WO2021082200A1 - 一种不含磷的硫化物固态电解质 - Google Patents

一种不含磷的硫化物固态电解质 Download PDF

Info

Publication number
WO2021082200A1
WO2021082200A1 PCT/CN2019/124604 CN2019124604W WO2021082200A1 WO 2021082200 A1 WO2021082200 A1 WO 2021082200A1 CN 2019124604 W CN2019124604 W CN 2019124604W WO 2021082200 A1 WO2021082200 A1 WO 2021082200A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte material
solid
materials
lithium
Prior art date
Application number
PCT/CN2019/124604
Other languages
English (en)
French (fr)
Inventor
周墨林
谷风
蒋欣
徐磊敏
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to EP19950266.7A priority Critical patent/EP4053958A4/en
Priority to JP2022525919A priority patent/JP7454665B2/ja
Publication of WO2021082200A1 publication Critical patent/WO2021082200A1/zh
Priority to US17/708,180 priority patent/US20220223909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a sulfide solid electrolyte containing no phosphorus.
  • lithium-ion batteries have the advantages of high energy density, high power density, long life, good safety, low self-discharge, and wide temperature adaptation range. Wide range of applications.
  • traditional lithium-ion batteries need to use flammable organic solvents as electrolytes, so there are great safety hazards.
  • the solid electrolyte is non-flammable, non-corrosive, non-volatile, and has no leakage problems. Therefore, the all-solid-state battery assembled by the solid-state electrolyte has extremely high safety. In addition, all-solid-state batteries also have the advantages of long service life and high theoretical energy density. In lithium-ion batteries using organic electrolytes, due to the fragmentation and repeated generation of SEI membranes during the cycle, the capacity decline of the battery will be accelerated, and there are a large number of side reactions during the cycle, which seriously affects the service life of the battery. The solid electrolyte can circumvent this problem.
  • polymer type In recent years, researchers have done a lot of exploratory work in the direction of solid electrolytes. To sum up, the current common solid electrolytes can be divided into the following three categories: polymer type, oxide type and sulfide type. Among them, the concept of polymer solid electrolyte was first proposed by Armand in 1978. It is composed of a mixture of polymer and lithium salt. The lithium ion and the polar groups in the polymer polymer chain are complexed with each other, and in an external electric field Under the action of, use the flexibility of the polymer chain to carry out the directional migration of lithium ions. Common polymer solid electrolytes include PEO-based, PPO-based, PAN-based, PMMA-based and PVDF-based, etc.
  • Oxide solid electrolytes include Perovskite type (e.g. Li 3x La 2/3-x TiO 3 ), Anti-Perovskite type (e.g. Li 3 OCl), NASICON type (e.g.
  • This type of electrolyte generally has good chemical stability and can exist stably in the atmosphere, but the ion conductivity is also relatively low , The grain boundary resistance is very large, and the compatibility with the electrode is poor.
  • sulfide-based solid electrolytes have received the most extensive attention from researchers due to their high ionic conductivity, low grain boundary resistance and good electrochemical stability. It is hoped to get a class of materials for large-scale applications.
  • Li 2 S-SiS 2 system is a type of solid electrolyte that has been studied earlier.
  • the solid electrolyte material has a simple composition, does not contain water-sensitive phosphorus elements, and at the same time has good Li + conductivity, and is a promising solid electrolyte material.
  • One of the objectives of this application is to disclose a new type of sulfide solid electrolyte material.
  • the second purpose of this application is to disclose the crystallographic characteristics, structural information, XRD spectrum, PBE band gap, Li + migration path and migration barrier of the solid electrolyte material.
  • this application discloses a new type of sulfide solid electrolyte material, the chemical formula of which is Li 2+x M 2+x M'1 -x S 6 , where M is at least one of Al, Ga or In. Species, M'is at least one of Si or Ge, 0 ⁇ x ⁇ 0.5.
  • the Li 2+x M 2+x M′ 1-x S 6 material has a diamond-like structure feature, in which M 3+ (for example, Al 3+ ) and M′ 4+ (for example, Si 4+) ) Are coordinated with S 2- to form a tetrahedron, all tetrahedrons are co-apex connected to form a three-dimensional network, and Li + is filled in the tetrahedral voids.
  • M 3+ for example, Al 3+
  • M′ 4+ for example, Si 4+
  • this application discloses the XRD pattern characteristics of the Li 2+x M 2+x M′ 1-x S 6 material, and the XRD pattern is about 14.5° ⁇ 3°, 15.5° ⁇ 3°, 17° At ⁇ 3°, 25.5° ⁇ 3°, 31.5° ⁇ 3°, 53.0° ⁇ 3°, strong diffraction peaks will appear.
