WO2021082360A1 - 一种电驱动总成的电机转子冷却系统 - Google Patents

一种电驱动总成的电机转子冷却系统 Download PDF

Info

Publication number
WO2021082360A1
WO2021082360A1 PCT/CN2020/084734 CN2020084734W WO2021082360A1 WO 2021082360 A1 WO2021082360 A1 WO 2021082360A1 CN 2020084734 W CN2020084734 W CN 2020084734W WO 2021082360 A1 WO2021082360 A1 WO 2021082360A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
hollow
oil
reducer
input shaft
Prior art date
Application number
PCT/CN2020/084734
Other languages
English (en)
French (fr)
Inventor
杨先时
牛波
牛正蕊
应迎策
Original Assignee
宁波菲仕运动控制技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波菲仕运动控制技术有限公司 filed Critical 宁波菲仕运动控制技术有限公司
Publication of WO2021082360A1 publication Critical patent/WO2021082360A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a cooling system for an electric drive assembly of a new energy vehicle, in particular to a motor rotor cooling system for an electric drive assembly.
  • the state has introduced many new energy vehicle support policies, and new energy vehicle technology continues to be iteratively updated.
  • the integration of pure electric drive vehicle powertrains is becoming higher and higher, which requires electric drivetrains. Provide power more efficiently, and bring higher challenges to the cooling performance of the powertrain.
  • the motor cooling system of the electric drive assembly is mainly aimed at the motor stator, and the thermal management of the motor rotor will become an important topic of motor cooling.
  • the motor will generate a lot of heat under extreme conditions such as car slope maintenance, starting, and rapid acceleration. If the temperature control is unreasonable, it will directly affect the output power, insulation performance and service life of the motor. Therefore, the motor of the high-efficiency electric drive assembly is designed. Achieving good temperature control of the rotor cooling system is an important issue for the electric drive assembly.
  • the motor rotor cooling system of the electric drive assembly in the prior art adopts the form of an external cooling liquid circuit.
  • the existing motor rotor cooling scheme adopts an external coolant circuit.
  • the coolant in the oil pan 3 enters the hollow input shaft 2 of the reducer from the oil outlet of the pump 1, passes through the hollow shaft 8 of the motor, and passes through the outside.
  • the oil passage 17 returns to the oil pan 3 to form a cooling cycle.
  • This solution adopts the form of an external coolant circuit and needs to be installed and fixed, which occupies a large space and is not conducive to the integrated design of the electric drive assembly.
  • this solution only uses the heat exchange of the coolant in the hollow shaft of the motor to achieve cooling.
  • the liquid heat exchange area is small and the cooling effect is insufficient.
  • the technical problem to be solved by the present invention is to provide a motor rotor cooling system of an electric drive assembly in view of the above-mentioned shortcomings of the prior art.
  • the motor rotor cooling system of the electric drive assembly uses a built-in cooling liquid circuit to improve the cooling liquid and the motor rotor.
  • the heat exchange area greatly improves the cooling efficiency and realizes the cooling liquid circulation efficiently.
  • a motor rotor cooling system of an electric drive assembly includes a pump, an oil pan, a motor rotor, and a hollow input shaft of a reducer.
  • the motor rotor includes a motor rotor laminated iron core and a laminated iron core fixed inside the motor rotor.
  • the hollow shaft of the motor, the suction port of the pump is immersed in the oil pan, the oil outlet of the pump is sealed to one end of the hollow input shaft of the reducer, and the other end of the hollow input shaft of the reducer is inserted into the inner hole of the hollow shaft of the motor
  • the hollow input shaft of the reducer and the hollow shaft of the motor are connected by a spline structure.
  • the motor rotor laminated iron core is provided with oil passages inside, and the motor hollow shaft is provided with front discharge oil communicating with both ends of the oil passages.
  • the front discharge oil port communicates with one end of the hollow input shaft of the reducer located in the inner hole of the motor hollow shaft, and the rear oil return port passes through the inner hole of the motor hollow shaft to reduce the speed.
  • the gap between the outer wall of the hollow input shaft and the spline structure are connected with the oil pan;
  • the coolant in the oil pan flows through the pump, the hollow input shaft of the reducer, the front discharge port of the hollow shaft of the motor, and the oil passage to form an oil outlet path.
  • the coolant in the oil passage sequentially flows through the rear of the hollow shaft of the motor.
  • the outer wall of the hollow input shaft of the reducer and the inner hole wall of the hollow rotating shaft of the motor are sealed connected by a first sealing ring and a second sealing ring, and the first sealing ring and the second sealing ring
  • the seal ring is located between the front row oil return port and the rear row oil return port.
  • the spline structure includes a spline 1 arranged on the outer wall of the hollow input shaft of the reducer and a spline 2 arranged on the inner hole wall of the hollow shaft of the motor.
  • the hollow input of the reducer The shaft and the hollow rotating shaft of the motor are fixedly connected by a spline 1 and a spline 2 in meshing engagement.
  • the meshing parts of the spline 1 and the spline 2 remove part of the meshing teeth to form a through hole for the coolant to flow through.
  • the oil pan is fixed at the bottom of the reducer housing in the electric drive assembly.
  • the pump is a mechanical pump or an electronic pump.
  • the motor rotor cooling system of the electric drive assembly of the present invention uses a built-in coolant circuit, that is, the coolant flows through the motor hollow shaft and the oil passage of the motor rotor laminated iron core, so there is a large enough heat exchange area to ensure heat The exchange is sufficient to improve the heat exchange efficiency, realize the cooling liquid circulation efficiently, and improve the performance of the electric drive assembly.
