阻,使得电池包1未接入待供电设备2时,第一电源信号V1和第一电阻R1将通信端口1011上拉为高电平状态。
可选地,参见图2,切换模块102包括:第二电阻R2、第三电阻R3和晶体管Q1;晶体管Q1的第一端与待供电设备的控制器20的电源模块的输出端A1电连接,晶体管Q1的第二端用于在电池包1接入待供电设备的控制器20时,与通信端口1011的第二极电连接,晶体管Q1的第三端通过第二电阻R2连接第 二电源信号V2;第三电阻R3的第一端与晶体管Q1的第一端电连接,第三电阻R3的第二端连接第二电源信号V2。
具体地,当电池包1未接入待供电设备2时,待供电设备的控制器20未得电,控制器电源模块的输出端A1没有输出电压,晶体管Q1的第一端的电压较低,晶体管Q1导通,通信端口1011的第二端通过第二电阻R2连接第二电源信号V2,第二电源信号V2拉低通信端口1011的电压,使得电池包1接入待供电设备2后,通信端口1011的电平状态由第一状态转换为第二状态;电池管理系统101检测到通信端口1011的电平状态由第一状态转换为第二状态,电池管理系统101就确定电池包1接入待供电设备2,就会控制电池包1向待供电设备的控制器20供电,待供电设备的控制器20的电源模块输出端A1就可以输出电信号,晶体管Q1的第一端的电压较大,晶体管Q1断开,断开通信端口1011与第二电源信号V2之间的连接,电池管理系统101就可以通过通信端口1011与待供电设备的控制器20进行通信,待供电设备的控制器20就可以控制电池包1是否对待供电设备2进行供电,从而实现了控制电池包1是否进行放电。
可选地,参见图2,晶体管Q1包括P型晶体管。
具体地,晶体管Q1例如包括P型晶体管,电池包1刚接入待供电设备2,电池包1无输出电压时,待供电设备的控制器20的电源模块输出端A1无电压输出,晶体管Q1的第一端的电压较低,晶体管Q1可以导通,通信端口1011在电池包1刚接入待供电设备2时,可以连接第二电源信号V2,第二电源信号V2可以拉低通信端口1011的电压,通信端口1011的电平状态由第一状态转换为第二状态;当电池管理系统101获知电池包1接入待供电设备2后,就会控制电池包1向待供电设备的控制器20供电,待供电设备的控制器20就可以输出电信号,晶体管Q1的第一端的电压较大,晶体管Q1可以断开,使得通信端口1011的第二极与第二电源信号V2的连接断开,电池管理系统101就可以通过通信端口1011与待供电设备的控制器20进行通信。
可选地,参见图2,第二电阻R2的阻值小于第一电阻R1的阻值。
具体地,第一电源信号V1例如为正电压信号,第二电源信号V2例如为接地,电池包1未接入待供电设备2时,通信端口1011的电平状态为高电平;当电池包1接入待供电设备2时,通过设置第二电阻R2的阻值小于第一电阻R1的阻值,使得第一电阻R1分压较小,通信端口1011的电位才能接近第二电源信号V2的电位,通信端口1011的电平状态为低电平状态,可以保证在电池包1接入待供电设备2后,通信端口1011的电平状态可以由第一状态转换为第二状态,从而保证了电池管理系统101准确获知通信端口1011的电平状态,可以准确判断电池包1是否接入待供电设备2。
图3是本申请实施例提供的又一种电池包接入检测装置的电路结构示意图,可选地,参见图3,切换模块102包括:光耦单元1021和第四电阻R4;光耦单元1021包括常闭光耦器;光耦单元1021的第一端用于在电池包1接入待供电设备的控制器20时,与通信端口1011的第二极电连接,光耦单元1021的第二端连接第二电源信号V2,光耦单元1021的第三端与第四电阻R4的第一端电连接,第四电阻R4的第二端与待供电设备的控制器20连接,光耦单元1021的第四端连接第二电源信号V2。
