WO2021082356A1 - 分时复用控制装置和系统 - Google Patents

分时复用控制装置和系统 Download PDF

Info

Publication number
WO2021082356A1
WO2021082356A1 PCT/CN2020/084451 CN2020084451W WO2021082356A1 WO 2021082356 A1 WO2021082356 A1 WO 2021082356A1 CN 2020084451 W CN2020084451 W CN 2020084451W WO 2021082356 A1 WO2021082356 A1 WO 2021082356A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
switch
module
cathode
signal
Prior art date
Application number
PCT/CN2020/084451
Other languages
English (en)
French (fr)
Inventor
唐华平
潘劲松
占杨炜
秦占峰
张庆辉
尹翔宇
Original Assignee
新鸿电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新鸿电子有限公司 filed Critical 新鸿电子有限公司
Priority to US17/755,520 priority Critical patent/US11792908B2/en
Priority to EP20883595.9A priority patent/EP4053877A4/en
Publication of WO2021082356A1 publication Critical patent/WO2021082356A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/70Circuit arrangements for X-ray tubes with more than one anode; Circuit arrangements for apparatus comprising more than one X ray tube or more than one cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/265Measurements of current, voltage or power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/46Combined control of different quantities, e.g. exposure time as well as voltage or current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/56Switching-on; Switching-off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/025X-ray tubes with structurally associated circuit elements