  • the cooling system of the present invention is integrated with the electric drive assembly structure, and the structure is highly integrated.
  • the external oil passage and installation structure are eliminated, so that the outer dimensions of the electric drive assembly are more optimized.
  • the built-in oil passage of the present invention is designed in the laminated iron core of the motor rotor, so that the structural quality of the laminated iron core of the motor rotor is obviously reduced.
  • the spline structure of the hollow shaft of the motor removes part of the meshing teeth, which does not affect the spline connection strength. Improve the flow capacity of the coolant, ensure the return speed of the coolant, reduce the quality of the motor shaft, and increase the power density of the motor to a certain extent.
  • the hollow shaft of the motor of the present invention is designed front and rear oil outlets and rear oil return ports respectively.
  • the coolant can flow freely through the front oil outlet and the rear oil return port, and pass through the first and second sealing rings.
  • the cooling fluid can only flow out from the front discharge port of the hollow shaft of the motor, and flow in from the rear discharge port to prevent the oil from flowing into the cavity. Ensure that the coolant flows according to the designed flow path to ensure the cooling effect.
  • the present invention can be extended to the multi-oil channel feature of the laminated iron core of the motor rotor, which greatly increases the heat exchange area between the cooling liquid and the motor rotor, and greatly improves the cooling efficiency.
  • Fig. 1 is a schematic diagram of the prior art principle similar to the present invention.
  • Figure 2 is a schematic diagram of the principle of the present invention.
  • Fig. 3 is a schematic diagram of the cooling liquid circulation circuit of the present invention.
  • Figure 4 is a schematic diagram of the hollow shaft of the motor of the present invention.
  • Figure 5 is a schematic diagram of the spline structure of the present invention.
  • This embodiment provides a motor rotor cooling system of an electric drive assembly, as shown in Figure 2, including a pump 1, an oil pan 3, a motor rotor, a reducer hollow input shaft 2, a motor housing 9, and a reducer hollow input shaft 2
  • the bearing 10 at the front end, the hollow input shaft of the reducer 2
  • the bearing 10 at the rear end, the reducer housing 11, the motor rear housing 12, the reducer differential assembly 13, and the reducer intermediate shaft assembly 14.
  • the motor rotor of this embodiment includes a motor rotor laminated iron core and a hollow motor shaft 8 fixed inside the motor rotor laminated iron core.
  • the oil suction port of the pump 1 is immersed in the oil pan 3.
  • the oil outlet of the pump 1 is in a sealed connection with one end of the reducer hollow input shaft 2, the other end of the reducer hollow input shaft 2 is inserted into the inner hole of the motor hollow shaft 8 and the reducer hollow input shaft 2 and the motor hollow shaft 8 pass through the flower
  • the key structure 4 is connected, the motor rotor laminated iron core is provided with an oil passage 6 inside, and the motor hollow shaft 8 is respectively provided with a front discharge oil port 15 and a rear discharge oil return port 16 communicating with both ends of the oil passage 6 (As shown in Figure 4), the front discharge oil port 15 communicates with one end of the reducer hollow input shaft 2 located in the inner hole of the motor hollow shaft 8, and the rear oil return port 16 passes through the motor hollow shaft 8 in turn
  • the hollow input shaft 2 of the reducer and the housing 11 of the reducer adopt the front and rear bearings 10 for positioning and assembly; the hollow input shaft 2 of the reducer and the hollow shaft 8 of the motor are connected by a spline structure 4; the hollow shaft 8 of the motor It has an interference fit relationship with the laminated iron core of the motor rotor, and the front discharge oil port 15 and the rear oil return port 16 of the hollow motor shaft 8 are in communication with the oil passage 6 of the laminated iron core of the motor rotor.
  • the coolant in the oil pan 3 sequentially flows through the pump 1, the hollow input shaft of the reducer 2, the front discharge port 15 of the hollow shaft 8 of the motor, and the oil passage 6 to form an oil outlet path.
  • the coolant in the oil passage 6 Flow through the rear oil return port 16 of the motor hollow shaft 8, the gap between the inner hole of the motor hollow shaft 8 and the outer wall of the reducer hollow input shaft 2, the spline structure 4 and the oil pan 3 to form an oil return path ,
  • the oil outlet path and the oil return path communicate with each other to form a closed loop.
  • the motor stator of this embodiment is located inside the motor housing 9, the motor rotor is located inside the motor stator, and the hollow motor shaft 8 of the motor rotor is supported on the motor housing 9 through bearings.
  • the hollow input shaft 2 of the reducer is supported on the reducer housing 11 through a bearing 10.
  • the gear integrated on the hollow input shaft 2 of the reducer is meshed with a gear and the gear is splined with the reducer intermediate shaft assembly 14 and the reducer intermediate shaft
  • the gear integrated on the assembly 14 meshes with another gear, and the gear is splined with the reducer differential assembly 13.
  • the working process of the electric drive assembly in this embodiment is: after the windings in the motor stator are energized, electronic
  • the electromagnetic field of the stator and rotor converts electrical energy into mechanical energy to drive the motor rotor to rotate.
  • the motor hollow shaft 8 of the motor rotor transmits the power to the reducer hollow input shaft 2.
  • the reducer hollow input shaft 2 transmits the power to the reducer intermediate shaft assembly 14 through gears, and the reducer intermediate shaft assembly 14 transmits power through the gears Give the reducer differential assembly 13.
