WO2021082254A1 - 一种发声装置的振膜以及发声装置 - Google Patents

一种发声装置的振膜以及发声装置 Download PDF

Info

Publication number
WO2021082254A1
WO2021082254A1 PCT/CN2019/128173 CN2019128173W WO2021082254A1 WO 2021082254 A1 WO2021082254 A1 WO 2021082254A1 CN 2019128173 W CN2019128173 W CN 2019128173W WO 2021082254 A1 WO2021082254 A1 WO 2021082254A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
vinyl acetate
diaphragm
acetate rubber
agent
Prior art date
Application number
PCT/CN2019/128173
Other languages
English (en)
French (fr)
Inventor
彭威锋
凌风光
李春
刘春发
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021082254A1 publication Critical patent/WO2021082254A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials

Definitions

  • the present invention relates to the technical field of acoustic devices, in particular, the present invention relates to a diaphragm of a sound emitting device and a sound emitting device.
  • Existing sound device diaphragms mostly use high modulus plastic film layers (for example: PEEK, PAR, PEI, PI, etc.), softer thermoplastic polyurethane elastomers (for example: TPU) and damping films (for example: acrylic glue) , Silica gel, etc.) composite structure.
  • high modulus plastic film layers for example: PEEK, PAR, PEI, PI, etc.
  • softer thermoplastic polyurethane elastomers for example: TPU
  • damping films for example: acrylic glue
  • Silicone rubber materials have good thermal stability, good hydrophobic properties and excellent resilience performance.
  • the diaphragm made of silicone rubber has been widely used in the field of sound generating devices.
  • the thermal stability and resilience of silicone rubber materials are relatively good, but because of its symmetrical chemical structure, high stereoregularity, symmetrically substituted methyl groups have low steric hindrance, and the modulus or hardness of silicone rubber is relatively low.
  • the damping of the material is low, and the product distortion of the silicone rubber diaphragm is large.
  • An object of the present invention is to provide a diaphragm of a sound emitting device and a new technical solution for the sound emitting device.
  • a diaphragm of a sound emitting device includes at least one elastomer layer, wherein the elastomer layer is made of ethylene-vinyl acetate rubber;
  • the ethylene-vinyl acetate rubber is formed by copolymerizing ethylene and vinyl acetate, and the content of the vinyl acetate is 30%-90% of the total amount of the ethylene-vinyl acetate rubber.
  • the molecular structural formula of the ethylene-vinyl acetate rubber is:
  • the ethylene-vinyl acetate rubber is mixed with an inorganic filler reinforcing agent, and the inorganic filler reinforcing agent is carbon black, white carbon black, nano titanium dioxide, talc, precipitated calcium carbonate, and barium sulfate.
  • the content of the inorganic filler reinforcing agent is 15%-90% of the total amount of the ethylene-vinyl acetate rubber.
  • the content of the inorganic filler reinforcing agent is 30%-70% of the total amount of the ethylene-vinyl acetate rubber.
  • the ethylene-vinyl acetate rubber is mixed with an anti-aging agent, and the anti-aging agent adopts anti-aging agent N-445, anti-aging agent 246, anti-aging agent 4010, anti-aging agent SP, anti-aging agent RD, anti-aging agent ODA, and anti-aging agent.
  • the content of the anti-aging agent is 0.5%-10% of the total amount of the ethylene-vinyl acetate rubber.
  • the content of the antioxidant is 1% to 5% of the total amount of the ethylene-vinyl acetate rubber.
  • the ethylene-vinyl acetate rubber is mixed with a plasticizer
  • the plasticizer is an aliphatic dibasic acid ester plasticizer, a phthalate ester plasticizer, or a benzene polyacid ester.
  • the content of the plasticizer is 1%-10% of the total amount of the ethylene-vinyl acetate rubber.
  • the content of the plasticizer is 3% to 7% of the total amount of the ethylene-vinyl acetate rubber.
  • the ethylene-vinyl acetate rubber is mixed with an internal mold release agent, and the internal mold release agent is stearic acid, stearylamine, alkyl phosphate, ⁇ -octadecyl- ⁇ -At least one of the hydroxypolyoxyethylene phosphates, the content of the internal release agent is 0.5% to 5% of the total amount of the ethylene-vinyl acetate rubber.
  • the content of the internal release agent is 1%-3% of the total amount of the ethylene-vinyl acetate rubber.
  • the ethylene-vinyl acetate rubber is mixed with a cross-linking agent, and the cross-linking agent includes an organic peroxide cross-linking agent and a co-cross-linking agent.
  • the organic peroxide crosslinking agent uses 1,3-1,4-bis(tert-butylperoxyisopropyl)benzene, dicumyl peroxide, 2,5-dimethyl- 2,5-bis(tert-butylperoxy)hexane, tert-butyl cumene peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne, 4 , 4 ⁇ -bis(tert-butylperoxy) n-butyl valerate, 1,1 ⁇ -bis(tert-butylperoxy)-3,3,5 trimethylcyclohexane, 2,4- At least one of benzoyl dichloroperoxide.
  • the auxiliary crosslinking agent adopts trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, N,N ⁇ -m-phenylene bismaleimide, diallyl At least one of phthalate, triallyl isocyanate, and triallyl cyanate.
  • the diaphragm is a single-layer diaphragm, and the single-layer diaphragm is composed of an ethylene-vinyl acetate rubber film layer; or
  • the diaphragm is a composite diaphragm, and the composite diaphragm includes two, three, four or five diaphragm layers, and the composite diaphragm includes at least one ethylene-vinyl acetate rubber diaphragm layer.
  • the thickness of the ethylene-vinyl acetate rubber film layer is 10 ⁇ m-200 ⁇ m.
  • the thickness of the ethylene-vinyl acetate rubber film layer is 30 ⁇ m-120 ⁇ m.
  • the hardness of the ethylene-vinyl acetate rubber is in the range of 30-95A.
  • the glass transition temperature of the ethylene-vinyl acetate rubber ranges from -50 to 0°C.
  • the loss factor of the ethylene-vinyl acetate rubber at room temperature is greater than 0.06.
  • the elongation at break of the ethylene-vinyl acetate rubber is greater than 100%.
  • a sound generating device includes a sounding device main body and the above-mentioned diaphragm.
  • the diaphragm is arranged on the sounding device main body, and the diaphragm is configured to vibrate and produce sound.
  • the inventor of the present invention found that, in the prior art, the overall performance of the diaphragm is relatively poor, which is likely to cause poor listening, resulting in poor acoustic performance of the sound generating device. Therefore, the technical task to be achieved or the technical problem to be solved by the present invention has never been thought of or anticipated by those skilled in the art, so the present invention is a new technical solution.
  • the present invention discloses a diaphragm made of ethylene-vinyl acetate rubber, which has good overall performance, and has excellent high temperature resistance, ozone resistance and aging resistance.
  • the diaphragm can maintain excellent elasticity at high temperatures, and its service life is longer than that of conventional diaphragm materials, and has better reliability.
  • Fig. 1 is a total harmonic distortion test curve of a diaphragm provided by an embodiment of the present invention and an existing conventional diaphragm.
  • Fig. 2 is a test curve of the vibration displacement of different parts of the diaphragm of the sound generating device at different frequencies according to an embodiment of the present invention.
  • Fig. 3 is a test curve of the vibration displacement of different parts of the existing conventional diaphragm at different frequencies.
  • Figure 4 is the impedance curve of the diaphragm with the same thickness and different hardness.
  • Fig. 5 is a test curve of loudness at different frequencies between a diaphragm provided by an embodiment of the present invention and an existing conventional diaphragm.
  • a diaphragm of a sound emitting device includes at least one elastomer layer, wherein the elastomer layer is made of ethylene-vinyl acetate rubber.
  • the diaphragm can be used in a variety of sound emitting devices, especially in miniature sound emitting devices.
  • the ethylene-vinyl acetate rubber can be formed by copolymerization of two monomers, ethylene and vinyl acetate. And, the content of the vinyl acetate is 30%-90% of the total amount of the ethylene-vinyl acetate rubber. Preferably, the content of the vinyl acetate is 40%-80% of the total amount of the ethylene-vinyl acetate rubber.
  • the molecular structural formula of the ethylene-vinyl acetate rubber may be as follows:
  • ethylene-vinyl acetate rubber has a saturated methine main chain and polar side groups, which makes the ethylene-vinyl acetate rubber material excellent in resistance.
  • the vulcanized ethylene-vinyl acetate rubber can still show excellent aging resistance even under long-term high temperature stress under the condition of proper protection, and its heat resistance is much better than that of EPDM rubber.
  • it can work for a long time at a high temperature of 110°C for up to 20,000 hours.
  • it can be used for a short time at a temperature not exceeding 175°C. It can be seen that it has excellent high temperature resistance characteristics.
  • the ethylene structural unit can provide sufficient toughness in the material, so that the ethylene-vinyl acetate rubber can be used normally at low temperatures.
  • the rigidity of the ethylene-vinyl acetate rubber material will be insufficient, which cannot meet the requirements of use.
  • Vinyl acetate structural units can play a cross-linking effect in the collective. The higher the content, the greater the cross-linking density of the ethylene-vinyl acetate rubber material, and the greater the rigidity of the ethylene-vinyl acetate rubber material, but for ethylene- Vinyl acetate rubber generally does not exceed 80%.
  • the diaphragm provided by the present invention is made of ethylene-vinyl acetate rubber.
  • the diaphragm has good overall performance, and has excellent high temperature resistance, ozone resistance and aging resistance. In particular, the diaphragm can still maintain excellent elasticity at high temperatures, and its service life is longer than that of commonly used diaphragm materials, and has better reliability.
  • the sound generating device using the diaphragm can be used in an extremely harsh environment, and at the same time, its acoustic performance is maintained in a good state.
  • the ethylene-vinyl acetate rubber may be mixed with an inorganic filler reinforcing agent.
  • the inorganic filler reinforcing agent includes at least one of carbon black, white carbon black, nano titanium dioxide, talc, precipitated calcium carbonate, and barium sulfate.
  • the mass parts of the inorganic filler reinforcing agent itself is 15-90 parts, that is, the content of the inorganic filler reinforcing agent It is 15%-90% of the total amount of the ethylene-vinyl acetate rubber.
  • the surface of the inorganic filler reinforcing agent has groups such as hydrogen, carboxyl group, lactone group, free radical, quinone group, etc., which can undergo reactions such as substitution, reduction, and oxidation.