  • the present invention provides a new type of sulfide solid electrolyte material Li 2+x M 2+x M′ 1-x S 6 , which has a structure similar to diamond, in which both M 3+ and M′ 4+ are Four S 2- coordinations form [MS 4 ] and [M'S 4 ] tetrahedra, all tetrahedra are co-apex connected, and Li + is filled in the tetrahedra voids.
  • This type of material has a large optical band gap.
  • the intrinsic band gap is not less than about 4.3 eV, and the Li + migration barrier is not greater than About 0.45eV.
  • this type of material has a large band gap and a low Li + conduction barrier, indicating that its Li + conduction ability is very strong. It is a new type of fast lithium ion conductor material and has good application prospects.
  • this type of material does not contain stearic acid P 5+ and should have better stability.
  • all tetrahedrons are connected together, the group arrangement is dense, the gap is less, and the structure stability is good.
  • the general chemical formula of the solid electrolyte material is Li 2+x M 2+x M'1 -x S 6 , where M is at least one of Ga or In, and M'is Si or Ge At least one of 0 ⁇ x ⁇ 0.5.
  • the general chemical formula of the solid electrolyte material is Li 2+x Al 2+x Si 1-x S 6 , where 0 ⁇ x ⁇ 0.5.
  • M 3+ (Al 3+ ) and M'4+ (Si 4+ ) are both coordinated with S 2- to form a tetrahedron [MS 4 ] ([AlS 4 ] ) And [M'S 4 ]([SiS 4 ]), all tetrahedrons are co-apex connected, and Li + is filled in the tetrahedral voids.
  • the XRD pattern of the solid electrolyte material is about 14.5° ⁇ 3°, 15.5° ⁇ 3°, 17° ⁇ 3°, 25.5° ⁇ 3°, 31.5° ⁇ 3°, 53.0° ⁇ 3 °Equal angles will appear strong diffraction peaks.
  • the Li + migration barrier of the solid electrolyte material is not greater than about 0.45 eV.
  • the PBE band gap of the solid electrolyte material is not less than about 2.80 eV.
  • the safety of batteries is receiving unprecedented attention.
  • Solid electrolyte materials can replace flammable organic electrolytes and be used in new-type lithium-ion batteries, completely avoiding the safety risks caused by thermal runaway in principle.
  • the present invention provides a new type of sulfide solid electrolyte, which has great application potential. This solution has high innovation and practical value, and has a good promoting effect on the further application of the sulfide solid electrolyte.
  • Figure 1 depicts the lattice structure and Li + migration path of Li 2.125 Al 2.125 Si 0.875 S 6.
  • Figure 2 depicts the XRD spectrum of Li 2.125 Al 2.125 Si 0.875 S 6.
  • Figure 3 depicts the density of states of Li 2.125 Al 2.125 Si 0.875 S 6.
  • Figure 4 depicts the interstitial Li + migration barrier of Li 2.125 Al 2.125 Si 0.875 S 6.
  • Figure 5 depicts the lattice structure of Li 2.25 Al 2.25 Si 0.75 S 6 and the Li + migration path.
  • Figure 6 depicts the XRD spectrum of Li 2.25 Al 2.25 Si 0.75 S 6.
  • Figure 7 depicts the density of states of Li 2.25 Al 2.25 Si 0.75 S 6.
  • Figure 8 depicts the interstitial Li + migration barrier of Li 2.25 Al 2.25 Si 0.75 S 6.
  • Figure 9 depicts the lattice structure and Li + migration path of Li 2.5 Al 2.5 Si 0.5 S 6.
  • Figure 10 depicts the XRD spectrum of Li 2.5 Al 2.5 Si 0.5 S 6.
  • Figure 11 depicts the density of states of Li 2.5 Al 2.5 Si 0.5 S 6.
  • Figure 12 depicts the interstitial Li + migration barrier of Li 2.5 Al 2.5 Si 0.5 S 6.
  • inorganic solid electrolyte materials usually consist of a stable anion and cation framework and movable ions (such as Li + ).
  • S 2- in sulfide solid electrolytes has a much larger ion radius than O 2- , which makes the space where Li + can move between the frameworks larger.
  • the atomic nucleus of S 2- interacts with the surrounding electrons.
  • the binding effect of the cloud is small, which makes the electron cloud easier to polarize.