  • the outer wall of the hollow input shaft 2 of the reducer of this embodiment and the inner hole wall of the hollow shaft 8 of the motor are sealed and connected by a first sealing ring 7 and a second sealing ring 5.
  • the first sealing ring 7 and the second sealing ring 5 is located between the front drain port 15 and the rear drain port 16.
  • the front and rear discharge ports 15 and the rear discharge ports 16 are respectively designed for the front and rear of the shaft.
  • the oil can flow freely through the front discharge ports 15 and the rear discharge ports 16 and pass through the first
  • the sealing effect of the sealing ring 7 and the first sealing ring 7 ensures that the cooling liquid flows according to the designed flow path and ensures the cooling effect.
  • the spline structure 4 of this embodiment includes a spline 1 arranged on the outer wall of the hollow input shaft 2 of the reducer and a spline 2 arranged on the inner wall of the hollow shaft 8 of the motor.
  • the hollow input shaft 2 of the reducer and the hollow shaft of the motor 8 Through spline 1 and spline 2 meshing and fixed connection.
  • the meshing parts of the spline 1 and the spline 2 are partially removed from the meshing teeth to form a through hole 18 for the coolant to flow through.
  • the strength of the spline connection is improved before, part of the meshing teeth is removed, the flow characteristics of the cooling liquid are improved, and the return speed of the cooling liquid is ensured.
  • the oil pan 3 of this embodiment is fixed at the bottom of the reducer housing in the electric drive assembly.
  • the pump 1 of this embodiment is a mechanical pump or an electronic pump.
  • the working principle of the system and the coolant circulation path (path 1 to path 9) are: coolant flows from the oil pan 3 through the pump 1, and enters the reducer hollow input shaft 2 from the oil outlet of the pump 1.
  • the connection area adopts a sealed structure (that is, the first sealing ring 7 and the second sealing ring 5) to prevent oil leakage; the coolant flows into the hollow shaft 8 of the motor through the hollow input shaft 2 of the reducer, and the hollow input shaft 2 of the reducer and the motor hollow
  • the rotating shaft 8 is connected by a spline, and there is no difference in speed between the two.
  • the hollow rotating shaft 8 of the motor is circumferentially distributed at the front discharge oil port 15 and the rear oil return port 16 and communicates with the oil passage 6 of the laminated iron core of the motor rotor.
  • the liquid flows from the front outlet port 15 into the oil passage 6 of the laminated iron core of the motor rotor, and then flows into the motor hollow shaft 8 from the rear outlet port; the coolant passes through the spline structure 4 of the reducer hollow input shaft 2 and the motor hollow shaft 8 Then flow into the oil pan 3 again to complete the coolant circulation loop.
  • the front discharge port 15 and the rear discharge return port 16 of the motor hollow shaft 8 are sealed by the first seal ring 7 and the second seal ring 5. After sealing, the coolant can only discharge oil from the front of the motor hollow shaft 8.
  • the port 15 flows out and flows in from the rear oil return port 16 to prevent the oil from flowing into the cavity.
  • the coolant flows through the hollow shaft 8 of the motor and the laminated iron core of the motor rotor, so there is a large enough heat exchange area to ensure sufficient heat exchange to improve heat exchange efficiency.
  • the coolant in this embodiment is sucked into the hollow input shaft 2 of the reducer from the oil pan 3 through the pump 1, due to the sealing effect of the hollow input shaft 2 of the reducer and the first sealing ring 7 and the second sealing ring 5 of the hollow shaft of the motor rotor ,
  • the coolant can only flow out from the front discharge port 15 of the motor hollow shaft 8 into the oil passage 6 of the motor rotor laminated iron core; the coolant is discharged from the back port of the motor hollow shaft 8 to the reducer hollow input shaft 2 and
  • the gap of the hollow shaft of the motor rotor flows back to the oil pan 3 through the front end bearing 10 of the hollow input shaft 2 of the reducer through the spline connection structure.
  • the cooling liquid performs heat exchange in the hollow input shaft 2 of the reducer 2, the hollow rotating shaft 8 of the motor, and the oil passage 6 in the laminated iron core of the motor rotor to achieve the cooling target.
  • the laminated iron core of the rotor of the motor in this embodiment is formed by superimposing a plurality of punched rotor pieces.
  • the cooling system and the electric drive assembly structure of this embodiment are integrated design, the structure is highly integrated, the external oil channel and the installation structure are eliminated, so that the outer size of the electric drive assembly is more optimized.
  • the built-in oil passage 6 of this solution is designed in the rotor punching structure, which significantly reduces the quality of the rotor punching structure.
  • the spline structure 4 of the hollow shaft removes some of the meshing teeth and improves the coolant without affecting the strength of the spline connection. Flow capacity, and reduce the quality of the motor shaft, improve the power density of the motor to a certain extent.
  • this embodiment can be expanded to the multi-oil channel feature of the laminated iron core of the motor rotor, which greatly increases the heat exchange area between the cold coolant and the motor rotor, and greatly improves the cooling efficiency.
  • This embodiment can not only realize the efficient cooling of the rotor of the drive motor and improve the performance of the electric drive assembly, but also reduce the installation size to ensure the integrated design of the electric drive assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本发明公开了一种电驱动总成的电机转子冷却系统,包括泵、油底壳、电机转子和减速器空心输入轴,电机转子包括电机转子叠片铁芯和电机空心转轴,泵的吸油口浸没于油底壳中,泵的出油口与减速器空心输入轴密封连接,减速器空心输入轴插入电机空心转轴的内孔中且减速器空心输入轴与电机空心转轴通过花键结构连接,电机转子叠片铁芯的内部设有油道,电机空心转轴分别设有与油道连通的前排出油口和后排回油口,前排出油口与减速器空心输入轴一端连通,后排回油口依次通过电机空心转轴与减速器空心输入轴之间的间隙、花键结构与油底壳连通;本发明通过内置冷却液回路,提高冷却液与电机转子的换热面积,大幅提高冷却效率,高效实现冷却液循环。