  • groups such as hydrogen, carboxyl group, lactone group, free radical, quinone group, etc., which can undergo reactions such as substitution, reduction, and oxidation.
  • carbon black is an amorphous structure, and particles form aggregates through physical and chemical bonding with each other.
  • the primary structure of carbon black is composed of aggregates, and there are van der Waals forces or hydrogen bonds between the aggregates, which can aggregate into a spatial network structure, that is, the secondary structure of carbon black.
  • the surface of carbon black has hydrogen, carboxyl, lactone, free radical, quinone and other groups that can undergo substitution, reduction, oxidation, etc.
  • the mass parts of the ethylene-vinyl acetate rubber itself is 100
  • the mass parts of the inorganic filler reinforcing agent itself is 15-85 parts, that is, The content of the inorganic filler reinforcing agent is 15%-85% of the total amount of the ethylene-vinyl acetate rubber.
  • carbon black as an inorganic filler reinforcing agent as an example, when the mass fraction of carbon black is 10, the mechanical strength and elongation at break of the ethylene-vinyl acetate rubber material are relatively small, which is due to the amount of carbon black Less, it is unevenly dispersed in the matrix, and it is difficult to achieve a reinforcing effect.
  • the mechanical strength of the ethylene-vinyl acetate rubber material can be increased, while the elongation at break gradually decreases.
  • the manufactured diaphragm may have a risk of membrane rupture during long-term use. Therefore, preferably, the mass parts of the inorganic filler reinforcing agent itself is 15-80 parts, that is, the content of the inorganic filler reinforcing agent is 15%-80% of the total amount of the ethylene-vinyl acetate rubber At this time, it can better meet the requirements of the present invention for the performance of the diaphragm.
  • the mass parts of the inorganic filler reinforcing agent itself is 30-70 parts, that is, the content of the inorganic filler reinforcing agent is 30%-70 parts of the total amount of the ethylene-vinyl acetate rubber. %.
  • mass parts of the inorganic filler reinforcing agent itself is 30-70 parts, that is, the content of the inorganic filler reinforcing agent is 30%-70 parts of the total amount of the ethylene-vinyl acetate rubber. %.
  • the ethylene-vinyl acetate rubber may be mixed with an anti-aging agent.
  • the antioxidant may include, for example, at least one of antioxidant N-445, antioxidant 246, antioxidant 4010, antioxidant SP, antioxidant RD, antioxidant ODA, antioxidant OD, and antioxidant WH-02.
  • the mass parts of the antioxidant itself is 0.5-10 parts, that is, the content of the antioxidant is the ethylene-acetic acid 0.5%-10% of the total vinyl ester rubber.
  • the mass parts of the ethylene-vinyl acetate rubber is 100 parts
  • the mass parts of the antioxidant itself can be selected in the range of 0.5-10 parts.
  • the mass parts of the antioxidant itself is 1-5 parts, that is, the content of the antioxidant is 1% to 5% of the total amount of the ethylene-vinyl acetate rubber.
  • the ethylene-vinyl acetate rubber may be mixed with a plasticizer.
  • the plasticizers include aliphatic dibasic acid ester plasticizers, phthalate ester plasticizers (for example, including phthalate esters and terephthalate esters), benzene polyacid ester plasticizers Plasticizers, benzoate plasticizers, polyol ester plasticizers, chlorinated hydrocarbon plasticizers, epoxy plasticizers, citrate plasticizers, and polyester plasticizers At least one.
  • the polar groups on the plasticizer and the polar groups on the ethylene-acrylate molecules attract each other, reducing the interaction of the polar groups on the ethylene-acrylate molecules. Therefore, the addition of a plasticizer is equivalent to covering up the polar groups on the ethylene-acrylate molecule, which becomes a shielding effect, and as a result, the physical crosslinking points are reduced.
  • the molecules of plasticizers are much smaller than those of ethylene-acrylate molecules. They are easier to move. They can conveniently provide the space required for segment activities, reduce the glass transition temperature of the material, and increase the material. The cold resistance, and improve the processing performance of the material. Excessive plasticizer will precipitate from the inside of the material, which will reduce the mechanical properties of the material. As the amount of plasticizer increases, the glass transition temperature of the material decreases.
  • the mass parts of the ethylene-vinyl acetate rubber itself is 100 parts
  • the mass parts of the plasticizer itself is 1-10 parts, that is, The content of the plasticizer is 1%-10% of the total amount of the ethylene-vinyl acetate rubber.
  • the amount of plasticizer increases, the glass transition temperature of the ethylene-vinyl acetate rubber material decreases, but correspondingly, the tensile strength of the ethylene-vinyl acetate rubber material also decreases.
  • the plasticizer content is 12 the tensile strength of the ethylene-vinyl acetate rubber material is greatly reduced.
  • the mass parts of the plasticizer itself meets the above range, it can ensure that the performance of the ethylene-vinyl acetate rubber can meet the performance requirements of the diaphragm.
  • the mass parts of the plasticizer itself is 3-7 parts, that is, the content of the plasticizer is 3%-7% of the total amount of the ethylene-vinyl acetate rubber.
  • the ethylene-vinyl acetate rubber may be mixed with an internal mold release agent.
  • the internal mold release agent uses at least one of stearic acid, stearylamine, alkyl phosphate, and ⁇ -octadecyl- ⁇ -hydroxypolyoxyethylene phosphate.
  • the Mooney viscosity and green strength of ethylene-vinyl acetate rubber are relatively low. And this performance characteristic will cause process problems such as sticking rollers and sticking molds in the injection molding process of ethylene-vinyl acetate rubber.
  • the invention improves the processing performance of the ethylene-vinyl acetate rubber compound by adding an internal release agent.
  • the mixing amount of the internal release agent is small, it is difficult to improve the mucosal problem. However, if the mixing amount of the internal release agent is too large, the adhesion of the ethylene-vinyl acetate rubber to the adhesive layer during the later preparation of the diaphragm is likely to decrease, and the performance of the final diaphragm is adversely affected.
  • the mass parts of the ethylene-vinyl acetate rubber is 100 parts
  • the mass parts of the internal release agent itself can be selected to be 0.5-5 parts, that is, the The content of the internal release agent is 0.5% to 5% of the total amount of the ethylene-vinyl acetate rubber.
  • the mass parts of the internal mold release agent itself is 1 to 3 parts, that is, the content of the internal mold release agent is 1% to 3% of the total amount of the ethylene-vinyl acetate rubber.
  • the content of the internal mold release agent is 1% to 3% of the total amount of the ethylene-vinyl acetate rubber.
  • the ethylene-vinyl acetate rubber may be mixed with a crosslinking agent.
  • the crosslinking agent includes a peroxide crosslinking agent and a co-crosslinking agent.
  • the organic peroxide crosslinking agent is used to generate free radicals from the "ethylene-vinyl acetate copolymer”.
  • the co-crosslinking agent is used for radical polymerization with the "ethylene-vinyl acetate copolymer".
  • the organic peroxide crosslinking agent includes 1,3-1,4-bis(tert-butylperoxyisopropyl)benzene, dicumyl peroxide, 2,5-dimethyl-2,5- Bis(tert-butylperoxy)hexane, tert-butyl cumene peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne, 4,4 ⁇ - Bis(tert-butylperoxy) n-butyl valerate, 1,1 ⁇ -bis(tert-butylperoxy)-3,3,5 trimethylcyclohexane, 2,4-dichloroperoxy At least one of benzoyl.
  • the auxiliary crosslinking agent includes trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, N,N ⁇ -m-phenylene bismaleimide, diallyl phthalic acid At least one of ester, triallyl isocyanate, and triallyl cyanate.
  • the crosslinking agent and the resulting crosslinking points can determine the degree of crosslinking of the ethylene-vinyl acetate rubber. Within a certain range, the more cross-linking points and the greater the amount of cross-linking agent, the higher the degree of cross-linking. However, too high a degree of cross-linking will make the molecular chain more difficult to move, resulting in an increase in the glass transition temperature of the ethylene-vinyl acetate rubber material and an increase in the damping factor. And the higher the mechanical strength of the ethylene-vinyl acetate rubber material, the lower the elongation at break and the elastic recovery rate. Those skilled in the art can reasonably control the amount of crosslinking agent according to specific needs.
  • the glass transition temperature range of the diaphragm is -50-0°C.
  • the ethylene structural unit in ethylene-vinyl acetate rubber makes the molecules easy to move, and makes the molecular chain more flexible, and has better low temperature resistance.
  • the diaphragm of the sound device can maintain a high elastic state at room temperature and has good resilience.
  • the diaphragm can work normally at a lower temperature.
  • the thickness of the diaphragm is constant, the lower the glass transition temperature, the lower the resonance frequency F0 of the assembled sound device.
  • the glass transition temperature of ethylene-vinyl acetate rubber can be controlled by the content of vinyl ester structural units in the rubber, but its content generally cannot exceed 90%.
  • the glass transition temperature of the diaphragm provided by the present invention is preferably -30-0°C.
  • the diaphragm can not only maintain a high elastic state at room temperature, but also has good resilience. More importantly, even when the temperature is below 0°C, the diaphragm of the sounding device can still maintain good rubber elasticity during operation, so that the sounding device exhibits a higher sound quality. At the same time, the risk of damage to the diaphragm of the sound device in a low temperature environment is reduced and the reliability is higher.
  • the elongation at break of the diaphragm is greater than 100%. Preferably, the elongation at break of the diaphragm is greater than 150%.
  • the diaphragm of the present invention has a relatively high elongation at break, which makes the diaphragm less likely to have reliability problems such as membrane rupture when used in a sound generating device.
  • the strain of the diaphragm provided by the embodiment of the present invention is significantly greater than that of the PEEK diaphragm in the prior art. This shows that the Young's modulus of the diaphragm provided by the embodiment of the present invention is significantly smaller than that of the PEEK diaphragm in the prior art.
  • the PEEK diaphragm of the prior art has an obvious yield point, which is about 0.4-0.5% strain.
  • the speaker diaphragm provided by the present invention does not have a yield point. This shows that the diaphragm provided by the present invention has a wider elastic area and has excellent resilience performance.