Definitions

  • the present disclosure relates to the fields of industrial non-destructive testing, safety inspection, medical diagnosis and treatment, and in particular, to a time-division multiplexing control device and system applied to distributed X-ray sources.
  • X-rays have a wide range of applications in industrial non-destructive testing, safety inspections, medical diagnosis and treatment and other fields.
  • the device that generates X-rays is called an X-ray source.
  • the X-ray source is usually composed of an X-ray tube, a high-voltage power supply control system, cooling and shielding and other auxiliary devices.
  • Existing high-voltage power supply control systems are usually single-output power supplies with one cathode, and the adjustment of the output voltage usually takes a long time, generally on the order of milliseconds or even seconds.
  • a multi-focus X-ray source (or a distributed X-ray source) is a high-density integration of hundreds of cathode-anode components in a tube structure, which can radiate X-rays from multiple different positions, and quickly perform Transmission imaging with different viewing angles, and each cathode-anode assembly keeps working independently.
  • the multi-focus X-ray source contains multiple channels, and each channel corresponds to an emission cathode. Each emission cathode is driven by a control system to emit electrons. At the same time, the output current of each channel can be quickly and automatically adjusted through real-time negative feedback.
  • the new multi-focus X-ray source can be turned on and off instantaneously at the microsecond ( ⁇ s) level.
  • each cathode control stage uses a driving circuit and an acquisition circuit corresponding to each other. In this way, the drive and acquisition of multiple cathode control stages require multiple drives and multiple acquisition circuits.
  • DA digital-to-analog
  • AD analog-to-digital
  • a time division multiplexing control device applied to a distributed X-ray source including:
  • the first switch module includes a plurality of first switches, and is used for receiving a high voltage signal and a first control signal, and selecting and closing one of the plurality of first switches according to the first control signal and passing the closed first switch Sending the high voltage signal;
  • the cathode control module includes a plurality of cathode control stages corresponding to the plurality of first switches one-to-one, and is used to receive the high voltage signal from the first switch module and communicate with all the cathode control stages through the plurality of cathode control stages.
  • the cathode control stage corresponding to the closed first switch sends working state data, wherein each cathode control stage includes a cathode control unit and a cathode.
  • the cathode control unit in the cathode control stage corresponding to the closed first switch, is configured to receive the high voltage signal, send a drive control signal to the cathode, and perform automatic feedback adjustment according to the feedback signal, and The working state data is sent, and the cathode is configured to send the feedback signal to the cathode control unit according to the drive control signal.
  • the time division multiplexing control device further includes:
  • a collection feedback module configured to receive a feedback signal from the cathode control module and send the feedback signal
  • the feedback switch module includes a plurality of feedback switches, and is used to receive a feedback control signal and receive the feedback signal from the collection feedback module, and according to the feedback control signal, select and close one of the plurality of feedback switches and close The feedback switch sends the feedback signal to the cathode control module,
  • the cathode control unit is configured to receive the high voltage signal and the feedback signal, send a drive control signal to the cathode, and perform automatic feedback adjustment according to the feedback signal , And send the working state data, and the cathode is configured to send the feedback signal to the collection and feedback module according to the drive control signal.
  • each of the plurality of first switches is formed by a plurality of metal oxide semiconductor MOS transistors connected in series.
  • the time division multiplexing control device further includes:
  • the second switch module includes a plurality of second switches corresponding to the plurality of cathode control stages one-to-one, and is used for receiving a driving signal and a second control signal, and selecting and closing the plurality of One of the second switches and sends the drive signal through the closed second switch,
  • the cathode control module is further configured to receive the driving signal from the second switch module and communicate with the closed first switch and the closed second switch in the plurality of cathode control stages.
  • the corresponding cathode control stage sends the working status data
  • first control signal and the second control signal are provided so that the closed first switch and the closed second switch are connected to the same cathode control stage.
  • the time division multiplexing control device further includes:
  • the third switch module includes a plurality of third switches corresponding to the plurality of cathode control stages one-to-one, and is used to receive a third control signal and receive the working state data from the cathode control module, and according to the The third control signal selects and closes one of the plurality of third switches and sends the working state data through the closed third switch,
  • the first control signal, the second control signal, and the third control signal are provided so that the closed first switch, the closed second switch, and the closed third switch are the same One cathode control stage is connected, or the first control signal, the second control signal, the third control signal and the feedback control signal are provided so that the closed first switch and the closed second The switch, the closed third switch and the closed feedback switch are connected to the same cathode control stage.
  • the time division multiplexing control device further includes:
  • the control module is configured to provide the first control signal to the first switch module, the second control signal to the second switch module, and to the third switch under the control of the second main control signal
  • the module provides the third control signal, or is used to provide the first control signal to the first switch module, to provide the second control signal to the second switch module, and to provide the third switch module
  • the third control signal also provides the feedback control signal to the feedback switch module.
  • the time division multiplexing control device further includes:
  • An acquisition module configured to receive the working state data from the third switch module, and send the working state data
  • the main control module is configured to provide a first main control signal and receive the working state data from the collection module;
  • a driving module configured to receive the first main control signal from the main control module, and provide the driving signal to the second switch module according to the first main control signal;
  • the high-voltage source is used to provide the high-voltage signal.
  • the time division multiplexing control device further includes:
  • the isolator is used to isolate the main control module from the CPU module of the central processing unit.
  • the time-division multiplexing control device works in a high-voltage working environment.
  • the first switch, the second switch, and the third switch are implemented by an analog switch device, a digital switch device, a relay or a photocoupler, or the first switch, the second switch
  • the switch, the third switch and the feedback switch are realized by an analog switch device, a digital switch device, a relay or a photocoupler.
  • the driving module is a digital-to-analog conversion driving module
  • the acquisition module is an analog-to-digital conversion acquisition module
  • the digital-to-analog conversion drive module is implemented by a dedicated digital-to-analog conversion chip or a micro-control unit with a digital-to-analog conversion function
  • the analog-to-digital conversion acquisition module is a dedicated analog-to-digital conversion chip or with analog-to-digital conversion. The function is realized by the micro-control unit.
  • the isolator is realized by a photocoupler, a pulse transformer, a relay, or an isolation circuit composed of the photocoupler, the pulse transformer, or the relay.
  • a time division multiplexing control system applied to distributed X-ray sources including:
  • An acquisition module configured to receive working state data from one of the plurality of time-division multiplexing control devices, and send the working state data
  • the main control module is configured to provide a first main control signal, provide a second main control signal to the one time-division multiplexing control device among the plurality of time-division multiplexing control devices, and receive all data from the acquisition module State the work status data;
  • the driving module is configured to receive the first main control signal from the main control module, and control the one of the plurality of time division multiplexing control devices according to the first main control signal
  • the device provides a driving signal
  • High voltage source used to provide high voltage signal.
  • control module in the one time-division multiplexing control device of the plurality of time-division multiplexing control devices provides the first control under the control of the second master control signal provided by the master control module Signal, the second control signal and the third control signal or provide the first control signal, the second control signal, the third control signal and the feedback control signal.
  • the time division multiplexing control system further includes:
  • the isolator is used to isolate the main control module from the CPU module of the central processing unit.
  • a time division multiplexing control system applied to a distributed X-ray source including:
  • An acquisition module configured to receive working state data from one of the plurality of time-division multiplexing control devices, and send the working state data
  • the main control module is used to provide the first control signal, the second control signal and the third control signal to the one of the plurality of time division multiplexing control devices, or to provide the first control signal,
  • the second control signal, the third control signal and the feedback control signal provide the first main control signal, and receive the working state data from the acquisition module;
  • the driving module is configured to receive the first main control signal from the main control module, and control the one of the plurality of time division multiplexing control devices according to the first main control signal
  • the device provides a driving signal
  • High voltage source used to provide high voltage signal.
  • the time division multiplexing control system further includes:
  • the isolator is used to isolate the main control module from the CPU module of the central processing unit.
  • Fig. 1 shows a schematic diagram of a time division multiplexing control device applied to a distributed X-ray source according to an embodiment of the present disclosure
  • Fig. 2 shows a schematic diagram of another time-division multiplexing control device applied to a distributed X-ray source according to an embodiment of the present disclosure
  • Fig. 3 shows a schematic diagram of another time-sharing multiplexing control device applied to a distributed X-ray source according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of a time division multiplexing control system applied to a distributed X-ray source according to an embodiment of the present disclosure
  • Fig. 5 shows a schematic diagram of another time-division multiplexing control system applied to a distributed X-ray source according to an embodiment of the present disclosure
  • Fig. 6 shows a schematic diagram of a time division multiplexing control device applied to a distributed X-ray source according to another embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of another time division multiplexing control device applied to a distributed X-ray source according to another embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of another time division multiplexing control device applied to a distributed X-ray source according to another embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of a time division multiplexing control system applied to a distributed X-ray source according to another embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of another time division multiplexing control system applied to a distributed X-ray source according to another embodiment of the present disclosure.
  • FIG. 11 shows a schematic diagram of a time division multiplexing control system applied to a distributed X-ray source according to an embodiment of the present disclosure.
  • Fig. 1 shows a schematic diagram of a time division multiplexing control device applied to a distributed X-ray source according to an embodiment of the present disclosure.
  • the time division multiplexing control device may include: a first switch module 101 and a cathode control module 105.
  • the first switch module 101 may include a plurality of first switches 101 1 , 101 2 , ..., 101 n , and is used for receiving a high voltage signal and a first control signal, and selecting and closing one of the plurality of first switches according to the first control signal And send a high voltage signal through the closed first switch.
  • each of the plurality of first switches may be formed by a plurality of metal oxide semiconductor (MOS) transistors in series.
  • MOS metal oxide semiconductor
  • the first control signal can only close one first switch at the same time, and transmit a high voltage signal through the closed first switch, and at this moment, the other first switches are all open, so it is not transmitted through other switches. High voltage signal.
  • the first control signal causes a first switch 101 1 to be closed, the first switch 101 1 can transmit a high-voltage signal, and the other first switches 101 2 , ..., 101 n are not used to transmit high-voltage signals.
  • the cathode control module 105 may include a plurality of cathode control stages 105 1 , 105 2 , ..., 105 n corresponding to the plurality of first switches 101 1 , 101 2 , ..., 101 n one-to-one, and is used to slave the first switch module 101 receives high-voltage signals and sends operating status data, such as cathode operating voltage and operating current, through the cathode control stage corresponding to the closed first switch among the plurality of cathode control stages 105 1 , 105 2 , ..., 105 n.
  • Each cathode control stage may include a cathode control unit and a cathode.
  • the cathode control stage 105 1 may include a cathode control unit 105 1a and a cathode 105 1b
  • the cathode control stage 105 2 may include a cathode control unit 105 2a and a cathode 105 2b
  • the cathode control stage 105 n may include a cathode control unit 105 na and cathode 105 nb .
  • the cathode control unit can be configured to receive a high voltage signal, send a drive control signal to the cathode, perform automatic feedback adjustment according to the feedback signal, and send working status data, and the cathode can It is configured to send a feedback signal to the cathode control unit according to the drive control signal.
  • Fig. 2 shows a schematic diagram of a time division multiplexing control device applied to a distributed X-ray source according to another embodiment of the present disclosure.
  • the time division multiplexing control device may include: a first switch module 101, a cathode control module 105, an acquisition feedback module 170, and a feedback switch module 104.
  • the first switch module 101 may include a plurality of first switches 101 1 , 101 2 , ..., 101 n , and is used for receiving a high voltage signal and a first control signal, and selecting and closing one of the plurality of first switches according to the first control signal And send a high voltage signal through the closed first switch.
  • each of the plurality of first switches may be formed by a plurality of metal oxide semiconductor (MOS) transistors in series.
  • MOS metal oxide semiconductor
  • the first control signal can only close one first switch at the same time, and transmit a high voltage signal through the closed first switch, and at this moment, the other first switches are all open, so it is not transmitted through other switches. High voltage signal.
  • the first control signal causes a first switch 101 1 to be closed, the first switch 101 1 can transmit a high-voltage signal, and the other first switches 101 2 , ..., 101 n are not used to transmit high-voltage signals.
  • the cathode control module 105 may include a plurality of cathode control stages 105 1 , 105 2 , ..., 105 n corresponding to the plurality of first switches 101 1 , 101 2 , ..., 101 n one-to-one, and is used to slave the first switch module 101 receives high-voltage signals and sends operating status data, such as cathode operating voltage and operating current, through the cathode control stage corresponding to the closed first switch among the plurality of cathode control stages 105 1 , 105 2 , ..., 105 n.
  • Each cathode control stage may include a cathode control unit and a cathode.
  • the cathode control stage 105 1 may include a cathode control unit 105 1a and a cathode 105 1b
  • the cathode control stage 105 2 may include a cathode control unit 105 2a and a cathode 105 2b
  • the cathode control stage 105 n may include a cathode control unit 105 na and cathode 105 nb .
  • the collection feedback module 170 may be configured to receive a feedback signal from the cathode control module 105 and send the feedback signal.
  • the feedback switch module 104 may include a plurality of feedback switches 104 1 , 104 2 , ..., 104 n , and are used to receive feedback control signals and feedback signals from the collection feedback module 170, and select and close one of the plurality of feedback switches according to the feedback control signals.
  • a feedback signal is sent to the cathode control module 105 through the closed feedback switch.
  • the feedback switch can be realized by an analog switch device, a digital switch device, a relay or an optocoupler.
  • the feedback switch module 104 can be connected to the cathode control stages 105 1 , 105 2 ,..., 105 n .
  • the feedback control signal can only close one feedback switch at the same time and transmit the feedback signal through the corresponding feedback switch. At this time, the other feedback switches are all open, so the feedback signal is not transmitted through other feedback switches.
  • the feedback switch 104 1 can transmit a feedback signal to the cathode control stage 105 1 , and the other feedback switches 104 2 , ..., 104 n are not used to transmit feedback signals.
  • the cathode control unit may be configured to receive a high voltage signal and a feedback signal, send a drive control signal to the cathode, perform automatic feedback adjustment according to the feedback signal, and send working status data, And the cathode may be configured to send a feedback signal to the collection feedback module 170 according to the driving control signal.
  • the first control signal and the feedback control signal may be provided so that the closed first switch and the closed feedback switch are connected to the same cathode control stage.
  • the feedback control signal should close the corresponding feedback switch to connect to the cathode control stage 105 1 .
  • the time division multiplexing control device may further include a second switch module 102, and the second switch module 102 may include one-to-one correspondence with the plurality of cathode control stages 105 1 , 105 2 , ..., 105 n
  • a plurality of second switches 102 1 , 102 2 , ..., 102 n are used to receive a driving signal and a second control signal, and according to the second control signal, select and close one of the plurality of second switches and pass the closed second switch Send drive signal.
  • the second switch can be implemented by an analog switch device, a digital switch device, a relay or a photocoupler.
  • the second control signal can only close one second switch at the same time, and transmit the drive signal through the corresponding second switch, and at this moment, the other second switches are all open, so it does not pass through other second switches.
  • the switch transmits the drive signal.
  • the second control signal causes a second switch 102 1 to be closed
  • the second switch 102 1 can transmit a driving signal to the cathode control stage 105 1 and the other second switches 102 2 , ..., 102 n are not used for transmission.
  • Drive signal The cathode control module 105 may be further configured to receive a driving signal from the second switch module 102 and transmit working status data through the cathode control stage corresponding to the closed first switch and the closed second switch among the plurality of cathode control stages.
  • first control signal and the second control signal may be provided so that the closed first switch and the closed second switch are connected to the same cathode control stage.
  • first control signal closes a first switch to connect to the cathode control stage 105 1
  • second control signal should close the corresponding second switch to connect to the cathode control stage 105 1 .
  • the time-division multiplexing control device may further include a third switch module 103, and the third switch module 103 may include multiple cathode control stages 105 1 , 105 2 , ..., 105 n in one-to-one correspondence.
  • the third switches 103 1 , 103 2 , ..., 103 n are used to receive the third control signal and the working status data from the cathode control module 105, and according to the third control signal, select and close one of the plurality of third switches and pass The closed third switch sends working status data.
  • the third switch can be realized by an analog switch device, a digital switch device, a relay or a photocoupler.
  • the third control signal can only close one third switch at the same time, and receive the working state data through the corresponding third switch, and at this moment, the other third switches are all open, so it does not pass other third switches.
  • the three switches receive working status data.
  • the third switch 103 1 can receive working state data from the cathode control stage 105 1 and the other third switches 103 2 , ..., 103 n are not used for Receive working status data.
  • first control signal, the second control signal, and the third control signal may be provided so that the closed first switch, the closed second switch, and the closed third switch are connected to the same cathode control stage.
  • first control signal closes a first switch to connect to the cathode control stage 105 1
  • second control signal should close the corresponding second switch to connect to the cathode control stage 105 1
  • third control signal should The corresponding third switch is closed to connect to the cathode control stage 105 1 .
  • the time-division multiplexing control device may further include a control module 110 for providing a first control signal to the first switch module 101 and a second control signal to the second switch module 102 under the control of the second main control signal. Two control signals, and a third control signal is provided to the third switch module 103.
