WO2021082246A1 - 一种用于微型发声装置的振膜及微型发声装置 - Google Patents

一种用于微型发声装置的振膜及微型发声装置 Download PDF

Info

Publication number
WO2021082246A1
WO2021082246A1 PCT/CN2019/128042 CN2019128042W WO2021082246A1 WO 2021082246 A1 WO2021082246 A1 WO 2021082246A1 CN 2019128042 W CN2019128042 W CN 2019128042W WO 2021082246 A1 WO2021082246 A1 WO 2021082246A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
butadiene rubber
styrene
sounding device
aging agent
Prior art date
Application number
PCT/CN2019/128042
Other languages
English (en)
French (fr)
Inventor
惠冰
凌风光
李春
刘春发
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021082246A1 publication Critical patent/WO2021082246A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Definitions

  • the present invention relates to the technical field of electronic products, in particular, the present invention relates to a diaphragm for a miniature sounding device and a miniature sounding device.
  • An object of the present invention is to provide a diaphragm for a micro-sounding device and a micro-sounding device, the diaphragm having better structural stability, anti-polarization ability and low-frequency sensitivity; the micro-sounding device has better acoustics performance.
  • a diaphragm for a miniature sounding device is made of styrene-butadiene rubber, and the styrene-butadiene rubber uses polystyrene as the main polymerization monomer and cross-linking monomer. It is made by bulk cross-linking polymerization, the cross-linking monomer is polybutadiene, and the content of the polystyrene block as the main polymerization monomer in the styrene-butadiene rubber is 10-45 wt%.
  • the styrene-butadiene rubber is mixed with a vulcanizing agent, and the vulcanization system of the vulcanizing agent includes at least one of a sulfur vulcanization system, a peroxide vulcanization system, and a resin vulcanization system, and the styrene-butadiene rubber itself is part by mass
  • the number is 100 parts, and the mass parts of the vulcanizing agent itself is 1-15 parts.
  • the mass parts of the vulcanizing agent itself is 3-10 parts.
  • the styrene-butadiene rubber is mixed with a reinforcing agent, and the reinforcing agent includes at least one of carbon black, silicon dioxide, calcium carbonate, barium sulfate, organic montmorillonite, and unsaturated carboxylic acid metal salt.
  • the mass parts of the styrene-butadiene rubber itself is 100 parts, and the mass parts of the reinforcing agent itself is 2-80 parts.
  • the hardness of the styrene butadiene rubber diaphragm is 25-85A.
  • the styrene-butadiene rubber is mixed with an anti-aging agent
  • the anti-aging agent includes anti-aging agent N-445, anti-aging agent 246, anti-aging agent 4010, anti-aging agent SP, anti-aging agent RD, anti-aging agent At least one of ODA, anti-aging agent OD, and anti-aging agent WH-02, the mass parts of the styrene butadiene rubber itself is 100 parts, and the mass parts of the anti-aging agent itself is 0.5-10 parts.
  • the mass parts of the anti-aging agent itself is 1-5 parts.
  • the diaphragm is a single-layer diaphragm, and the single-layer diaphragm is composed of a layer of styrene butadiene rubber film;
  • the diaphragm is a composite diaphragm
  • the composite diaphragm includes two, three, four, or five layers
  • the composite diaphragm includes at least one styrene butadiene rubber diaphragm.
  • the thickness of the styrene-butadiene rubber film layer is 10-200 ⁇ m.
  • a micro sounding device comprising a micro sounding device main body and the diaphragm, the diaphragm being arranged on the micro sounding device main body, the diaphragm being configured to be capable of Vibration sounds.
  • the technical effect of the present invention is that the present invention discloses a diaphragm for a micro sound device and a micro sound device.
  • the diaphragm is made of styrene butadiene rubber, and the diaphragm has better structural stability and resistance. Polarization ability and low-frequency sensitivity; the miniature sound generating device has better acoustic performance.
  • Figure 1 is a test curve of the vibration displacement of different parts of the diaphragm of a miniature sounding device according to an embodiment of the present invention at different frequencies;
  • Figure 2 is the test curve of the vibration displacement of different parts of the conventional diaphragm at different frequencies
  • Fig. 3 is a harmonic distortion (THD) test curve of a diaphragm and a conventional PEEK diaphragm according to an embodiment of the present invention
  • Fig. 4 is a stress-strain curve of a diaphragm and a conventional PEEK diaphragm according to an embodiment of the present invention
  • Fig. 5 is a test curve (SPL curve) of loudness at different frequencies of a diaphragm and a conventional diaphragm according to an embodiment of the present invention.
  • the present invention provides a diaphragm for a miniature sounding device.
  • the diaphragm is made of styrene-butadiene rubber.
  • the styrene-butadiene rubber is made by cross-linking and polymerizing polystyrene as the main polymerization monomer and a cross-linking monomer, and the cross-linking monomer is polybutadiene.
  • the molecular structure of the styrene-butadiene rubber is as follows:
  • x, y, and z are natural numbers.
  • the content of the polymerized main monomer polystyrene block in the styrene-butadiene rubber is 10-45 wt%.
  • the polybutadiene block provides toughness in the material matrix, so that the rubber has better low temperature resistance. If the content of the polybutadiene block is too high, the rigidity of the styrene-butadiene rubber is insufficient, and it is difficult to meet the use requirements. And if the content of the polybutadiene block is too low, that is, when the content of the polystyrene block is too high, because the polystyrene block contains a benzene ring, it has a large steric hindrance, which limits the molecular chain. Movable, and the benzene ring is more rigid. Therefore, as the polystyrene block content increases, the glass transition temperature and tensile strength of styrene-butadiene rubber gradually increase.
  • the styrene-butadiene rubber diaphragm provided by the present invention can control the content of the polystyrene block in the styrene-butadiene rubber in the range of 10-45wt%, so that the styrene-butadiene rubber diaphragm is in a highly elastic state at room temperature.
  • the chain is easy to move, the friction between molecules is large, and it has good damping performance. Its loss factor at room temperature is greater than 0.06, preferably greater than 0.1.
  • the damping of the diaphragm is improved, the vibration system has a strong ability to suppress the polarization phenomenon during the vibration process, and the vibration consistency is good.