Description

一种电驱动总成的电机转子冷却系统 技术领域
本发明涉及新能源汽车电驱动总成冷却系统,具体涉及一种电驱动总成的电机转子冷却系统。
背景技术
在节能环保的发展主题之下,国家出台了诸多新能源汽车扶持政策,新能源汽车技术持续迭代更新,特别是纯电驱动汽车动力总成的集成化程度越来越高,要求电驱动总成更高效提供动力,而对动力总成的冷却性能带来更高的挑战。目前电驱动总成的电机冷却系统主要针对电机定子,而对电机转子的热管理将成为电机冷却的一个重要课题。在汽车坡道保持及起步、急加速等极限工况下电机将产生大量热,若温度控制不合理将直接影响电机的输出功率、绝缘性能以及使用寿命,因此设计高效的电驱动总成的电机转子冷却系统实现良好的温度控制是电驱动总成一个重要课题。
现有技术的电驱动总成的电机转子冷却系统采用外置冷却液回路形式。
如图1所示,现有电机转子冷却方案采用外置冷却液回路形式,油底壳3内的冷却液从泵1出油口进入减速器空心输入轴2,经过电机空心转轴8,通过外置油道17回流至油底壳3内,形成冷却循环。该方案采用外置冷却液回路形式需要进行安装固定,占用较大空间,不利于电驱动总成的集成化设计;同时该方案仅通过电机空心转轴部分的冷却液产生热交换实现冷却,由于冷却液热交换面积较小,冷却效果不足。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足提供一种电驱动总成的电机转子冷却系统,本电驱动总成的电机转子冷却系统通过内置冷却液回路,提高冷却液与电机转子的换热面积,大幅提高冷却效率,高效实现冷却液循环。
为实现上述技术目的,本发明采取的技术方案为:
一种电驱动总成的电机转子冷却系统,包括泵、油底壳、电机转子和减速器空心输入轴,所述电机转子包括电机转子叠片铁芯和固定在电机转子叠片铁芯内部的电机空心转轴,所述泵的吸油口浸没于油底壳中,泵的出油口与减速器空心输入轴的一端密封连接,所述减速器空心输入轴的另一端插入电机空心转轴的内孔中且减速器空心输入轴与电机空心转轴通过花键结构连接,所述电机转子叠片铁芯的内部设有油道,所述电机空心转轴分别设有与油道两 端连通的前排出油口和后排回油口,所述前排出油口与位于电机空心转轴的内孔中的减速器空心输入轴的一端连通,所述后排回油口依次通过电机空心转轴的内孔与减速器空心输入轴的外壁之间的间隙、花键结构与油底壳连通;
油底壳内的冷却液依次流经泵、减速器空心输入轴、电机空心转轴的前排出油口和油道从而形成出油路径,所述油道内的冷却液依次流经电机空心转轴的后排回油口、电机空心转轴的内孔与减速器空心输入轴的外壁之间的间隙、花键结构和油底壳从而形成回油路径,所述出油路径和回油路径相互连通形成循环闭路。
作为本发明进一步改进的技术方案,所述减速器空心输入轴的外壁与电机空心转轴的内孔壁之间通过第一密封圈和第二密封圈密封连接,所述第一密封圈和第二密封圈位于前排回油口和后排回油口之间。
作为本发明进一步改进的技术方案,所述花键结构包括设置在减速器空心输入轴外壁上的花键一和设置在电机空心转轴的内孔壁上的花键二,所述减速器空心输入轴与电机空心转轴通过花键一和花键二啮合固定连接,所述花键一和花键二上的啮合部位去除部分啮合齿从而形成用于冷却液流经的贯穿孔。
作为本发明进一步改进的技术方案,所述油底壳固定在电驱动总成中的减速器外壳的底部。
作为本发明进一步改进的技术方案,所述泵为机械泵或电子泵。
本发明的有益效果为:
(1)本发明电驱动总成的电机转子冷却系统通过内置冷却液回路,即冷却液流经电机空心转轴、电机转子叠片铁芯的油道,故此存在足够大的换热面积,保证热交换充分,以提高换热效率,高效实现冷却液循环,提高电驱动总成性能。