  • control module 110 may be connected to the first switch module 101, the second switch module 102, and the third switch module 103, and control the first switch module 101 by providing a first control signal to the first switch module 101
  • the closing of a switch controls the closing of the second switch in the second switch module 102 by providing a second control signal to the second switch module 102, and controls the third switch by providing a third control signal to the third switch module 103
  • the third switch in the module 103 is closed.
  • the time-division multiplexing control device may further include an acquisition module 130, which is used to receive working state data from the third switch module 103 and send working state data; the main control module 140 is used to provide a first main control Signal, to provide the second main control signal to the control module 110 and receive the working state data from the acquisition module 130; the driving module 120 is used to receive the first main control signal from the main control module 140, and according to the first main control signal Provide a driving signal to the second switch module 102; and a high-voltage source 160 for providing a high-voltage signal.
  • an acquisition module 130 which is used to receive working state data from the third switch module 103 and send working state data
  • the main control module 140 is used to provide a first main control Signal, to provide the second main control signal to the control module 110 and receive the working state data from the acquisition module 130
  • the driving module 120 is used to receive the first main control signal from the main control module 140, and according to the first main control signal Provide a driving signal to the second switch module 102; and a high
  • the main control module 140 may be respectively connected with the driving module 120 and the collecting module 130 to control the driving module 120 to generate driving signals, and to receive the working status data from the collecting module 130 in real time.
  • the driving module 120 may be a digital-to-analog conversion driving module, and the digital-to-analog conversion driving module may be implemented by a dedicated digital-to-analog conversion chip or a micro-control unit with a digital-to-analog conversion function.
  • the acquisition module 130 may be an analog-to-digital conversion acquisition module, and the analog-to-digital conversion acquisition module may be implemented by a dedicated analog-to-digital conversion chip or a micro-control unit with an analog-to-digital conversion function.
  • the main control module 140 may also control the operation of the control module 110 through the second main control signal, so that the control module 110 provides the above-mentioned first control signal, the above-mentioned second control signal and the above-mentioned third control signal under the control of the main control module 140.
  • the time-division multiplexing control device may also include an isolator 150 for isolating the main control module 140 from the central processing unit (CPU) module 100, so that the time-division multiplexing control device works at a high voltage (kV). Level) under the working environment.
  • the isolator 150 may be realized by a photocoupler, a pulse transformer, a relay, or an isolation circuit composed of the photocoupler, the pulse transformer, or the relay.
  • Fig. 5 shows a schematic diagram of a time division multiplexing control system applied to a distributed X-ray source according to an embodiment of the present disclosure.
  • the time-division multiplexing control system may include a plurality of time-division multiplexing control devices 310 (as shown in FIG. 4); the acquisition module 130 is used to select one of the multiple time-division multiplexing control devices.
  • the main control module 140 is configured to provide a first main control signal to provide a first time division multiplexing control device to the one of the plurality of time division multiplexing control devices 310 Two main control signals, and receive working status data from the collection module 130; the driving module 120, used to receive the first main control signal from the main control module 140, and control the multiple time-division multiplexing according to the first main control signal
  • the one time-division multiplexing control device in the device provides a driving signal; and a high-voltage source for providing a high-voltage signal.
  • the driving module 120 may be a digital-to-analog conversion driving module, and the digital-to-analog conversion driving module may be implemented by a dedicated digital-to-analog conversion chip or a micro-control unit with a digital-to-analog conversion function.
  • the acquisition module 130 may be an analog-to-digital conversion acquisition module, and the analog-to-digital conversion acquisition module may be implemented by a dedicated analog-to-digital conversion chip or a micro-control unit with an analog-to-digital conversion function.
  • the first switch, the second switch, and the third switch in the time-division multiplexing control device 310 may be implemented by analog switching devices, digital switching devices, relays, or photocouplers.
  • the control module in the one time-division multiplexing control device 310 (ie, the time-division multiplexing control device 310-1,..., the time-division multiplexing control device 310-N) of the plurality of time-division multiplexing control devices 310 may be
  • the first control signal, the second control signal, and the third control signal are provided under the control of the second main control signal provided by the main control module 140.
  • the time-division multiplexing control system may further include: an isolator 150 for isolating the main control module 140 from the central processing unit (CPU) module 100, so that the time-division multiplexing control system works in a high-voltage (kV level) working environment .
  • the isolator 150 may be realized by a photocoupler, a pulse transformer, a relay, or an isolation circuit that may be composed of a photocoupler, a pulse transformer, or a relay.
  • the isolation module 150 can be connected to the main control module 140, the main control module 140 can be connected to the control modules 110-1,..., the control module 110-N, and the main control module 140 can be connected to the drive module 120 and the acquisition Module 130 is connected.
  • the drive module 120 can be connected to the second switch module 102-1..., the second switch module 102-N, and the acquisition module 130 can be connected to the third switch module 103-1..., the third switch module 103-N, and the high voltage source 160 can be connected to the first switch module 101-1 ... and the first switch module 101 -N.
  • the first switch module 101-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1,..., the cathode control unit 105 na -1, and at the same time
  • the first switch module 101-1 can be connected to the control module 110-1;
  • the second switch module 102-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1,..., the cathode control unit 105 na- 1, while the second switch module 102-1 can be connected to the control module 110-1;
  • the third switch module 103-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1,..., the cathode
  • the control unit 105 na -1 is connected, and the third switch module 103-1 can be connected to the control module 110-1.
  • the first switch module 101-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N, ..., the cathode control unit 105 na -N
  • the first switch module 101-N can be connected to the control module 110-N
  • the second switch module 102-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N, ..., the cathode control unit 105 na -N is connected
  • the second switch module 102-N can be connected to the control module 110-N
  • the third switch module 103-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N,... ..., the cathode control unit 105 na -N is connected, and the third switch module 103-
  • time-division multiplexing control devices may have a similar structure to the time-division multiplexing control device 310-1 and the time-division multiplexing control device 310-N, and therefore will not be repeated here.
  • the main control module 140 can control the operation of the time-division multiplexing control device 310-1,..., and the time-division multiplexing control device 310-N through the control control module 110-1, the control module 110-2,..., and the control module 110-N, respectively , But only one control module can be controlled at the same time.
  • the operation of the time-division multiplexing control system will be described below by taking the main control module 140 controlling the time-division multiplexing control device 310-1 as an example.
  • the high voltage source 160 may output a high voltage signal to the first switch module 101-1.
  • the main control module 140 may control the driving module 120 to output a driving signal, and the driving signal may be output to the second switch module 102-1.
  • the main control module 140 may control the control module 110-1 to provide the first control signal, the second control signal, and the third control signal.
  • the control module 110-1 may output a first control signal to the first switch module 101-1 to control one switch in the first switch module 101-1 to close. It should be noted that at the same moment, the first control signal can only close one of the first switches in the first switch module 101-1, and transmit the high voltage signal through the closed first switch, and at this moment, all other first switches Disconnected, so the high-voltage signal is not transmitted through the other first switches.
  • the control module 110-1 may output a second control signal to the second switch module 102-1 to control the corresponding second switch in the second switch module 102-1 to close.
  • the control module 110-1 may output a third control signal to the third switch module 103-1 to control the corresponding third switch in the third switch module 103-1 to close. It should be noted that because the first control signal is provided so that the first switch 101 2 -1 is closed, the second control signal and the third control signal are provided so that the second switch 102 2 -1 and the third switch 103 2 -1 are closed.
  • the cathode control unit 105 2a -1 in the cathode control stage 105 2 -1 sends a drive control signal to the cathode 105 2b -1 according to the received drive signal and high voltage signal, and the cathode 105 2b -1 sends a drive control signal to the cathode 105 2b -1 according to the received drive control signal.
  • the cathode control unit 105 2a -1 sends a feedback signal, and the cathode control unit 105 2a -1 performs automatic feedback adjustment according to the received feedback signal, and outputs the working state data, and the working state data is obtained through the closed third switch 103 2 -1 Transmitted to the acquisition module 130.
  • the collection module 130 can transmit the working status data to the main control module 140.
  • the operation process of the time-division multiplexing control system may be similar to the above-mentioned process, so it will not be repeated here.
  • Fig. 6 shows a schematic diagram of another time-division multiplexing control system applied to a distributed X-ray source according to an embodiment of the present disclosure.
  • the time-division multiplexing control system may include: a plurality of time-division multiplexing control devices 210 (as shown in FIG.
  • an acquisition module 130 for controlling one of the multiple time-division multiplexing control devices
  • the device receives the working status data and sends the working status data
  • the main control module 140 is used to provide the first control signal and the second control to the one time-division multiplexing control device among the plurality of time-division multiplexing control devices Signal and the third control signal, provide the first main control signal, and receive the working state data from the acquisition module 130
  • the driving module 120 is used to receive the first main control signal from the main control module 140, and send the first main control signal according to the first main control signal
  • the one time-division multiplexing control device of the plurality of time-division multiplexing control devices provides a driving signal; and a high-voltage source for providing a high-voltage signal.
  • the driving module 120 may be a digital-to-analog conversion driving module, and the digital-to-analog conversion driving module may be realized by a dedicated digital-to-analog conversion chip or a micro-control unit with a digital-to-analog conversion function.
  • the acquisition module 130 may be an analog-to-digital conversion acquisition module, and the analog-to-digital conversion acquisition module may be implemented by a dedicated analog-to-digital conversion chip or a micro-control unit with an analog-to-digital conversion function.
  • the first switch, the second switch, and the third switch in the time-division multiplexing control device 210 may be implemented by analog switching devices, digital switching devices, relays, or photocouplers.
  • the time-division multiplexing control system may further include: an isolator 150 for isolating the main control module 140 from the central processing unit (CPU) module 100, so that the time-division multiplexing control system works in a high-voltage (kV level) working environment .
  • the isolator 150 may be realized by a photocoupler, a pulse transformer, a relay, or an isolation circuit composed of a photocoupler, a pulse transformer, or a relay.
  • the isolation module 150 can be connected to the main control module 140, and the main control module 140 can be connected to the first switch module 101-1,..., the first switch module 101-N, the second switch module 102-1,... , The second switch module 102-N and the third switch module 103-1,..., The third switch module 103-N are connected, and the main control module 140 can be connected with the driving module 120 and the acquisition module 130 at the same time.
  • the drive module 120 can be connected to the second switch module 102-1..., the second switch module 102-N, and the acquisition module 130 can be connected to the third switch module 103-1..., the third switch module 103-N, and the high voltage source 160 can be connected to the first switch module 101-1 ... and the first switch module 101 -N.
  • the first switch module 101-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1, ..., the cathode control unit 105 na -1;
  • the second switch module 102-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1,..., the cathode control unit 105 na -1;
  • the third switch module 103-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1, ..., the cathode control unit 105 na -1 are connected.
  • the first switch module 101-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N, ..., the cathode control unit 105 na -N
  • the second switch module 102-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N, ..., the cathode control unit 105 na -N
  • the third switch module 103-N can be connected to the cathode
  • the control units 105 1a -N, the cathode control units 105 2a -N, ..., the cathode control units 105 na -N are connected.
  • time-division multiplexing control devices may have a similar structure to the time-division multiplexing control device 210-1 and the time-division multiplexing control device 210-N, and therefore will not be repeated here.
  • the main control module 140 can respectively control the operation of the time-division multiplexing control device 210-1,... And the time-division multiplexing control device 210-N, but can only control the operation of one time-division multiplexing control device at the same time.
  • the operation of the time-division multiplexing control system will be described below by taking the main control module 140 controlling the time-division multiplexing control device 210-1 as an example.
  • the high voltage source 160 may output a high voltage signal to the first switch module 101-1.
  • the main control module 140 may control the driving module 120 to output a driving signal, and the driving signal may be output to the second switch module 102-1.
  • the main control module 140 may output a first control signal to the first switch module 101-1 to control one switch in the first switch module 101-1 to close. It should be noted that at the same moment, the first control signal can only close one of the first switches in the first switch module 101-1, and transmit the high voltage signal through the closed first switch, and at this moment, all other first switches Disconnected, so the high-voltage signal is not transmitted through the other first switches.
  • a high voltage signal to the cathode can be controlled by a first stage 1052-1 1012-1 switch the transmission.
  • the main control module 140 may output a second control signal to the second switch module 102-1 to control the corresponding second switch in the second switch module 102-1 to close.
  • the main control module 140 may output a third control signal to the third switch module 103-1 to control the corresponding third switch in the third switch module 103-1 to close. It should be noted that because the first control signal is provided so that the first switch 101 2 -1 is closed, the second control signal and the third control signal are provided so that the second switch 102 2 -1 and the third switch 103 2 -1 are closed.
  • the cathode control unit 105 2a -1 in the cathode control stage 105 2 -1 sends a drive control signal to the cathode 105 2b -1 according to the received drive signal and high voltage signal, and the cathode 105 2b -1 sends a drive control signal to the cathode 105 2b -1 according to the received drive control signal.
  • the cathode control unit 105 2a -1 sends a feedback signal, and the cathode control unit 105 2a -1 performs automatic feedback adjustment according to the received feedback signal, and outputs the working state data, and the working state data is obtained through the closed third switch 103 2 -1 Transmitted to the acquisition module 130.
  • the collection module 130 can transmit the working status data to the main control module 140.
  • the main control module selects another time-division multiplexing control device (for example, the time-division multiplexing control device 210-N)
  • the operation process of the time-division multiplexing control system can be similar to the above-mentioned process, so it will not be repeated here.
  • the time division multiplexing control device includes: a first switch module 101, a cathode control module 105, an acquisition feedback module 170, a feedback switch module 104, and a second switch module 102.
  • the second switch module 102 may include The plurality of cathode control stages 105 1 , 105 2 , ..., 105 n correspond to a plurality of second switches 102 1 , 102 2 , ..., 102 n one-to-one , and are used to receive driving signals and second control signals, and according to The second control signal selects and closes one of the plurality of second switches and sends a driving signal through the closed second switch.
  • the second switch can be implemented by an analog switch device, a digital switch device, a relay or a photocoupler. It should be noted that the second control signal can only close one second switch at the same time, and transmit the drive signal through the corresponding second switch, and at this moment, the other second switches are all open, so it does not pass through other second switches.
  • the switch transmits the drive signal. For example, when the second control signal causes a second switch 102 1 to be closed, the second switch 102 1 can transmit a driving signal to the cathode control stage 105 1 and the other second switches 102 2 , ..., 102 n are not used for transmission. Drive signal.
  • the cathode control module 105 may be further configured to receive a driving signal from the second switch module 102 and transmit working status data through the cathode control stage corresponding to the closed first switch and the closed second switch among the plurality of cathode control stages.
  • the first control signal, the second control signal, and the feedback control signal may be provided so that the closed first switch and the closed second switch are connected to the same cathode control stage.
  • the first control signal closes a first switch to connect to the cathode control stage 105 1
  • the second control signal should close the corresponding second switch to connect to the cathode control stage 105 1
  • the feedback control signal should make The corresponding feedback switch is closed to connect to the cathode control stage 105 1 .
  • the time division multiplexing control device may further include a third switch module 103, and the third switch module 103 may include multiple cathode control stages 105 1 , 105 2 ,..., 105 n in one-to-one correspondence.
  • the third switches 103 1 , 103 2 , ..., 103 n are used to receive the third control signal and the working status data from the cathode control module 105, and according to the third control signal, select and close one of the plurality of third switches and pass The closed third switch sends working status data.
  • the third switch can be realized by an analog switch device, a digital switch device, a relay or a photocoupler.
  • the third switch module 103 can be connected to the cathode control stages 105 1 , 105 2 ,..., 105 n . It should be noted that the third control signal can only close one third switch at the same time, and receive the working state data through the corresponding third switch, and at this moment, the other third switches are all open, so it does not pass other third switches.
  • the three switches receive working status data. For example, when the third control signal causes a third switch 103 1 to be closed, the third switch 103 1 can receive working state data from the cathode control stage 105 1 and the other third switches 103 2 , ..., 103 n are not used for Receive working status data.
  • the first control signal, the second control signal, the third control signal, and the feedback control signal may be provided so that the closed first switch, the closed second switch, the closed third switch, and the closed feedback switch are connected with each other. Connected to the same cathode control stage. For example, when the first control signal closes a first switch to connect to the cathode control stage 105 1 , the second control signal should close the corresponding second switch to connect to the cathode control stage 105 1 , and the third control signal should make The corresponding third switch is closed to be connected to the cathode control stage 105 1 , and the feedback control signal should close the corresponding feedback switch to be connected to the cathode control stage 105 1 .
  • the time division multiplexing control device may further include a control module 110, which is used to provide the first control signal to the first switch module 101 and the second switch module 102 under the control of the second main control signal.
  • the second control signal provides a third control signal to the third switch module 103 and a feedback control signal to the feedback switch module 104.
  • control module 110 may be connected to the first switch module 101, the second switch module 102, the third switch module 103, and the feedback switch module 104, and control the first switch by providing a first control signal to the first switch module 101