  • the commonly used engineering plastic diaphragm has low damping, and its loss factor is generally less than 0.01, and the damping is small.
  • Fig. 1 is a test curve of the vibration displacement of different parts of the diaphragm of a miniature sounding device at different frequencies according to an embodiment of the present invention.
  • Figure 2 is the test curve of the vibration displacement of different parts of the conventional diaphragm at different frequencies.
  • the diaphragm is a rectangular folded ring diaphragm.
  • the abscissa is the frequency (Hz), and the ordinate is the loudness displacement (mm). Take points at the edge position and the center position of the center of the diaphragm for testing.
  • the styrene butadiene rubber diaphragm provided by the present invention with a polystyrene block content ranging from 10-45wt% has a wider elastic area.
  • the diaphragm has excellent resilience. During the vibration of the diaphragm, there is less swinging vibration, and the sound quality and listening stability are better.
  • Fig. 3 is a harmonic distortion (THD) test curve of a diaphragm of an embodiment of the present invention and a conventional PEEK diaphragm. It can be seen from Fig. 3 that the diaphragm of an embodiment of the present invention has a better performance than a conventional PEEK diaphragm. Low THD (Total Harmonic Distortion). This shows that the diaphragm of the present invention has better anti-polarization ability and better sound quality.
  • THD Total Harmonic Distortion
  • the styrene-butadiene rubber is mixed with a vulcanizing agent
  • the vulcanization system of the vulcanizing agent includes at least one of a sulfur vulcanization system, a peroxide vulcanization system, and a resin vulcanization system
  • the vulcanizing agent specifically includes a trimercapto group.
  • vulcanizing agent helps to form cross-linking points in the styrene-butadiene rubber and improve the degree of cross-linking of the polymer.
  • the degree of crosslinking of styrene-butadiene rubber increases, the movement of molecular chains is restricted, the glass transition temperature increases, and the elongation at break decreases. Therefore, when the mass parts of the styrene-butadiene rubber itself is 100 parts, the mass parts of the vulcanizing agent itself needs to be controlled within 1-15 parts.
  • the mass parts of the vulcanizing agent itself is 3-10 parts.
  • the styrene-butadiene rubber has an appropriate degree of cross-linking, but also can meet the requirements of the glass transition temperature and mechanical properties of the styrene-butadiene rubber diaphragm material.
  • the content of the polystyrene block in the styrene-butadiene rubber and the number of additions of the vulcanizing agent directly affect the glass transition temperature and tensile strength of the styrene-butadiene rubber.
  • the content of polystyrene block in styrene-butadiene rubber is positively related to its glass transition temperature and tensile strength.
  • the specific corresponding data is shown in Table 1.
  • Table 1 The relationship between the polystyrene block content in styrene butadiene rubber and its glass transition temperature and tensile strength
  • styrene-butadiene rubber Since styrene-butadiene rubber has a relatively high molecular weight, and its molecular chain is relatively flexible, it has good low-temperature resistance. On this basis, in order to make the styrene-butadiene rubber diaphragm maintain a high elastic state and good resilience at room temperature, The glass transition temperature needs to be controlled in the range of -50 to 0°C. In a certain range, the lower the glass transition temperature, the diaphragm can work normally at a lower temperature.
  • the glass transition temperature of the styrene rubber diaphragm is in the range of -45 to -10°C, that is, the content of the polystyrene block in the styrene butadiene rubber is controlled within the range of 10-45 wt%.
  • the content of the polystyrene block in the styrene-butadiene rubber and the number of additions of the vulcanizing agent directly affect the toughness of the styrene-butadiene rubber.
  • the styrene-butadiene rubber diaphragm with a suitable amount of vulcanizing agent and the polystyrene block content in the range of 10-45wt% has excellent toughness, the elongation at break is greater than 100%, preferably greater than 150%, and has a higher elongation at break The efficiency makes the diaphragm less likely to have reliability problems such as membrane rupture when used in a miniature sounding device.
  • Fig. 4 is a stress-strain curve of the diaphragm and the conventional PEEK diaphragm of an embodiment of the present invention. It can be seen from Fig. 4 that under the same stress, the strain of the diaphragm provided by the embodiment of the present invention is significantly greater than that of the conventional PEEK diaphragm. membrane. This indicates that the Young's modulus of the diaphragm provided by the embodiment of the present invention is significantly smaller than that of the conventional PEEK diaphragm.
  • the PEEK diaphragm has an obvious yield point, which is about 0.4-0.5% strain.
  • the diaphragm provided by the present invention does not have a yield point, which indicates that the diaphragm provided by the present invention has a wider elastic area and has excellent resilience performance.
  • the styrene-butadiene rubber diaphragm has good flexibility, for example, the elongation at break is ⁇ 100%.
  • the polystyrene block has an important influence on the elongation at break, and those skilled in the art can choose according to actual needs. This makes the vibration displacement of the diaphragm larger and louder. And the reliability and durability are good.
  • the diaphragm When the diaphragm is vibrating in a state of large amplitude, the diaphragm material produces a large strain, and there is a risk of membrane fold, membrane crack or membrane rupture when vibrating for a long time.
  • the diaphragm of the present invention using styrene-butadiene rubber as the substrate has good flexibility and reduces the risk of damage to the diaphragm.
  • the diaphragm material when the styrene-butadiene rubber is added with a suitable amount of vulcanizing agent and the polystyrene block content is in the range of 10-45wt%, because the styrene-butadiene rubber diaphragm material has a stable cross-linked structure, the diaphragm has a higher It can work continuously for 3 days at 150°C, which can meet the high and low temperature requirements of micro-sounding devices. In actual use, there will be no risk of structural collapse due to excessive temperature.