  • the charge distribution is more likely to deform with Li + , reducing the force on the lithium ions, thereby reducing the Li + migration barrier.
  • the present invention is based on a thorough understanding of the structural characteristics of the sulfide, by congeners Alternatively, M and substituted by doping portions M 3+ '4+, Li + is introduced into the gap thinking, found that a novel class of sulfide solid state electrolyte Li 2+x M 2+x M′ 1-x S 6 , this type of material does not contain phosphorus element, and has a lower Li + migration barrier, which has great application potential.
  • the embodiment of the application provides a solid electrolyte material, the chemical formula of the material is Li 2+x M 2+x M'1 -x S 6 , where M is at least one of Al, Ga or In, M'is at least one of Si or Ge, and 0 ⁇ x ⁇ 0.5.
  • M 3+ and M′ 4+ are coordinated with four S 2- to form a tetrahedron. All tetrahedrons are co-topically connected to form a three-dimensional network, and Li + is filled in the tetrahedral voids. From its element composition and structural characteristics, Li 2+x M 2+x M′ 1-x S 6 has good stability.
  • This application also discloses the characteristics of the XRD spectrum of the Li 2+x M 2+x M′ 1-x S 6 material, as shown in Figures 2, 6 and 10, the XRD spectrum is at about 14.5° ⁇ 3°, 15.5 ° ⁇ 3°, 17° ⁇ 3°, 25.5° ⁇ 3°, 31.5° ⁇ 3°, 53.0° ⁇ 3°, etc. will have strong diffraction peaks.
  • Li 2.125 Al 2.125 Si 0.875 S 6 material strong diffraction peaks appear at approximately 14.6°, 16.0°, 18.0°, 26.0°, 31.3° and 53.5°; for Li 2.25 Al 2.25 Si 0.75 S 6 materials, strong diffraction peaks will appear at about 14.6°, 16.0°, 17.7°, 26.0°, 31.1° and 53.4°; for Li 2.5 Al 2.5 Si 0.5 S 6 materials, at about 14.0°, 15.4°, 16.8 °, 25.4°, 30.8° and 52.1° will appear strong diffraction peaks.
  • the present invention uses the PBE exchange correlation functional form to calculate several Li 2+x M 2+x M′ 1-x S 6 materials (with Li 2.125 Al 2.125 Si 0.875 S 6 , Li 2.25 Al 2.25 Si 0.75 S 6 and Li 2.5 Al 2.5 Si 0.5 S 6 are examples) of the total density of states.
  • the PBE band gap of the Li 2+x Al 2+x Si 1-x S 6 material is not less than 2.80 eV.
  • Lithium ion transport characteristics are the most critical feature of solid electrolytes. For this reason, the inventors used the first principles and used VASP software (Hafner Research Group of the University of Vienna, Vienna Ab-initio Simulation Package) to calculate the Li + migration of Li 2+x M 2+x M′ 1-x S 6 Paths and barriers to migration.
  • VASP software Hafner Research Group of the University of Vienna, Vienna Ab-initio Simulation Package
  • M and M′ can be selected arbitrarily among Al, Ga, In and Si, Ge respectively, for the sake of clarity of description And simple, the present invention takes Li 2+x Al 2+x Si 1-x S 6 as an example for discussion, and detailed calculations of Li 2.125 Al 2.125 Si 0.875 S 6 , Li 2.25 Al 2.25 Si 0.75 S 6 and Li 2.5 Li + migration path and migration barrier of materials such as Al 2.5 Si 0.5 S 6.
  • Figures 1, 5 and 9 depict the Li + migration path of Li 2+x Al 2+x Si 1-x S 6 material, in which the gray Li + ion is the artificially inserted transition state position between the initial and final states, and Li + Transition from the initial state to the final state via the above-mentioned intermediate state position.
  • Figures 4, 8 and 12 show the shape of the migration barrier with the lowest activation energy in these migration channels through further transition state calculations. Specifically, the interstitial lithium ions push away the lattice lithium ions to the next interstitial position while occupying themselves The lattice site realizes the transport of Li + through the "push and fill" method.
  • Li + migration barrier of the LGPS material (the benchmark material in the sulfide solid electrolyte) reported by is about 0.2 eV Therefore, it can be seen that Li + in the lattice structure of Li 2.5 Al 2.5 Si 0.5 S 6 material is relatively easy to diffuse, and it is a good potential solid electrolyte material.
  • the Li 2+x M 2+x M′ 1-x S 6 material disclosed in the present invention does not contain phosphorus element in composition, has improved chemical stability, and has a larger optical band gap (compared to Wide electrochemical window), and also has better Li + transport capacity, which has great application potential.