  • the closing of the first switch in the module 101 is controlled by providing a second control signal to the second switch module 102 to control the closing of the second switch in the second switch module 102, and by providing a third control signal to the third switch module 103
  • the closing of the third switch in the third switch module 103 is controlled, and the closing of the feedback switch in the feedback switch module 104 is controlled by providing a feedback control signal to the feedback switch module 104.
  • the time-division multiplexing control device may further include an acquisition module 130, which is used to receive the working state data from the third switch module 103 and send the working state data; the main control module 140 is used to provide the first The main control signal, which provides the second main control signal to the control module 110, and receives the working status data from the acquisition module 130; the driving module 120, is used to receive the first main control signal from the main control module 140, and according to the first main control signal The control signal provides a driving signal to the second switch module 102; and a high voltage source 160 is used to provide a high voltage signal.
  • an acquisition module 130 which is used to receive the working state data from the third switch module 103 and send the working state data
  • the main control module 140 is used to provide the first
  • the main control signal which provides the second main control signal to the control module 110, and receives the working status data from the acquisition module 130
  • the driving module 120 is used to receive the first main control signal from the main control module 140, and according to the first main control signal
  • the control signal provides
  • the main control module 140 may be respectively connected with the driving module 120 and the collecting module 130 to control the driving module 120 to generate driving signals, and to receive the working status data from the collecting module 130 in real time.
  • the driving module 120 may be a digital-to-analog conversion driving module, and the digital-to-analog conversion driving module may be implemented by a dedicated digital-to-analog conversion chip or a micro-control unit with a digital-to-analog conversion function.
  • the acquisition module 130 may be an analog-to-digital conversion acquisition module, and the analog-to-digital conversion acquisition module may be implemented by a dedicated analog-to-digital conversion chip or a micro-control unit with an analog-to-digital conversion function.
  • the time-division multiplexing control device may also include an isolator 150 for isolating the main control module 140 from the central processing unit (CPU) module 100, so that the time-division multiplexing control device works at a high voltage (kV). Level) under the working environment.
  • the isolator 150 may be realized by a photocoupler, a pulse transformer, a relay, or an isolation circuit composed of the photocoupler, the pulse transformer, or the relay.
  • FIG. 9 shows a schematic diagram of a time division multiplexing control system applied to a distributed X-ray source according to an embodiment of the present disclosure.
  • the time-division multiplexing control system may include a plurality of time-division multiplexing control devices 810 (as shown in FIG. 8); the acquisition module 130 is used to select one of the multiple time-division multiplexing control devices from one of the multiple time-division multiplexing control devices.
  • the main control module 140 is configured to provide a first main control signal to provide the first time division multiplexing control device in the plurality of time division multiplexing control devices 810 Two main control signals, and receive working status data from the collection module 130; the driving module 120, used to receive the first main control signal from the main control module 140, and control the multiple time-division multiplexing according to the first main control signal
  • the one time-division multiplexing control device in the device provides a driving signal; and a high-voltage source for providing a high-voltage signal.
  • the driving module 120 may be a digital-to-analog conversion driving module, and the digital-to-analog conversion driving module may be implemented by a dedicated digital-to-analog conversion chip or a micro-control unit with a digital-to-analog conversion function.
  • the acquisition module 130 may be an analog-to-digital conversion acquisition module, and the analog-to-digital conversion acquisition module may be implemented by a dedicated analog-to-digital conversion chip or a micro-control unit with an analog-to-digital conversion function.
  • the first switch, the second switch, the third switch, and the feedback switch in the time-sharing multiplexing control device 810 may be implemented by analog switching devices, digital switching devices, relays, or photocouplers.
  • the control module in the one time-division multiplexing control device 810 (ie, the time-division multiplexing control device 810-1,..., the time-division multiplexing control device 810-N) of the plurality of time-division multiplexing control devices 810 may be
  • the first control signal, the second control signal, the third control signal, and the feedback control signal are provided under the control of the second main control signal provided by the main control module 140.
  • the time-division multiplexing control system may further include: an isolator 150 for isolating the main control module 140 from the central processing unit (CPU) module 100, so that the time-division multiplexing control system works in a high-voltage (kV level) working environment .
  • the isolator 150 may be realized by a photocoupler, a pulse transformer, a relay, or an isolation circuit that may be composed of a photocoupler, a pulse transformer, or a relay.
  • the isolation module 150 can be connected to the main control module 140, the main control module 140 can be connected to the control modules 110-1,..., the control module 110-N, and the main control module 140 can be connected to the drive module 120 and the acquisition Module 130 is connected.
  • the drive module 120 can be connected to the second switch module 102-1..., the second switch module 102-N, and the acquisition module 130 can be connected to the third switch module 103-1..., the third switch module 103-N, and the high voltage source 160 can be connected to the first switch module 101-1 ... and the first switch module 101 -N.
  • the first switch module 101-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1,..., the cathode control unit 105 na -1, and at the same time
  • the first switch module 101-1 can be connected to the control module 110-1;
  • the second switch module 102-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1,..., the cathode control unit 105 na- 1, while the second switch module 102-1 can be connected to the control module 110-1;
  • the third switch module 103-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1,..., the cathode control
  • the unit 105 na -1 is connected, and the third switch module 103-1 can be connected to the control module 110-1;
  • the feedback switch module 104-1 can be connected to the cathode control unit
  • the cathode control unit 105 na -1 is connected, and the feedback switch module 104-1 can be connected to the collection and feedback module 170-1 and the control module 110-1; and the collection and feedback module 170-1 can also be connected to the cathode 105 1b -1, the cathode 105 2b -1,..., the cathode 105 nb -1 are connected.
  • the first switch module 101-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N, ..., the cathode control unit 105 na -N
  • the first switch module 101-N can be connected to the control module 110-N
  • the second switch module 102-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N, ..., the cathode control unit 105 na -N is connected
  • the second switch module 102-N can be connected to the control module 110-N
  • the third switch module 103-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N,...
  • the cathode control unit 105 na -N is connected, and the third switch module 103-N can be connected to the control module 110-N; the feedback switch module 104-N can be connected to the cathode control unit 105 1a -N and the cathode control unit 105 2a -N ..., the cathode control unit 105 na -N is connected, and the feedback switch module 104-1 can be connected to the collection and feedback module 170-N and the control module 110-N; and the collection and feedback module 170-N can also be connected to the cathode 105 1b- N, the cathode 105 2b -N, ..., the cathode 105 nb -N are connected.
  • time-division multiplexing control devices may have a similar structure to the time-division multiplexing control device 810-1 and the time-division multiplexing control device 810-N, and therefore will not be repeated here.
  • the main control module 140 can control the operation of the time-division multiplexing control device 810-1,..., and the time-division multiplexing control device 810-N through the control control module 110-1, the control module 110-2,..., and the control module 110-N, respectively , But only one control module can be controlled at the same time.
  • the operation of the time-division multiplexing control system will be described below by taking the main control module 140 controlling the time-division multiplexing control device 810-1 as an example.
  • the high voltage source 160 may output a high voltage signal to the first switch module 101-1.
  • the main control module 140 may control the driving module 120 to output a driving signal, and the driving signal may be output to the second switch module 102-1.
  • the main control module 140 may control the control module 110-1 to provide the first control signal, the second control signal, the third control signal, and the feedback control signal.
  • the control module 110-1 may output a first control signal to the first switch module 101-1 to control one switch in the first switch module 101-1 to close. It should be noted that at the same moment, the first control signal can only close one of the first switches in the first switch module 101-1, and transmit the high voltage signal through the closed first switch, and at this moment, all other first switches Disconnected, so the high-voltage signal is not transmitted through the other first switches.
  • the control module 110-1 may output a second control signal to the second switch module 102-1 to control the corresponding second switch in the second switch module 102-1 to close.
  • the control module 110-1 may output a third control signal to the third switch module 103-1 to control the corresponding third switch in the third switch module 103-1 to close.
  • the control module 110-1 may output a feedback control signal to the feedback switch module 104-1 to control the corresponding feedback switch in the feedback switch module 104-1 to close.
  • the first control signal is provided so that the first switch 101 2 -1 is closed
  • the second control signal, the third control signal, and the feedback control signal are provided so that the second switch 102 2 -1 and the third switch 103 2 -1 and the feedback switch 104 2 -1 are closed, so that the closed first switch, the closed second switch, the closed third switch, and the closed feedback switch are connected to the same cathode control stage 105 2 -1.
  • the cathode control unit 105 2a -1 in the cathode control stage 105 2 -1 sends a drive control signal to the cathode 105 2b -1 according to the received drive signal and high voltage signal, and the cathode 105 2b -1 sends a drive control signal to the cathode 105 2b -1 according to the received drive control signal.
  • collecting feedback module 170-1 transmits the feedback signal
  • the feedback module 170-1 by collecting feedback signal of the feedback switch is closed 1042-1 transmits a feedback signal to the control unit 105 2a -1 cathode, the control unit 105 2a -1 cathode according to the received Perform automatic feedback adjustment and output working state data, and transmit the working state data to the collection module 130 through the closed third switch 103 2 -1.
  • the collection module 130 can transmit the working status data to the main control module 140.
  • the operation process of the time-division multiplexing control system may be similar to the above-mentioned process, so it will not be repeated here.
  • Fig. 10 shows a schematic diagram of another time-division multiplexing control system applied to a distributed X-ray source according to an embodiment of the present disclosure.
  • the time-division multiplexing control system may include: a plurality of time-division multiplexing control devices 710 (as shown in FIG.
  • an acquisition module 130 for controlling one of the multiple time-division multiplexing control devices
  • the device receives the working status data and sends the working status data
  • the main control module 140 is used to provide the first control signal and the second control to the one time-division multiplexing control device among the plurality of time-division multiplexing control devices Signal, the third control signal and the feedback control signal, provide the first main control signal, and receive the working status data from the acquisition module 130
  • the driving module 120 is used to receive the first main control signal from the main control module 140, and according to the first
  • the main control signal provides a driving signal to the one time-division multiplexing control device among the plurality of time-division multiplexing control devices; and a high-voltage source for providing a high-voltage signal.
  • the driving module 120 may be a digital-to-analog conversion driving module, and the digital-to-analog conversion driving module may be implemented by a dedicated digital-to-analog conversion chip or a micro-control unit with a digital-to-analog conversion function.
  • the acquisition module 130 may be an analog-to-digital conversion acquisition module, and the analog-to-digital conversion acquisition module may be realized by a dedicated analog-to-digital conversion chip or a micro-control unit with an analog-to-digital conversion function.
  • the first switch, the second switch, the third switch, and the feedback switch in the time-division multiplexing control device 710 can be implemented by analog switching devices, digital switching devices, relays, or photocouplers.
  • the time-division multiplexing control system may further include: an isolator 150 for isolating the main control module 140 from the central processing unit (CPU) module 100, so that the time-division multiplexing control system works in a high-voltage (kV level) working environment .
  • the isolator 150 may be realized by a photocoupler, a pulse transformer, a relay, or an isolation circuit composed of a photocoupler, a pulse transformer, or a relay.
  • the isolation module 150 can be connected to the main control module 140, and the main control module 140 can be connected to the first switch module 101-1,..., the first switch module 101-N, the second switch module 102-1,... , The second switch module 102-N, the third switch module 103-1,..., the third switch module 103-N, and the feedback switch module 104-1,..., the feedback switch module 104-N are connected, and the main control module 140 can It is connected to the driving module 120 and the collecting module 130.
  • the drive module 120 can be connected to the second switch module 102-1..., the second switch module 102-N, and the acquisition module 130 can be connected to the third switch module 103-1..., the third switch module 103-N, and the high voltage source 160 can be connected to the first switch module 101-1 ... and the first switch module 101 -N.
  • the first switch module 101-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1, ..., the cathode control unit 105 na -1;
  • the second switch module 102-1 can be connected to the cathode control unit 105 1a -1, the cathode control unit 105 2a -1,..., the cathode control unit 105 na -1;
  • the third switch module 103-1 can be connected to the cathode control unit 105 1a -1.
  • the first switch module 101-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N, ..., the cathode control unit 105 na -N
  • the second switch module 102-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N,..., the cathode control unit 105 na -N
  • the third switch module 103-N can be connected to the cathode control unit
  • the unit 105 1a -N, the cathode control unit 105 2a -N, ..., the cathode control unit 105 na -N are connected;
  • the feedback switch module 104-N can be connected to the cathode control unit 105 1a -N, the cathode control unit 105 2a -N, ......, the cathode control unit 105
  • time-division multiplexing control devices not shown in FIG. 10 may have similar structures to the time-division multiplexing control device 710-1 and the time-division multiplexing control device 710-N, and therefore will not be repeated here.
  • the main control module 140 can respectively control the operation of the time-division multiplexing control device 710-1,... And the time-division multiplexing control device 710-N, but can only control the operation of one time-division multiplexing control device at a time.
  • the operation of the time-division multiplexing control system will be described below by taking the main control module 140 controlling the time-division multiplexing control device 710-1 as an example.
  • the high voltage source 160 may output a high voltage signal to the first switch module 101-1.
  • the main control module 140 may control the driving module 120 to output a driving signal, and the driving signal may be output to the second switch module 102-1.
  • the main control module 140 may output a first control signal to the first switch module 101-1 to control one switch in the first switch module 101-1 to close. It should be noted that at the same moment, the first control signal can only close one of the first switches in the first switch module 101-1, and transmit the high voltage signal through the closed first switch, and at this moment, all other first switches Disconnected, so the high-voltage signal is not transmitted through the other first switches.
  • a high voltage signal to the cathode can be controlled by a first stage 1052-1 1012-1 switch the transmission.
  • the main control module 140 may output a second control signal to the second switch module 102-1 to control the corresponding second switch in the second switch module 102-1 to close.
  • the main control module 140 may output a third control signal to the third switch module 103-1 to control the corresponding third switch in the third switch module 103-1 to close.
  • the main control module 140 may output a feedback control signal to the feedback switch module 104-1 to control the corresponding feedback switch in the feedback switch module 104-1 to close.
  • the first control signal is provided so that the first switch 101 2 -1 is closed
  • the second control signal, the third control signal, and the feedback control signal are provided so that the second switch 102 2 -1 and the third switch 103 2 -1 and the feedback switch 104 2 -1 are closed, so that the closed first switch, the closed second switch, the closed third switch, and the closed feedback switch are connected to the same cathode control stage 105 2 -1.
  • the cathode control unit 105 2a -1 in the cathode control stage 105 2 -1 sends a drive control signal to the cathode 105 2b -1 according to the received drive signal and high voltage signal, and the cathode 105 2b -1 sends a drive control signal to the cathode 105 2b -1 according to the received drive control signal.
  • collecting feedback module 170-1 transmits the feedback signal
  • the feedback module 170-1 by collecting feedback signal of the feedback switch is closed 1042-1 transmits a feedback signal to the control unit 105 2a -1 cathode, the control unit 105 2a -1 cathode according to the received Perform automatic feedback adjustment, output working state data, and transmit the working state data to the collection module 130 through the closed third switch 103 2 -1.
  • the collection module 130 can transmit the working status data to the main control module 140.
  • the operation process of the time-division multiplexing control system may be similar to the above-mentioned process, so it will not be repeated here.
  • the multi-focus X-ray source system provides the ability to simultaneously generate X-rays in multiple locations.
  • the time-division multiplexing control device and system adopts the time-division multiplexing principle, and uses a common control drive and data acquisition circuit for multiple control channels, and the control system can switch to different channels at different times , To realize the instantaneous switching of the working state of each cathode, and accurately control the working state data of each cathode, so that the multi-focus X-ray source has the characteristics of quick start/stop, state switching and flexible parameter setting, and reduces the amount of The cost of the channel control system.
  • FIG. 11 schematically shows a schematic diagram of a time division multiplexing control system 1100 according to an embodiment of the present disclosure.
  • the system 1100 may include a processor 1110, for example, a digital signal processor (DSP).
  • DSP digital signal processor
  • the processor 1110 may be a single device or multiple devices for performing different actions of the processes described herein.
  • the system 1100 may also include an input/output (I/O) device 1130 for receiving signals from other entities or sending signals to other entities.
  • I/O input/output
  • the system 1100 may include a memory 1120, which may have the following forms: non-volatile or volatile memory, for example, electrically erasable programmable read-only memory (EEPROM), flash memory, and the like.
  • the memory 1120 may store computer-readable instructions, and when the processor 1110 executes the computer-readable instructions, the computer-readable instructions may cause the processor to perform the actions described herein.
  • the technology of the present disclosure can be implemented in the form of hardware and/or software (including firmware, microcode, etc.).
  • the technology of the present disclosure may take the form of a computer program product on a computer-readable medium storing instructions, the computer program product can be used by an instruction execution system (for example, one or more processors) or used in conjunction with an instruction execution system .
  • a computer-readable medium may be any medium that can contain, store, transmit, propagate, or transmit instructions.
  • a computer-readable medium may include, but is not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, device, or propagation medium.
  • Computer-readable media include: magnetic storage devices, such as magnetic tape or hard disk (HDD); optical storage devices, such as optical disks (CD-ROM); memory, such as random access memory (RAM) or flash memory; and/or wired /Wireless communication link.
  • magnetic storage devices such as magnetic tape or hard disk (HDD)
  • optical storage devices such as optical disks (CD-ROM)
  • memory such as random access memory (RAM) or flash memory
  • RAM random access memory
  • flash memory such as wired /Wireless communication link.
  • signal bearing media include, but are not limited to: recordable media, such as floppy disks, hard drives, compact disks (CD), digital versatile disks (DVD), digital tapes, computer storage, etc.; and transmission media, such as digital and / Or analog communication media (for example, fiber optic cables, waveguides, wired communication links, wireless communication links, etc.).