  • the styrene-butadiene rubber is mixed with a reinforcing agent, and the reinforcing agent includes at least one of carbon black, silicon dioxide, calcium carbonate, barium sulfate, organic montmorillonite, and unsaturated carboxylic acid metal salt.
  • the mass parts of the styrene-butadiene rubber is 100 parts
  • the mass parts of the reinforcing agent itself is 2-80 parts.
  • the mass parts of the reinforcing agent itself is 5-60 parts.
  • the surface of the reinforcing agent has groups such as hydrogen, carboxyl, lactone, free radical, and quinone that can undergo reactions such as substitution, reduction, and oxidation.
  • carbon black is an amorphous structure, and particles form aggregates through physical and chemical bonding with each other.
  • the primary structure of carbon black is composed of aggregates, and there are van der Waals forces or hydrogen bonds between the aggregates, which can aggregate into a spatial network structure, that is, the secondary structure of carbon black.
  • Carbon black has the above-mentioned groups on the surface. Carbon black particles can form the above-mentioned relationship with polymer molecular chains to enhance the mechanical strength of styrene butadiene rubber.
  • the strength of styrene-butadiene rubber material is mainly adjusted by mixing reinforcing agents, but if the mechanical strength is too high, it will cause the resonance frequency of the miniature sound device to be too high and the low-frequency response ability to decrease.
  • the hardness range of the styrene-butadiene rubber diaphragm may be 25-85A, preferably 30-80A.
  • the mechanical strength of the styrene-butadiene rubber diaphragm at room temperature can reach 0.5-50 MPa, preferably 1-30 MPa.
  • the resonance frequency F0 of the miniature sound device is proportional to the modulus and thickness of the diaphragm.
  • its modulus is directly proportional to its hardness. Therefore, the hardness can be used to reflect the modulus of the styrene butadiene rubber diaphragm.
  • Table 2 shows the F0 values of diaphragms with the same thickness but different hardness. From Table 2, it can be seen that as the hardness of the diaphragm material increases, F0 increases sharply.
  • the diaphragm for the miniature sounding device provided by the present invention is a folded ring diaphragm or a flat diaphragm.
  • the resonant frequency F0 of the miniature sounding device is proportional to the Young's modulus and thickness of the diaphragm.
  • the change of F0 can be achieved by changing the thickness and Young's modulus of the diaphragm.
  • the specific adjustment principle is as follows:
  • Mms is the equivalent vibration mass of the miniature sounding device
  • Cms is the equivalent compliance of the miniature sounding device:
  • C m1 is the elastic wave compliance
  • C m2 is the diaphragm compliance.
  • the equivalent compliance of the miniature sounding device is the diaphragm compliance:
  • W is the total width of the folded ring of the diaphragm
  • t is the thickness of the diaphragm
  • dvc is the outer diameter of the diaphragm and voice coil
  • E is the Young's modulus of the diaphragm material
  • a 1 and a 2 are the correction coefficients, The value of a 1 depends on the shape of the diaphragm base material, a 2 is equal to h (height of the ring)/W; u is the Poisson's ratio of the diaphragm material.
  • the diaphragm should have sufficient rigidity and damping.
  • Those skilled in the art can adjust the size of F0 by adjusting the hardness and thickness of the diaphragm.
  • the Shore hardness of the diaphragm is preferably 30-80A.
  • the thickness of the diaphragm is 30-120 ⁇ m. This enables the resonance frequency F0 of the miniature sound device to reach 150-1500 Hz. The low frequency performance of the miniature sound device is excellent.
  • Fig. 5 is a test curve (SPL curve) of loudness at different frequencies of a diaphragm and a conventional diaphragm according to an embodiment of the present invention.
  • the diaphragm is a folded ring diaphragm.
  • the abscissa is frequency (Hz), and the ordinate is loudness.
  • the two diaphragms F0 are the same and both are 830 Hz, but the low frequency sensitivity of the diaphragm in this embodiment is higher than that of the conventional diaphragm.
  • the miniature sounding device using the diaphragm of the embodiment of the present invention has higher loudness and comfort.
  • the styrene-butadiene rubber is mixed with an anti-aging agent
  • the anti-aging agent includes anti-aging agent N-445, anti-aging agent 246, anti-aging agent 4010, anti-aging agent SP, anti-aging agent RD, anti-aging agent At least one of ODA, anti-aging agent OD, and anti-aging agent WH-02.
  • the mass parts of styrene-butadiene rubber is 100 parts, the mass parts of the anti-aging agent itself needs to be controlled within 0.5-10 parts.
  • the mass parts of the anti-aging agent itself is 1-5 parts.
  • the diaphragm is a single-layer diaphragm or a multi-layer composite diaphragm.
  • the single-layer diaphragm is composed of a layer of styrene-butadiene rubber film layer; and the composite diaphragm is a diaphragm formed by successively stacking multiple styrene-butadiene rubber film layers.
  • the composite diaphragm may include at least one styrene butadiene rubber film layer, which is laminated and composited with a film layer made of other materials to form a composite diaphragm made of multiple materials.
  • the composite diaphragm includes two layers, three layers, four layers or five layers, which is not limited in the present invention.
  • the thickness may be 10-200 ⁇ m, preferably 30-120 ⁇ m.
  • the thickness of the styrene-butadiene rubber film layer is within this range, it can better meet the performance requirements and assembly space requirements of the miniature sounding device.
  • the styrene-butadiene rubber diaphragm is prepared by molding-injection molding or air pressure molding, because the styrene-butadiene rubber diaphragm of the present invention has a very low glass transition temperature, and the diaphragm material strength and toughness Well, it can be used for a long time at high temperature, so the diaphragm can be quickly formed by simple compression-injection molding or air pressure molding, which improves production efficiency.
  • the present invention also provides a miniature sounding device, comprising a miniature sounding device main body and a diaphragm made of styrene-butadiene rubber, the diaphragm being arranged on the miniature sounding device main body, and the diaphragm being configured as It can vibrate and produce sound through vibration.
  • a coil, a magnetic circuit system and other components may be arranged in the main body of the miniature sound generating device, and the diaphragm is driven to vibrate through electromagnetic induction.