  • the electrochemical device of the present application includes any device that undergoes an electrochemical reaction, and specific examples thereof include all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors.
  • the electrochemical device is a lithium secondary battery, including a lithium metal secondary battery or a lithium ion secondary battery.
  • the electrochemical device of the present application includes a positive electrode, a negative electrode, and the solid electrolyte of the present application.
  • the electrochemical device manufactured according to the present application is suitable for electronic equipment in various fields.
  • the electrochemical device of the present application is not particularly limited, and it can be used for any purpose known in the prior art.
  • the electrochemical device of the present application can be used in, but not limited to, notebook computers, pen-input computers, mobile computers, e-book players, portable phones, portable fax machines, portable copiers, portable printers, and headsets.
  • the Li 2+x M 2+x M′ 1-x S 6 material disclosed in the present invention can be prepared by a variety of conventional methods.
  • Li 2 O, M 2 O 3, and M'O 2 can be used as source materials, mixed uniformly according to the required molar ratio, ball milled into uniform powder under the protection of inert atmosphere, and then used at high temperature under inert atmosphere or vacuum Sintering is performed by the solid phase method.
  • other preparation methods such as melt quenching method, can also be selected.
  • an appropriate target can also be selected, and the solid electrolyte material can be prepared by a physical or chemical vapor deposition method. By adjusting the relevant process parameters, the desired element molar ratio can be deposited. Since these preparation processes are well known to those skilled in the art, they will not be repeated here.
  • Some embodiments of the present invention also provide a secondary battery, which may be a lithium ion battery or a metal lithium battery.
  • a secondary battery which may be a lithium ion battery or a metal lithium battery.