Abstract

一种应用于分布式X射线源的分时复用控制装置,包括:第一开关模块(101),包括多个第一开关,并且用于接收高压信号和第一控制信号,并且根据第一控制信号选择闭合多个第一开关之一,并通过闭合的第一开关发送高压信号;以及阴极控制模块(105),包括与多个第一开关一一对应的多个阴极控制级,并且用于从第一开关模块(101)接收高压信号并通过多个阴极控制级中与闭合的第一开关相对应的阴极控制级发送工作状态数据,其中每一个阴极控制级包括阴极控制单元和阴极。

Description

分时复用控制装置和系统
相关申请的交叉引用
本申请要求于2019年10月30日提交的、申请号为201911051016.4的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本公开涉及工业无损检测、安全检查、医学诊断和治疗等领域,具体地,涉及一种应用于分布式X射线源的分时复用控制装置和系统。
背景技术
X射线在工业无损检测、安全检查、医学诊断和治疗等领域具有广泛的应用。产生X射线的装置称为X射线源,X射线源通常由X射线管、高压电源控制系统、冷却及屏蔽等辅助装置构成。现有的高压电源控制系统通常都是针对一个阴极的单输出电源,且输出电压的调节通常需要较长时间,一般在毫秒甚至秒的量级。
多焦点X射线源(或称分布式X射线源)是在一个管体结构内高密度地集成几百个阴极——阳极组件,能从多个不同位置辐射出X射线,对目标对象快速进行不同视角的透射成像,且每个阴极——阳极组件保持独立工作。多焦点X射线源内包含多个通道,每个通道对应一个发射阴极,每个发射阴极都分别由控制系统进行驱动发射出电子,同时每个通道的输出电流可以通过实时负反馈快速自动调节,而且新型多焦点X射线源可以进行微秒(μs)级的瞬时性开启和关断。
现有X射线源控制方法没有明确指明如何驱动发射阴极的控制单元,以及如何采集阴极控制级的工作状态数据,或者在现有方法中,每一个阴极控制级对应使用一个驱动电路和一个采集电路,如此,多个阴极控制级的驱动及采集需要多个驱动和多个采集电路。
驱动和采集电路(也可称作“数模(DA)驱动模块或电路和模数(AD)采集模块或电路”)越多,耗资源越多、成本越高,设计的硬件设备越大,而且不便延伸扩展,需要随阴极控制级数量变化而改变。
因此,需要一种能够控制多个通道并可以调节每个通道输出电流的电源控制系统,来对多焦点X射线源的阴极进行控制驱动,以满足新型的多焦点X射线源的瞬时启动和关闭、以及智能化控制的要求。
发明内容
根据本公开的第一方面,提供了一种应用于分布式X射线源的分时复用控制装置,包括:
第一开关模块,包括多个第一开关,并且用于接收高压信号和第一控制信号,并且根据所述第一控制信号选择闭合所述多个第一开关之一并通过闭合的第一开关发送所述高压信号;以及
阴极控制模块,包括与所述多个第一开关一一对应的多个阴极控制级,并且用于从所述第一开关模块接收所述高压信号并通过所述多个阴极控制级中与所述闭合的第一开关相对应的阴极控制级发送工作状态数据,其中每一个阴极控制级包括阴极控制单元和阴极。
在实施例中,在与所述闭合的第一开关相对应的阴极控制级中,阴极控制单元被配置为接收所述高压信号,向阴极发送驱动控制信号,根据反馈信号进行自动反馈调节,并且发送所述工作状态数据,并且所述阴极被配置为根据所述驱动控制信号向所述阴极控制单元发送所述反馈信号。
在实施例中,所述分时复用控制装置还包括:
采集反馈模块,被配置为从所述阴极控制模块接收反馈信号,并且发送所述反馈信号;以及
反馈开关模块,包括多个反馈开关,并且用于接收反馈控制信号并从所述采集反馈模块接收所述反馈信号,并且根据所述反馈控制信号选择闭合所述多个反馈开关之一并且通过闭合的反馈开关向所述阴极控制模块发送所述反馈信号,
其中,在与所述闭合的第一开关相对应的阴极控制级中,阴极控制单元被配置为接收所述高压信号和所述反馈信号,向阴极发送驱动控制信号,根据反馈信号进行自动反馈调节,并且发送所述工作状态数据,并且所述阴极被配置为根据所述驱动控制信号向所述采集反馈模块发送所述反馈信号。
在实施例中,所述多个第一开关中的每一个第一开关是由多个金属氧化 物半导体MOS晶体管串联形成的。
在实施例中,所述分时复用控制装置还包括:
第二开关模块,包括与所述多个阴极控制级一一对应的多个第二开关,并且用于接收驱动信号和第二控制信号,并且根据所述第二控制信号选择闭合所述多个第二开关之一并通过闭合的第二开关发送所述驱动信号,
其中,所述阴极控制模块被进一步配置为从所述第二开关模块接收所述驱动信号,并且通过所述多个阴极控制级中与所述闭合的第一开关和所述闭合的第二开关相对应的阴极控制级发送所述工作状态数据,并且
其中,所述第一控制信号和所述第二控制信号被提供使得所述闭合的第一开关和所述闭合的第二开关与同一个阴极控制级相连。
在实施例中,所述分时复用控制装置还包括:
第三开关模块,包括与所述多个阴极控制级一一对应的多个第三开关,并且用于接收第三控制信号并从所述阴极控制模块接收所述工作状态数据,并且根据所述第三控制信号选择闭合所述多个第三开关之一并通过闭合的第三开关发送所述工作状态数据,
其中,所述第一控制信号、所述第二控制信号和所述第三控制信号被提供使得所述闭合的第一开关、所述闭合的第二开关和所述闭合的第三开关与同一个阴极控制级相连,或者所述第一控制信号、所述第二控制信号、所述第三控制信号和所述反馈控制信号被提供使得所述闭合的第一开关、所述闭合的第二开关、所述闭合的第三开关和所述闭合的反馈开关与同一个阴极控制级相连。
在实施例中,所述分时复用控制装置还包括:
控制模块,用于在第二主控信号的控制下向所述第一开关模块提供所述第一控制信号、向所述第二开关模块提供所述第二控制信号并且向所述第三开关模块提供所述第三控制信号,或者用于向所述第一开关模块提供所述第一控制信号、向所述第二开关模块提供所述第二控制信号、向所述第三开关模块提供所述第三控制信号并且向所述反馈开关模块提供所述反馈控制信号。
在实施例中,所述分时复用控制装置还包括:
采集模块,用于从所述第三开关模块接收所述工作状态数据,并且发送所述工作状态数据;
主控模块,用于提供第一主控信号,并且从所述采集模块接收所述工作 状态数据;
驱动模块,用于从所述主控模块接收所述第一主控信号,并根据所述第一主控信号向所述第二开关模块提供所述驱动信号;以及
高压源,用于提供所述高压信号。
在实施例中,所述分时复用控制装置还包括:
隔离器,用于将所述主控模块与中央处理单元CPU模块隔离。
在实施例中,所述分时复用控制装置工作在高压工作环境下。
在实施例中,所述第一开关、所述第二开关和所述第三开关由模拟开关器件、数字开关器件、继电器或光电耦合器来实现,或者所述第一开关、所述第二开关、所述第三开关和所述反馈开关由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。
在实施例中,所述驱动模块是数模转换驱动模块,并且所述采集模块是模数转换采集模块。
在实施例中,所述数模转换驱动模块由专用数模转换芯片或具有数模转化功能的微控制单元来实现,并且所述模数转换采集模块由专用模数转换芯片或具有模数转化功能的微控制单元来实现。
在实施例中,所述隔离器由光电耦合器、脉冲变压器、继电器、或者由所述光电耦合器、所述脉冲变压器或所述继电器构成的隔离电路来实现。
根据本公开的第二方面,提供了一种应用于分布式X射线源的分时复用控制系统,包括:
多个上述分时复用控制装置;
采集模块,用于从所述多个分时复用控制装置中的一个分时复用控制装置接收工作状态数据,并且发送所述工作状态数据;
主控模块,用于提供第一主控信号,向所述多个分时复用控制装置中的所述一个分时复用控制装置提供第二主控信号,并且从所述采集模块接收所述工作状态数据;
驱动模块,用于从所述主控模块接收所述第一主控信号,并根据所述第一主控信号向所述多个分时复用控制装置中的所述一个分时复用控制装置提供驱动信号;以及
高压源,用于提供高压信号。
在实施例中,所述多个分时复用控制装置中的所述一个分时复用控制装置中的控制模块在所述主控模块提供的第二主控信号的控制下提供第一控制信号、第二控制信号和第三控制信号或者提供第一控制信号、第二控制信号、第三控制信号和反馈控制信号。
在实施例中,所述分时复用控制系统还包括:
隔离器,用于将所述主控模块与中央处理单元CPU模块隔离。
根据本公开的第三方面,提供了一种应用于分布式X射线源的分时复用控制系统,包括:
多个上述分时复用控制装置;
采集模块,用于从所述多个分时复用控制装置中的一个分时复用控制装置接收工作状态数据,并且发送所述工作状态数据;
主控模块,用于向所述多个分时复用控制装置中的所述一个分时复用控制装置提供第一控制信号、第二控制信号和第三控制信号或者提供第一控制信号、第二控制信号、第三控制信号和反馈控制信号,提供第一主控信号,并且从所述采集模块接收所述工作状态数据;
驱动模块,用于从所述主控模块接收所述第一主控信号,并根据所述第一主控信号向所述多个分时复用控制装置中的所述一个分时复用控制装置提供驱动信号;以及
高压源,用于提供高压信号。
在实施例中,所述分时复用控制系统还包括:
隔离器,用于将所述主控模块与中央处理单元CPU模块隔离。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1示出了根据本公开的实施例的应用于分布式X射线源的分时复用控制装置的示意图;
图2示出了根据本公开的实施例的应用于分布式X射线源的另一分时复用控制装置的示意图;
图3示出了根据本公开的实施例的应用于分布式X射线源的又一分时复 用控制装置的示意图;
图4示出了根据本公开的实施例的应用于分布式X射线源的分时复用控制系统的示意图;
图5示出了根据本公开的实施例的应用于分布式X射线源的另一分时复用控制系统的示意图;
图6示出了根据本公开的另一实施例的应用于分布式X射线源的分时复用控制装置的示意图;
图7示出了根据本公开的另一实施例的应用于分布式X射线源的另一分时复用控制装置的示意图;
图8示出了根据本公开的另一实施例的应用于分布式X射线源的又一分时复用控制装置的示意图;
图9示出了根据本公开的另一实施例的应用于分布式X射线源的分时复用控制系统的示意图;
图10示出了根据本公开的另一实施例的应用于分布式X射线源的另一分时复用控制系统的示意图;以及
图11示出了根据本公开的实施例的应用于分布式X射线源的分时复用控制系统的示意图。
附图没有对实施例的所有电路或结构进行显示。贯穿所有附图相同的附图标记表示相同或相似的部件或特征。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。这里使用的词语“一”、“一个(种)”和“该”等也应包括“多个”、“多种”的意思,除非上下文另外明确指出。此外,在此使用的术语“包括”、“包含”等表明了特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常 所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
图1示出了根据本公开的实施例的应用于分布式X射线源的分时复用控制装置的示意图。分时复用控制装置可以包括:第一开关模块101和阴极控制模块105。
第一开关模块101可以包括多个第一开关101 1、101 2、…、101 n,并且用于接收高压信号和第一控制信号,并且根据第一控制信号选择闭合多个第一开关之一并通过闭合的第一开关发送高压信号。如图3所示,多个第一开关中的每一个第一开关可以是由多个金属氧化物半导体(MOS)晶体管串联形成的。应当注意的是,同一时刻第一控制信号只能使一个第一开关闭合,并且通过闭合的第一开关传输高压信号,而在该时刻,其他第一开关都断开,因而不通过其他开关传输高压信号。例如,当第一控制信号使一个第一开关101 1闭合时,可以通过该第一开关101 1传输高压信号,其他第一开关101 2、…、101 n都不用于传输高压信号。
阴极控制模块105可以包括与多个第一开关101 1、101 2、…、101 n一一对应的多个阴极控制级105 1、105 2、…、105 n,并且用于从第一开关模块101接收高压信号并通过多个阴极控制级105 1、105 2、…、105 n中与闭合的第一开关相对应的阴极控制级发送工作状态数据,例如阴极工作电压和工作电流等。例如,当第一控制信号使一个第一开关101 1闭合时,可以通过闭合的第一开关101 1将高压信号传输到阴极控制级105 1,并且阴极控制级105 1发送工作状态数据。每一个阴极控制级可以包括阴极控制单元和阴极。例如,阴极控制级105 1可以包括阴极控制单元105 1a和阴极105 1b,阴极控制级105 2可以包括阴极控制单元105 2a和阴极105 2b,以此类推,阴极控制级105 n可以包括阴极控制单元105 na和阴极105 nb。在与闭合的第一开关相对应的阴极控制级中,阴极控制单元可以被配置为接收高压信号,向阴极发送驱动控制信号,根据反馈信号进行自动反馈调节,并且发送工作状态数据,并且阴极可以被配置为根据驱动控制信号向阴极控制单元发送反馈信号。
图2示出了根据本公开的另一实施例的应用于分布式X射线源的分时复用控制装置的示意图。分时复用控制装置可以包括:第一开关模块101、阴极控制模块105、采集反馈模块170和反馈开关模块104。
第一开关模块101可以包括多个第一开关101 1、101 2、…、101 n,并且用于接收高压信号和第一控制信号,并且根据第一控制信号选择闭合多个第一开关之一并通过闭合的第一开关发送高压信号。如图3所示,多个第一开关中的每一个第一开关可以是由多个金属氧化物半导体(MOS)晶体管串联形成的。应当注意的是,同一时刻第一控制信号只能使一个第一开关闭合,并且通过闭合的第一开关传输高压信号,而在该时刻,其他第一开关都断开,因而不通过其他开关传输高压信号。例如,当第一控制信号使一个第一开关101 1闭合时,可以通过该第一开关101 1传输高压信号,其他第一开关101 2、…、101 n都不用于传输高压信号。
阴极控制模块105可以包括与多个第一开关101 1、101 2、…、101 n一一对应的多个阴极控制级105 1、105 2、…、105 n,并且用于从第一开关模块101接收高压信号并通过多个阴极控制级105 1、105 2、…、105 n中与闭合的第一开关相对应的阴极控制级发送工作状态数据,例如阴极工作电压和工作电流等。例如,当第一控制信号使一个第一开关101 1闭合时,可以通过闭合的第一开关101 1将高压信号传输到阴极控制级105 1,并且阴极控制级105 1发送工作状态数据。每一个阴极控制级可以包括阴极控制单元和阴极。例如,阴极控制级105 1可以包括阴极控制单元105 1a和阴极105 1b,阴极控制级105 2可以包括阴极控制单元105 2a和阴极105 2b,以此类推,阴极控制级105 n可以包括阴极控制单元105 na和阴极105 nb
采集反馈模块170可以被配置为从阴极控制模块105接收反馈信号,并且发送反馈信号。反馈开关模块104可以包括多个反馈开关104 1、104 2、…、104 n,并且用于接收反馈控制信号并从采集反馈模块170接收反馈信号,并且根据反馈控制信号选择闭合多个反馈开关之一并且通过闭合的反馈开关向阴极控制模块105发送反馈信号。反馈开关可以由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。反馈开关模块104可以与阴极控制级105 1、105 2、…、105 n相连。应当注意的是,同一时刻反馈控制信号只能使一个反馈开关闭合,并且通过相应的反馈开关传输反馈信号,而在该时刻,其他反馈开关都断开,因而不通过其他反馈开关传输反馈信号。例如,当反馈控制信号使一个反馈开关104 1闭合时,可以通过该反馈开关104 1向阴极控制级105 1传输反馈信号,其他反馈开关104 2、…、104 n都不用于传输反馈信号。在与闭合的 第一开关相对应的阴极控制级中,阴极控制单元可以被配置为接收高压信号和反馈信号,向阴极发送驱动控制信号,根据反馈信号进行自动反馈调节,并且发送工作状态数据,并且阴极可以被配置为根据驱动控制信号向采集反馈模块170发送反馈信号。
应当注意的是,第一控制信号和反馈控制信号可以被提供使得闭合的第一开关和闭合的反馈开关与同一个阴极控制级相连。例如,当第一控制信号使一个第一开关闭合以与阴极控制级105 1相连时,反馈控制信号应当使相应的反馈开关闭合以与阴极控制级105 1相连。
如图3所示,分时复用控制装置还可以包括第二开关模块102,第二开关模块102可以包括与所述多个阴极控制级105 1、105 2、…、105 n一一对应的多个第二开关102 1、102 2、…、102 n,并且用于接收驱动信号和第二控制信号,并且根据第二控制信号选择闭合多个第二开关之一并通过闭合的第二开关发送驱动信号。第二开关可以由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。应当注意的是,同一时刻第二控制信号只能使一个第二开关闭合,并且通过相应的第二开关传输驱动信号,而在该时刻,其他第二开关都断开,因而不通过其他第二开关传输驱动信号。例如,当第二控制信号使一个第二开关102 1闭合时,可以通过该第二开关102 1向阴极控制级105 1传输驱动信号,其他第二开关102 2、…、102 n都不用于传输驱动信号。阴极控制模块105可以被进一步配置为从第二开关模块102接收驱动信号,并且通过多个阴极控制级中与闭合的第一开关和闭合的第二开关相对应的阴极控制级发送工作状态数据。
应当注意的是,第一控制信号和第二控制信号可以被提供使得闭合的第一开关和闭合的第二开关与同一个阴极控制级相连。例如,当第一控制信号使一个第一开关闭合以与阴极控制级105 1相连时,第二控制信号应当使相应的第二开关闭合以与阴极控制级105 1相连。
如图3所示,分时复用控制装置还可以包括第三开关模块103,第三开关模块103可以包括与多个阴极控制级105 1、105 2、…、105 n一一对应的多个第三开关103 1、103 2、…、103 n,并且用于接收第三控制信号并从阴极控制模块105接收工作状态数据,并且根据第三控制信号选择闭合多个第三开关之一并通过闭合的第三开关发送工作状态数据。第三开关可以由模拟开关器件、数字 开关器件、继电器或光电耦合器来实现。应当注意的是,同一时刻第三控制信号只能使一个第三开关闭合,并且通过相应的第三开关接收工作状态数据,而在该时刻,其他第三开关都断开,因而不通过其他第三开关接收工作状态数据。例如,当第三控制信号使一个第三开关103 1闭合时,可以通过该第三开关103 1从阴极控制级105 1接收工作状态数据,其他第三开关103 2、…、103 n都不用于接收工作状态数据。