(2)本发明的冷却系统与电驱动总成结构进行一体化设计,结构高度集成化,取消外置油道及安装结构,使得电驱动总成的外尺寸更优化设计。本发明的内置油道设计在电机转子叠片铁芯中,使得电机转子叠片铁芯结构质量明显减少,同时在电机空心转轴的花键结构去除部分啮合齿,不影响花键连接强度的前提下提高冷却液通流能力,保证冷却液的回流速度,并减低电机转轴质量,一定程度提高电机的功率密度。
(3)本发明的电机空心转轴前后分别设计前排出油口和后排回油口,冷却液可以通过前排出油口和后排回油口自由流动,通过第一密封圈和第二密封圈的密封作用,冷却液只能从电机空心转轴的前排出油口流出,从后排回油口流入,防止油液串腔。保证冷却液按设计的通流路径流动,保证冷却效果。
(4)相对于外置冷却液回路,本发明可以拓展为电机转子叠片铁芯多油道特征,极大提高冷冷却液与电机转子的换热面积,大幅提高冷却效率。
附图说明
图1为与本发明相似的现有技术原理示意图。
图2为本发明原理示意图。
图3为本发明冷却液循环回路示意图。
图4为本发明电机空心转轴示意图。
图5为本发明花键结构示意图。
具体实施方式
下面根据图2至图5对本发明的具体实施方式作出进一步说明:
本实施例提供一种电驱动总成的电机转子冷却系统,如图2所示,包括泵1、油底壳3、电机转子、减速器空心输入轴2、电机外壳9、减速器空心输入轴2前端的轴承10、减速器空心输入轴2后端的轴承10、减速器壳体11、电机后壳体12、减速器差速器总成13、减速器中间轴总成14。
如图2所示,本实施例的电机转子包括电机转子叠片铁芯和固定在电机转子叠片铁芯内部的电机空心转轴8,所述泵1的吸油口浸没于油底壳3中,泵1的出油口与减速器空心输入轴2的一端密封连接,减速器空心输入轴2的另一端插入电机空心转轴8的内孔中且减速器空心输入轴2与电机空心转轴8通过花键结构4连接,所述电机转子叠片铁芯的内部设有油道6,所述电机空心转轴8分别设有与油道6两端连通的前排出油口15和后排回油口16(如图4所示),所述前排出油口15与位于电机空心转轴8的内孔中的减速器空心输入轴2的一端连通,所述后排回油口16依次通过电机空心转轴8的内孔与减速器空心输入轴2的外壁之间的间隙、花键结构4与油底壳3连通。
本实施例的减速器空心输入轴2与减速器壳体11之间采用前端、后端的轴承10定位装配;减速器空心输入轴2与电机空心转轴8为花键结构4连接;电机空心转轴8与电机转子叠片铁芯过盈配合关系,且电机空心转轴8的前排出油口15和后排回油口16与电机转子叠片铁芯的油道6连通。
油底壳3内的冷却液依次流经泵1、减速器空心输入轴2、电机空心转轴8的前排出油口15和油道6从而形成出油路径,所述油道6内的冷却液依次流经电机空心转轴8的后排回油口16、电机空心转轴8的内孔与减速器空心输入轴2的外壁之间的间隙、花键结构4和油底 壳3从而形成回油路径,所述出油路径和回油路径相互连通形成循环闭路。
本实施例的电机定子位于电机外壳9内侧,电机转子位于电机定子内侧,电机转子的电机空心转轴8通过轴承支撑在电机外壳9上。减速器空心输入轴2通过轴承10支撑在减速器壳体11上,减速器空心输入轴2上集成的齿轮啮合有齿轮且该齿轮与减速器中间轴总成14花键连接,减速器中间轴总成14上集成的齿轮啮合有另一齿轮且该齿轮与减速器差速器总成13花键连接,本实施例电驱动总成的工作过程为:电机定子中的绕组通电后,通过电子定转子的电磁场将电能转换为机械能驱动电机转子旋转。电机转子的电机空心转轴8将动力传递给减速器空心输入轴2,减速器空心输入轴2通过齿轮将动力传递给减速器中间轴总成14,减速器中间轴总成14通过齿轮将动力传递给减速器差速器总成13。