  • the Li 2+x M 2+x M′ 1-x S 6 material described in the foregoing embodiment of the present invention can be used. Since the structure of the solid-state secondary battery is also well known to those skilled in the art, I won't repeat them here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Silicon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inert Electrodes (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)

Abstract

一种固态电解质材料及包含其的电化学装置,其中,固态电解质材料,其特征在于,所述材料的化学通式为Li 2+xM 2+xM' 1-xS 6,其中M是Al、Ga或In中的至少一种,M'是Si或Ge中的至少一种,0<x≤0.5。所述固态电解质材料组成简单,不含对水敏感的磷元素,同时还具有较好的Li +传导性能,是一种很有潜力的固态电解质材料。

Description

一种不含磷的硫化物固态电解质 技术领域
本发明涉及一种不含磷的硫化物固态电解质。
背景技术
随着电子技术的飞速发展,手机、笔记本电脑、摄像机和电动工具等用电设备日益增多,人们对储能电源的需求也越来越高,发展高容量、长寿命和安全性能良好的二次电池正成为一个迫在眉睫的任务。相比于铅酸电池、镍镉电池和镍氢电池等,锂离子电池具有能量密度高、功率密度大、寿命长、安全性好、自放电低和温度适应范围宽等优点,因而得到了最为广泛的应用。然而传统的锂离子电池需使用易燃的有机溶剂作为电解液,故而存在着很大的安全隐患。特别的,对于能量密度越来越高的锂离子电池,尽管可从材料、电极、电芯、模组、电源管理、热管理和系统设计等各个层面采取改进措施,但电池的安全性问题依然非常突出,热失控难以彻底避免。近年来,恶性的电池爆炸事故时有发生,因此,探索具有良好安全性能的锂离子二次电池就显得尤为重要。
为了从根源上解决上述安全问题,引入固态电解质来替代有机电解液是一个较好的方案。固态电解质不可燃,无腐蚀,不挥发,不存在漏液问题,因此,利用固态电解质组装而成的全固态电池具有极高的安全性。除此之外,全固态电池还具有使用寿命长和理论能量密度高等优点。在使用有机电解液的锂离子电池中,由于SEI膜在循环过程中的破碎和反复生成,会加速电池的容量衰退,且循环过程中伴随着大量的副反应,严重影响了电池的使用寿命,而固态电解质则可规避这一问题。另一方面,固态电解质多具有较好的机械强度,能有效的抵挡锂枝晶,这同样能极大的提高电池的循环性能和使用寿命。此外,由于固态电解质一般都拥有较宽的电化学窗口,因而可以和更多高电压的正极匹配,加上全固态电池可以极大的简化电池热管理系统,使得其能量密度得到很大的提升。
近年来,研究者们在固态电解质方向做了大量的探索工作。归纳起来,目前常见的固态电解质可分为以下三类:聚合物型、氧化物型和硫化物型。其中聚合物型固态电解 质的概念是由Armand在1978年首先提出的,它由聚合物和锂盐的混合物所组成,锂离子和聚合物高分子链中的极性基团相互络合,在外电场的作用下,利用高分子链的柔顺性进行锂离子的定向迁移。常见的聚合物型固态电解质包括PEO基、PPO基、PAN基、PMMA基和PVDF基等,这类电解质质量较轻,黏弹性好,机械加工性能优良,但离子电导率很低,严重影响了电池的高倍率充放电能力,通常采用化学共聚和接枝等方法来降低聚合物基体的结晶度来提高其离子电导率,但改良后的室温离子电导率仍相对较低。氧化物型固态电解质又包括Perovskite型(如:Li 3xLa 2/3-xTiO 3)、Anti-Perovskite型(如:Li 3OCl)、NASICON型(如:Li 1+xAl xTi 2-x(PO 4) 3)和Garnet型(如:Li 7La 3Zr 2O 12)等,这类电解质普遍具有良好的化学稳定性,能在大气中稳定存在,但离子电导率也相对较低,晶界电阻很大,且与电极相容性较差。与前两类固态电解质材料相比,硫化物型固态电解质以其高的离子电导率、低的晶界电阻和良好的电化学稳定性等特点,得到了研究者们最为广泛的关注,是最有希望得到规模化应用的一类材料。在硫化物材料中,Li 2S-SiS 2体系是研究得较早的一类固态电解质。有报告指出(Hayashi et al.,“Characterization of Li 2S-SiS 2-Li 3MO 3M=B,Al,Ga and In)oxysulfide glasses and their application to solid state lithium secondary batteries”,2002,Solid State Ionics,Volume 152-153,Pages 285-290):Li 3PO 4,LiSiO 4,Li 3BO 3和Li 3AlO 3掺杂玻璃态的Li 2S-SiS 2,可显著提升其电导率并抑制材料的结晶。