具体地,当电池包1未接入待供电设备2时,第一电源信号V1维持通信端口1011的电平状态处于第一状态,第一状态例如为高电平状态,当电池包1刚接入待供电设备2,电池包1无输出电压,待供电设备的控制器20的电源模块输出端A1无电压输出,光耦单元1021的第三端的电压较低,光耦单元1021处于导通状态,即光耦单元1021的第一端与光耦单元1021的第二端之间导通,通信端口1011的第二极可以连接第二电源信号V2,第二电源信号V2例如为接地,可以拉低通信端口1011的电压,使得电池包1接入待供电设备2时,通信端口1011的电平状态转换为低电平状态,即通信端口1011的电平状态由第一状态转换为第二状态;当电池管理系统101获知电池包1接入待供电设备2后,就会控制电池包1向待供电设备的控制器20供电,待供电设备的控制器20就可以输出电信号,光耦单元1021的第三端的电压较大,光耦单元1021就会断开,即光耦单元1021的第一端与光耦单元1021的第二端之间断开,使得通信端口1011的第二极与第二电源信号V2之间的连接断开,电池管理系统101可以通过通信端口1011与待供电设备的控制器20进行通信,从而可以控制电池包1是否进行放电,实现了电池包1的可控放电,避免电池包1一直处于放电状态,降低了电池包1供电的安全隐患。
图4是本申请实施例提供的一种电池包接入检测方法的流程图,电池包接入检测方法由上述任意实施方案所述的电池包接入检测装置实现,参见图4,电池包接入检测方法包括:
S410、当待供电设备接入电池包时,切换模块与电池管理系统的通信端口连接,以及将通信端口的电平状态由第一状态切换为第二状态。
具体地,当电池包1未接入待供电设备2时,第一电源信号V1维持通信端口1011的电平状态为第一状态,电池管理系统101就会检测到通信端口1011的电平状态为第一状态,第一状态例如为高电平状态;当电池包1接入待供电设备2时,通信端口1011的第二极通过切换模块102与第二电源信号V2电连接,第二电源信号V2例如为接地,就会拉低通信端口1011的电位,使得通信 端口1011的电平状态为第二状态,第二状态例如为低电平状态,电池管理系统101就会检测到通信端口1011的电平状态由第一状态转换为第二状态,电池管理系统101就获知电池包1接入待供电设备2。
S420、在通信端口的电平状态由第一状态转化为第二状态时,电池管理系统确定电池包接入待供电设备,并向待供电设备的控制器供电,以使待供电设备的控制器向切换模块输出电信号。
具体地、电池管理系统101检测到通信端口1011的电平状态由第一状态转换为第二状态时,电池管理系统101确认电池包1接入待供电设备2,就会控制电池包1向待供电设备的控制器20供电,待供电设备的控制器20就可以输出电信号,切换模块102就会得电。
S430、切换模块在接收到电信号时,断开与通信端口之间的连接。
具体地、切换模块102得电后,断开与通信端口1011之间的连接,即通信端口1011与第二电源信号V2之间的连接断开。
S440、电池管理系统通过通信端口与待供电设备的控制器进行通信。
具体地,切换模块102得电后,断开与通信端口1011之间的连接,电池管理系统101就可以通过通信端口1011与待供电设备的控制器20进行通信,待供电设备的控制器20就可以控制电池包1是否对待供电设备2进行供电,从而实现了控制电池包1是否进行放电,避免电池包1一直处于放电状态,降低了电池包1的安全隐患,达到了安全供电的效果。
本实施例还提供了一种电动车,电动车包括上述任意实施方案所述的电池包接入检测装置。本实施例提供的电动车的实现原理和技术效果与上述实施例类似,此处不再赘述。