本实施例的减速器空心输入轴2的外壁与电机空心转轴8的内孔壁之间通过第一密封圈7和第二密封圈5密封连接,所述第一密封圈7和第二密封圈5位于前排出油口15和后排回油口16之间。
根据图4的电机空心转轴8结构示意图,转轴前后分别设计前排出油口15和后排回油口16,油液可以通过前排出油口15和后排回油口16自由流动,通过第一密封圈7和第一密封圈7的密封作用,保证冷却液按设计的通流路径流动,保证冷却效果。
本实施例的花键结构4包括设置在减速器空心输入轴2外壁上的花键一和设置在电机空心转轴8的内孔壁上的花键二,减速器空心输入轴2与电机空心转轴8通过花键一和花键二啮合固定连接。如图5所示,花键一和花键二上的啮合部位去除部分啮合齿从而形成用于冷却液流经的贯穿孔18。本实施例保证花键连接强度之前提,去除部分啮合齿,提高冷却液的通流特性,保证冷却液的回流速度。
如图2所示,本实施例的油底壳3固定在电驱动总成中的减速器外壳的底部。
本实施例的泵1为机械泵或电子泵。
如图3所示的箭头,系统工作原理及冷却液循环路径(路径1至路径9)为:冷却液从油底壳3经过泵1,从泵1的出油口进入减速器空心输入轴2,连接区域采用密封结构(即第一密封圈7和第二密封圈5)防止出现漏油现象;冷却液通过减速器空心输入轴2流入电机空心转轴8,减速器空心输入轴2与电机空心转轴8采用花键连接,二者不存在转速差,其中电机空心转轴8周向分布前排出油口15和后排回油口16以及并与电机转子叠片铁芯的油道6连通,冷却液从前排出油口15流入电机转子叠片铁芯的油道6,并从后排出油口重新流入电机空心转轴8;冷却液经过减速器空心输入轴2与电机空心转轴8的花键结构4后重新流入油底壳3完成冷却液循环回路。其中电机空心转轴8的前排出油口15和后排回油口16 之间用第一密封圈7和第二密封圈5进行密封,密封后冷却液只能从电机空心转轴8的前排出油口15流出,从后排回油口16流入,防止油液串腔。冷却液流经电机空心转轴8、电机转子叠片铁芯,故此存在足够大的换热面积,保证热交换充分,以提高换热效率。
本实施例的冷却液通过泵1,从油底壳3吸入减速器空心输入轴2,由于减速器空心输入轴2与电机转子空心转轴的第一密封圈7和第二密封圈5的密封作用,冷却液只能从电机空心转轴8的前排出油口15流出进入电机转子叠片铁芯的油道6内;冷却液从电机空心转轴8的后排出油口流减速器空心输入轴2与电机转子空心转轴的间隙,经过花键连接结构,通过减速器空心输入轴2前端轴承10流回至油底壳3。冷却液在减速器空心输入轴2、电机空心转轴8、电机转子叠片铁芯内油道6进行热交换实现冷却目标。
本实施例的电机转子叠片铁芯由多个转子冲片叠加而成。
本实施例的冷却系统与电驱动总成结构进行一体化设计,结构高度集成化,取消外置油道及安装结构,使得电驱动总成的外尺寸更优化设计。本方案的内置油道6设计在转子冲片结构中,使得转子冲片结构质量明显减少,同时在空心转轴的花键结构4去除部分啮合齿,不影响花键连接强度的前提下提高冷却液通流能力,并减低电机转轴质量,一定程度提高电机的功率密度。
相对于外置冷却液回路,本实施例可以拓展为电机转子叠片铁芯多油道特征,极大提高冷冷却液与电机转子的换热面积,大幅提高冷却效率。
本实施例既可以实现驱动电机转子的高效冷却提高电驱动总成性能,又可以减小安装尺寸保证电驱动总成的集成化设计。
本发明的保护范围包括但不限于以上实施方式,本发明的保护范围以权利要求书为准,任何对本技术做出的本领域的技术人员容易想到的替换、变形、改进均落入本发明的保护范围。

