WO2024055586A1 - 交流动力电池总成、控制方法 - Google Patents

交流动力电池总成、控制方法 Download PDF

Info

Publication number
WO2024055586A1
WO2024055586A1 PCT/CN2023/089320 CN2023089320W WO2024055586A1 WO 2024055586 A1 WO2024055586 A1 WO 2024055586A1 CN 2023089320 W CN2023089320 W CN 2023089320W WO 2024055586 A1 WO2024055586 A1 WO 2024055586A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
mode
battery assembly
power battery
pole
Prior art date
Application number
PCT/CN2023/089320
Other languages
English (en)
French (fr)
Inventor
卢军
董昊旻
孙焕丽
李黎黎
南海
岳振东
兰超
王锦标
杨文利
刘茹
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024055586A1 publication Critical patent/WO2024055586A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of vehicle battery technology, specifically, to an AC power battery assembly and a control method.
  • This application requests the priority of the patent application submitted to the China State Intellectual Property Office on September 15, 2022, with the application number 202211124759.1 and the invention name "AC power battery assembly and control method”.
  • the current mainstream battery assembly solution is a DC power battery assembly, which can only input or output DC current.
  • the current motors in the industry are mainly AC motors, which cannot be directly connected to the battery and require the use of complex structures such as inverters.
  • the main purpose of this application is to provide an AC power battery assembly and a control method to solve the problem in the prior art that the motor is mainly an AC motor and cannot be directly connected to the battery.
  • an AC power battery assembly including: a battery module, the battery module is arranged in a battery box, and at least two terminals are provided on the outside of the battery box; AC and DC controller, the AC and DC controller is arranged in the battery box, the first connection end of the AC and DC controller is connected to the total positive pole of the battery module, and the second connection end of the AC and DC controller is connected to the total negative pole of the battery module.
  • the third connection end of the AC and DC controller is connected to one of the two terminals, and the fourth connection end of the AC and DC controller is connected to the other terminal;
  • BMS controller the BMS controller is installed in the battery box, and the BMS The controller communicates with the AC and DC controller to control the AC and DC controller to switch to the target mode, so that one of the two terminals forms the total positive pole or reserved total positive pole of the AC power battery assembly, and the other terminal forms the The total negative electrode of the AC power battery assembly or the reserved total negative electrode.
  • the AC-DC controller is provided with an AC-DC conversion line, the AC-DC controller is connected to the total positive electrode and the total negative electrode of the battery module through the AC-DC conversion line, and the AC-DC controller is connected to the battery box through the AC-DC conversion line. At least two external binding posts are connected, and the BMS controller communicates with the AC-DC controller to control the AC-DC conversion line to switch to the target position, so that the AC-DC controller executes the target mode.
  • the two terminals include an output left pole and an output right pole
  • the target position includes a first position, a second position, a third position and a fourth position
  • the target mode includes a first mode, a second mode, a third mode and In the fourth mode, when the AC/DC conversion line is switched to the first position, the second position, the third position and the fourth position, it corresponds to the first mode, the second mode, the third mode and the fourth mode of the AC/DC controller respectively.
  • the left pole of the output is the total negative pole of the AC power battery assembly
  • the right pole of the output is the total positive pole of the AC power battery assembly
  • battery model The group is disconnected from the AC and DC controller, the left pole of the output is the reserved total negative pole of the AC power battery assembly, and the right pole of the output is the reserved total positive pole of the AC power battery assembly.
  • the left pole of the output is the total positive pole of the AC power battery assembly
  • the right pole of the output is the total negative pole of the AC power battery assembly
  • the AC-DC conversion line is controlled to switch to the fourth position
  • the battery module is disconnected from the AC/DC controller
  • the left pole of the output is the reserved total positive pole of the AC power battery assembly
  • the right pole of the output is the reserved total negative pole of the AC power battery assembly.
  • the BMS controller communicates with the AC-DC controller to control the AC-DC conversion line to switch from the first position to the second position or the fourth position, and to control the AC-DC conversion line to switch from the third position to the fourth position. or second position.
  • the switching frequency between adjacent target modes or adjacent target positions is between 0.001-10000HZ.
  • a method for controlling an AC power battery assembly is provided.
  • the AC power battery assembly is the above-mentioned AC power battery assembly.