应当注意的是,第一控制信号、第二控制信号和第三控制信号可以被提供使得闭合的第一开关、闭合的第二开关和闭合的第三开关与同一个阴极控制级相连。例如,当第一控制信号使一个第一开关闭合以与阴极控制级105 1相连时,第二控制信号应当使相应的第二开关闭合以与阴极控制级105 1相连,并且第三控制信号应当使相应的第三开关闭合以与阴极控制级105 1相连。
如图4所示,分时复用控制装置还可以包括控制模块110,用于在第二主控信号的控制下向第一开关模块101提供第一控制信号,向第二开关模块102提供第二控制信号,并且向第三开关模块103提供第三控制信号。具体地,控制模块110可以与第一开关模块101、第二开关模块102和第三开关模块103相连,并且通过向第一开关模块101提供第一控制信号来控制第一开关模块101中的第一开关的闭合,通过向第二开关模块102提供第二控制信号来控制第二开关模块102中的第二开关的闭合,并且通过向第三开关模块103提供第三控制信号来控制第三开关模块103中的第三开关的闭合。
如图4所示,分时复用控制装置还可以包括采集模块130,用于从第三开关模块103接收工作状态数据,并且发送工作状态数据;主控模块140,用于提供第一主控信号,向控制模块110提供所述第二主控信号,并且从采集模块130接收工作状态数据;驱动模块120,用于从主控模块140接收第一主控信号,并根据第一主控信号向第二开关模块102提供驱动信号;以及高压源160,用于提供高压信号。具体地,主控模块140可以分别与驱动模块120和采集模块130相连,以控制驱动模块120产生驱动信号,并且实时地从采集模块130接收工作状态数据。驱动模块120可以是数模转换驱动模块,数模转换驱动模块可以由专用数模转换芯片或具有数模转化功能的微控制单元来实现。采集模块130可以是模数转换采集模块,模数转换采集模块可以由专用模数转换芯片或具有模数转化功能的微控制单元来实现。
主控模块140还可以通过第二主控信号控制控制模块110的操作,使得控制模块110在主控模块140的控制下提供上述第一控制信号、上述第二控制信号和上述第三控制信号。
如图4所示,分时复用控制装置还可以包括隔离器150,用于将主控模块140与中央处理单元(CPU)模块100隔离,使得分时复用控制装置工作在高压(千伏级别)工作环境下。隔离器150可以由光电耦合器、脉冲变压器、继电器、或者由所述光电耦合器、所述脉冲变压器或所述继电器构成的隔离电路来实现。
图5示出了根据本公开的实施例的应用于分布式X射线源的分时复用控制系统的示意图。分时复用控制系统可以包括多个分时复用控制装置310(如图4中所示);采集模块130,用于从多个分时复用控制装置中的一个分时复用控制装置接收工作状态数据,并且发送工作状态数据;主控模块140,用于提供第一主控信号,向所述多个分时复用控制装置310中的所述一个分时复用控制装置提供第二主控信号,并且从采集模块130接收工作状态数据;驱动模块120,用于从主控模块140接收第一主控信号,并根据第一主控信号向所述多个分时复用控制装置中的所述一个分时复用控制装置提供驱动信号;以及高压源,用于提供高压信号。驱动模块120可以是数模转换驱动模块,数模转换驱动模块可以由专用数模转换芯片或具有数模转化功能的微控制单元来实现。采集模块130可以是模数转换采集模块,模数转换采集模块可以由专用模数转换芯片或具有模数转化功能的微控制单元来实现。分时复用控制装置310中的第一开关、第二开关和第三开关可以由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。
多个分时复用控制装置310(即,分时复用控制装置310-1、…、分时复用控制装置310-N)中的所述一个分时复用控制装置中的控制模块可以在主控模块140提供的第二主控信号的控制下提供第一控制信号、第二控制信号和第三控制信号。
分时复用控制系统还可以包括:隔离器150,用于将主控模块140与中央处理单元(CPU)模块100隔离,使得分时复用控制系统工作在高压(千伏级别)工作环境下。隔离器150可以由光电耦合器、脉冲变压器、继电器、或者可以由光电耦合器、脉冲变压器或继电器构成的隔离电路来实现。
如图5所示,隔离模块150可以与主控模块140相连,主控模块140可以与控制模块110-1、…、控制模块110-N相连,同时主控模块140可以与驱动模块120和采集模块130相连。驱动模块120可以与第二开关模块102-1…、第二开关模块102-N相连,采集模块130可以与第三开关模块103-1、…、第三开关模块103-N相连,并且高压源160可以与第一开关模块101-1…、第一开关模块101-N相连。
在分时复用控制装置310-1中,第一开关模块101-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连,同时第一开关模块101-1可以与控制模块110-1相连;第二开关模块102-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连,同时第二开关模块102-1可以与控制模块110-1相连;并且第三开关模块103-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连,同时第三开关模块103-1可以与控制模块110-1相连。
类似地,在分时复用控制装置310-N中,第一开关模块101-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连,同时第一开关模块101-N可以与控制模块110-N相连;第二开关模块102-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连,同时第二开关模块102-N可以与控制模块110-N相连;并且第三开关模块103-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连,同时第三开关模块103-N可以与控制模块110-N相连。
图5中未示出的其他分时复用控制装置可以具有与分时复用控制装置310-1和分时复用控制装置310-N类似的结构,因此这里将不再赘述。
主控模块140可以通过控制控制模块110-1、控制模块110-2、…、控制模块110-N分别控制分时复用控制装置310-1、…、分时复用控制装置310-N操作,但是同一时刻只能控制一个控制模块操作。下面将以主控模块140控制分时复用控制装置310-1为例描述分时复用控制系统的操作。
高压源160可以向第一开关模块101-1输出高压信号。主控模块140可以控制驱动模块120输出驱动信号,该驱动信号可以输出至第二开关模块102-1。主控模块140可以控制控制模块110-1提供第一控制信号、第二控制 信号和第三控制信号。控制模块110-1可以向第一开关模块101-1输出第一控制信号,以控制第一开关模块101-1中的一个开关闭合。应当注意的是,同一时刻第一控制信号只能使第一开关模块101-1中的一个第一开关闭合,并且通过闭合的第一开关传输高压信号,而在该时刻,其他第一开关都断开,因而不通过其他第一开关传输高压信号。当例如第一开关101 2-1闭合时,高压信号可以通过第一开关101 2-1传输到阴极控制级105 2-1。控制模块110-1可以向第二开关模块102-1输出第二控制信号,以控制第二开关模块102-1中的相应第二开关闭合。控制模块110-1可以向第三开关模块103-1输出第三控制信号,以控制第三开关模块103-1中的相应第三开关闭合。应当注意的是,因为第一控制信号被提供使得第一开关101 2-1闭合,因此第二控制信号和第三控制信号被提供使得第二开关102 2-1和第三开关103 2-1闭合,从而实现闭合的第一开关、闭合的第二开关和闭合的第三开关与同一个阴极控制级105 2-1相连。阴极控制级105 2-1中的阴极控制单元105 2a-1根据接收到的驱动信号和高压信号向阴极105 2b-1发送驱动控制信号,并且阴极105 2b-1根据接收到的驱动控制信号向阴极控制单元105 2a-1发送反馈信号,阴极控制单元105 2a-1根据接收到的反馈信号进行自动反馈调节,并输出工作状态数据,并且通过闭合的第三开关103 2-1将工作状态数据传输到采集模块130。采集模块130可以将工作状态数据传输到主控模块140。
当主控模块选择其他分时复用控制装置(例如,分时复用控制装置310-N)时,分时复用控制系统的操作过程可以与上述过程类似,因此这里将不再赘述。
图6示出了根据本公开的实施例的应用于分布式X射线源的另一分时复用控制系统的示意图。分时复用控制系统可以包括:多个分时复用控制装置210(如图3中所示);采集模块130,用于从多个分时复用控制装置中的一个分时复用控制装置接收工作状态数据,并且发送工作状态数据;主控模块140,用于向所述多个分时复用控制装置中的所述一个分时复用控制装置提供第一控制信号、第二控制信号和第三控制信号,提供第一主控信号,并且从采集模块130接收工作状态数据;驱动模块120,用于从主控模块140接收第一主控信号,并根据第一主控信号向所述多个分时复用控制装置中的所述一个分时复用控制装置提供驱动信号;以及高压源,用于提供高压信号。驱动模块120可以是数模转换驱动模块,数模转换驱动模块可以由专用数模转换芯片或具有 数模转化功能的微控制单元来实现。采集模块130可以是模数转换采集模块,模数转换采集模块可以由专用模数转换芯片或具有模数转化功能的微控制单元来实现。分时复用控制装置210中的第一开关、第二开关和第三开关可以由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。
分时复用控制系统还可以包括:隔离器150,用于将主控模块140与中央处理单元(CPU)模块100隔离,使得分时复用控制系统工作在高压(千伏级别)工作环境下。隔离器150可以由光电耦合器、脉冲变压器、继电器、或者由光电耦合器、脉冲变压器或继电器构成的隔离电路来实现。
如图6所示,隔离模块150可以与主控模块140相连,主控模块140可以与第一开关模块101-1、…、第一开关模块101-N、第二开关模块102-1、…、第二开关模块102-N以及第三开关模块103-1、…、第三开关模块103-N相连,同时主控模块140可以与驱动模块120和采集模块130相连。驱动模块120可以与第二开关模块102-1…、第二开关模块102-N相连,采集模块130可以与第三开关模块103-1、…、第三开关模块103-N相连,并且高压源160可以与第一开关模块101-1…、第一开关模块101-N相连。
在分时复用控制装置210-1中,第一开关模块101-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连;第二开关模块102-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连;并且第三开关模块103-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连。
类似地,在分时复用控制装置210-N中,第一开关模块101-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连;第二开关模块102-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连;并且第三开关模块103-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连。
图6未示出的其他分时复用控制装置可以具有与分时复用控制装置210-1和分时复用控制装置210-N类似的结构,因此这里将不再赘述。
主控模块140可以分别控制分时复用控制装置210-1、…、分时复用控制装置210-N操作,但是同一时刻只能控制一个分时复用控制装置操作。下面将以主控模块140控制分时复用控制装置210-1为例描述分时复用控制系统的操 作。
高压源160可以向第一开关模块101-1输出高压信号。主控模块140可以控制驱动模块120输出驱动信号,该驱动信号可以输出至第二开关模块102-1。主控模块140可以向第一开关模块101-1输出第一控制信号,以控制第一开关模块101-1中的一个开关闭合。应当注意的是,同一时刻第一控制信号只能使第一开关模块101-1中的一个第一开关闭合,并且通过闭合的第一开关传输高压信号,而在该时刻,其他第一开关都断开,因而不通过其他第一开关传输高压信号。当例如第一开关101 2-1闭合时,高压信号可以通过第一开关101 2-1传输到阴极控制级105 2-1。主控模块140可以向第二开关模块102-1输出第二控制信号,以控制第二开关模块102-1中的相应第二开关闭合。主控模块140可以向第三开关模块103-1输出第三控制信号,以控制第三开关模块103-1中的相应第三开关闭合。应当注意的是,因为第一控制信号被提供使得第一开关101 2-1闭合,因此第二控制信号和第三控制信号被提供使得第二开关102 2-1和第三开关103 2-1闭合,从而实现闭合的第一开关、闭合的第二开关和闭合的第三开关与同一个阴极控制级105 2-1相连。阴极控制级105 2-1中的阴极控制单元105 2a-1根据接收到的驱动信号和高压信号向阴极105 2b-1发送驱动控制信号,并且阴极105 2b-1根据接收到的驱动控制信号向阴极控制单元105 2a-1发送反馈信号,阴极控制单元105 2a-1根据接收到的反馈信号进行自动反馈调节,并输出工作状态数据,并且通过闭合的第三开关103 2-1将工作状态数据传输到采集模块130。采集模块130可以将工作状态数据传输到主控模块140。
当主控模块选择其他分时复用控制装置(例如,分时复用控制装置210-N)时,分时复用控制系统的操作过程可以与上述过程类似,因此这里将不再赘述。
如图7所示,分时复用控制装置包括:第一开关模块101、阴极控制模块105、采集反馈模块170和反馈开关模块104、第二开关模块102,第二开关模块102可以包括与所述多个阴极控制级105 1、105 2、…、105 n一一对应的多个第二开关102 1、102 2、…、102 n,并且用于接收驱动信号和第二控制信号,并且根据第二控制信号选择闭合多个第二开关之一并通过闭合的第二开关发送驱动信号。第二开关可以由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。应当注意的是,同一时刻第二控制信号只能使一个第二开关闭合, 并且通过相应的第二开关传输驱动信号,而在该时刻,其他第二开关都断开,因而不通过其他第二开关传输驱动信号。例如,当第二控制信号使一个第二开关102 1闭合时,可以通过该第二开关102 1向阴极控制级105 1传输驱动信号,其他第二开关102 2、…、102 n都不用于传输驱动信号。阴极控制模块105可以被进一步配置为从第二开关模块102接收驱动信号,并且通过多个阴极控制级中与闭合的第一开关和闭合的第二开关相对应的阴极控制级发送工作状态数据。
应当注意的是,第一控制信号、第二控制信号和反馈控制信号可以被提供使得闭合的第一开关和闭合的第二开关与同一个阴极控制级相连。例如,当第一控制信号使一个第一开关闭合以与阴极控制级105 1相连时,第二控制信号应当使相应的第二开关闭合以与阴极控制级105 1相连,并且反馈控制信号应当使相应的反馈开关闭合以与阴极控制级105 1相连。
如图7所示,分时复用控制装置还可以包括第三开关模块103,第三开关模块103可以包括与多个阴极控制级105 1、105 2、…、105 n一一对应的多个第三开关103 1、103 2、…、103 n,并且用于接收第三控制信号并从阴极控制模块105接收工作状态数据,并且根据第三控制信号选择闭合多个第三开关之一并通过闭合的第三开关发送工作状态数据。第三开关可以由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。第三开关模块103可以与阴极控制级105 1、105 2、…、105 n相连。应当注意的是,同一时刻第三控制信号只能使一个第三开关闭合,并且通过相应的第三开关接收工作状态数据,而在该时刻,其他第三开关都断开,因而不通过其他第三开关接收工作状态数据。例如,当第三控制信号使一个第三开关103 1闭合时,可以通过该第三开关103 1从阴极控制级105 1接收工作状态数据,其他第三开关103 2、…、103 n都不用于接收工作状态数据。
应当注意的是,第一控制信号、第二控制信号、第三控制信号和反馈控制信号可以被提供使得闭合的第一开关、闭合的第二开关、闭合的第三开关和闭合的反馈开关与同一个阴极控制级相连。例如,当第一控制信号使一个第一开关闭合以与阴极控制级105 1相连时,第二控制信号应当使相应的第二开关闭合以与阴极控制级105 1相连,第三控制信号应当使相应的第三开关闭合以与阴极控制级105 1相连,并且反馈控制信号应当使相应的反馈开关闭合以与 阴极控制级105 1相连。
如图8所示,分时复用控制装置还可以包括控制模块110,用于在第二主控信号的控制下向第一开关模块101提供第一控制信号,向第二开关模块102提供第二控制信号,向第三开关模块103提供第三控制信号,并且向反馈开关模块104提供反馈控制信号。具体地,控制模块110可以与第一开关模块101、第二开关模块102、第三开关模块103和反馈开关模块104相连,并且通过向第一开关模块101提供第一控制信号来控制第一开关模块101中的第一开关的闭合,通过向第二开关模块102提供第二控制信号来控制第二开关模块102中的第二开关的闭合,通过向第三开关模块103提供第三控制信号来控制第三开关模块103中的第三开关的闭合,并且通过向反馈开关模块104提供反馈控制信号来控制反馈开关模块104中的反馈开关的闭合。