  • the diaphragm made of ethylene-vinyl acetate rubber material has good flexibility. For example, its elongation at break is ⁇ 100%. Among them, the molecular chain of ethylene-vinyl acetate rubber has a very important influence on the elongation at break, and those skilled in the art can choose according to actual needs. This makes the vibration displacement of the diaphragm of the sound device larger and louder. And the reliability and durability are good. The better the flexibility of the ethylene-vinyl acetate rubber material and the greater the elongation at break, the stronger the ability of the diaphragm to resist damage.
  • the ethylene-vinyl acetate rubber material When the diaphragm is vibrating in a large amplitude state, the ethylene-vinyl acetate rubber material produces a large strain, and there is a risk of film folding, film cracking or film breakage when vibrating for a long time.
  • the diaphragm of the present invention using ethylene-vinyl acetate rubber as the base material has good flexibility and reduces the risk of damage to the diaphragm. The higher the elongation at break, the lower the breakage rate of the diaphragm in long-term use.
  • the ethylene-vinyl acetate rubber provided by the present invention has a wider elastic area.
  • the strain of the diaphragm occurs in this area, after the external force is removed, the diaphragm has excellent resilience.
  • the diaphragm provided by the present invention can be used continuously at high temperature and has higher damping performance than existing materials. Due to the good resilience of the diaphragm, the sound generating device has a better transient response and lower distortion.
  • the diaphragm provided by the present invention has a lower THD (total harmonic distortion) compared to the PEEK diaphragm of the prior art. This shows that the diaphragm provided by the present invention has more excellent anti-polarization ability and better sound quality.
  • the diaphragm made of ethylene-vinyl acetate rubber provided by the invention is in a highly elastic state at room temperature, the molecular chain is easy to move, the friction between the molecules is large, and it has good damping performance.
  • the loss factor of the diaphragm is greater than 0.06. Excellent damping performance enables the diaphragm to have lower impedance.
  • the damping of the diaphragm is improved, the ability of the vibration system of the sound device to suppress the polarization phenomenon during the vibration process is enhanced, and the vibration consistency is good.
  • the damping of the existing diaphragm made of engineering plastics is low, the loss factor is usually less than 0.01, and the damping is small.
  • the loss factor of the diaphragm provided by the present invention is greater than 0.1.
  • Fig. 2 is a test curve of the vibration displacement of different parts of the diaphragm of the sound generating device at different frequencies according to an embodiment of the present invention.
  • Fig. 3 is a test curve of the vibration displacement of different parts of the existing conventional diaphragm at different frequencies.
  • the diaphragm is a rectangular folded ring diaphragm.
  • the abscissa is the frequency (Hz), and the ordinate is the loudness displacement (mm). Take points at the edge position and the center position of the center of the diaphragm for testing.
  • the vibration film provided by the present invention has a Shore hardness range of 30-95A.
  • the resonance frequency F0 of the sounding device is proportional to the modulus, hardness, and thickness of the diaphragm, and for ethylene-vinyl acetate rubber materials, the modulus is proportional to the hardness. Therefore, hardness can be used to reflect the modulus of the diaphragm.
  • the strength and hardness of the ethylene-vinyl acetate rubber material can be adjusted by a reinforcing agent.
  • an increase in the amount of molecular chains will increase intermolecular hydrogen bonds, which in turn will increase the strength and hardness of the ethylene-vinyl acetate rubber material and increase the number of cross-linking points.
  • the higher the strength and hardness of the ethylene-vinyl acetate rubber material the higher the F0 of the prepared diaphragm.
  • the loudness of the sound device will be reduced and the bass performance will be worse.
  • Figure 4 shows the impedance curves of the diaphragm with the same thickness and different hardness. It can be seen from Fig. 4 that as the hardness increases, the resonance frequency F0 of the sound emitting device increases sharply.
  • the diaphragm of the sound emitting device provided by the present invention may be, for example, a folded ring diaphragm or a flat diaphragm.
  • the resonance frequency F0 of the sounding device is proportional to the Young's modulus and thickness of the diaphragm.
  • the change of F0 can be achieved by changing the thickness and Young's modulus of the diaphragm of the sounding device.
  • the specific adjustment principle is as follows:
  • Mms is the equivalent vibration mass of the sounding device
  • Cms is the equivalent compliance of the sounding device:
  • C m1 is the elastic wave compliance
  • C m2 is the diaphragm compliance
  • the equivalent compliance of the sounding device is the diaphragm compliance:
  • W is the total width of the folded ring of the diaphragm
  • t is the thickness of the diaphragm
  • dvc is the outer diameter of the diaphragm and voice coil
  • E is the Young's modulus of the diaphragm material
  • u is the Poisson of the diaphragm material ratio.
  • the resonance frequency F0 of the sound emitting device is proportional to the modulus and thickness of the diaphragm.
  • the modulus of the diaphragm is directly proportional to its hardness. Therefore, hardness can be used instead of its modulus.
  • the diaphragm should have sufficient rigidity and damping. Those skilled in the art can adjust the size of F0 by adjusting the hardness and thickness of the diaphragm of the sound generating device.
  • the Shore hardness of the diaphragm is preferably 30-80A, and the thickness of the diaphragm is 30-120 ⁇ m.
  • the resonance frequency F0 of the sound generating device can reach 150-1500 Hz.
  • the low frequency performance of the sound device is excellent.
  • the diaphragm provided by the present invention may be a single-layer structure or a multi-layer composite diaphragm.
  • the single-layer diaphragm is a diaphragm composed of a layer of ethylene-vinyl acetate rubber film.
  • the composite diaphragm is a diaphragm formed by successively stacking multiple ethylene-vinyl acetate rubber film layers.
  • the composite diaphragm may include at least one layer of ethylene-vinyl acetate rubber film layer, and the ethylene-vinyl acetate rubber film layer is bonded and compounded with a film layer made of other materials to form a composite made of multiple materials. Diaphragm.
  • the multiple membrane layers can be combined by hot pressing or the like to form the above-mentioned composite diaphragm.
  • the composite diaphragm may be a two-layer, three-layer, four-layer or five-layer composite diaphragm, which is not limited in the present invention.
  • At least one film layer in the composite diaphragm is an ethylene-vinyl acetate rubber film layer made of the ethylene-vinyl acetate rubber provided by the present invention.
  • the thickness may be 10-200 ⁇ m, preferably 30-120 ⁇ m.
  • the performance requirements and the assembly space requirements of the sound generating device can be better met.
  • the thickness of the diaphragm will affect its acoustic performance. In general, a lower thickness will affect the reliability of the diaphragm, and a larger thickness will affect the sensitivity of the diaphragm. Therefore, the thickness of the diaphragm provided by the present invention can be controlled between 30 ⁇ m and 120 ⁇ m, for example.
  • the thickness range of the single-layer ethylene-vinyl acetate rubber diaphragm is 30 ⁇ m-120 ⁇ m
  • the thickness range can make the sensitivity of the sound device diaphragm higher, and the elasticity and rigidity of the diaphragm can meet the sound device The production requirements. In particular, it can be used in miniature sound generating devices.
  • the diaphragm can ensure long-term normal use during repeated vibrations, thereby prolonging the service life of the sound generating device.
  • the present invention also provides a comparison curve diagram between a specific implementation of the diaphragm provided by the present invention and the existing conventional diaphragm, as shown in FIG. 5.
  • Figure 5 shows the test curves (SPL curves) of the loudness of the two diaphragms at different frequencies.
  • the diaphragm is a folded ring diaphragm.
  • the abscissa is frequency (Hz), and the ordinate is loudness.
  • the dotted line is the test curve of the diaphragm provided by the present invention.
  • One line is the test curve of the conventional diaphragm. It can be seen from the SPL curve that the intermediate frequency performance of the two diaphragms is similar.
  • the F0 of the sound device using the diaphragm provided by the present invention is 824 Hz.
  • the F0 of the sound device using the conventional diaphragm is 926 Hz. This shows that the low-frequency sensitivity of the diaphragm provided by the present invention is higher than that of the existing PEEK diaphragm. That is to say, the use of the diaphragm provided by the present invention can make the sound generating device have higher loudness and comfort.
  • the invention provides a diaphragm, which is mixed with an ethylene-vinyl acetate rubber material and an auxiliary agent.
  • ethylene-vinyl acetate rubber is made by copolymerizing two monomers of ethylene and vinyl acetate.
  • Additives include inorganic filler reinforcing agents, anti-aging agents, plasticizers, internal mold release agents, and cross-linking agents.
  • the diaphragm of the sound device is made by integral molding by hot pressing.
  • the method for preparing the diaphragm provided by the invention is simple.
  • the ethylene-vinyl acetate rubber material used in the present invention has excellent high temperature resistance, ozone resistance and aging resistance.
  • the molded diaphragm can still maintain excellent elasticity at high temperatures, and the service life is longer than that of common diaphragm materials , So it has better reliability.
  • the present invention also provides a sound generating device.
  • the sounding device includes a main body of the sounding device and the above-mentioned diaphragm made of ethylene-vinyl acetate rubber.
  • the vibrating membrane is arranged on the main body of the sound generating device, and the vibrating membrane is configured to be driven to vibrate and generate sound through vibration.
  • the main body of the sound generating device may be equipped with components such as a coil, a magnetic circuit system, etc., and the diaphragm is driven to vibrate through electromagnetic induction.
  • the sound generating device provided by the present invention has excellent acoustic performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