Abstract

本发明公开了一种用于微型发声装置的振膜及微型发声装置,所述振膜采用丁苯橡胶制成,所述丁苯橡胶采用聚苯乙烯作为聚合主单体与交联单体交联聚合制成,所述交联单体为聚丁二烯,所述聚合主单体聚苯乙烯嵌段在丁苯橡胶中的含量为10-45wt%;本发明提供的振膜具有更优的结构稳定性、抗偏振能力和低频灵敏性;本发明提供的微型发声装置具有更优的声学性能。

Description

一种用于微型发声装置的振膜及微型发声装置 技术领域
本发明涉及电子产品技术领域,具体地,本发明涉及一种用于微型发声装置的振膜及微型发声装置。
背景技术
现有的用于微型发声装置的振膜多采用多层复合材料,例如,PEEK、PAR、PEI、PI等工程塑料,TPU、TPEE等弹性体材料,丙烯酸胶膜、硅胶胶膜等胶膜。此外,硅橡胶具有良好的热稳定性、良好的疏水性能和优异的回弹性能,随着高功率化、防水以及高音质要求的提高,硅橡胶也逐渐被用于制作振膜。
上述材料都存在各自的缺点。例如,PEEK、PAR等工程塑料,虽然耐温性较好,但材料回弹性较差,产品易产生膜折,无法起到防水的作用。TPU、TPEE等弹性体材料的熔点较低,耐温性较差。硅橡胶材料虽然热稳定性和回弹性均较好,但因其化学结构对称,立构规整度高,对称取代的甲基空间位阻小,硅橡胶的模量或硬度相对较低,导致材料的阻尼性较低,造成硅橡胶振膜的产品失真较大。
可见,上述振膜的综合性能较差,不能满足微型发声装置的全面性能要求。因此,提供一种综合性能强、可靠性高的用于微型发声装置的振膜成为本技术领域面临的一大技术问题。
发明内容
本发明的一个目的是提供一种用于微型发声装置的振膜及微型发声装置,该振膜具有更优的结构稳定性、抗偏振能力和低频灵敏性;该微型发声装置具有更优的声学性能。
根据本发明的第一方面,提供了一种用于微型发声装置的振膜,所述 振膜采用丁苯橡胶制成,所述丁苯橡胶采用聚苯乙烯作为聚合主单体与交联单体交联聚合制成,所述交联单体为聚丁二烯,所述聚合主单体聚苯乙烯嵌段在丁苯橡胶中的含量为10-45wt%。
可选地,所述丁苯橡胶中混合有硫化剂,所述硫化剂的硫化体系包括硫磺硫化体系、过氧化物硫化体系和树脂硫化体系中的至少一种,所述丁苯橡胶自身质量份数为100份,所述硫化剂自身的质量份数为1-15份。
可选地,所述硫化剂自身的质量份数为3-10份。
可选地,所述丁苯橡胶中混合有补强剂,所述补强剂包括炭黑、二氧化硅、碳酸钙、硫酸钡、有机蒙脱土、不饱和羧酸金属盐中的至少一种,所述丁苯橡胶自身质量份数为100份,所述补强剂自身的质量份数为2-80份。
可选地,所述丁苯橡胶振膜的硬度范围为25-85A。
可选地,所述丁苯橡胶中混合防老化剂,所述防老化剂包括防老化剂N-445、防老化剂246、防老化剂4010、防老化剂SP、防老化剂RD、防老化剂0DA、防老化剂OD、防老化剂WH-02中的至少一种,所述丁苯橡胶自身质量份数为100份,所述防老化剂自身的质量份数为0.5-10份。
可选地,所述防老化剂自身的质量份数为1-5份。
可选地,所述振膜为单层振膜,所述单层振膜采用一层丁苯橡胶膜层构成;
或者,所述振膜为复合振膜,所述复合振膜包括两层、三层、四层或五层膜层,所述复合振膜至少包括一层丁苯橡胶膜层。
可选地,所述丁苯橡胶膜层的厚度为10-200μm。
根据本发明的第二方面,提供了一种微型发声装置,包括微型发声装置主体和所述的振膜,所述振膜设置在所述微型发声装置主体上,所述振膜被配置为能振动发声。
本发明的技术效果在于,本发明公开了一种用于微型发声装置的振膜及微型发声装置,所述振膜采用丁苯橡胶制成,所述振膜具有更优的结构稳定性、抗偏振能力和低频灵敏性;所述微型发声装置具有更优的声学性能。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为本发明一个实施例的微型发声装置振膜不同部位在不同频率下振动位移的测试曲线;
图2为常规振膜不同部位在不同频率下振动位移的测试曲线;
图3为本发明一个实施例的振膜与常规PEEK振膜的谐波失真(THD)测试曲线;
图4为本发明一个实施例的振膜与常规PEEK振膜的应力应变曲线;
图5为本发明一个实施例的振膜与常规振膜的不同频率下响度的测试曲线(SPL曲线)。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明提供了一种用于微型发声装置的振膜,所述振膜采用丁苯橡胶 制成。所述丁苯橡胶采用聚苯乙烯作为聚合主单体与交联单体交联聚合制成,所述交联单体为聚丁二烯。
具体地,所述丁苯橡胶的分子结构如下:
Figure PCTCN2019128042-appb-000001
在以上分子式中,x,y,z为自然数。