  • the method includes the following steps: receiving a current signal, and the current signal includes at least one of the following: : AC signal, DC signal; determine whether to convert the voltage direction according to the type of current signal; if so, control the AC and DC controller to switch to the target mode; detect when the AC and DC controller switches to the target mode, and obtain the high-voltage circuit status Information; based on the high-voltage circuit status information, it is judged whether the high-voltage circuit is normal. If it is determined that the high-voltage circuit is abnormal, the AC and DC controller is controlled to stop working.
  • controlling the AC and DC controller to switch to the target mode includes: when the current signal is a DC signal and it is determined that the voltage direction needs to be converted, controlling the AC and DC controller according to the first mode, the second mode, and the third mode. Switching is performed in sequence, or the AC/DC controller is controlled to switch in the order of the third mode, the second mode, and the first mode.
  • the method also includes: when the current signal is an alternating current signal and it is determined that the voltage direction needs to be converted, controlling the AC and DC controller according to the first mode, the second mode, the third mode, the fourth mode, and the first mode. Switching is performed in the order, or the AC/DC controller is controlled to switch in the order of the third mode, the second mode, the first mode, the fourth mode, and the third mode.
  • the BMS controller communicates signals with the AC/DC controller according to the received current model, so that the wiring in the AC/DC controller
  • One of the posts forms the total positive electrode or reserved total positive electrode of the AC power battery assembly, and the other terminal forms the total negative electrode or reserved total negative electrode of the AC power battery assembly.
  • This arrangement allows the battery assembly to directly receive AC or DC current without the need for complex structures such as inverters.
  • Figure 1 shows a schematic structural diagram of a first embodiment of an AC power battery assembly according to the present application
  • Figure 2 shows a schematic structural diagram of a second embodiment of an AC power battery assembly according to the present application
  • Figure 3 shows a schematic structural diagram of a third embodiment of an AC power battery assembly according to the present application.
  • Figure 4 shows a schematic structural diagram of a fourth embodiment of an AC power battery assembly according to the present application.
  • Figure 5 shows a flow chart of a first embodiment of a control method for an AC power battery assembly according to the present application
  • Figure 6 shows a flow chart of a second embodiment of a control method for an AC power battery assembly according to the present application.
  • an AC power battery assembly is provided.
  • an AC power battery assembly includes: a battery module 1, an AC/DC controller 4 and a BMS controller 8.
  • the battery module 1 is installed in the battery box 3, and at least two terminals are provided on the outside of the battery box 3.
  • the AC/DC controller 4 is installed in the battery box 3.
  • the first connection end of the AC/DC controller 4 is connected to the general positive electrode of the battery module 1, and the second connection end of the AC/DC controller 4 is connected to the total positive electrode of the battery module 1.
  • the negative pole is connected, the third connection end of the AC/DC controller 4 is connected to one of the two terminals, and the fourth connection end of the AC/DC controller 4 is connected to the other terminal.
  • BMS controller 8 is set at In the battery box 3, the BMS controller 8 communicates with the AC/DC controller 4 to control the AC/DC controller 4 to switch to the target mode so that one of the two terminals forms the total positive pole of the AC power battery assembly or Reserve the total positive electrode, and the other terminal forms the total negative electrode or reserved total negative electrode of the AC power battery assembly.
  • the BMS controller 8 and the AC/DC controller 4 are installed in the battery assembly, so that the BMS controller 8 communicates signals with the AC/DC controller 4 according to the received current model, so that the AC/DC controller 4
  • One of the terminals forms the total positive electrode or reserved total positive electrode of the AC power battery assembly, and the other terminal forms the total negative electrode or reserved total negative electrode of the AC power battery assembly.
  • the AC-DC controller 4 is provided with an AC-DC conversion line 7.
  • the AC-DC controller 4 is connected to the total positive electrode and the total negative electrode of the battery module 1 through the AC-DC conversion line 7, and the AC-DC controller 4 passes through the AC-DC conversion line 7.
  • the conversion line 7 is connected to at least two terminals outside the battery box 3, and the BMS controller 8 communicates with the AC-DC controller 4 to control the AC-DC conversion line 7 to switch to the target position, so that the AC-DC controller 4 executes target mode.
  • the battery box includes a battery module 1 and a high-voltage wiring harness 2 .
  • the BMS controller 8 configured in this way can communicate with the AC-DC controller according to the received current information, thereby changing the position of the AC-DC conversion line so that the battery module can directly receive AC current or DC current.
  • the two terminals include the output left pole 5 and the output right pole 6,
  • the target position includes the first position, the second position, the third position and the fourth position
  • the target mode includes the first mode, the second mode, the third mode. mode and the fourth mode.