一种发声装置的振膜以及发声装置。所述振膜包括至少一层弹性体层,其中,所述弹性体层采用乙烯-醋酸乙烯酯橡胶制成;所述乙烯-醋酸乙烯酯橡胶采用乙烯和醋酸乙烯酯经共聚而成,所述醋酸乙烯酯的含量为所述乙烯-醋酸乙烯酯橡胶总量的30%-90%。所述振膜具有更优的声学性能。

Description

一种发声装置的振膜以及发声装置 技术领域
本发明涉及声学器件技术领域,具体地,本发明涉及一种发声装置的振膜以及发声装置。
背景技术
现有的发声装置振膜大多采用高模量的塑料膜层(例如:PEEK、PAR、PEI、PI等)、较为柔软的热塑性聚氨酯弹性体(例如:TPU)以及阻尼胶膜(例如:丙烯酸胶、硅胶等)复合的结构。但是,现有振膜的综合性能较差,例如弹性回复率低、耐高温性能和耐老化性能差,容易造成听音不良,使得发声装置的声学性能不好。
硅橡胶材料具有良好的热稳定性、良好的疏水性能以及优异的回弹性能。如今,随着高功率化、防水以及高音质要求的提高,硅橡胶材质的振膜在发声装置领域得到了较为广泛的应用。然而,硅橡胶材料虽然热稳定性和回弹性均比较好,但因其化学结构对称,立构规整度高,对称取代的甲基空间位阻小,硅橡胶的模量或硬度相对较低,在满足相同F0要求的前提下,导致材料的阻尼性较低,造成硅橡胶振膜的产品失真较大。
可见,上述振膜的综合性能较差,不能满足发声装置的全面性能要求。因此,提供一种综合性能强、可靠性高的发声装置的振膜成为本技术领域面临的一大技术问题。
发明内容
本发明的一个目的是提供一种发声装置的振膜以及发声装置的新技术方案。
根据本发明的一个方面,提供了一种发声装置的振膜,所述振膜包括至少一层弹性体层,其中,所述弹性体层采用乙烯-醋酸乙烯酯橡胶制成;
所述乙烯-醋酸乙烯酯橡胶采用乙烯和醋酸乙烯酯经共聚而成,所述醋酸乙烯酯的含量为所述乙烯-醋酸乙烯酯橡胶总量的30%-90%。
可选地,所述乙烯-醋酸乙烯酯橡胶的分子结构式为:
Figure PCTCN2019128173-appb-000001
可选地,所述乙烯-醋酸乙烯酯橡胶中混合有无机填料补强剂,所述无机填料补强剂采用炭黑、白炭黑、纳米钛白粉、滑石粉、沉淀碳酸钙、硫酸钡中的至少一种,所述无机填料补强剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的15%-90%。
可选地,所述无机填料补强剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的30%-70%。
可选地,所述乙烯-醋酸乙烯酯橡胶中混合有防老剂,所述防老剂采用防老剂N-445、防老剂246、防老剂4010、防老剂SP、防老剂RD、防老剂ODA、防老剂OD、防老剂WH-02中的至少一种,所述防老剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的0.5%-10%。
可选地,所述防老剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的1%-5%。
可选地,所述乙烯-醋酸乙烯酯橡胶中混合有增塑剂,所述增塑剂采用脂肪族二元酸酯类增塑剂、苯二甲酸酯类增塑剂、苯多酸酯类增塑剂、苯甲酸酯类增塑剂、多元醇酯类增塑剂、氯化烃类增塑剂、环氧类增塑剂、柠檬酸酯类增塑剂、聚酯类增塑剂中的至少一种,所述增塑剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的1%-10%。
可选地,所述增塑剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的3%-7%。
可选地,所述乙烯-醋酸乙烯酯橡胶中混合有内脱模剂,所述内脱模剂采用硬脂酸、十八烷基胺、磷酸烷基酯、α-十八烷基-ω-羟基聚氧乙烯磷酸酯中的至少一种,所述内脱模剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的0.5%-5%。
可选地,所述内脱模剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的1%-3%。
可选地,所述乙烯-醋酸乙烯酯橡胶中混合有交联剂,所述交联剂包括有机过氧化物交联剂和助交联剂。
可选地,所述有机过氧化物交联剂采用1,3-1,4-二(叔丁基过氧异丙基)苯、过氧化二异丙苯、2,5-二甲基-2,5-双(叔丁基过氧基)己烷、过氧化叔丁基异丙苯、2,5-二甲基-2,5-双(过氧化叔丁基)-3-己炔、4,4`-双(叔丁基过氧基)戊酸正丁酯、1,1`-双(叔丁基过氧基)-3,3,5三甲基环己烷、2,4-二氯过氧化苯甲酰中的至少一种。
可选地,所述助交联剂采用三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、N,N`-间苯撑双马来酰亚胺、二烯丙基邻苯二酸酯、三烯丙基异氰酸酯、三烯丙基氰酸酯中的至少一种。
可选地,所述振膜为单层振膜,所述单层振膜采用一层乙烯-醋酸乙烯酯橡胶膜层构成;或者是
所述振膜为复合振膜,所述复合振膜包括两层、三层、四层或五层膜层,所述复合振膜至少包括一层乙烯-醋酸乙烯酯橡胶膜层。
可选地,所述乙烯-醋酸乙烯酯橡胶膜层的厚度为10μm-200μm。
可选地,所述乙烯-醋酸乙烯酯橡胶膜层的厚度为30μm-120μm。
可选地,所述乙烯-醋酸乙烯酯橡胶的硬度范围为30-95A。
可选地,所述乙烯-醋酸乙烯酯橡胶的玻璃化转变温度范围为-50-0℃。
可选地,所述乙烯-醋酸乙烯酯橡胶在室温下损耗因子大于0.06。
可选地,所述乙烯-醋酸乙烯酯橡胶的断裂伸长率大于100%。
根据本发明的另一方面,提供了一种发声装置。该发声装置包括发声装置主体以及上述的振膜,所述振膜设置在所述发声装置主体上,所述振膜被配置为能振动发声。
本发明的发明人发现,在现有技术中,振膜的综合性能比较差,容易造成听音不良,使得发声装置的声学性能不好。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
本发明的有益效果为:本发明公开了一种采用乙烯-醋酸乙烯酯橡胶制成的振膜,所述振膜综合性能良好,具有优异的耐高温性能、耐臭氧和耐老化性能。尤其是,振膜在高温下仍能保持优异的弹性,而且使用寿命要长于常规振膜材料,具有更优良的可靠性。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明的一个实施例提供的振膜与现有的常规振膜的总谐波失真测试曲线。
图2是根据本发明的一个实施例的发声装置的振膜不同部位在不同频率下振动位移的测试曲线。
图3是现有常规振膜的不同部位在不同频率下振动位移的测试曲线。
图4是相同厚度而不同硬度振膜的阻抗曲线。
图5是本发明一个实施例提供的振膜与现有的常规振膜的不同频率下响度的测试曲线。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的 值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本发明的一个实施例,提供了一种发声装置的振膜。所述振膜包括至少一层弹性体层,其中,所述弹性体层采用乙烯-醋酸乙烯酯橡胶制成。所述振膜可以应用在多种发声装置中,特别是可以应用在微型发声装置中。
所述乙烯-醋酸乙烯酯橡胶可以采用乙烯和醋酸乙烯酯两种单体经共聚而成。并且,所述醋酸乙烯酯的含量为所述乙烯-醋酸乙烯酯橡胶总量的30%-90%。优选地是,所述醋酸乙烯酯的含量为所述乙烯-醋酸乙烯酯橡胶总量的40%-80%。
所述乙烯-醋酸乙烯酯橡胶的分子结构式可以呈如下所示:
Figure PCTCN2019128173-appb-000002
从上述的乙烯-醋酸乙烯酯橡胶的分子结构式中可以看出:乙烯-醋酸乙烯酯橡胶有饱和的次甲基主链以及极性侧基,这使得乙烯-醋酸乙烯酯橡胶材料具有优异的耐热性、耐老化、耐油性以及着色稳定性的优点。并且,硫化后的乙烯-醋酸乙烯酯橡胶在适当保护的情况下,即使在长期高温应力作用下仍然能表现出卓越的耐老化性能,其耐热性要比三元乙丙橡胶好得多,尤其是在适当保护的情况下使用,可在110℃的高温下长时间工作达20000小时,另外,可在不超过175℃的温度下短期使用。可见,其具有优良的耐高温特性。
在乙烯-醋酸乙烯酯橡胶中,乙烯结构单元在材料中能够提供足够的韧性,使得乙烯-醋酸乙烯酯橡胶在低温下也能够正常的使用。但需要说明的是,当含量过高时,会导致乙烯-醋酸乙烯酯橡胶材料的刚性不足,不能满足使用要求。醋酸乙烯酯结构单元能够在集体中起到交联作用,其含量越高,乙烯-醋酸乙烯酯橡胶材料的交联密度越大,乙烯-醋酸乙烯酯橡胶材料的刚性越 大,但对于乙烯-醋酸乙烯酯橡胶一般不超过80%。另外,当醋酸乙烯酯结构单元较多时(例如,超过55%),会使得乙烯-醋酸乙烯酯橡胶材料难以结晶,使得乙烯-醋酸乙烯酯橡胶材料耐热性略有降低。
本发明提供的振膜,其采用乙烯-醋酸乙烯酯橡胶制成。所述振膜综合性能良好,具有优异的耐高温性能、耐臭氧和耐老化性能。尤其是,振膜在高温下仍能保持优异的弹性,而且使用寿命要长于常用振膜材料,具有更优良的可靠性。应用该振膜的发声装置能够应用于极其恶劣环境中,同时其声学性能保持良好状态。