可选地,所述聚合主单体聚苯乙烯嵌段在丁苯橡胶中的含量为10-45wt%。聚丁二烯嵌段在材料基体中提供韧性,使橡胶具有较好的耐低温性能。如果聚丁二烯嵌段的含量过高时,所述丁苯橡胶的刚性不足,难以满足使用需求。而如果聚丁二烯嵌段的含量过低时,也就是聚苯乙烯嵌段的含量过高时,由于聚苯乙烯嵌段含有苯环,具有较大的空间位阻,限制了分子链的活动,并且苯环刚性较大。因此随着聚苯乙烯嵌段含量升高,丁苯橡胶的玻璃化转变温度和拉伸强度逐渐升高。
本发明提供的丁苯橡胶振膜可以通过控制所述聚苯乙烯嵌段在丁苯橡胶中的含量范围在10-45wt%,使得所述丁苯橡胶振膜在室温下处于高弹态,分子链易于运动,分子间摩擦力大,具有较好的阻尼性能,其室温下损耗因子大于0.06,优选大于0.1。
优异的阻尼性能,使振膜具有更低的品质因数Q。振膜的阻尼性提高,振动系统在振动过程中可抑制偏振现象的能力强,振动一致性良好。而常用的工程塑料振膜的阻尼低,其损耗因子一般小于0.01,阻尼性较小。
图1是根据本发明的一个实施例的微型发声装置振膜不同部位在不同频率下振动位移的测试曲线。图2是常规振膜不同部位在不同频率下振动位移的测试曲线。
其中,振膜为矩形折环振膜。横坐标为频率(Hz),纵坐标为响度位移量(mm)。在振膜的中心部的边缘位置以及中心位置取点进行测试。
可以看出,图1中的各个曲线更集中,而图2中的各个曲线较为分散。这表明,本发明实施例振膜的各个部分的振动一致性更好,在振动过程中, 振膜的摇摆振动少,音质和听音稳定性更加优良。
相对于工程塑料,本发明提供的聚苯乙烯嵌段含量范围在10-45wt%的丁苯橡胶振膜具有较宽的弹性区域,在振膜的应变发生在该区域时,待外力去除后,振膜具有优异的回复性,振膜在振动过程中,摇摆振动少,音质和听音稳定性更优。
图3为本发明的一个实施例的振膜与常规PEEK振膜的谐波失真(THD)测试曲线,从图3可以看出,本发明实施例的振膜相对于常规的PEEK振膜具有更低的THD(总谐波失真)。这表明,本发明的振膜具有更优的抗偏振能力,并且音质更佳。
可选地,所述丁苯橡胶中混合有硫化剂,所述硫化剂的硫化体系包括硫磺硫化体系、过氧化物硫化体系和树脂硫化体系中的至少一种,所述硫化剂具体包括三巯基均三嗪硫化体系、多胺、有机酸、铵盐、有机酸铵盐、二硫代氨基甲酸盐、咪唑/酸酐、异氰尿酸/季盐、硫黄/促进剂、过氧化物中的至少一种。硫化剂的添加有助于在丁苯橡胶中形成交联点,提高聚合物的交联程度。随着硫化剂用量增大,丁苯橡胶的交联度增大,分子链运动受限制,玻璃化转变温度增大,断裂伸长率降低。因此,所述丁苯橡胶自身质量份数为100份时,所述硫化剂自身的质量份数需要控制在1-15份。优选的,所述硫化剂自身的质量份数为3-10份。在上述质量份数的情况下,既能够保证丁苯橡胶具有适当的交联度,又能够满足对丁苯橡胶振膜材料的玻璃化转变温度、力学性能的要求。
所以,所述丁苯橡胶中聚苯乙烯嵌段的含量和硫化剂的添加份数直接影响了丁苯橡胶的玻璃化转变温度和拉伸强度。在硫化剂添加份数一定的条件下,丁苯橡胶中聚苯乙烯嵌段的含量与其玻璃化转变温度和拉伸强度正相关,具体对应数据如表1所示。
表1丁苯橡胶中聚苯乙烯嵌段含量与其玻璃化转变温度和拉伸强度的关系
Figure PCTCN2019128042-appb-000002
由于丁苯橡胶具有较高的分子量,并且其分子链较柔顺,具有较好的耐低温性能,在此基础上,为了使丁苯橡胶振膜在常温下能够保持高弹态,回弹性良好,其玻璃化转变温度需要控制在-50~0℃的范围。在一定范围,玻璃化转变温度越低,振膜即可在更低的温度下正常工作。
为了使得在低于0℃时,丁苯橡胶振膜工作时可以一直保持较好的橡胶弹性,从而微型发声装置表现出较高的音质,降低在低温环境中振膜破坏的风险,需要控制丁苯橡胶振膜的玻璃化转变温度在-45~-10℃的范围,也就是将所述聚苯乙烯嵌段在丁苯橡胶中的含量控制在10-45wt%的范围内。
可选地,所述丁苯橡胶中聚苯乙烯嵌段的含量和硫化剂的添加份数直接影响了丁苯橡胶橡胶的韧性。添加合适份数硫化剂且聚苯乙烯嵌段含量范围在10-45wt%的丁苯橡胶振膜具有优异的韧性,断裂伸长率大于100%,优选大于150%,具有较高的断裂伸长率使得振膜在微型发声装置中使用时不易出现破膜等可靠性问题。
图4为本发明的一个实施例的振膜与常规PEEK振膜的应力应变曲线,由图4可以看出,在相同的应力下,本发明实施例提供的振膜的应变明显大于常规PEEK振膜。这表明,本发明实施例提供的振膜的杨氏模量明显小于常规的PEEK振膜。
此外,PEEK振膜形成了明显的屈服点,约在应变0.4-0.5%。而本发明提供的振膜不存在屈服点,这表明,本发明提供的振膜具有更宽的弹性区域,并且回弹性能优良。