  • the AC-DC conversion line 7 is switched to the first position, the second position, the third position and the fourth position, it corresponds to the first mode, the second mode and the third mode of the AC-DC controller 4 respectively. and fourth mode.
  • the positions of the output left pole 5 and the output right pole 6 can be changed according to the received current information, so that the AC and DC controller 4 can be changed into four modes, so that the battery module can directly receive AC current.
  • the output left pole 5 is the total negative pole of the AC power battery assembly
  • the output right pole 6 is the total positive pole of the AC power battery assembly
  • the battery module 1 is disconnected from the AC-DC controller 4
  • the output left pole 5 is the reserved total negative pole of the AC power battery assembly
  • the output right pole 6 is the AC power battery.
  • the output left pole 5 is the total positive pole of the AC power battery assembly
  • the output right pole 6 is the total negative pole of the AC power battery assembly
  • the battery module 1 is disconnected from the AC/DC controller 4
  • the output left pole 5 is the reserved total positive pole of the AC power battery assembly
  • the output right pole 6 is the AC power battery.
  • the BMS controller 8 communicates with the AC-DC controller 4 to control the AC-DC conversion line 7 to switch from the first position to the second position or the fourth position, and to control the AC-DC conversion line 7 to switch from the third position. to the fourth position or Two positions.
  • This setting can switch the working mode according to the current information, so that the battery module can directly receive DC current or AC current.
  • the switching frequency between adjacent target modes or adjacent target positions is between 0.001-10000HZ. This setting prevents short circuits when switching at position 7 of the AC/DC conversion line.
  • a method for controlling an AC power battery assembly is also provided.
  • the AC power battery assembly is the above-mentioned AC power battery assembly.
  • the method includes the following steps: S01, Receive a current signal, which includes at least one of the following: alternating current signal, direct current signal; S02, determine whether to convert the voltage direction according to the type of the current signal; S03, if so, control the AC and DC controller 4 to switch to the target mode; S04 , detect when the AC and DC controller 4 switches to the target mode, and obtain the high-voltage circuit status information; S05, based on the high-voltage circuit status information, determine whether the high-voltage circuit is normal; S06, when it is determined that the high-voltage circuit is abnormal, control the AC and DC Controller 4 stops working.
  • This embodiment can change the mode of the AC/DC controller 4 according to the received current signal, so that the battery module can directly receive AC current or DC current.
  • controlling the AC and DC controller 4 to switch to the target mode includes: when the current signal is a DC signal and it is determined that the voltage direction needs to be converted, controlling the AC and DC controller 4 according to the first mode and the second mode. , switch in the order of the third mode, or control the AC and DC controller 4 to switch in the order of the third mode, the second mode, and the first mode.
  • the BMS controller 8 determines that the signal is a DC mode signal, it needs to determine whether to convert the voltage direction: if it is not necessary, it will not take action; if it is necessary to convert the voltage direction, it will proceed to the first mode ⁇ the second mode ⁇ the third mode or The third mode ⁇ the second mode ⁇ the first mode is converted. After the conversion, the voltage direction remains unchanged, and the BMS performs signal feedback to monitor whether the high-voltage circuit is normal and exits control. This setting can switch the working mode according to the current information, so that the battery module can directly receive DC current or AC current.
  • the method also includes: when the current signal is an alternating current signal and it is determined that the voltage direction needs to be converted, controlling the AC and DC controller 4 according to the first mode, the second mode, the third mode, the fourth mode, and the first mode.
  • the modes are switched in the order of the mode, or the AC/DC controller 4 is controlled to switch in the order of the third mode, the second mode, the first mode, the fourth mode, and the third mode.
  • the forward change sequence follows the first mode ⁇ second mode ⁇ third mode ⁇ fourth mode ⁇ first mode cyclic sequence conversion; reverse The change sequence follows the cyclic sequence of third mode ⁇ second mode ⁇ first mode ⁇ fourth mode ⁇ third mode.
  • the frequency of the cycle is based on the charging and discharging requirements.
  • the BMS performs signal feedback to monitor whether the high-voltage circuit is normal and exits control. This setting can switch the working mode according to the current information, so that the battery module can directly receive DC current or AC current.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the exemplary term “over” may include both orientations “above” and “below.”
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了一种交流动力电池总成、控制方法。交流动力电池总成包括:电池模组、交直流控制器与BMS控制器。电池模组设置于电池箱体内,电池箱体的外部设置有至少两个接线柱。交直流控制器设置于电池箱体内,交直流控制器的第三连接端与两个接线柱中的一个连接,交直流控制器的第四连接端与另一个接线柱连接。BMS控制器设置于电池箱体内。本申请通过在电池总成里设置BMS控制器和交直流控制器,使得交直流控制器中的接线柱的一个形成交流动力电池总成的总正极或预留总正极,另一个接线柱形成交流动力电池总成的总负极或预留总负极。这样设置使得电池总成可直接接收到交流电流或者直流电流,无需使用逆变器等复杂结构。