可选地,所述乙烯-醋酸乙烯酯橡胶中可以混合有无机填料补强剂。所述无机填料补强剂包括炭黑、白炭黑、纳米钛白粉、滑石粉、沉淀碳酸钙以及硫酸钡中的至少一种。并且,在所述乙烯-醋酸乙烯酯橡胶自身的质量分数为100份的情况下,所述无机填料补强剂自身的质量份数为15-90份,即所述无机填料补强剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的15%-90%。
无机填料补强剂的表面具有能够发生取代、还原、氧化等反应的氢、羧基、内酯基、自由基、醌基等基团。将无机填料补强剂混合入乙烯-醋酸乙烯酯橡胶中后,由于无机填料补强剂与乙烯-醋酸乙烯酯橡胶分子链段的界面之间的强相互作用,材料受力时,分子链比较容易在无机填料补强剂微粒表面上滑动,但不易和无机填料补强剂微粒脱离,乙烯-醋酸乙烯酯橡胶与无机填料补强剂微粒构成了一种能够滑动的强固的键,力学强度增大。
以炭黑为例,炭黑是一种无定形结构,粒子通过相互之间的物理化学结合构成聚集体。炭黑的一次结构由聚集体构成,同时聚集体之间存在范德华力或氢键,能够聚集成空间网络结构,也就是炭黑的二次结构。炭黑表面具有能够发生取代、还原、氧化反应等的氢、羧基、内酯基、自由基、醌基等基团,当将其加入弹性体中,由于炭黑表面与乙烯-醋酸乙烯酯界面之间的强相互作用,材料受力时,分子链比较容易在碳黑表面上滑动,但不易和碳黑脱离,乙烯-醋酸乙烯酯橡胶与碳黑构成了一种能够滑动的强固的键,力学强度增大。
在一种实施方式中,在所述乙烯-醋酸乙烯酯橡胶自身的质量份数为 100的情况下,可选地,所述无机填料补强剂自身的质量份数为15-85份,即所述无机填料补强剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的15%-85%。以选择炭黑作为无机填料补强剂为例,当炭黑的质量份数为10时,乙烯-醋酸乙烯酯橡胶材料的力学强度和断裂伸长率均比较小,这是由于炭黑的量较少,其在基体中分散不均匀,难以起到补强效果。而随着炭黑添加量的增加,能够使乙烯-醋酸乙烯酯橡胶材料的力学强度增大,而断裂伸长率逐渐减小。在这种情况下,所制成的振膜在长期使用中就有可能存在破膜风险。因此,优选地,所述无机填料补强剂自身的质量份数为15-80份,即所述无机填料补强剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的15%-80%时,能够更好的满足本发明对振膜性能的要求。更为优选地是,所述无机填料补强剂自身的质量份数为30-70份,即所述无机填料补强剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的30%-70%。当然,本领域技术人员可以根据具体需要灵活调整,对此不作限制。
可选地,所述乙烯-醋酸乙烯酯橡胶中可以混合有防老剂。所述防老剂例如可以包括防老剂N-445、防老剂246、防老剂4010、防老剂SP、防老剂RD、防老剂ODA、防老剂OD以及防老剂WH-02中的至少一种。并且,在所述乙烯-醋酸乙烯酯橡胶自身的质量分数为100份的情况下,所述防老剂自身的质量份数为0.5-10份,即所述防老剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的0.5%-10%。
乙烯-醋酸乙烯酯橡胶在使用过程中,随着使用时间的推移,由于长期受到氧气和紫外线灯等因素的影响,乙烯-醋酸乙烯酯橡胶的分子链会逐渐出现断裂,产生游离的自由基,加速自身老化,这种现象是乙烯-醋酸乙烯酯橡胶的自然老化现象。本发明中,通过在乙烯-醋酸乙烯酯橡胶中混入防老剂,能够防止或者中止、减缓乙烯-醋酸乙烯酯橡胶中产生的自催化活性游离基。需要说明的是,如果防老剂的添加量过少,则有可能达不到延长乙烯-醋酸乙烯酯橡胶的使用寿命的效果。而如果防老剂的添加量过多,由于防老剂难以与乙烯-醋酸乙烯酯橡胶充分的互溶,难以均匀分散,此时有可能会导致乙烯-醋酸乙烯酯橡胶的力学性能下降。所以,在乙烯-醋酸乙烯酯橡胶的质量份数为100份的情况下,防老剂自身的质量份数可选在0.5-10份这 一范围内。优选地是,防老剂自身的质量份数为1-5份,即所述防老剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的1%-5%。当然,本领域技术人员可以根据具体需要灵活调整,对此不作限制。
可选地,所述乙烯-醋酸乙烯酯橡胶中可以混合有增塑剂。所述增塑剂包括脂肪族二元酸酯类增塑剂、苯二甲酸酯类增塑剂(例如,包括邻苯二甲酸酯类、对苯二甲酸酯类)、苯多酸酯类增塑剂、苯甲酸酯类增塑剂、多元醇酯类增塑剂、氯化烃类增塑剂、环氧类增塑剂、柠檬酸酯类增塑剂以及聚酯类增塑剂中的至少一种。
增塑剂上的极性基团与乙烯-丙烯酸酯分子上的极性基团有相互吸引的作用,减少了乙烯-丙烯酸酯分子上极性基团的相互作用。因而,增塑剂的加入,相当于把乙烯-丙烯酸酯分子上的极性基团给遮盖起来,成为屏蔽作用,结果使物理交联点减少。从另一方面来看,增塑剂的分子比乙烯-丙烯酸酯分子小得多,它们活动比较容易,可以很方便的提供链段活动所需要的空间,降低材料的玻璃化转变温度,增加材料的耐寒性能,并且改善材料的加工性能。而过量的增塑剂会从材料内部析出,反而会降低材料的力学性性能。随着增塑剂用量的增加,材料的玻璃化转变温度降低。
在一种实施方式中,在所述乙烯-醋酸乙烯酯橡胶自身的质量份数为100份的情况下,可选地,所述增塑剂自身的质量份数为1-10份,即所述增塑剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的1%-10%。实际上,随着增塑剂用量的增加,乙烯-醋酸乙烯酯橡胶材料的玻璃化转变温度降低,但相应的,乙烯-醋酸乙烯酯橡胶材料的拉伸强度也会降低。当增塑剂含量为12时,乙烯-醋酸乙烯酯橡胶材料拉伸强度大幅下降。此外,过量的增塑剂会从乙烯-醋酸乙烯酯橡胶材料内部析出,降低乙烯-醋酸乙烯酯橡胶材料的力学性能。在增塑剂自身的质量份数符合上述范围时,能够保证乙烯-醋酸乙烯酯橡胶的性能能够满足振膜的性能要求。优选地是,所述增塑剂自身的质量份数为3-7份,即所述增塑剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的3%-7%。当然,本领域技术人员可以根据具体需要灵活调整,对此不作限制。
可选地,所述乙烯-醋酸乙烯酯橡胶中可以混合有内脱模剂。所述内 脱模剂采用硬脂酸、十八烷基胺、磷酸烷基酯、α-十八烷基-ω-羟基聚氧乙烯磷酸酯中的至少一种。
乙烯-醋酸乙烯酯橡胶的门尼粘度和生胶强度相对都较低。而这一性能特点会导致乙烯-醋酸乙烯酯橡胶在注塑加工工艺中出现粘辊、粘模等工艺问题。本发明通过在乙烯-醋酸乙烯酯橡胶的胶料中加入内脱模剂的方式,改善其加工性能。
如果内脱模剂的混合量较少,则难以达到改善粘膜问题。但是如果内脱模剂混合量过大,则容易导致乙烯-醋酸乙烯酯橡胶在后期制备振膜时与胶层的粘接力下降,使最终制成的振膜的性能受到不利影响。在本发明的实施方式中,在所述乙烯-醋酸乙烯酯橡胶的质量份数为100份的情况下,所述内脱模剂自身的质量份数可选为0.5-5份,即所述内脱模剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的0.5%-5%。优选地是,所述内脱模剂自身的质量份数为1-3份,即所述内脱模剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的1%-3%。当然,本领域技术人员可以根据具体需要灵活调整,对此不作限制。
可选地,所述乙烯-醋酸乙烯酯橡胶中可以混合有交联剂。所述交联剂包括过氧化物交联剂和助交联剂。所述有机过氧化物交联剂用于使所述“乙烯-醋酸乙烯酯共聚物”产生自由基。所述助交联剂则用于与所述“乙烯-醋酸乙烯酯共聚物”发生自由基聚合。
所述有机过氧化物交联剂包括1,3-1,4-二(叔丁基过氧异丙基)苯、过氧化二异丙苯、2,5-二甲基-2,5-双(叔丁基过氧基)己烷、过氧化叔丁基异丙苯、2,5-二甲基-2,5-双(过氧化叔丁基)-3-己炔、4,4`-双(叔丁基过氧基)戊酸正丁酯、1,1`-双(叔丁基过氧基)-3,3,5三甲基环己烷、2,4-二氯过氧化苯甲酰中的至少一种。
所述助交联剂包括三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、N,N`-间苯撑双马来酰亚胺、二烯丙基邻苯二酸酯、三烯丙基异氰酸酯、三烯丙基氰酸酯中的至少一种。
需要说明的是,交联剂以及所产生的交联点能够决定乙烯-醋酸乙烯酯橡胶的交联程度。在一定范围内时,交联点越多,交联剂用量越大,交 联程度越高。但是,交联程度过高会导致分子链越难运动,导致乙烯-醋酸乙烯酯橡胶材料的玻璃化转变温度升高,阻尼因子增大。并且乙烯-醋酸乙烯酯橡胶材料力学强度越高,断裂伸长率和弹性回复率下降。本领域技术人员可以根据具体需要对交联剂的用量进行合理的控制。