2001年,Tatsumisago等人(Tatsumisago et al.,“Solid state lithium secondary batteries using an amorphous solid electrolyte in the system(100-x)(0.6Li 2S-0.4SiS 2)·xLi 4SiO 4 obtained by mechanochemical synthesis”,2001,Solid State Ionics,Volume 140,Pages 83-87)采用机械球磨法替代熔融淬火法制备了玻璃态的固态电解质(100-x)(0.6Li 2S-0.4SiS 2)·xLi 4SiO 4,并详尽探讨了球磨时间对玻璃态的形成和全固态电池性能的影响。随后,Tatsumisago等人(Tatsumisago et al.,“New,Highly Ion-Conductive Crystals Precipitated from Li 2S-P 2S 5 Glasses”,2005,Advanced Materials,Volume 17,Pages 918-921)在2005年首次报道了通过高能球磨法来制备硫磷化合物材料70Li 2S-30P 2S 5,其室温离子电导率高达3.2×10 -3S/cm,由此掀起了高能球磨法制备玻璃陶瓷类硫磷化合物材料的热潮。在2011年,东京工业大学和丰田汽车公司取得了突破性进展(Kamaya et al.,″A lithium superionic conductor″,2011,Nature Materials,Volume 10,Pages 682-686),他们在国际材料学顶级期刊《nature materials》上联合报道了一种具有锂离子三维扩散通道的硫磷化物晶态电解质Li 10GeP 2S 12(LGPS),其室温电导率达到了1.2×10 -2S/cm,这一数值甚至与常见的碳酸酯类电解液的离子电导率可相比拟,由此进一步将全世界的目光吸引到硫磷化合物材料上。但另一方面,硫磷化合物普遍对 空气中的水分非常敏感,在普通环境中加工处理时极易因吸水而产生恶臭性的H 2S气体,对环境和加工人员造成损害。按照软硬酸碱理论,硫磷化合物中的P 5+属于硬酸,相比于S 2-,水中的O 2-是更硬的碱,硬酸优先与硬碱反应,因而含磷的硫化物容易吸水变质。鉴于此,探索出一些Li+传导性能良好,且不含磷的新型硫化物固态电解质材料具有十分重要的意义。
发明内容
本申请提供了一种新型硫化物固态电解质材料和包含所述固态电解质材料的电化学装置。该固态电解质材料组成简单,不含对水敏感的磷元素,同时还具有较好的Li +传导性能,是一种很有潜力的固态电解质材料。
本申请的目的之一是公开一种新型的硫化物固态电解质材料。
本申请的目的之二是公开所述固态电解质材料的晶体学特征,结构信息,XRD谱图,PBE带隙,Li +迁移路径和迁移势垒。
具体讲,本申请公开了一种新型的硫化物固态电解质材料,其化学通式为Li 2+xM 2+xM’ 1-xS 6,其中M是Al、Ga或In中的至少一种,M’是Si或Ge中的至少一种,0<x≤0.5。
首先,所述Li 2+xM 2+xM′ 1-xS 6材料具有类金刚石型的结构特征,其结构中M 3+(例如Al 3+)和M′ 4+(例如Si 4+)均与S 2-配位形成四面体,所有四面体之间共顶连接形成三维网络,Li +填充在四面体空隙中。
其次,本申请公开了所述Li 2+xM 2+xM′ 1-xS 6材料的XRD谱图特征,其XRD图谱中在约14.5°±3°,15.5°±3°,17°±3°,25.5°±3°,31.5°±3°,53.0°±3°等角度会出现较强的衍射峰。
再次,以Li 2+xAl 2+xSi 1-xS 6为示范例,利用VASP软件(维也纳大学Hafner课题组,Vienna Ab-initio Simulation Package)进行计算,所述Li 2+xAl 2+xSi 1-xS 6材料的PBE带隙不小于2.8eV。众所周知,PBE形式的交换关联泛函会严重低估绝缘体和半导体的光学带隙(参见公开号为CN106684437A的专利文献),Li 2+xAl 2+xSi 1-xS 6材料的本征带隙应远大于2.8eV。2012年,尹文龙等人(Yin et al.,″Synthesis,Structure,and Properties of Li 2In 2MQ 6(M=Si,Ge;Q=S,Se):A New Series of IR Nonlinear Optical Materials″,2012,Inorganic Chemistry,Volume 51,Pages 5839-5843)率先报导了Li 2In 2SiS 6的实验带隙约为3.61eV,本申请对Li 2In 2SiS 6用同样的参数进行计算,其PBE带隙约为2.08eV。由此可知,Li 2+xAl 2+xSi 1-xS 6的本征带隙应超过约4.3eV。
最后,本申请以Li 2+xAl 2+xSi 1-xS 6为示例,详尽评估了Li 2.125Al 2.125Si 0.875S 6,Li 2.25Al 2.25Si 0.75S 6和Li 2.5Al 2.5Si 0.5S 6的锂离子迁移路径和迁移势垒。
与现有技术相比,本发明取得了以下有益成果:
本发明提供了一种新型的硫化物固态电解质材料Li 2+xM 2+xM′ 1-xS 6,其具有与金刚石类似的结构类型,结构中M 3+和M′ 4+均与四个S 2-配位形成[MS 4]和[M′S 4]四面体,所有四面体之间共顶连接,Li +则填充在四面体空隙中。