Description

交流动力电池总成、控制方法 技术领域
本申请涉及车辆电池技术领域,具体而言,涉及一种交流动力电池总成、控制方法。本申请要求于2022年09月15日提交至中国国家知识产权局、申请号为202211124759.1、发明名称为“交流动力电池总成、控制方法”的专利申请的优先权。
背景技术
动力电池作为新能源汽车的关键核心零部件,结构集成化性能非常重要。目前主流的电池总成方案为直流动力电池总成,只能输入或者输出直流电流,主要存在两大问题:1.无法使用家用交流充电网络直接供电,需要用交流直流转换接头,存在结构冗余;2.目前行业上的电机主要为交流电机,无法与电池直接连接,需要使用逆变器等复杂结构。
申请内容
本申请的主要目的在于提供一种交流动力电池总成、控制方法,以解决现有技术中电机主要为交流电机,无法与电池直接连接的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种交流动力电池总成,包括:电池模组,电池模组设置于电池箱体内,电池箱体的外部设置有至少两个接线柱;交直流控制器,交直流控制器设置于电池箱体内,交直流控制器的第一连接端与电池模组的总正极连接,交直流控制器的第二连接端与电池模组的总负极连接,交直流控制器的第三连接端与两个接线柱中的一个连接,交直流控制器的第四连接端与另一个接线柱连接;BMS控制器,BMS控制器设置于电池箱体内,BMS控制器与交直流控制器进行通信,以控制交直流控制器切换至目标模式,以使两个接线柱中的一个形成交流动力电池总成的总正极或预留总正极,另一个接线柱形成交流动力电池总成的总负极或预留总负极。
进一步地,交直流控制器内设置有交直流转换线,交直流控制器通过交直流转换线与电池模组的总正极、总负极连接,以及交直流控制器通过交直流转换线与电池箱体外部的至少两个接线柱连接,BMS控制器与交直流控制器进行通信,以控制交直流转换线切换至目标位置,以使交直流控制器执行目标模式。
进一步地,两个接线柱包括输出左极和输出右极,目标位置包括第一位置、第二位置、第三位置和第四位置,目标模式包括第一模式、第二模式、第三模式和第四模式,交直流转换线切换至第一位置、第二位置、第三位置和第四位置时,分别对应交直流控制器的第一模式、第二模式、第三模式和第四模式。
进一步地,控制交直流转换线切换至第一位置时,输出左极为交流动力电池总成的总负极,输出右极为交流动力电池总成的总正极;控制交直流转换线切换至第二位置时,电池模 组与交直流控制器断开,输出左极为交流动力电池总成的预留总负极,输出右极为交流动力电池总成的预留总正极。
进一步地,控制交直流转换线切换至第三位置时,输出左极为交流动力电池总成的总正极,输出右极为交流动力电池总成的总负极;控制交直流转换线切换至第四位置时,电池模组与交直流控制器断开,输出左极为交流动力电池总成的预留总正极,输出右极为交流动力电池总成的预留总负极。
进一步地,BMS控制器与交直流控制器进行通信,以控制交直流转换线从第一位置可切换至第二位置或第四位置,以及控制交直流转换线从第三位置切换至第四位置或第二位置。
进一步地,相邻目标模式或相邻目标位置之间的切换频率为0.001-10000HZ之间。
根据本申请的另一方面,提供了一种交流动力电池总成的控制方法,交流动力电池总成为上述的交流动力电池总成,方法包括以下步骤:接受电流信号,电流信号包括如下至少之一:交流电信号、直流电信号;根据电流信号的类型判断是否转换电压方向;如果是,则控制交直流控制器切换至目标模式;检测交直流控制器切换至目标模式的情况下,获取高压回路状态信息;基于高压回路状态信息,判断高压回路是否正常,在确定高压回路出现异常的情况下,控制交直流控制器停止工作。
进一步地,控制交直流控制器切换至目标模式,包括:在电流信号为直流电信号,且确定需要转换电压方向的情况下,控制交直流控制器按照第一模式、第二模式、第三模式的顺序进行切换,或者,控制交直流控制器按照第三模式、第二模式、第一模式的顺序进行切换。
进一步地,方法还包括:在电流信号为交流电信号,且确定需要转换电压方向的情况下,控制交直流控制器按照第一模式、第二模式、第三模式、第四模式、第一模式的顺序进行切换,或者,控制交直流控制器按照第三模式、第二模式、第一模式、第四模式、第三模式的顺序进行切换。