可选地,所述振膜的玻璃化转变温度范围为:-50-0℃。乙烯-醋酸乙烯酯橡胶中的乙烯结构单元使得分子容易发生运动,并且使其分子链较柔顺,具有较好的耐低温性能。振膜满足上述玻璃化转变温度的范围时,使得该发声装置的振膜在常温下能够保持高弹态,回弹性良好。在一定范围,玻璃化转变温度越低,振膜即可在更低的温度下正常工作。在振膜的厚度不变的情况下,玻璃化转变温度越低,所装配的发声装置的谐振频率F0越低。
乙烯-醋酸乙烯酯橡胶的玻璃化温度可以通过乙烯酯结构单元在橡胶中的含量来控制,但是其含量一般不能超过90%。
在一种实施方式中,本发明提供的振膜的玻璃化转变温度优选地是-30-0℃。该振膜不仅在常温下能够保持高弹态,回弹性良好。更重要的是,即使在低于0℃以下时,发声装置的振膜工作时仍然可以一直保持较好的橡胶弹性,从而使发声装置表现出较高的音质。同时,降低了在低温环境中发声装置振膜破坏的风险,可靠性更高。
所述振膜的断裂伸长率大于100%。优选地,所述振膜的断裂伸长率大于150%。本发明的振膜具有较高的断裂伸长率,这使得振膜在发声装置中使用时不易出现破膜等可靠性问题。
在相同的应力下,本发明实施例提供的振膜的应变明显大于现有技术的PEEK振膜。而这表明:本发明实施例提供的振膜的杨氏模量明显小于现有技术的PEEK振膜。
此外,现有技术的PEEK振膜形成了明显的屈服点,约在应变0.4-0.5%。而本发明提供的扬声器振膜不存在屈服点。这表明:本发明提供的振膜具有更宽的弹性区域,并且回弹性能优良。
采用乙烯-醋酸乙烯酯橡胶材料制成的振膜具有良好的柔韧性。例如,其断裂伸长率≥100%。其中,乙烯-醋酸乙烯酯橡胶分子链对断裂伸长率有着非常重要影响,本领域技术人员可以根据实际需要进行选择。这使得发声 装置振膜的振动位移更大,响度更大。并且可靠性、耐用性良好。乙烯-醋酸乙烯酯橡胶材料的柔韧性越好,断裂伸长率越大,则振膜抵抗破坏的能力越强。当振膜处于大振幅状态振动时,乙烯-醋酸乙烯酯橡胶材料产生了较大的应变,长时间振动时会出现膜折、膜裂或破膜的风险。而以乙烯-醋酸乙烯酯橡胶作为基材的本发明的振膜,具有良好的柔韧性,降低了振膜破坏的风险。断裂伸长率越高,振膜在长期使用中的破膜率越低。
相对于工程塑料,本发明提供的乙烯-醋酸乙烯酯橡胶具有更宽的弹性区域,当振膜的应变发生在该区域时,待外力去除后,振膜具有优异的回复性。相应地,振膜在振动过程中,摇摆振动少,音质和听音稳定性更优。进一步地,本发明提供的振膜可在高温下连续使用,并且具有相较于现有材料更高的阻尼性能。由于振膜的回弹性良好,故使得发声装置具有较好的瞬态响应和较低的失真。
如图1所示,本发明提供的振膜相对于现有技术的PEEK振膜,具有更低的THD(总谐波失真)。这表明:本发明提供的振膜具有更优异的抗偏振能力,并且音质更佳。
本发明提供的乙烯-醋酸乙烯酯橡胶制成的振膜,其在室温下处于高弹态,分子链易于运动,分子间摩擦力大,具有较好的阻尼性能。可选地,在室温下,所述振膜的损耗因子大于0.06。优异的阻尼性能,能够使振膜具有更低的阻抗性。所述振膜的阻尼性提高,发声装置的振动系统在振动过程中抑制偏振现象的能力得到增强,振动一致性良好。而现有的工程塑料制成的振膜的阻尼低,其损耗因子通常是小于0.01,阻尼性较小。
优选地,本发明提供的振膜的损耗因子大于0.1。
图2是根据本发明的一个实施例的发声装置的振膜不同部位在不同频率下振动位移的测试曲线。图3是现有常规振膜的不同部位在不同频率下振动位移的测试曲线。
其中,所述振膜为矩形折环振膜。横坐标为频率(Hz),纵坐标为响度位移量(mm)。在振膜的中心部的边缘位置以及中心位置取点进行测试。
可以看出,图2中的各个曲线更集中,而图3中的各个曲线较为分散。这表明:本发明实施例提供的振膜的各个部分的振动一致性更好,在振动 过程中,振膜的摇摆振动少,音质和听音稳定性更加优良。
本发明提供的振膜,其邵氏硬度范围在30-95A。发声装置的谐振频率F0与振膜的模量、硬度以及厚度呈正比,而对于乙烯-醋酸乙烯酯橡胶材料而言,其模量与硬度呈正比。因此,可以用硬度来体现振膜的模量。
一方面,乙烯-醋酸乙烯酯橡胶材料的强度和硬度可以通过补强剂调节。另一方面,分子链量的增加,会使得分子间氢键增多,进而使乙烯-醋酸乙烯酯橡胶材料的强度和硬度增大、交联点增多。乙烯-醋酸乙烯酯橡胶材料的强度和硬度越高,则制备出的振膜的F0就越高,相应的,发声装置的响度会有所降低,低音性能变差。图4为相同厚度而不同硬度振膜的阻抗曲线。由图4可以看出,随着硬度增大,发声装置的谐振频率F0急剧增大。
本发明提供的发声装置的振膜例如可以为折环振膜或者平板振膜。该发声装置的谐振频率F0正比于振膜的杨氏模量和厚度,可以通过改变发声装置振膜的厚度以及杨氏模量来实现F0的变化,具体调节原理如下:
Figure PCTCN2019128173-appb-000003
其中,Mms为发声装置的等效振动质量,Cms为发声装置的等效顺性:
Figure PCTCN2019128173-appb-000004
其中,C m1为弹波顺性,C m2为振膜顺性。无弹波设计时,发声装置的等效顺性即为振膜顺性:
Figure PCTCN2019128173-appb-000005
其中,W为振膜的折环部的总宽度,t为膜片厚度;dvc为振膜音圈贴合外径;E为振膜材质的杨氏模量;u为振膜材质的泊松比。
可以看出,发声装置的谐振频率F0正比于振膜的模量和厚度。而振 膜的模量又正比于其硬度。因此,可以采用硬度替代其模量。为得到饱满的低音和舒适的听感,在发声装置具有较低的谐振频率F0的同时,应使振膜具有足够的刚度和阻尼。本领域技术人员可以通过调节发声装置振膜的硬度以及厚度来调节F0的大小。
所述振膜的邵氏硬度优选为30-80A,所述振膜的厚度为30-120μm。在上述优选的范围内,能够使得发声装置的谐振频率F0达到150-1500Hz。发声装置的低频性能优良。
可选地,本发明提供的振膜可以为单层结构,也可以为多层的复合振膜。其中,所述单层振膜是由一层乙烯-醋酸乙烯酯橡胶膜层构成的振膜。所述复合振膜则是由多层乙烯-醋酸乙烯酯橡胶膜层依次层叠形成的振膜。或者,所述复合振膜可以包括至少一层乙烯-醋酸乙烯酯橡胶膜层,该乙烯-醋酸乙烯酯橡胶膜层与其它材料制成的膜层粘接复合,构成多种材料制成的复合振膜。另外,多层膜层之间可以通过热压等方式进行复合,进而构成上述复合振膜。所述复合振膜可以为两层、三层、四层或五层复合振膜,本发明对此不进行限制。所述复合振膜中至少有一层膜层是由本发明提供的乙烯-醋酸乙烯酯橡胶制成的乙烯-醋酸乙烯酯橡胶膜层。
对于乙烯-醋酸乙烯酯橡胶膜层,其厚度可选为10-200μm,优选为30-120μm。乙烯-醋酸乙烯酯橡胶膜层的厚度在该范围内时,能够更好的满足发声装置的性能要求和装配空间的要求。
振膜的厚度会影响其声学性能。一般情况下,较低的厚度会影响振膜的可靠性,而较大的厚度则会影响到振膜的灵敏度。因此,本发明提供的振膜厚度例如可以控制在30μm-120μm。当单层乙烯-醋酸乙烯酯橡胶振膜的厚度范围为30μm-120μm时,所述的厚度范围能够使得发声装置振膜的灵敏度都更高,振膜的弹性性能和刚性性能都能符合发声装置的制作要求。特别是,可以应用在微型发声装置中。并且,振膜作为发声装置中最为薄弱的原件,在反复震动过程中,能保证长时间的正常使用,进而延长发声装置的使用寿命。
本发明还给出了本发明提供的振膜的一个具体实施方式与现有常规振膜的对比曲线图,如图5所示。图5示出了两种振膜在不同频率下响度的测试曲线(SPL曲线)。其中,振膜为折环振膜。横坐标为频率(Hz), 纵坐标为响度。
在图5中,虚线为本发明提供的振膜的测试曲线。一条线为常规振膜的测试曲线。由SPL曲线可以看出,两种振膜的中频性能相近。而采用本发明提供的振膜的发声装置的F0为824Hz。采用常规振膜的发声装置的F0为926Hz。这表明,本发明提供的振膜的低频灵敏度高于现有的PEEK振膜。也就是说,采用本发明提供的振膜,能够使发声装置具有更高的响度和舒适度。
本发明提供振膜,其是将乙烯-醋酸乙烯酯橡胶材料与助剂混合。其中,乙烯-醋酸乙烯酯橡胶采用乙烯和醋酸乙烯酯两种单体经共聚而制成。助剂包括有无机填料补强剂、防老剂、增塑剂内脱模剂、交联剂。再经热压方式一体成型制得发声装置的振膜。本发明提供的振膜制备方法简单。本发明中采用的乙烯-醋酸乙烯酯橡胶材料具有优异耐高温性能、耐臭氧和耐老化性能,经成型后的振膜在高温下仍能保持优异的弹性,而且使用寿命要长于常用振膜材料,因此具有更优良的可靠性。
另一方面,本发明还提供了一种发声装置。
所述发声装置包括发声装置主体和上述采用乙烯-醋酸乙烯酯橡胶制成的振膜。所述振膜设置在所述发声装置主体上,所述振膜被配置为能够被驱动振动,通过振动进而产生声音。所述发声装置主体中可以配置有线圈、磁路系统等部件,通过电磁感应驱动所述振膜振动。本发明提供的发声装置具有优异的声学性能。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (21)