如图8所示,分时复用控制装置还可以包括采集模块130,用于从所述第三开关模块103接收工作状态数据,并且发送工作状态数据;主控模块140,用于提供第一主控信号,向控制模块110提供所述第二主控信号,并且从采集模块130接收工作状态数据;驱动模块120,用于从主控模块140接收第一主控信号,并根据第一主控信号向第二开关模块102提供驱动信号;以及高压源160,用于提供高压信号。具体地,主控模块140可以分别与驱动模块120和采集模块130相连,以控制驱动模块120产生驱动信号,并且实时地从采集模块130接收工作状态数据。驱动模块120可以是数模转换驱动模块,数模转换驱动模块可以由专用数模转换芯片或具有数模转化功能的微控制单元来实现。采集模块130可以是模数转换采集模块,模数转换采集模块可以由专用模数转换芯片或具有模数转化功能的微控制单元来实现。
如图8所示,分时复用控制装置还可以包括隔离器150,用于将主控模块140与中央处理单元(CPU)模块100隔离,使得分时复用控制装置工作在高压(千伏级别)工作环境下。隔离器150可以由光电耦合器、脉冲变压器、继电器、或者由所述光电耦合器、所述脉冲变压器或所述继电器构成的隔离电路来实现。
图9示出了根据本公开的实施例的应用于分布式X射线源的分时复用控制系统的示意图。分时复用控制系统可以包括多个分时复用控制装置810(如图8中所示);采集模块130,用于从多个分时复用控制装置中的一个分时复 用控制装置接收工作状态数据,并且发送工作状态数据;主控模块140,用于提供第一主控信号,向所述多个分时复用控制装置810中的所述一个分时复用控制装置提供第二主控信号,并且从采集模块130接收工作状态数据;驱动模块120,用于从主控模块140接收第一主控信号,并根据第一主控信号向所述多个分时复用控制装置中的所述一个分时复用控制装置提供驱动信号;以及高压源,用于提供高压信号。驱动模块120可以是数模转换驱动模块,数模转换驱动模块可以由专用数模转换芯片或具有数模转化功能的微控制单元来实现。采集模块130可以是模数转换采集模块,模数转换采集模块可以由专用模数转换芯片或具有模数转化功能的微控制单元来实现。分时复用控制装置810中的第一开关、第二开关、第三开关和反馈开关可以由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。
多个分时复用控制装置810(即,分时复用控制装置810-1、…、分时复用控制装置810-N)中的所述一个分时复用控制装置中的控制模块可以在主控模块140提供的第二主控信号的控制下提供第一控制信号、第二控制信号、第三控制信号和反馈控制信号。
分时复用控制系统还可以包括:隔离器150,用于将主控模块140与中央处理单元(CPU)模块100隔离,使得分时复用控制系统工作在高压(千伏级别)工作环境下。隔离器150可以由光电耦合器、脉冲变压器、继电器、或者可以由光电耦合器、脉冲变压器或继电器构成的隔离电路来实现。
如图9所示,隔离模块150可以与主控模块140相连,主控模块140可以与控制模块110-1、…、控制模块110-N相连,同时主控模块140可以与驱动模块120和采集模块130相连。驱动模块120可以与第二开关模块102-1…、第二开关模块102-N相连,采集模块130可以与第三开关模块103-1、…、第三开关模块103-N相连,并且高压源160可以与第一开关模块101-1…、第一开关模块101-N相连。
在分时复用控制装置810-1中,第一开关模块101-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连,同时第一开关模块101-1可以与控制模块110-1相连;第二开关模块102-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连,同时第二开关模块102-1可以与控制模块110-1相连;第三开关模块103-1 可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连,同时第三开关模块103-1可以与控制模块110-1相连;反馈开关模块104-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连,同时反馈开关模块104-1可以与采集反馈模块170-1和控制模块110-1相连;并且采集反馈模块170-1还可以与阴极105 1b-1、阴极105 2b-1、……、阴极105 nb-1相连。
类似地,在分时复用控制装置810-N中,第一开关模块101-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连,同时第一开关模块101-N可以与控制模块110-N相连;第二开关模块102-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连,同时第二开关模块102-N可以与控制模块110-N相连;第三开关模块103-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连,同时第三开关模块103-N可以与控制模块110-N相连;反馈开关模块104-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连,同时反馈开关模块104-1可以与采集反馈模块170-N和控制模块110-N相连;并且采集反馈模块170-N还可以与阴极105 1b-N、阴极105 2b-N、……、阴极105 nb-N相连。
图9中未示出的其他分时复用控制装置可以具有与分时复用控制装置810-1和分时复用控制装置810-N类似的结构,因此这里将不再赘述。
主控模块140可以通过控制控制模块110-1、控制模块110-2、…、控制模块110-N分别控制分时复用控制装置810-1、…、分时复用控制装置810-N操作,但是同一时刻只能控制一个控制模块操作。下面将以主控模块140控制分时复用控制装置810-1为例描述分时复用控制系统的操作。
高压源160可以向第一开关模块101-1输出高压信号。主控模块140可以控制驱动模块120输出驱动信号,该驱动信号可以输出至第二开关模块102-1。主控模块140可以控制控制模块110-1提供第一控制信号、第二控制信号、第三控制信号和反馈控制信号。控制模块110-1可以向第一开关模块101-1输出第一控制信号,以控制第一开关模块101-1中的一个开关闭合。应当注意的是,同一时刻第一控制信号只能使第一开关模块101-1中的一个第一开关闭合,并且通过闭合的第一开关传输高压信号,而在该时刻,其他第一开 关都断开,因而不通过其他第一开关传输高压信号。当例如第一开关101 2-1闭合时,高压信号可以通过第一开关101 2-1传输到阴极控制级105 2-1。控制模块110-1可以向第二开关模块102-1输出第二控制信号,以控制第二开关模块102-1中的相应第二开关闭合。控制模块110-1可以向第三开关模块103-1输出第三控制信号,以控制第三开关模块103-1中的相应第三开关闭合。控制模块110-1可以向反馈开关模块104-1输出反馈控制信号,以控制反馈开关模块104-1中的相应反馈开关闭合。应当注意的是,因为第一控制信号被提供使得第一开关101 2-1闭合,因此第二控制信号、第三控制信号和反馈控制信号被提供使得第二开关102 2-1、第三开关103 2-1和反馈开关104 2-1闭合,从而实现闭合的第一开关、闭合的第二开关、闭合的第三开关和闭合的反馈开关与同一个阴极控制级105 2-1相连。阴极控制级105 2-1中的阴极控制单元105 2a-1根据接收到的驱动信号和高压信号向阴极105 2b-1发送驱动控制信号,并且阴极105 2b-1根据接收到的驱动控制信号向采集反馈模块170-1发送反馈信号,采集反馈模块170-1通过闭合的反馈开关104 2-1向阴极控制单元105 2a-1发送反馈信号,阴极控制单元105 2a-1根据接收到的反馈信号进行自动反馈调节,并输出工作状态数据,并且通过闭合的第三开关103 2-1将工作状态数据传输到采集模块130。采集模块130可以将工作状态数据传输到主控模块140。
当主控模块选择其他分时复用控制装置(例如,分时复用控制装置810-N)时,分时复用控制系统的操作过程可以与上述过程类似,因此这里将不再赘述。
图10示出了根据本公开的实施例的应用于分布式X射线源的另一分时复用控制系统的示意图。分时复用控制系统可以包括:多个分时复用控制装置710(如图7中所示);采集模块130,用于从多个分时复用控制装置中的一个分时复用控制装置接收工作状态数据,并且发送工作状态数据;主控模块140,用于向所述多个分时复用控制装置中的所述一个分时复用控制装置提供第一控制信号、第二控制信号、第三控制信号和反馈控制信号,提供第一主控信号,并且从采集模块130接收工作状态数据;驱动模块120,用于从主控模块140接收第一主控信号,并根据第一主控信号向所述多个分时复用控制装置中的所述一个分时复用控制装置提供驱动信号;以及高压源,用于提供高压信号。驱动模块120可以是数模转换驱动模块,数模转换驱动模块可以由专用数模转换芯片或具有数模转化功能的微控制单元来实现。采集模块130可以是模数转换 采集模块,模数转换采集模块可以由专用模数转换芯片或具有模数转化功能的微控制单元来实现。分时复用控制装置710中的第一开关、第二开关、第三开关和反馈开关可以由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。
分时复用控制系统还可以包括:隔离器150,用于将主控模块140与中央处理单元(CPU)模块100隔离,使得分时复用控制系统工作在高压(千伏级别)工作环境下。隔离器150可以由光电耦合器、脉冲变压器、继电器、或者由光电耦合器、脉冲变压器或继电器构成的隔离电路来实现。
如图10所示,隔离模块150可以与主控模块140相连,主控模块140可以与第一开关模块101-1、…、第一开关模块101-N、第二开关模块102-1、…、第二开关模块102-N、第三开关模块103-1、…、第三开关模块103-N以及反馈开关模块104-1、…、反馈开关模块104-N相连,同时主控模块140可以与驱动模块120和采集模块130相连。驱动模块120可以与第二开关模块102-1…、第二开关模块102-N相连,采集模块130可以与第三开关模块103-1、…、第三开关模块103-N相连,并且高压源160可以与第一开关模块101-1…、第一开关模块101-N相连。
在分时复用控制装置710-1中,第一开关模块101-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连;第二开关模块102-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连;第三开关模块103-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连;反馈开关模块104-1可以与阴极控制单元105 1a-1、阴极控制单元105 2a-1、……、阴极控制单元105 na-1相连,同时反馈开关模块104-1可以与采集反馈模块170-1相连;并且采集反馈模块170-1还可以与阴极105 1b-1、阴极105 2b-1、……、阴极105 nb-1相连。
类似地,在分时复用控制装置710-N中,第一开关模块101-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连;第二开关模块102-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连;第三开关模块103-N可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连;反馈开关模块104-N 可以与阴极控制单元105 1a-N、阴极控制单元105 2a-N、……、阴极控制单元105 na-N相连,同时反馈开关模块104-1可以与采集反馈模块170-N相连;并且采集反馈模块170-N还可以与阴极105 1b-N、阴极105 2b-N、……、阴极105 nb-N相连。
图10未示出的其他分时复用控制装置可以具有与分时复用控制装置710-1和分时复用控制装置710-N类似的结构,因此这里将不再赘述。
主控模块140可以分别控制分时复用控制装置710-1、…、分时复用控制装置710-N操作,但是同一时刻只能控制一个分时复用控制装置操作。下面将以主控模块140控制分时复用控制装置710-1为例描述分时复用控制系统的操作。
高压源160可以向第一开关模块101-1输出高压信号。主控模块140可以控制驱动模块120输出驱动信号,该驱动信号可以输出至第二开关模块102-1。主控模块140可以向第一开关模块101-1输出第一控制信号,以控制第一开关模块101-1中的一个开关闭合。应当注意的是,同一时刻第一控制信号只能使第一开关模块101-1中的一个第一开关闭合,并且通过闭合的第一开关传输高压信号,而在该时刻,其他第一开关都断开,因而不通过其他第一开关传输高压信号。当例如第一开关101 2-1闭合时,高压信号可以通过第一开关101 2-1传输到阴极控制级105 2-1。主控模块140可以向第二开关模块102-1输出第二控制信号,以控制第二开关模块102-1中的相应第二开关闭合。主控模块140可以向第三开关模块103-1输出第三控制信号,以控制第三开关模块103-1中的相应第三开关闭合。主控模块140可以向反馈开关模块104-1输出反馈控制信号,以控制反馈开关模块104-1中的相应反馈开关闭合。应当注意的是,因为第一控制信号被提供使得第一开关101 2-1闭合,因此第二控制信号、第三控制信号和反馈控制信号被提供使得第二开关102 2-1、第三开关103 2-1和反馈开关104 2-1闭合,从而实现闭合的第一开关、闭合的第二开关、闭合的第三开关和闭合的反馈开关与同一个阴极控制级105 2-1相连。阴极控制级105 2-1中的阴极控制单元105 2a-1根据接收到的驱动信号和高压信号向阴极105 2b-1发送驱动控制信号,并且阴极105 2b-1根据接收到的驱动控制信号向采集反馈模块170-1发送反馈信号,采集反馈模块170-1通过闭合的反馈开关104 2-1向阴极控制单元105 2a-1发送反馈信号,阴极控制单元105 2a-1根据接收 到的反馈信号进行自动反馈调节,并输出工作状态数据,并且通过闭合的第三开关103 2-1将工作状态数据传输到采集模块130。采集模块130可以将工作状态数据传输到主控模块140。
当主控模块选择其他分时复用控制装置(例如,分时复用控制装置710-N)时,分时复用控制系统的操作过程可以与上述过程类似,因此这里将不再赘述。
多焦点X射线源系统提供了可以在多个位置同时产生X射线的能力,但是在多焦点X射线源的大量应用情况下,通常在同一时刻内仅有一个阴极——阳极组件处于工作状态。据此,根据本公开的分时复用控制装置和系统采用分时复用原理,对多个控制通道采用一路共用的控制驱动及数据采集电路,该控制系统可在不同时刻切换到不同的通道,实现各阴极工作状态的瞬时切换,并对每一个阴极的工作状态数据进行准确控制,使多焦点X射线源具备快速启动/关断、状态切换和参数灵活设定等特点,并降低了多通道控制系统的成本。
图11示意性地示出了根据本公开的实施例的分时复用控制系统1100的示意图。系统1100可以包括处理器1110,例如,数字信号处理器(DSP)。处理器1110可以是用于执行本文所描述的过程的不同动作的单个装置或多个装置。系统1100还可以包括输入/输出(I/O)装置1130,用于从其他实体接收信号或者向其他实体发送信号。
此外,系统1100可以包括存储器1120,该存储器1120可以具有以下形式:非易失性或易失性存储器,例如,电可擦除可编程只读存储器(EEPROM)、闪存等。存储器1120可以存储计算机可读指令,当处理器1110执行该计算机可读指令时,该计算机可读指令可以使处理器执行本文所述的动作。
附图中示出了一些方框图和/或流程图。应理解,方框图和/或流程图中的一些方框或其组合可以由计算机程序指令来实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,从而这些指令在由该处理器执行时可以创建用于实现这些方框图和/或流程图中所说明的功能/操作的装置。
因此,本公开的技术可以硬件和/或软件(包括固件、微代码等)的形式来实现。另外,本公开的技术可以采取存储有指令的计算机可读介质上的计算机程序产品的形式,该计算机程序产品可供指令执行系统(例如,一个或多个处理器)使用或者结合指令执行系统使用。在本公开的上下文中,计算机可读 介质可以是能够包含、存储、传送、传播或传输指令的任意介质。例如,计算机可读介质可以包括但不限于电、磁、光、电磁、红外或半导体系统、装置、器件或传播介质。计算机可读介质的具体示例包括:磁存储装置,如磁带或硬盘(HDD);光存储装置,如光盘(CD-ROM);存储器,如随机存取存储器(RAM)或闪存;和/或有线/无线通信链路。
以上的详细描述通过使用示意图、流程图和/或示例,已经阐述了分时复用控制装置和系统的众多实施例。在这种示意图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域技术人员应理解,这种示意图、流程图或示例中的每一功能和/或操作可以通过各种结构、硬件、软件、固件或实质上它们的任意组合来单独和/或共同实现。在一个实施例中,本公开的实施例所述主题的若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、或其他集成格式来实现。然而,本领域技术人员应认识到,这里所公开的实施例的一些方面在整体上或部分地可以等同地实现在集成电路中,实现为在一台或多台计算机上运行的一个或多个计算机程序(例如,实现为在一台或多台计算机系统上运行的一个或多个程序),实现为在一个或多个处理器上运行的一个或多个程序(例如,实现为在一个或多个微处理器上运行的一个或多个程序),实现为固件,或者实质上实现为上述方式的任意组合,并且本领域技术人员根据本公开,将具备设计电路和/或写入软件和/或固件代码的能力。此外,本领域技术人员将认识到,本公开所述主题的机制能够作为多种形式的程序产品进行分发,并且无论实际用来执行分发的信号承载介质的具体类型如何,本公开所述主题的示例性实施例均适用。信号承载介质的示例包括但不限于:可记录型介质,如软盘、硬盘驱动器、紧致盘(CD)、数字通用盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,如数字和/或模拟通信介质(例如,光纤光缆、波导、有线通信链路、无线通信链路等)。