应用本申请的技术方案,通过在电池总成里设置BMS控制器和交直流控制器,使得BMS控制器根据接收到的电流型号对交直流控制器进行信号交流,使得交直流控制器中的接线柱的一个形成交流动力电池总成的总正极或预留总正极,另一个接线柱形成交流动力电池总成的总负极或预留总负极。这样设置使得电池总成可直接接收到交流电流或者直流电流,无需使用逆变器等复杂结构。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的一种交流动力电池总成的第一实施例的结构示意图;
图2示出了根据本申请的一种交流动力电池总成的第二实施例的结构示意图;
图3示出了根据本申请的一种交流动力电池总成的第三实施例的结构示意图;
图4示出了根据本申请的一种交流动力电池总成的第四实施例的结构示意图;
图5示出了根据本申请的一种交流动力电池总成的控制方法的第一实施例的流程图;
图6示出了根据本申请的一种交流动力电池总成的控制方法的第二实施例的流程图。
其中,上述附图包括以下附图标记:
1、电池模组;2、高压线束;3、电池箱体;4、交直流控制器;5、输出左极;6、输出右极;7、交直流转换线;8、BMS控制器。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图6所示,根据本申请的具体实施例,提供了一种交流动力电池总成。
具体地,一种交流动力电池总成包括:电池模组1、交直流控制器4和BMS控制器8。电池模组1设置于电池箱体3内,电池箱体3的外部设置有至少两个接线柱。交直流控制器4设置于电池箱体3内,交直流控制器4的第一连接端与电池模组1的总正极连接,交直流控制器4的第二连接端与电池模组1的总负极连接,交直流控制器4的第三连接端与两个接线柱中的一个连接,交直流控制器4的第四连接端与另一个接线柱连接。BMS控制器8设置于 电池箱体3内,BMS控制器8与交直流控制器4进行通信,以控制交直流控制器4切换至目标模式,以使两个接线柱中的一个形成交流动力电池总成的总正极或预留总正极,另一个接线柱形成交流动力电池总成的总负极或预留总负极。
本实施例中通过在电池总成里设置BMS控制器8和交直流控制器4,使得BMS控制器8根据接收到的电流型号对交直流控制器4进行信号交流,使得交直流控制器4中的接线柱的一个形成交流动力电池总成的总正极或预留总正极,另一个接线柱形成交流动力电池总成的总负极或预留总负极。这样设置使得电池总成可直接接收到交流电流或者直流电流,无需使用逆变器等复杂结构。
进一步地,交直流控制器4内设置有交直流转换线7,交直流控制器4通过交直流转换线7与电池模组1的总正极、总负极连接,以及交直流控制器4通过交直流转换线7与电池箱体3外部的至少两个接线柱连接,BMS控制器8与交直流控制器4进行通信,以控制交直流转换线7切换至目标位置,以使交直流控制器4执行目标模式。本实施例中电池箱体内包括电池模组1、高压线束2。这样设置BMS控制器8可根据接收到的电流信息与交直流控制器通信,从而改变交直流转换线的位置使得电池模组可以直接接收交流电流或者直流电流。
具体地,两个接线柱包括输出左极5和输出右极6,目标位置包括第一位置、第二位置、第三位置和第四位置,目标模式包括第一模式、第二模式、第三模式和第四模式,交直流转换线7切换至第一位置、第二位置、第三位置和第四位置时,分别对应交直流控制器4的第一模式、第二模式、第三模式和第四模式。本实施例中,可以根据接收到的电流信息更换输出左极5和输出右极6的位置使得交直流控制器4变为四种模式,让电池模组可以直接接收交流电流。
如图1、图2所示,控制交直流转换线7切换至第一位置时,输出左极5为交流动力电池总成的总负极,输出右极6为交流动力电池总成的总正极;控制交直流转换线7切换至第二位置时,电池模组1与交直流控制器4断开,输出左极5为交流动力电池总成的预留总负极,输出右极6为交流动力电池总成的预留总正极。这样设置可根据电流的模式进行交直流转换线7的位置更换,从而改变交直流控制器的工作模式,使得电池模组可以直接接收交流电流或者直流电流。