  1. 一种发声装置的振膜,其特征在于:所述振膜包括至少一层弹性体层,其中,所述弹性体层采用乙烯-醋酸乙烯酯橡胶制成;
    所述乙烯-醋酸乙烯酯橡胶采用乙烯和醋酸乙烯酯经共聚而成,所述醋酸乙烯酯的含量为所述乙烯-醋酸乙烯酯橡胶总量的30%-90%。
  2. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶的分子结构式为:
    Figure PCTCN2019128173-appb-100001
  3. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶中混合有无机填料补强剂,所述无机填料补强剂采用炭黑、白炭黑、纳米钛白粉、滑石粉、沉淀碳酸钙、硫酸钡中的至少一种,所述无机填料补强剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的15%-90%。
  4. 根据权利要求3所述的振膜,其特征在于:所述无机填料补强剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的30%-70%。
  5. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶中混合有防老剂,所述防老剂采用防老剂N-445、防老剂246、防老剂4010、防老剂SP、防老剂RD、防老剂ODA、防老剂OD、防老剂WH-02中的至少一种,所述防老剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的0.5%-10%。
  6. 根据权利要求5所述的振膜,其特征在于:所述防老剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的1%-5%。
  7. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶中混合有增塑剂,所述增塑剂采用脂肪族二元酸酯类增塑剂、苯二甲酸酯类增塑剂、苯多酸酯类增塑剂、苯甲酸酯类增塑剂、多元醇酯类增塑剂、氯化烃类增塑剂、环氧类增塑剂、柠檬酸酯类增塑剂、聚酯类增塑剂中的至少一种,所述增塑剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的1%-10%。
  8. 根据权利要求7所述的振膜,其特征在于:所述增塑剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的3%-7%。
  9. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶中混合有内脱模剂,所述内脱模剂采用硬脂酸、十八烷基胺、磷酸烷基酯、α-十八烷基-ω-羟基聚氧乙烯磷酸酯中的至少一种,所述内脱模剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的0.5%-5%。
  10. 根据权利要求9所述的振膜,其特征在于:所述内脱模剂的含量为所述乙烯-醋酸乙烯酯橡胶总量的1%-3%。
  11. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶中混合有交联剂,所述交联剂包括有机过氧化物交联剂和助交联剂。
  12. 根据权利要求11所述的振膜,其特征在于:所述有机过氧化物交联剂采用1,3-1,4-二(叔丁基过氧异丙基)苯、过氧化二异丙苯、2,5-二甲基-2,5-双(叔丁基过氧基)己烷、过氧化叔丁基异丙苯、2,5-二甲基-2,5-双(过氧化叔丁基)-3-己炔、4,4`-双(叔丁基过氧基)戊酸正丁酯、1,1`-双(叔丁基过氧基)-3,3,5三甲基环己烷、2,4-二氯过氧化苯甲酰中的至少一种。
  13. 根据权利要求11所述的振膜,其特征在于:所述助交联剂采用三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、N,N`-间苯撑双马来 酰亚胺、二烯丙基邻苯二酸酯、三烯丙基异氰酸酯、三烯丙基氰酸酯中的至少一种。
  14. 根据权利要求1所述的振膜,其特征在于:所述振膜为单层振膜,所述单层振膜采用一层乙烯-醋酸乙烯酯橡胶膜层构成;或者是
    所述振膜为复合振膜,所述复合振膜包括两层、三层、四层或五层膜层,所述复合振膜至少包括一层乙烯-醋酸乙烯酯橡胶膜层。
  15. 根据权利要求14所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶膜层的厚度为10μm-200μm。
  16. 根据权利要求15所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶膜层的厚度为30μm-120μm。
  17. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶的硬度范围为30-95A。
  18. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶的玻璃化转变温度范围为-50-0℃。
  19. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶在室温下损耗因子大于0.06。
  20. 根据权利要求1所述的振膜,其特征在于:所述乙烯-醋酸乙烯酯橡胶的断裂伸长率大于100%。
  21. 一种发声装置,其特征在于,包括发声装置主体和权利要求1-20任意一项所述的振膜,所述振膜设置在所述发声装置主体上,所述振膜被配置为能振动发声。
PCT/CN2019/128173 2019-10-31 2019-12-25 一种发声装置的振膜以及发声装置 WO2021082254A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911059136.9 2019-10-31
CN201911059136.9A CN110708636B (zh) 2019-10-31 2019-10-31 一种发声装置的振膜以及发声装置