Claims (9)

  1. 一种电池包接入检测装置,包括:电池管理系统和切换模块;所述电池管理系统包括通信端口;
    所述通信端口的第一极分别与所述电池管理系统和第一电源信号连接,所述第一电源信号用于维持所述通信端口的电平状态为第一状态;
    所述切换模块用于在待供电设备接入所述电池包时,与所述通信端口连接,以及用于将所述通信端口的电平状态由第一状态切换为第二状态;
    所述电池管理系统用于在所述通信端口的电平状态由所述第一状态转化为所述第二状态时,确定所述电池包接入所述待供电设备,并控制所述电池包向所述待供电设备的控制器供电,以使所述待供电设备的控制器输出电信号;
    所述切换模块与所述待供电设备的控制器连接,所述切换模块还用于在接收到所述电信号时,断开与所述通信端口之间的连接,以使所述电池管理系统通过所述通信端口与所述待供电设备的控制器进行通信。
  2. 根据权利要求1所述的电池包接入检测装置,其中,所述切换模块包括:第二电阻、第三电阻和晶体管;
    所述晶体管的第一端与所述待供电设备的控制器的电源模块电连接,所述晶体管的第二端用于在所述电池包接入所述待供电设备的控制器时,与所述通信端口的第二极电连接,所述晶体管的第三端通过所述第二电阻连接第二电源信号;
    所述第三电阻的第一端与所述晶体管的第一端电连接,所述第三电阻的第二端连接第二电源信号。
  3. 根据权利要求1或2所述的电池包接入检测装置,其中,所述切换模块包括:光耦单元和第四电阻;所述光耦单元包括常闭光耦器;
    所述光耦单元的第一端用于在所述电池包接入所述待供电设备的控制器时,与所述通信端口的第二极电连接,所述光耦单元的第二端连接第二电源信号,所述光耦单元的第三端与所述第四电阻的第一端电连接,所述第四电阻的第二端与所述待供电设备的控制器连接,所述光耦单元的第四端连接所述第二电源信号。
  4. 根据权利要求2所述的电池包接入检测装置,其中,所述晶体管包括P型晶体管。
  5. 根据权利要求2任一项所述的电池包接入检测装置,其中,所述电池包接入检测装置还包括第一电阻;
    所述通信端口的第一极通过所述第一电阻连接所述第一电源信号。
  6. 根据权利要求5所述的电池包接入检测装置,其中,所述第二电阻的阻值小于所述第一电阻的阻值。
  7. 根据权利要求1所述的电池包接入检测装置,其中,所述通信端口包括异步收发传输器UART通信端口、集成电路总线IIC通信端口或串行外设接口SPI通信端口。
  8. 一种电池包接入检测方法,所述电池包接入检测方法由权利要求1-7任一项所述的电池包接入检测装置实现;
    所述电池包接入检测方法包括:
    当待供电设备接入电池包时,切换模块与电池管理系统的通信端口连接,以及将所述通信端口的电平状态由第一状态切换为第二状态;
    在通信端口的电平状态由第一状态转化为第二状态时,所述电池管理系统确定所述电池包接入所述待供电设备,并向待供电设备的控制器供电,以使所述待供电设备的控制器向切换模块输出电信号;
    所述切换模块在接收到所述电信号时,断开与所述通信端口之间的连接;
    所述电池管理系统通过所述通信端口与所述待供电设备的控制器进行通信。
  9. 一种电动车,包括权利要求1-7任一项所述的电池包接入检测装置。
PCT/CN2022/102680 2021-12-30 2022-06-30 电池包接入检测装置、方法及电动车 WO2023123955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111659928.7A CN114228564B (zh) 2021-12-30 2021-12-30 电池包接入检测装置、方法及电动车
CN202111659928.7 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023123955A1 true WO2023123955A1 (zh) 2023-07-06

Family

ID=80744992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102680 WO2023123955A1 (zh) 2021-12-30 2022-06-30 电池包接入检测装置、方法及电动车

Country Status (2)

Country Link
CN (1) CN114228564B (zh)
WO (1) WO2023123955A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114228564B (zh) * 2021-12-30 2023-08-01 广东高标电子科技有限公司 电池包接入检测装置、方法及电动车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814298A (zh) * 2011-04-28 2014-05-21 佐尔循环公司 自动检测电池插入的系统和方法
CN105978093A (zh) * 2016-06-24 2016-09-28 青岛海信移动通信技术股份有限公司 一种移动终端
US20180342886A1 (en) * 2017-05-24 2018-11-29 Samsung Electronics Co., Ltd. Method for controlling operation of battery on basis of state thereof, and electronic device for supporting same
CN108957196A (zh) * 2018-08-24 2018-12-07 深圳拓邦股份有限公司 一种电池包接入检测电路、方法及充电装置
CN209028159U (zh) * 2018-09-20 2019-06-25 合肥联宝信息技术有限公司 电池接入状态检测电路及连接器
CN213149196U (zh) * 2020-08-24 2021-05-07 易事特集团股份有限公司 电池接入检测电路
CN112994168A (zh) * 2021-03-19 2021-06-18 成都市菱奇半导体有限公司 检测电池负载插拔状态的充电电路及充电器
CN114228564A (zh) * 2021-12-30 2022-03-25 广东高标电子科技有限公司 电池包接入检测装置、方法及电动车