如图3、图4所示,控制交直流转换线7切换至第三位置时,输出左极5为交流动力电池总成的总正极,输出右极6为交流动力电池总成的总负极;控制交直流转换线7切换至第四位置时,电池模组1与交直流控制器4断开,输出左极5为交流动力电池总成的预留总正极,输出右极6为交流动力电池总成的预留总负极。这样设置可根据电流的模式进行交直流转换线7的位置更换,从而改变交直流控制器的工作模式,使得电池模组可以直接接收交流电流或者直流电流。
进一步地,BMS控制器8与交直流控制器4进行通信,以控制交直流转换线7从第一位置可切换至第二位置或第四位置,以及控制交直流转换线7从第三位置切换至第四位置或第 二位置。这样设置可以根据电流信息进行工作模式的切换使得电池模组可直接接收直流电流或者交流电流。
具体地,相邻目标模式或相邻目标位置之间的切换频率为0.001-10000HZ之间。这样设置可以在交直流转换线7位置转换时不会发生短路的现象。
在本申请的另一实施例中,如图6所示,还提供了一种交流动力电池总成的控制方法,交流动力电池总成为上述的交流动力电池总成,方法包括以下步骤:S01,接受电流信号,电流信号包括如下至少之一:交流电信号、直流电信号;S02,根据电流信号的类型判断是否转换电压方向;S03,如果是,则控制交直流控制器4切换至目标模式;S04,检测交直流控制器4切换至目标模式的情况下,获取高压回路状态信息;S05,基于高压回路状态信息,判断高压回路是否正常;S06,在确定高压回路出现异常的情况下,控制交直流控制器4停止工作。本实施例可以根据接收的电流信号对交直流控制器4进行模式更换,使得电池模组可以直接接收交流电流或者直流电流。
如图5所示,控制交直流控制器4切换至目标模式,包括:在电流信号为直流电信号,且确定需要转换电压方向的情况下,控制交直流控制器4按照第一模式、第二模式、第三模式的顺序进行切换,或者,控制交直流控制器4按照第三模式、第二模式、第一模式的顺序进行切换。本实施例中,BMS控制器8判断是直流模式信号,则需判断是否转换电压方向:如果不需要则不动作;如果需要转换电压方向,则进行第一模式→第二模式→第三模式或者第三模式→第二模式→第一模式进行转换。转换后保持电压方向不变,BMS进行信号反馈监测高压回路是否正常,退出控制。这样设置可以根据电流信息进行工作模式的切换使得电池模组可直接接收直流电流或者交流电流。
进一步地,方法还包括:在电流信号为交流电信号,且确定需要转换电压方向的情况下,控制交直流控制器4按照第一模式、第二模式、第三模式、第四模式、第一模式的顺序进行切换,或者,控制交直流控制器4按照第三模式、第二模式、第一模式、第四模式、第三模式的顺序进行切换。本实施例中,如果判断是交流模式信号,则需判断交流电压的变化方案:正向变化顺序按照第一模式→第二模式→第三模式→第四模式→第一模式循环顺序转换;逆向变化顺序按照第三模式→第二模式→第一模式→第四模式→第三模式循环顺序转换。循环的频率按照充放电请求要求。BMS进行信号反馈监测高压回路是否正常,退出控制。这样设置可以根据电流信息进行工作模式的切换使得电池模组可直接接收直流电流或者交流电流。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种交流动力电池总成,其特征在于,包括:
    电池模组(1),所述电池模组(1)设置于电池箱体(3)内,所述电池箱体(3)的外部设置有至少两个接线柱;
    交直流控制器(4),所述交直流控制器(4)设置于所述电池箱体(3)内,所述交直流控制器(4)的第一连接端与所述电池模组(1)的总正极连接,所述交直流控制器(4)的第二连接端与所述电池模组(1)的总负极连接,所述交直流控制器(4)的第三连接端与两个所述接线柱中的一个连接,所述交直流控制器(4)的第四连接端与另一个所述接线柱连接;
    BMS控制器(8),所述BMS控制器(8)设置于所述电池箱体(3)内,所述BMS控制器(8)与所述交直流控制器(4)进行通信,以控制所述交直流控制器(4)切换至目标模式,以使两个所述接线柱中的一个形成所述交流动力电池总成的总正极或预留总正极,另一个所述接线柱形成所述交流动力电池总成的总负极或预留总负极。
  2. 根据权利要求1所述的交流动力电池总成,其特征在于,所述交直流控制器(4)内设置有交直流转换线(7),所述交直流控制器(4)通过所述交直流转换线(7)与所述电池模组(1)的总正极、总负极连接,以及交直流控制器(4)通过所述交直流转换线(7)与所述电池箱体(3)外部的至少两个所述接线柱连接,所述BMS控制器(8)与所述交直流控制器(4)进行通信,以控制所述交直流转换线(7)切换至目标位置,以使所述交直流控制器(4)执行所述目标模式。