Publications (1)

Publication Number Publication Date
WO2021082254A1 true WO2021082254A1 (zh) 2021-05-06

Family

ID=69203346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128173 WO2021082254A1 (zh) 2019-10-31 2019-12-25 一种发声装置的振膜以及发声装置

Country Status (2)

Country Link
CN (1) CN110708636B (zh)
WO (1) WO2021082254A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818991A (zh) * 2019-10-31 2020-02-21 歌尔股份有限公司 一种发声装置的振膜以及发声装置
CN114827872B (zh) * 2021-01-29 2023-07-14 歌尔股份有限公司 振膜及发声装置
CN117082405A (zh) * 2023-10-16 2023-11-17 瑞声光电科技(常州)有限公司 复合振膜及发声器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139045A1 (ja) * 2008-05-13 2009-11-19 吾妻化成株式会社 マイクロスピーカ用振動板エッジ材および該マイクロスピーカ用振動板エッジ材を用いたマイクロスピーカならびに該マイクロスピーカを用いた電子機器
CN106957466A (zh) * 2016-12-12 2017-07-18 瑞声科技(新加坡)有限公司 用于电声系统的振膜及其制备方法
WO2017186726A1 (en) * 2016-04-26 2017-11-02 Isovolta Ag Acoustic membrane
CN108966088A (zh) * 2018-06-15 2018-12-07 歌尔股份有限公司 扬声器振膜以及扬声器
CN110049411A (zh) * 2018-12-29 2019-07-23 瑞声科技(新加坡)有限公司 振膜及发声器件
CN110818991A (zh) * 2019-10-31 2020-02-21 歌尔股份有限公司 一种发声装置的振膜以及发声装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443888B2 (zh) * 1974-01-19 1979-12-22
JPS5828959B2 (ja) * 1976-02-20 1983-06-18 オンキヨー株式会社 スピ−カ−のド−ム振動板
JP2004269756A (ja) * 2003-03-11 2004-09-30 Kureha Elastomer Co Ltd 制振材用シート
CN101010377B (zh) * 2004-06-15 2010-11-24 埃克森美孚化学专利公司 弹性体组合物、气密层及其制备方法
CN101580560B (zh) * 2008-05-16 2011-05-04 中国石油化工股份有限公司 一种催化剂体系及丁二烯聚合方法
CN102549064B (zh) * 2009-10-02 2014-04-30 埃克森美孚化学专利公司 交联聚烯烃聚合物共混物
CN106982408A (zh) * 2016-01-19 2017-07-25 富港电子(昆山)有限公司 喇叭音膜及其制作方法
CN107182013B (zh) * 2016-03-11 2020-04-21 大原博 喇叭振动片及其制作方法
CN106817658A (zh) * 2017-01-12 2017-06-09 瑞声科技(沭阳)有限公司 振膜及发声器件
CN109266275A (zh) * 2018-09-12 2019-01-25 苏州赛伍应用技术股份有限公司 微型扬声器振膜球耐高温型粘结胶膜及球顶模块
CN110283389A (zh) * 2019-06-14 2019-09-27 歌尔股份有限公司 一种发声装置的振膜以及发声装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139045A1 (ja) * 2008-05-13 2009-11-19 吾妻化成株式会社 マイクロスピーカ用振動板エッジ材および該マイクロスピーカ用振動板エッジ材を用いたマイクロスピーカならびに該マイクロスピーカを用いた電子機器
WO2017186726A1 (en) * 2016-04-26 2017-11-02 Isovolta Ag Acoustic membrane
CN106957466A (zh) * 2016-12-12 2017-07-18 瑞声科技(新加坡)有限公司 用于电声系统的振膜及其制备方法
CN108966088A (zh) * 2018-06-15 2018-12-07 歌尔股份有限公司 扬声器振膜以及扬声器
CN110049411A (zh) * 2018-12-29 2019-07-23 瑞声科技(新加坡)有限公司 振膜及发声器件
CN110818991A (zh) * 2019-10-31 2020-02-21 歌尔股份有限公司 一种发声装置的振膜以及发声装置

Also Published As

Publication number Publication date
CN110708636A (zh) 2020-01-17
CN110708636B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2020216171A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
CN110708638B (zh) 一种用于微型发声装置的振膜及微型发声装置
WO2020248718A1 (zh) 一种发声装置的振膜以及发声装置
WO2021082255A1 (zh) 一种发声装置的振膜以及发声装置
WO2021082254A1 (zh) 一种发声装置的振膜以及发声装置
CN110818991A (zh) 一种发声装置的振膜以及发声装置
CN110708637B (zh) 一种用于微型发声装置的振膜及微型发声装置
WO2020216168A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2020216170A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2020216179A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2020216172A1 (zh) 一种微型发声装置
WO2020216195A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2020216196A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
KR102666672B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
KR102666675B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
KR102666671B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
WO2021082249A1 (zh) 一种用于微型发声装置的振膜以及微型发声装置
KR102666673B1 (ko) 사운드 발생 장치용 다이어프램 및 사운드 발생 장치
WO2021082248A1 (zh) 一种用于微型发声装置的振膜以及微型发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950877

Country of ref document: EP

Kind code of ref document: A1