Claims (15)

  1. 一种应用于分布式X射线源的分时复用控制装置,包括:
    第一开关模块,包括多个第一开关,并且用于接收高压信号和第一控制信号,并且根据所述第一控制信号选择闭合所述多个第一开关之一并通过闭合的第一开关发送所述高压信号;以及
    阴极控制模块,包括与所述多个第一开关一一对应的多个阴极控制级,每一个阴极控制级包括阴极控制单元和阴极,其中在与所述闭合的第一开关相对应的阴极控制级中,阴极控制单元从所述第一开关模块接收所述高压信号,并向对应的阴极发送驱动控制信号。
  2. 根据权利要求1所述的分时复用控制装置,其中,所述阴极控制单元被配置为从所述阴极获取反馈信号,根据所述反馈信号对所述驱动控制信号进行自动反馈调节,并且发送工作状态数据,并且所述阴极被配置为从所述阴极控制单元接收所述驱动控制信号,并向所述阴极控制单元发送所述反馈信号。
  3. 根据权利要求1所述的分时复用控制装置,还包括:
    采集反馈模块,被配置为从所述阴极控制模块接收反馈信号,并且发送所述反馈信号;以及
    反馈开关模块,包括多个反馈开关,并且用于接收反馈控制信号并从所述采集反馈模块接收所述反馈信号,并且根据所述反馈控制信号选择闭合所述多个反馈开关之一并且通过闭合的反馈开关向所述阴极控制模块发送所述反馈信号,
    其中,在与所述闭合的第一开关相对应的阴极控制级中,阴极控制单元被配置为接收所述高压信号和所述反馈信号,向阴极发送驱动控制信号,根据反馈信号进行自动反馈调节,并且发送所述工作状态数据,并且所述阴极被配置为根据所述驱动控制信号向所述采集反馈模块发送所述反馈信号。
  4. 根据权利要求2或3所述的分时复用控制装置,其中,所述多个第一开关中的每一个第一开关是由多个金属氧化物半导体MOS晶体管串联形成的。
  5. 根据权利要求2或3所述的分时复用控制装置,还包括:
    第二开关模块,包括与所述多个阴极控制级一一对应的多个第二开关,并 且用于接收驱动信号和第二控制信号,并且根据所述第二控制信号选择闭合所述多个第二开关之一并通过闭合的第二开关发送所述驱动信号,
    其中,所述阴极控制模块被进一步配置为从所述第二开关模块接收所述驱动信号,并且通过所述多个阴极控制级中与所述闭合的第一开关和所述闭合的第二开关相对应的阴极控制级发送所述工作状态数据,并且
    其中,所述第一控制信号和所述第二控制信号被提供使得所述闭合的第一开关和所述闭合的第二开关与同一个阴极控制级相连。
  6. 根据权利要求5所述的分时复用控制装置,还包括:
    第三开关模块,包括与所述多个阴极控制级一一对应的多个第三开关,并且用于接收第三控制信号并从所述阴极控制模块接收所述工作状态数据,并且根据所述第三控制信号选择闭合所述多个第三开关之一并通过闭合的第三开关发送所述工作状态数据,
    其中,所述第一控制信号、所述第二控制信号和所述第三控制信号被提供使得所述闭合的第一开关、所述闭合的第二开关和所述闭合的第三开关与同一个阴极控制级相连,或者所述第一控制信号、所述第二控制信号、所述第三控制信号和所述反馈控制信号被提供使得所述闭合的第一开关、所述闭合的第二开关、所述闭合的第三开关和所述闭合的反馈开关与同一个阴极控制级相连。
  7. 根据权利要求6所述的分时复用控制装置,还包括:
    控制模块,用于在第二主控信号的控制下向所述第一开关模块提供所述第一控制信号、向所述第二开关模块提供所述第二控制信号并且向所述第三开关模块提供所述第三控制信号,或者用于向所述第一开关模块提供所述第一控制信号、向所述第二开关模块提供所述第二控制信号、向所述第三开关模块提供所述第三控制信号并且向所述反馈开关模块提供所述反馈控制信号。
  8. 根据权利要求7所述的分时复用控制装置,还包括:
    采集模块,用于从所述第三开关模块接收所述工作状态数据,并且发送所述工作状态数据;
    主控模块,用于提供第一主控信号,向所述控制模块提供所述第二主控信号,并且从所述采集模块接收所述工作状态数据;
    驱动模块,用于从所述主控模块接收所述第一主控信号,并根据所述第一 主控信号向所述第二开关模块提供所述驱动信号;以及
    高压源,用于提供所述高压信号。
  9. 根据权利要求8所述的分时复用控制装置,还包括:
    隔离器,用于将所述主控模块与中央处理单元CPU模块隔离。
  10. 根据权利要求9所述的分时复用控制装置,其中,所述分时复用控制装置工作在高压工作环境下。
  11. 根据权利要求9所述的分时复用控制装置,其中,所述第一开关、所述第二开关和所述第三开关由模拟开关器件、数字开关器件、继电器或光电耦合器来实现,或者所述第一开关、所述第二开关、所述第三开关和所述反馈开关由模拟开关器件、数字开关器件、继电器或光电耦合器来实现。
  12. 根据权利要求9所述的分时复用控制装置,其中,所述驱动模块是数模转换驱动模块,并且所述采集模块是模数转换采集模块。
  13. 一种应用于分布式X射线源的分时复用控制系统,包括:
    多个根据权利要求7所述的分时复用控制装置;
    采集模块,用于从所述多个分时复用控制装置中的一个分时复用控制装置接收工作状态数据,并且发送所述工作状态数据;
    主控模块,用于提供第一主控信号,向所述多个分时复用控制装置中的所述一个分时复用控制装置提供第二主控信号,并且从所述采集模块接收所述工作状态数据;
    驱动模块,用于从所述主控模块接收所述第一主控信号,并根据所述第一主控信号向所述多个分时复用控制装置中的所述一个分时复用控制装置提供驱动信号;以及
    高压源,用于提供高压信号。
  14. 根据权利要求13所述的分时复用控制系统,其中,所述多个分时复用控制装置中的所述一个分时复用控制装置中的控制模块在所述主控模块提供的第二主控信号的控制下提供第一控制信号、第二控制信号和第三控制信号或者提供第一控制信号、第二控制信号、第三控制信号和反馈控制信号。
  15. 一种应用于分布式X射线源的分时复用控制系统,包括:
    多个根据权利要求6所述的分时复用控制装置;
    采集模块,用于从所述多个分时复用控制装置中的一个分时复用控制装置接收工作状态数据,并且发送所述工作状态数据;
    主控模块,用于向所述多个分时复用控制装置中的所述一个分时复用控制装置提供第一控制信号、第二控制信号和第三控制信号或者提供第一控制信号、第二控制信号、第三控制信号和反馈控制信号,提供第一主控信号,并且从所述采集模块接收所述工作状态数据;
    驱动模块,用于从所述主控模块接收所述第一主控信号,并根据所述第一主控信号向所述多个分时复用控制装置中的所述一个分时复用控制装置提供驱动信号;以及
    高压源,用于提供高压信号。
PCT/CN2020/084451 2019-10-30 2020-04-13 分时复用控制装置和系统 WO2021082356A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/755,520 US11792908B2 (en) 2019-10-30 2020-04-13 Time-division multiplexing control device and system
EP20883595.9A EP4053877A4 (en) 2019-10-30 2020-04-13 TIME DIVISION MULTIPLEXING CONTROL DEVICE AND SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911051016.4 2019-10-30
CN201911051016.4A CN110793981B (zh) 2019-10-30 2019-10-30 分时复用控制装置和系统

Publications (1)

Publication Number Publication Date
WO2021082356A1 true WO2021082356A1 (zh) 2021-05-06

Family

ID=69442355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084451 WO2021082356A1 (zh) 2019-10-30 2020-04-13 分时复用控制装置和系统

Country Status (4)

Country Link
US (1) US11792908B2 (zh)
EP (1) EP4053877A4 (zh)
CN (1) CN110793981B (zh)
WO (1) WO2021082356A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734924A (en) * 1985-10-15 1988-03-29 Kabushiki Kaisha Toshiba X-ray generator using tetrode tubes as switching elements
US5339348A (en) * 1992-11-02 1994-08-16 General Electric Company X-ray tube rotor controller using the main high voltage inverters for acceleration
CN104068881A (zh) * 2013-03-29 2014-10-01 富士胶片株式会社 放射线图像检测设备及其操作方法
CN104220000A (zh) * 2012-04-12 2014-12-17 富士胶片株式会社 X射线曝光控制装置、x射线图像检测装置及x射线图像摄影系统
CN104470171A (zh) * 2013-09-18 2015-03-25 清华大学 X射线装置以及具有该x射线装置的ct设备
CN104465279A (zh) * 2013-09-18 2015-03-25 清华大学 X射线装置以及具有该x射线装置的ct设备
CN104470176A (zh) * 2013-09-18 2015-03-25 同方威视技术股份有限公司 X射线装置以及具有该x射线装置的ct设备
CN104470172A (zh) * 2013-09-18 2015-03-25 清华大学 X射线装置以及具有该x射线装置的ct设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931908A (en) * 1957-07-10 1960-04-05 Philips Corp X-ray system
DE1241869B (de) * 1962-05-12 1967-06-08 Fernseh Gmbh Schaltungsanordnung zur Verbesserung der Detailerkennbarkeit eines Fernsehbildes
CA1122330A (en) * 1978-04-19 1982-04-20 Kenneth F. Lickel X-ray tube filament current predicting circuit
US5438605A (en) * 1992-01-06 1995-08-01 Picker International, Inc. Ring tube x-ray source with active vacuum pumping
JP4334244B2 (ja) * 2003-02-13 2009-09-30 株式会社東芝 バイプレーンx線撮影装置
DE102009011642A1 (de) * 2009-03-04 2010-09-09 Siemens Aktiengesellschaft Röntgenröhre mit Multikathode
CN103903941B (zh) * 2012-12-31 2018-07-06 同方威视技术股份有限公司 阴控多阴极分布式x射线装置及具有该装置的ct设备
CN203377194U (zh) * 2012-12-31 2014-01-01 同方威视技术股份有限公司 阴控多阴极分布式x射线装置及具有该装置的ct设备
JP2018037146A (ja) * 2016-08-29 2018-03-08 株式会社日立製作所 高電圧スイッチ回路、及びx線装置
EP3677100A2 (de) * 2017-09-02 2020-07-08 Cetteen GmbH Ansteuervorrichtung für eine röntgenröhre und verfahren zum betrieb einer röntgenröhre
CN108811287B (zh) * 2018-06-28 2024-03-29 北京纳米维景科技有限公司 一种面阵多焦点栅控射线源及其ct设备
CN109450246A (zh) * 2018-12-28 2019-03-08 清华大学 多输出高压电源和具有多输出高压电源的分布式射线源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734924A (en) * 1985-10-15 1988-03-29 Kabushiki Kaisha Toshiba X-ray generator using tetrode tubes as switching elements
US5339348A (en) * 1992-11-02 1994-08-16 General Electric Company X-ray tube rotor controller using the main high voltage inverters for acceleration
CN104220000A (zh) * 2012-04-12 2014-12-17 富士胶片株式会社 X射线曝光控制装置、x射线图像检测装置及x射线图像摄影系统
CN104068881A (zh) * 2013-03-29 2014-10-01 富士胶片株式会社 放射线图像检测设备及其操作方法
CN104470171A (zh) * 2013-09-18 2015-03-25 清华大学 X射线装置以及具有该x射线装置的ct设备
CN104465279A (zh) * 2013-09-18 2015-03-25 清华大学 X射线装置以及具有该x射线装置的ct设备
CN104470176A (zh) * 2013-09-18 2015-03-25 同方威视技术股份有限公司 X射线装置以及具有该x射线装置的ct设备
CN104470172A (zh) * 2013-09-18 2015-03-25 清华大学 X射线装置以及具有该x射线装置的ct设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053877A4 *

Also Published As

Publication number Publication date
CN110793981B (zh) 2022-03-22
US11792908B2 (en) 2023-10-17
EP4053877A1 (en) 2022-09-07
EP4053877A4 (en) 2023-12-06
US20220384135A1 (en) 2022-12-01
CN110793981A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN101847825B (zh) 波长可变光源装置
WO2021082356A1 (zh) 分时复用控制装置和系统
EP2365703B1 (en) Optical switch and optical-switch control method
US11026319B2 (en) Multi-output high-voltage power supply and distributed ray source with multi-output high-voltage power supply
EP4145846A1 (en) Optical transmission device, system and method
CN114429217B (zh) 光功率稳定系统和离子阱量子计算系统
CN214154519U (zh) 一种激光光闸
JP2015226387A (ja) 電力変換装置
US20210247763A1 (en) Control device, control method, and program
CN102074431A (zh) 一种电子直线加速器用的电子枪控制电路
US20170208376A1 (en) Method and Device for Controlling Silicon Optical Cross Connection
CN103474869A (zh) 一种脉冲光纤激光器及其控制方法
KR20210084445A (ko) 레이저 방출 시스템 및 파장 드리프트의 보상 방법
CN104677406A (zh) 多波段运动目标模拟器
TW202119457A (zh) 射束照射系統及其控制方法
CN109541794B (zh) 用于大型望远镜主镜支撑的永磁吸盘控制系统
TWI513253B (zh) 啟動通訊網路內的卡之方法及裝置
KR101545728B1 (ko) 보호 절체 기능을 갖는 광송수신 장치, 광송신 장치 및 광수신 장치
WO2017185531A1 (zh) 一种用于光网络单元的功率调节方法及装置、光通信系统
KR102249361B1 (ko) 위성 상태 데이터의 상황 별 처리 방법 및 위성 상태 데이터의 상황 별 처리 시스템
JP2011066984A (ja) 自励式電力変換装置及びそのゲートタイミング調整方法
EP4340253A1 (en) Communication system, transmitter, and communication method
JP2017169369A (ja) 電力伝送システム、受電装置、電力伝送方法
Kalantari et al. CompactPCI-Serial Hardware Toolbox for SLS 2.0
EP4152647A1 (en) Clustered light source and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020883595

Country of ref document: EP

Effective date: 20220530