该类材料具有较大的光学带隙,特别的,对于Li 2+xAl 2+xSi 1-xS 6材料,其本征带隙不小于约4.3eV,其Li +迁移势垒不大于约0.45eV。总体看来,该类材料带隙大,Li +传导势垒低,说明其Li +传导能力很强,是一种新型的快锂离子导体材料,具有很好的应用前景。
更重要的是,相比于硫磷族固态电解质,按照软硬酸碱理论,该类材料不含硬酸P 5+,应具有较好的稳定性。同时,从其结构上看,所有的四面体共顶连接,基团排列致密,空隙较少,结构稳定性良好。
在一些实施例中,所述固态电解质材料的化学通式为Li 2+xM 2+xM’ 1-xS 6,其中M是Ga或In中的至少一种,M’是Si或Ge中的至少一种,0<x≤0.5。
在一些实施例中,所述固态电解质材料的化学通式为Li 2+xAl 2+xSi 1-xS 6,其中0<x≤0.5。
在一些实施例中,所述固态电解质材料的晶胞参数约为
Figure PCTCN2019124604-appb-000001
Figure PCTCN2019124604-appb-000002
α=90.0°±5°,β=110.0°±10°,γ=90.0°±5°。。
在一些实施例中,所述固态电解质材料的晶胞参数约为
Figure PCTCN2019124604-appb-000003
Figure PCTCN2019124604-appb-000004
α=90.0°±5°,β=105°±5°,γ=90.0°±5°。
在一些实施例中,所述固态电解质材料结构中M 3+(Al 3+)和M’ 4+(Si 4+)均与S 2-配位形成四面体[MS 4]([AlS 4])和[M’S 4]([SiS 4]),所有四面体之间共顶连接,Li +填充在四面体空隙中。
在一些实施例中,所述固态电解质材料XRD图谱中在约14.5°±3°,15.5°±3°,17°±3°,25.5°±3°,31.5°±3°,53.0°±3°等角度会出现较强的衍射峰。
在一些实施例中,所述固态电解质材料的Li +迁移势垒不大于约0.45eV。
在一些实施例中,所述固态电解质材料的PBE带隙不小于约2.80eV。
电池的安全性正受到前所未有的关注,固态电解质材料可取代易燃的有机电解液应用在新型锂离子电池中,从原理上完全规避了热失控带来的安全风险。本发明提供了一类新型的硫化物固态电解质,具有较大的应用潜力。本方案具有较高的创新性和实用价值,对于硫化物固态电解质的进一步应用具有很好的促进作用。
附图说明
图1描述了Li 2.125Al 2.125Si 0.875S 6的晶格结构与Li +迁移路径。
图2描述了Li 2.125Al 2.125Si 0.875S 6的XRD谱图。
图3描述了Li 2.125Al 2.125Si 0.875S 6的态密度。
图4描述了Li 2.125Al 2.125Si 0.875S 6的间隙Li +迁移势垒。
图5描述了Li 2.25Al 2.25Si 0.75S 6的晶格结构与Li +迁移路径。
图6描述了Li 2.25Al 2.25Si 0.75S 6的XRD谱图。
图7描述了Li 2.25Al 2.25Si 0.75S 6的态密度。
图8描述了Li 2.25Al 2.25Si 0.75S 6的间隙Li +迁移势垒。
图9描述了Li 2.5Al 2.5Si 0.5S 6的晶格结构与Li +迁移路径。
图10描述了Li 2.5Al 2.5Si 0.5S 6的XRD谱图。
图11描述了Li 2.5Al 2.5Si 0.5S 6的态密度。
图12描述了Li 2.5Al 2.5Si 0.5S 6的间隙Li +迁移势垒。
具体实施方式
以下将参照附图描述本发明的示例型实施例。所述是对本发明的解释,而不是对本发明权利要求的保护范围进行限制,本发明的范围仅由所附权利要求及其等价物定义。
一、固态电解质材料
一般而言,无机固态电解质材料通常由稳定的阴阳离子骨架和可运动的离子(如Li +)组成。相比于氧化物固态电解质,硫化物固态电解质中的S 2-具有比O 2-大得多的离子半径,使得骨架间Li +可运动的空间变大,同时S 2-的原子核对周围电子云的束缚作用较小,使得其电子云更易极化,在Li +运动过程中电荷分布更易配合Li +发生形变,减小对锂离子的作用力,进而降低Li +的迁移势垒。本发明人在充分理解硫化物结构特性的基础上,通过同族元素替代,并用部分M 3+掺杂取代M′ 4+,引入间隙Li +的思路,发现了一类新型的硫化物固态电解质Li 2+xM 2+xM′ 1-xS 6,该类材料不含磷元素,又具有较低的Li +迁移势垒,具有很大的应用潜力。
本申请实施例提供了一种固态电解质材料,所述材料的化学通式为Li 2+xM 2+xM’ 1-xS 6,其中M是Al、Ga或In中的至少一种,M’是Si或Ge中的至少一种,0<x≤0.5。
1、结构特征
本申请首先公开了Li 2+xM 2+xM′ 1-xS 6材料的结构特点,其具有类金刚石型的结构特征,晶胞参数约为
Figure PCTCN2019124604-appb-000005
α=90.0°±5°,β=110.0°±10°,γ=90.0°±5°。对于本申请所述的Li 2+xAl 2+xSi 1-xS 6,其晶胞参数约为
Figure PCTCN2019124604-appb-000006
Figure PCTCN2019124604-appb-000007