丁苯橡胶振膜具有良好的柔韧性,例如,断裂伸长率≥100%。聚苯乙烯嵌段对断裂伸长率有重要影响,本领域技术人员可以根据实际需要进行选择。这使得振膜的振动位移更大,响度更大。并且可靠性、耐用性良好。振膜材料的柔韧性越好,断裂伸长率越大,则振膜抵抗破坏的能力越强。振膜处于大振幅状态振动时,振膜材料产生了较大的应变,长时间振动时会出现膜折、膜裂或破膜的风险。以丁苯橡胶作为基材的本发明的振膜,具有良好的柔韧性,降低了振膜破坏的风险。
可选地,丁苯橡胶在添加合适份数硫化剂且聚苯乙烯嵌段含量范围在10-45wt%的情况下,由于丁苯橡胶振膜材料具有稳定的交联结构,振膜具有较高的使用温度范围,在150℃下可连续工作3天,可满足微型发声装置对高低温的需求,在实际使用中不会出现温度过高而结构塌陷的风险。
可选地,所述丁苯橡胶中混合有补强剂,所述补强剂包括炭黑、二氧化硅、碳酸钙、硫酸钡、有机蒙脱土、不饱和羧酸金属盐中的至少一种,在丁苯橡胶的质量份数为100份的情况下,所述补强剂自身的质量份数为2-80份。优选的,所述补强剂自身的质量份数为5-60份。
补强剂的表面具有能够发生取代、还原、氧化等反应的氢、羧基、内酯基、自由基、醌基等基团。将补强剂混合入丁苯橡胶中后,由于补强剂与丁苯橡胶的聚合物嵌段的界面之间的强相互作用,丁苯橡胶受力时,分子链比较容易在补强剂微粒表面上滑动,但不易和补强剂微粒脱离,丁苯橡胶与补强剂微粒构成一种能够滑动的强固的键,力学强度增大。
以炭黑为例,炭黑是一种无定形结构,粒子通过相互之间的物理化学结合构成聚集体。炭黑的一次结构由聚集体构成,同时聚集体之间存在范德华力或氢键,能够聚集成空间网络结构,也就是炭黑的二次结构。炭黑表面具有上述基团。炭黑微粒能够与聚合物分子链形成上述关系,增强丁苯橡胶的力学强度。
所以,丁苯橡胶材料强度主要通过混合补强剂来调节,但如果力学强度过高,反而会造成微型发声装置的谐振频率过高,低频响应能力下降。所述丁苯橡胶振膜的硬度范围可以为25-85A,优选为30-80A。室温下所述丁苯橡胶振膜的力学强度可以达到0.5-50MPa,优选为1-30MPa。
微型发声装置的谐振频率F0与振膜的模量和厚度呈正比。而对于丁苯橡胶而言,其模量与硬度呈正比。因此,可以用硬度来体现丁苯橡胶振膜的模量。橡胶振膜材料强度和硬度越高,振膜材料的F0就越高,导致微型发声装置的响度降低,低音变差。表2给出了具有相同厚度但硬度不同的振膜的F0值,从表2可以看出,随着振膜材料硬度的增大,F0急剧增大。
表2相同厚度和不同硬度的振膜的F0值
硬度(A) 20 25 30 80 85
F0(Hz) 579 631 682 899 998
本发明提供的用于微型发声装置的振膜为折环振膜或者平板振膜。该微型发声装置的谐振频率F0正比于振膜的杨氏模量和厚度,可以通过改变振膜的厚度以及杨氏模量来实现F0的变化,具体调节原理如下:
Figure PCTCN2019128042-appb-000003
其中Mms为微型发声装置的等效振动质量,Cms为微型发声装置的等效顺性:
Figure PCTCN2019128042-appb-000004
其中,C m1为弹波顺性,C m2为振膜顺性。无弹波设计时,微型发声装置的等效顺性即为振膜顺性:
Figure PCTCN2019128042-appb-000005
其中W为振膜的折环部的总宽度,t为膜片厚度;dvc为振膜音圈贴合外径;E为振膜材质的杨氏模量;a 1和a 2为修正系数,a 1的值取决于振膜基材的形状,a 2等于h(折环高度)/W;u为振膜材质的泊松比。
可见,为得到饱满的低音和舒适的听感,在微型发声装置具有较低的F0的同时,应使振膜具有足够的刚度和阻尼。本领域技术人员可以通过调节振膜的硬度以及厚度来调节F0的大小。优选地,所述振膜的邵氏硬度优选为30-80A。所述振膜的厚度为30-120μm。这使得微型发声装置的谐振频率F0的能够达到150-1500Hz。微型发声装置的低频性能优良。
图5为本发明的一个实施例的振膜与常规振膜的不同频率下响度的测试曲线(SPL曲线)。振膜为折环振膜。横坐标为频率(Hz),纵坐标为响度。
由图5可以看出,两个振膜F0一致,均为830Hz,但本实施例中振膜的低频灵敏度均高于常规振膜。也就是说,采用本发明实施例的振膜的微型发声装置具有更高的响度和舒适度。
可选地,所述丁苯橡胶中混合防老化剂,所述防老化剂包括防老化剂N-445、防老化剂246、防老化剂4010、防老化剂SP、防老化剂RD、防老化剂0DA、防老化剂OD、防老化剂WH-02中的至少一种。
丁苯橡胶在使用过程中,随着时间的延长,丁苯橡胶的分子链断裂产生游离的自由基,这种现象是丁苯橡胶的自然老化现象。通过在丁苯橡胶中混合防老化剂,能够防止或中止、减缓丁苯橡胶中产生活性游离基的自催化现象。