  3. 根据权利要求2所述的交流动力电池总成,其特征在于,两个所述接线柱包括输出左极(5)和输出右极(6),所述目标位置包括第一位置、第二位置、第三位置和第四位置,所述目标模式包括第一模式、第二模式、第三模式和第四模式,所述交直流转换线(7)切换至所述第一位置、所述第二位置、所述第三位置和所述第四位置时,分别对应所述交直流控制器(4)的所述第一模式、所述第二模式、所述第三模式和所述第四模式。
  4. 根据权利要求3所述的交流动力电池总成,其特征在于,
    控制所述交直流转换线(7)切换至所述第一位置时,所述输出左极(5)为所述交流动力电池总成的总负极,所述输出右极(6)为所述交流动力电池总成的总正极;
    控制所述交直流转换线(7)切换至所述第二位置时,所述电池模组(1)与所述交直流控制器(4)断开,所述输出左极(5)为所述交流动力电池总成的预留总负极,所述输出右极(6)为所述交流动力电池总成的预留总正极。
  5. 根据权利要求3或4所述的交流动力电池总成,其特征在于,
    控制所述交直流转换线(7)切换至所述第三位置时,所述输出左极(5)为所述交流动力电池总成的总正极,所述输出右极(6)为所述交流动力电池总成的总负极;
    控制所述交直流转换线(7)切换至所述第四位置时,所述电池模组(1)与所述交 直流控制器(4)断开,所述输出左极(5)为所述交流动力电池总成的预留总正极,所述输出右极(6)为所述交流动力电池总成的预留总负极。
  6. 根据权利要求3所述的交流动力电池总成,其特征在于,所述BMS控制器(8)与所述交直流控制器(4)进行通信,以控制所述交直流转换线(7)从所述第一位置可切换至所述第二位置或所述第四位置,以及控制所述交直流转换线(7)从所述第三位置切换至所述第四位置或第二位置。
  7. 根据权利要求6所述的交流动力电池总成,其特征在于,相邻所述目标模式或相邻所述目标位置之间的切换频率为0.001-10000HZ之间。
  8. 一种交流动力电池总成的控制方法,所述交流动力电池总成为权利要求1至7中任一项所述的交流动力电池总成,其特征在于,所述方法包括以下步骤:
    接受电流信号,所述电流信号包括如下至少之一:交流电信号、直流电信号;
    根据所述电流信号的类型判断是否转换电压方向;
    如果是,则控制所述交直流控制器(4)切换至所述目标模式;
    检测所述交直流控制器(4)切换至所述目标模式的情况下,获取高压回路状态信息;
    基于所述高压回路状态信息,判断高压回路是否正常;
    在确定所述高压回路出现异常的情况下,控制所述交直流控制器(4)停止工作。
  9. 根据权利要求8所述的方法,其特征在于,控制所述交直流控制器(4)切换至所述目标模式,包括:
    在所述电流信号为所述直流电信号,且确定需要转换电压方向的情况下,控制所述交直流控制器(4)按照第一模式、第二模式、第三模式的顺序进行切换,或者,控制所述交直流控制器(4)按照所述第三模式、所述第二模式、所述第一模式的顺序进行切换。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    在所述电流信号为所述交流电信号,且确定需要转换电压方向的情况下,控制所述交直流控制器(4)按照所述第一模式、所述第二模式、所述第三模式、第四模式、所述第一模式的顺序进行切换,或者,控制所述交直流控制器(4)按照所述第三模式、所述第二模式、所述第一模式、所述第四模式、所述第三模式的顺序进行切换。
PCT/CN2023/089320 2022-09-15 2023-04-19 交流动力电池总成、控制方法 WO2024055586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211124759.1 2022-09-15
CN202211124759.1A CN115295900A (zh) 2022-09-15 2022-09-15 交流动力电池总成、控制方法