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187299A (ja) * 1996-12-27 1998-07-14 Canon Inc バッテリ制御装置、情報処理装置、電子機器及びバッテリ制御方法
CN101316042B (zh) * 2007-05-29 2012-07-18 深圳迈瑞生物医疗电子股份有限公司 一种医疗设备后备电池接口安全防护控制系统
CN101651359B (zh) * 2009-09-10 2011-07-27 惠州Tcl移动通信有限公司 一种移动终端供电单元及移动终端供电切换方法
KR101094055B1 (ko) * 2009-12-15 2011-12-19 삼성에스디아이 주식회사 에너지 저장 시스템
CN202616817U (zh) * 2012-04-24 2012-12-19 中兴通讯股份有限公司 通信电源负载或蓄电池接入的控制装置
US10168364B2 (en) * 2016-11-29 2019-01-01 Wipro Limited Battery monitoring system for a vehicle and a method thereof
CN206712489U (zh) * 2017-03-29 2017-12-05 安徽理工大学 一种直流充电桩的蓄电池接入状态检测装置
CN110154824B (zh) * 2019-05-28 2021-04-20 蜂巢能源科技有限公司 电池包休眠的检测装置、方法及车辆
CN111301173B (zh) * 2020-04-09 2023-12-15 宁德时代新能源科技股份有限公司 负载接入检测方法、开关电路与电池管理系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814298A (zh) * 2011-04-28 2014-05-21 佐尔循环公司 自动检测电池插入的系统和方法
CN105978093A (zh) * 2016-06-24 2016-09-28 青岛海信移动通信技术股份有限公司 一种移动终端
US20180342886A1 (en) * 2017-05-24 2018-11-29 Samsung Electronics Co., Ltd. Method for controlling operation of battery on basis of state thereof, and electronic device for supporting same
CN108957196A (zh) * 2018-08-24 2018-12-07 深圳拓邦股份有限公司 一种电池包接入检测电路、方法及充电装置
CN209028159U (zh) * 2018-09-20 2019-06-25 合肥联宝信息技术有限公司 电池接入状态检测电路及连接器
CN213149196U (zh) * 2020-08-24 2021-05-07 易事特集团股份有限公司 电池接入检测电路
CN112994168A (zh) * 2021-03-19 2021-06-18 成都市菱奇半导体有限公司 检测电池负载插拔状态的充电电路及充电器
CN114228564A (zh) * 2021-12-30 2022-03-25 广东高标电子科技有限公司 电池包接入检测装置、方法及电动车

Also Published As

Publication number Publication date
CN114228564B (zh) 2023-08-01
CN114228564A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
KR101474097B1 (ko) 케이블 내의 전력 분배
KR100775992B1 (ko) 호스트로서 동작가능한 장치
KR102518036B1 (ko) 전기 자동차의 충전 장치 및 충전 방법
US20070025240A1 (en) Bypass switch for an ethernet device and method of bypassing devices in an ethernet network
US20070222301A1 (en) Methods and apparatus for charging a battery in a peripheral device
KR20130002970A (ko) 전력 및 데이터의 시간 도메인 다중화
WO2021135687A1 (zh) 电子设备与兼具快充与音频传输功能的配件
CN108556669B (zh) 一种车载充电器及其控制装置
CN102801535B (zh) 以太网供电传输系统
WO2023123955A1 (zh) 电池包接入检测装置、方法及电动车
CA2792279C (en) Electronic control unit
US10079688B2 (en) Network port and ethernet device integrating powered device and power sourcing equivalent in a port
US11524602B2 (en) Charge control device and charge control method
JP6832643B2 (ja) 電力供給システム
TW201710831A (zh) 行動電源裝置及其電源控制方法
US9434331B2 (en) Automotive electronic system and power supply method thereof
WO2023029668A1 (zh) 低压供电系统和具有其的车辆
CN107681707A (zh) 一种汽车和汽车供电系统休眠控制电路
WO2022222439A1 (zh) 通信设备、系统及通信方法
US10050558B2 (en) Alternating current (AC) inverter and method of controlling the same
KR102436965B1 (ko) PoE 확장 기능을 가지는 PoE 슬레이브 장치
WO2021082748A1 (zh) 车辆控制装置、系统和车辆
WO2023010463A1 (zh) 充电器
TWM610678U (zh) 電動載具中的供電結構
JP2004032634A (ja) 電源供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913244

Country of ref document: EP

Kind code of ref document: A1