当防老化剂添加量过少时,达不到延长丁苯橡胶使用寿命的效果;而过多添加防老化剂,会由于防老化剂不能与丁苯橡胶弹性体较好的互溶,难以均匀分散,因此有可能导致丁苯橡胶材料力学性能下降。所以,在丁苯橡胶的质量份数为100份的情况下,防老化剂自身的质量份数需要控制在0.5-10份。优选地,所述防老化剂自身的质量份数为1-5份。
可选地,所述振膜为单层振膜,也可以为多层的复合振膜。所述单层振膜采用一层丁苯橡胶膜层构成;而所述复合振膜则是由多层丁苯橡胶膜层依次层叠形成的振膜。或者,复合振膜可以包括至少一层丁苯橡胶膜层,该丁苯橡胶膜层与其它材料制成的膜层层叠复合,构成多种材料制成的复合振膜。所述复合振膜包括两层、三层、四层或五层膜层,本发明不对此进行限制。
对于所述丁苯橡胶膜层,其厚度可以为10-200μm,优选为30-120μm。丁苯橡胶膜层的厚度在该范围内时,能够更好的满足微型发声装置的性能要求和装配空间的要求。
可选地,所述丁苯橡胶振膜采用模压-注塑成型或者气压成型的方式制备而成,由于本发明的丁苯橡胶振膜具有很低的玻璃化转变温度,而且 振膜材料强度和韧性好,可以在高温下长时间使用,所以采用简单的模压-注塑成型或者气压成型的方式便可以将振膜快速成型,提高了生产效率。
本发明还提供了一种微型发声装置,包括微型发声装置主体和所述的丁苯橡胶制成的振膜,所述振膜设置在所述微型发声装置主体上,所述振膜被配置为能振动,通过振动进而产生声音。所述微型发声装置主体中可以配置有线圈、磁路系统等部件,通过电磁感应驱动所述振膜振动。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种用于微型发声装置的振膜,其特征在于,所述振膜采用丁苯橡胶制成,所述丁苯橡胶采用聚苯乙烯作为聚合主单体与交联单体交联聚合制成,所述交联单体为聚丁二烯,所述聚合主单体聚苯乙烯嵌段在丁苯橡胶中的含量为10-45wt%。
  2. 根据权利要求1所述的一种用于微型发声装置的振膜,其特征在于,所述丁苯橡胶中混合有硫化剂,所述硫化剂的硫化体系包括硫磺硫化体系、过氧化物硫化体系和树脂硫化体系中的至少一种,所述丁苯橡胶自身质量份数为100份,所述硫化剂自身的质量份数为1-15份。
  3. 根据权利要求2所述的一种用于微型发声装置的振膜,其特征在于,所述硫化剂自身的质量份数为3-10份。
  4. 根据权利要求1所述的一种用于微型发声装置的振膜,其特征在于,所述丁苯橡胶中混合有补强剂,所述补强剂包括炭黑、二氧化硅、碳酸钙、硫酸钡、有机蒙脱土、不饱和羧酸金属盐中的至少一种,所述丁苯橡胶自身质量份数为100份,所述补强剂自身的质量份数为2-80份。
  5. 根据权利要求4所述的一种用于微型发声装置的振膜,其特征在于,所述丁苯橡胶振膜的硬度范围为25-85A。
  6. 根据权利要求1所述的一种用于微型发声装置的振膜,其特征在于,所述丁苯橡胶中混合防老化剂,所述防老化剂包括防老化剂N-445、防老化剂246、防老化剂4010、防老化剂SP、防老化剂RD、防老化剂0DA、防老化剂OD、防老化剂WH-02中的至少一种,所述丁苯橡胶自身质量份数为100份,所述防老化剂自身的质量份数为0.5-10份。
  7. 根据权利要求6所述的一种用于微型发声装置的振膜,其特征在于,所述防老化剂自身的质量份数为1-5份。
  8. 根据权利要求1所述的一种用于微型发声装置的振膜,其特征在于,所述振膜为单层振膜,所述单层振膜采用一层丁苯橡胶膜层构成;
    或者,所述振膜为复合振膜,所述复合振膜包括两层、三层、四层或五层膜层,所述复合振膜至少包括一层丁苯橡胶膜层。
  9. 根据权利要求8所述的一种用于微型发声装置的振膜,其特征在于,所述丁苯橡胶膜层的厚度为10-200μm。
  10. 一种微型发声装置,其特征在于,包括微型发声装置主体和权利要求1-9任意之一所述的振膜,所述振膜设置在所述微型发声装置主体上,所述振膜被配置为能振动发声。
PCT/CN2019/128042 2019-10-31 2019-12-24 一种用于微型发声装置的振膜及微型发声装置 WO2021082246A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911055467.5A CN110708637B (zh) 2019-10-31 2019-10-31 一种用于微型发声装置的振膜及微型发声装置
CN201911055467.5 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082246A1 true WO2021082246A1 (zh) 2021-05-06