Claims (5)

  1. 一种电驱动总成的电机转子冷却系统,其特征在于,包括泵、油底壳、电机转子和减速器空心输入轴,所述电机转子包括电机转子叠片铁芯和固定在电机转子叠片铁芯内部的电机空心转轴,所述泵的吸油口浸没于油底壳中,泵的出油口与减速器空心输入轴的一端密封连接,所述减速器空心输入轴的另一端插入电机空心转轴的内孔中且减速器空心输入轴与电机空心转轴通过花键结构连接,所述电机转子叠片铁芯的内部设有油道,所述电机空心转轴分别设有与油道两端连通的前排出油口和后排回油口,所述前排出油口与位于电机空心转轴的内孔中的减速器空心输入轴的一端连通,所述后排回油口依次通过电机空心转轴的内孔与减速器空心输入轴的外壁之间的间隙、花键结构与油底壳连通;
    油底壳内的冷却液依次流经泵、减速器空心输入轴、电机空心转轴的前排出油口和油道从而形成出油路径,所述油道内的冷却液依次流经电机空心转轴的后排回油口、电机空心转轴的内孔与减速器空心输入轴的外壁之间的间隙、花键结构和油底壳从而形成回油路径,所述出油路径和回油路径相互连通形成循环闭路。
  2. 根据权利要求1所述的电驱动总成的电机转子冷却系统,其特征在于,所述减速器空心输入轴的外壁与电机空心转轴的内孔壁之间通过第一密封圈和第二密封圈密封连接,所述第一密封圈和第二密封圈位于前排回油口和后排回油口之间。
  3. 根据权利要求1所述的电驱动总成的电机转子冷却系统,其特征在于,所述花键结构包括设置在减速器空心输入轴外壁上的花键一和设置在电机空心转轴的内孔壁上的花键二,所述减速器空心输入轴与电机空心转轴通过花键一和花键二啮合固定连接,所述花键一和花键二上的啮合部位去除部分啮合齿从而形成用于冷却液流经的贯穿孔。
  4. 根据权利要求1所述的电驱动总成的电机转子冷却系统,其特征在于,所述油底壳固定在电驱动总成中的减速器外壳的底部。
  5. 根据权利要求1所述的电驱动总成的电机转子冷却系统,其特征在于,所述泵为机械泵或电子泵。
PCT/CN2020/084734 2019-10-29 2020-04-14 一种电驱动总成的电机转子冷却系统 WO2021082360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911034871.4 2019-10-29
CN201911034871.4A CN110733334B (zh) 2019-10-29 2019-10-29 一种电驱动总成的电机转子冷却系统

Publications (1)

Publication Number Publication Date
WO2021082360A1 true WO2021082360A1 (zh) 2021-05-06

Family

ID=69271841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084734 WO2021082360A1 (zh) 2019-10-29 2020-04-14 一种电驱动总成的电机转子冷却系统

Country Status (2)