Publications (1)

Publication Number Publication Date
WO2024055586A1 true WO2024055586A1 (zh) 2024-03-21

Family

ID=83833788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089320 WO2024055586A1 (zh) 2022-09-15 2023-04-19 交流动力电池总成、控制方法

Country Status (2)

Country Link
CN (1) CN115295900A (zh)
WO (1) WO2024055586A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295900A (zh) * 2022-09-15 2022-11-04 中国第一汽车股份有限公司 交流动力电池总成、控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832878A (zh) * 2012-09-03 2012-12-19 珠海英搏尔电气有限公司 交流电机控制器总成
WO2019019944A1 (zh) * 2017-07-25 2019-01-31 上海蔚来汽车有限公司 用于车辆充电的转换接头、用于向车辆充电的充电系统
CN114256519A (zh) * 2021-11-30 2022-03-29 中国第一汽车股份有限公司 一种电池模组回路控制装置、方法、电池总成及电动车辆
CN114335767A (zh) * 2022-03-03 2022-04-12 徐州徐工新能源汽车有限公司 电池总成、电动汽车、换电站和充电方法
CN115295900A (zh) * 2022-09-15 2022-11-04 中国第一汽车股份有限公司 交流动力电池总成、控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832878A (zh) * 2012-09-03 2012-12-19 珠海英搏尔电气有限公司 交流电机控制器总成
WO2019019944A1 (zh) * 2017-07-25 2019-01-31 上海蔚来汽车有限公司 用于车辆充电的转换接头、用于向车辆充电的充电系统
CN114256519A (zh) * 2021-11-30 2022-03-29 中国第一汽车股份有限公司 一种电池模组回路控制装置、方法、电池总成及电动车辆
CN114335767A (zh) * 2022-03-03 2022-04-12 徐州徐工新能源汽车有限公司 电池总成、电动汽车、换电站和充电方法
CN115295900A (zh) * 2022-09-15 2022-11-04 中国第一汽车股份有限公司 交流动力电池总成、控制方法

Also Published As

Publication number Publication date
CN115295900A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP7322187B2 (ja) 車両の電池システム、充放電方法及び車両
US10967746B2 (en) Vehicle
JP2010273427A (ja) 電動車両用電源装置および組電池
WO2024055586A1 (zh) 交流动力电池总成、控制方法
TWM554864U (zh) 模組化充電車
CN210792823U (zh) 电动汽车充电系统及电动汽车
WO2013129231A1 (ja) 電源装置
CN106536261A (zh) 电池组系统和用于运行电池组系统的方法
JP2013031237A (ja) 電池装置及び電力供給システム
JP2013150497A (ja) 電気自動車
JP2023103991A (ja) 電力変換システム及び車両
JPWO2018227307A5 (zh)
WO2023226364A1 (zh) 一种充电装置及充电控制方法
US20190190086A1 (en) Charging device of vehicle
JP7191497B1 (ja) 船舶の電源系統システム、および、船舶の電源系統システムの使用方法
CN115917952A (zh) 电源装置
US11491886B2 (en) DC voltage charging post for charging an electric vehicle
WO2020191931A1 (zh) 一种电池化成电路及电池化成装置
WO2024021676A1 (zh) 充放电电路、充放电控制方法和车辆
CN220199086U (zh) 车辆电池系统和车辆
US11600991B2 (en) Electrical circuit arrangement for an energy storage system and method for operating said electrical circuit arrangement
CN117543779B (zh) 直流双向充电模块和充电桩
WO2023168788A1 (zh) 动力电池电压调节电路、系统及其控制方法和控制装置
WO2023168787A1 (zh) 动力电池电压调节电路、系统及其控制方法和控制装置
CN220359030U (zh) 预充电电路、功率变换装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864327

Country of ref document: EP

Kind code of ref document: A1