Family

ID=69202208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128042 WO2021082246A1 (zh) 2019-10-31 2019-12-24 一种用于微型发声装置的振膜及微型发声装置

Country Status (2)

Country Link
CN (1) CN110708637B (zh)
WO (1) WO2021082246A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542987A (zh) * 2020-04-17 2021-10-22 歌尔股份有限公司 扬声器振膜以及发声装置
CN112468937B (zh) * 2020-11-23 2022-05-13 歌尔股份有限公司 层叠复合膜及其制备方法、振膜以及发声装置
CN114827872B (zh) * 2021-01-29 2023-07-14 歌尔股份有限公司 振膜及发声装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785327A (zh) * 2007-07-23 2010-07-21 艾瑟斯技术有限责任公司 折声学声音转换连接耦合器和耳塞
US20100215207A1 (en) * 2007-12-03 2010-08-26 Osamu Funahashi Speaker
CN201657284U (zh) * 2010-01-11 2010-11-24 深圳市博大炫彩光电科技有限公司 一种新型扬声器
CN104441853A (zh) * 2006-10-26 2015-03-25 埃克森美孚化学专利公司 低湿气渗透性层压结构
CN106817658A (zh) * 2017-01-12 2017-06-09 瑞声科技(沭阳)有限公司 振膜及发声器件
CN107501488A (zh) * 2016-06-14 2017-12-22 中国石油化工股份有限公司 一种不对称星型丁苯橡胶及其制备方法和作为鞋底橡胶材料的应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778299A (en) * 1980-10-31 1982-05-15 Houyuu Gomme Kk Diaphragm for speaker
US5744761A (en) * 1993-06-28 1998-04-28 Matsushita Electric Industrial Co., Ltd. Diaphragm-edge integral moldings for speakers and acoustic transducers comprising same
JP3241514B2 (ja) * 1993-12-15 2001-12-25 最上電機株式会社 スピーカ振動部材の製造方法
CN1045779C (zh) * 1995-10-17 1999-10-20 中国石油化工总公司 星形溶聚丁苯橡胶的合成方法
JP2001258092A (ja) * 2000-03-14 2001-09-21 Pioneer Electronic Corp スピーカ用部品およびその製造方法
CN1425701A (zh) * 2001-12-14 2003-06-25 中国石化集团齐鲁石油化工公司 不同结合苯乙烯含量的乳聚丁苯橡胶的制备工艺
CN101040562A (zh) * 2005-09-21 2007-09-19 松下电器产业株式会社 扬声器阻尼器以及使用此阻尼器的扬声器
CN107286409A (zh) * 2017-06-22 2017-10-24 瑞声科技(新加坡)有限公司 折环及其制备方法以及应用该折环的音膜、电声器件
CN110218375A (zh) * 2018-03-02 2019-09-10 中国石油化工股份有限公司 丁苯橡胶/纳米白炭黑复合材料、硫化胶及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104441853A (zh) * 2006-10-26 2015-03-25 埃克森美孚化学专利公司 低湿气渗透性层压结构
CN101785327A (zh) * 2007-07-23 2010-07-21 艾瑟斯技术有限责任公司 折声学声音转换连接耦合器和耳塞
US20100215207A1 (en) * 2007-12-03 2010-08-26 Osamu Funahashi Speaker
CN201657284U (zh) * 2010-01-11 2010-11-24 深圳市博大炫彩光电科技有限公司 一种新型扬声器
CN107501488A (zh) * 2016-06-14 2017-12-22 中国石油化工股份有限公司 一种不对称星型丁苯橡胶及其制备方法和作为鞋底橡胶材料的应用
CN106817658A (zh) * 2017-01-12 2017-06-09 瑞声科技(沭阳)有限公司 振膜及发声器件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI YING,YU XIAOXIA,WANG FENGJU,WANG XIAOMIN: "Research Progress in Rubbers Special for High Impact Polystyrene", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 21, no. 7, 30 July 2002 (2002-07-30), pages 471 - 474+486, XP055807425, ISSN: 1000-6613, DOI: 10.16085/j.issn.1000-6613.2002.07.006 *
WANG ZHEN-QIN , WU FU-SHENG: "Effect of combinated styrene content on properties of styrene-butadiene rubber(SBR)", CHINA ELASTOMERICS, vol. 13, no. 3, 25 June 2003 (2003-06-25), pages 22 - 24, XP055807434, ISSN: 1005-3174, DOI: 10.16665/j.cnki.issn1005-3174.2003.03.007 *
ZHAO ZHI-CHAO , FU HAN-QI , HU WEI , MA LI-LI , LI JING: "Study on the Influence of Bound Styrene Content in Styrene-Butadiene Rubber on Application Properties", CONTEMPORARY CHEMICAL INDUSTRY, vol. 46, no. 4, 2 May 2017 (2017-05-02), pages 607 - 609, XP055807415, ISSN: 1671-0460, DOI: 10.13840/j.cnki.cn21-1457/tq.2017.04.010 *

Also Published As

Publication number Publication date
CN110708637B (zh) 2021-01-15
CN110708637A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021082245A1 (zh) 一种用于微型发声装置的振膜及微型发声装置
WO2020248718A1 (zh) 一种发声装置的振膜以及发声装置
WO2020216171A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2021082246A1 (zh) 一种用于微型发声装置的振膜及微型发声装置
KR102636232B1 (ko) 음향 발생 장치의 진동판 및 음향 발생 장치
WO2021082252A1 (zh) 发声装置的振膜以及发声装置
WO2021082244A1 (zh) 一种用于微型发声装置的振膜及微型发声装置
WO2021082254A1 (zh) 一种发声装置的振膜以及发声装置
WO2020216170A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2020216168A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2020216179A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2021082239A1 (zh) 一种用于微型发声装置的振膜及微型发声装置
WO2021082250A1 (zh) 发声装置的振膜以及发声装置
WO2021082243A1 (zh) 一种用于微型发声装置的振膜及微型发声装置
WO2020216172A1 (zh) 一种微型发声装置
WO2020216196A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2020216195A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
KR102666675B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
KR102666672B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
WO2021082249A1 (zh) 一种用于微型发声装置的振膜以及微型发声装置
CN110708639A (zh) 一种用于微型发声装置的振膜以及微型发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951002

Country of ref document: EP

Kind code of ref document: A1