Country Link
CN (1) CN110733334B (zh)
WO (1) WO2021082360A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824248A (zh) * 2021-08-13 2021-12-21 浙江零跑科技股份有限公司 一种增程发电机总成系统的润滑及散热结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110733334B (zh) * 2019-10-29 2022-07-12 宁波菲仕运动控制技术有限公司 一种电驱动总成的电机转子冷却系统
CN112202259B (zh) * 2020-09-29 2021-06-11 上海电气集团股份有限公司 一种电机转子冷却系统及电驱动总成
CN112769268A (zh) * 2020-12-30 2021-05-07 华为技术有限公司 动力传递组件及动力总成
CN116633081A (zh) * 2023-06-02 2023-08-22 山东华东风机有限公司 一种具有转子主轴散热风道的磁悬浮高速鼓风机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057551A (zh) * 1990-06-15 1992-01-01 通用电气公司 电机转子的液体冷却
US20030030333A1 (en) * 2001-08-08 2003-02-13 Johnsen Tyrone A. Cooling of a rotor for a rotary electric machine
JP2015089316A (ja) * 2013-11-01 2015-05-07 トヨタ自動車株式会社 回転電機
CN107659017A (zh) * 2017-10-31 2018-02-02 合肥巨动力系统有限公司 一种用于电机转子冷却的结构
CN207098801U (zh) * 2017-05-22 2018-03-13 比亚迪股份有限公司 一种具有冷却油路的电机
CN109038951A (zh) * 2018-07-24 2018-12-18 上海大郡动力控制技术有限公司 新能源汽车电驱动力总成的冷却结构
CN110733334A (zh) * 2019-10-29 2020-01-31 宁波菲仕运动控制技术有限公司 一种电驱动总成的电机转子冷却系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490103B2 (ja) * 2009-04-17 2014-05-14 株式会社日本自動車部品総合研究所 回転電機
JP5956203B2 (ja) * 2012-03-14 2016-07-27 株式会社小松製作所 電動機
CN102723834A (zh) * 2012-04-25 2012-10-10 山西北方机械制造有限责任公司 一种永磁同步电机
DE102016215423A1 (de) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Elektrische Maschine und Fahrzeug mit der elektrischen Maschine
CN206237264U (zh) * 2016-12-02 2017-06-09 湖南天能电机制造有限公司 一种异步电机细长转子浸铝铸造模具
CN108462318B (zh) * 2017-02-22 2022-04-26 蔚来(安徽)控股有限公司 电机冷却结构、动力电机及电驱动系统
KR102575911B1 (ko) * 2017-12-27 2023-09-07 엠에이치기술개발 주식회사 모터 냉각장치 및 이를 구비한 자동차
JP2019126237A (ja) * 2018-01-19 2019-07-25 トヨタ自動車株式会社 回転電機
JP6654655B2 (ja) * 2018-02-19 2020-02-26 トヨタ自動車株式会社 回転電機のロータ
DE102018209340B3 (de) * 2018-06-12 2019-04-25 Bayerische Motoren Werke Aktiengesellschaft Betriebsstrategie für einen Mehrphasensystem-Inverter einer elektrischen Antriebseinheit für ein Kraftfahrzeug
CN109067092B (zh) * 2018-08-28 2019-12-17 华中科技大学 一种电机转子冷却结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057551A (zh) * 1990-06-15 1992-01-01 通用电气公司 电机转子的液体冷却
US20030030333A1 (en) * 2001-08-08 2003-02-13 Johnsen Tyrone A. Cooling of a rotor for a rotary electric machine
JP2015089316A (ja) * 2013-11-01 2015-05-07 トヨタ自動車株式会社 回転電機
CN207098801U (zh) * 2017-05-22 2018-03-13 比亚迪股份有限公司 一种具有冷却油路的电机
CN107659017A (zh) * 2017-10-31 2018-02-02 合肥巨动力系统有限公司 一种用于电机转子冷却的结构
CN109038951A (zh) * 2018-07-24 2018-12-18 上海大郡动力控制技术有限公司 新能源汽车电驱动力总成的冷却结构
CN110733334A (zh) * 2019-10-29 2020-01-31 宁波菲仕运动控制技术有限公司 一种电驱动总成的电机转子冷却系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824248A (zh) * 2021-08-13 2021-12-21 浙江零跑科技股份有限公司 一种增程发电机总成系统的润滑及散热结构

Also Published As

Publication number Publication date
CN110733334A (zh) 2020-01-31
CN110733334B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2021082360A1 (zh) 一种电驱动总成的电机转子冷却系统
TWI782944B (zh) 電機冷卻結構、動力電機及電驅動系統
CN101532501B (zh) 改进的磁力泵
CN204408058U (zh) 一种双转子电机油路冷却装置
CN111322275A (zh) 一种高速永磁电机直驱的封闭式双级离心水蒸气压缩机的自冷却系统及其方法
JP6982380B2 (ja) スクリュ圧縮機
CN209860741U (zh) 电机总成及车辆
WO2023010947A1 (zh) 一种电驱动总成的冷却润滑装置和电驱动总成
CN110808659A (zh) 一种电驱动总成
CN103836167A (zh) 一种混合动力汽车的动力耦合装置冷却润滑系统
CN102386718A (zh) 电机冷却系统
CN105375689A (zh) 具有第一循环和第二循环的电机
CN207150352U (zh) 一种驱动系统
CN210397450U (zh) 一种气浮轴承
CN110474478B (zh) 电动车辆动力总成及其马达转子冷却方法
CN105539117A (zh) 机动车混合动力驱动装置
CN111555554A (zh) 一种对电机和控制器进行油冷的电动油泵总成
CN204886550U (zh) 一种冷却型减速电机
CN212969349U (zh) 齿轮箱散热装置
CN113890273B (zh) 双电桥总成
CN212063778U (zh) 一种电机壳内循环集成冷却系统
CN115021437A (zh) 定子组件、电机以及具有其的汽车
CN212637140U (zh) 一种电驱动总成的电机转子冷却系统
CN204316260U (zh) 一种电机
CN207968210U (zh) 一种驱动电机冷却结构及电动汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882234

Country of ref document: EP

Kind code of ref document: A1