α=90.0°±5°,β=105°±5°,γ=90.0°±5°。具体来说,对于Li 2.125Al 2.125Si 0.875S 6材料,晶胞参数约为a=11.7,b=7.2,c=11.6,α=90.3°,β=107.9°,γ=89.7°;对于Li 2.25Al 2.25Si 0.75S 6材料,晶胞参数约为a=11.7,b=7.3,c=11.7,α=89.7°,β=107.5°,γ=90.1°;对于Li 2.5Al 2.5Si 0.5S 6材料,晶胞参数约为a=12.0,b=7.6,c=11.8,α=88.5°,β=102.9°,γ=90.2°。在其结构中,M 3+和M′ 4+均与四个S 2-配位形成四面体,所有四面体之间共顶连接形成三维网络,Li +则填充在四面体空隙中。从其元素组成和结构特点看来,Li 2+xM 2+xM′ 1-xS 6具有较好的稳定性。
2、XRD谱图
本申请还公开了Li 2+xM 2+xM′ 1-xS 6材料的XRD谱图的特点,如图2、6和10所示,其XRD图谱在约14.5°±3°,15.5°±3°,17°±3°,25.5°±3°,31.5°±3°,53.0°±3°等角度会出现较强的衍射峰。具体来说,对于Li 2.125Al 2.125Si 0.875S 6材料,在约14.6°,16.0°,18.0°,26.0°,31.3°和53.5°处会出现较强衍射峰;对于Li 2.25Al 2.25Si 0.75S 6材料,在约14.6°,16.0°,17.7°,26.0°,31.1°和53.4°处会出现较强衍射峰;对于Li 2.5Al 2.5Si 0.5S 6材料,在约14.0°,15.4°,16.8°,25.4°,30.8°和52.1°处会出现较强衍射峰。
3、锂离子输运特性
对于可作为固态电解质的材料,电子绝缘性和离子传导性是必须满足的条件。众所周知,电子绝缘性与材料的光学带隙有着较大的相关关系。为此,本发明使用PBE交换关联泛函形式计算了几种Li 2+xM 2+xM′ 1-xS 6材料(以Li 2.125Al 2.125Si 0.875S 6,Li 2.25Al 2.25Si 0.75S 6和Li 2.5Al 2.5Si 0.5S 6为示范例)的总态密度。如图3,7和11所示,Li 2+xAl 2+xSi 1-xS 6材料的PBE带隙不小于2.80eV。众所周知,PBE形式的交换关联泛函会严重低估绝缘体和半导体的光学带隙(参见公开号为CN106684437A的专利文献),Li 2+xAl 2+xSi 1-xS 6材料的本征带隙应远大于2.8eV。2012年,尹文龙等人(Yin et al.,″Synthesis,Structure,and Properties of Li 2In 2MQ 6(M=Si,Ge;Q=S,Se):A New Series of IR Nonlinear Optical Materials″,2012,Inorganic Chemistry,Volume 51,Pages 5839-5843)率先报导了Li 2In 2SiS 6的实验带隙约为3.61eV,本发明对Li 2In 2SiS 6用同样的参数进行计算,其PBE带隙约为2.08eV。由此可知,Li 2+xAl 2+xSi 1-xS 6的本征带隙应超过约4.3eV,为宽禁带的绝缘体,具有电子绝缘的特点。宽的禁带宽度还说明其成键态能量低,即氧化电位高,同时说明该结构具有较宽的电化学窗口,有利于匹配高电压的正极材料。
锂离子输运特性是固态电解质最为关键的特征。为此,发明人采用第一性原理,利用VASP软件(维也纳大学Hafner课题组,Vienna Ab-initio Simulation Package)计算了Li 2+xM 2+xM′ 1-xS 6材料的Li +迁移路径和迁移势垒。
可以理解的是,本发明所述Li 2+xM 2+xM′ 1-xS 6材料,M和M′可分别在Al,Ga,In和Si,Ge中任意选择,为了描述的清楚和简单,本发明以Li 2+xAl 2+xSi 1-xS 6作为示例来进行论述,并详尽计算了Li 2.125Al 2.125Si 0.875S 6,Li 2.25Al 2.25Si 0.75S 6和Li 2.5Al 2.5Si 0.5S 6等材料的Li +迁移路径和迁移势垒。
图1,5和9绘出了Li 2+xAl 2+xSi 1-xS 6材料的Li +迁移路径,其中灰色的Li +离子是初末态间人为插入的过渡态位置,Li +经由上述中间态位置从初态跃迁到末态。图4,8和12通过进一步的过渡态计算给出了这些迁移通道内活化能最低的迁移势垒形状,具体来说,间隙锂离子推开晶格锂离子到下一个间隙位,同时自己占据晶格位,通过“推填子”方式实现了Li +的输运。对于Li 2.125Al 2.125Si 0.875S 6,Li 2.25Al 2.25Si 0.75S 6和Li 2.5Al 2.5Si 0.5S 6,其迁移势垒分别约为0.41,0.34和0.25eV。作为对比,文献中(Ceder et al.,“First principles study of the Li 10GeP 2S 12 lithium super ionic conductor material”,2012,Chemistry of Materials,Volume 24,Pages 15-17.Mo et al.,“Origin of fast ion diffusion in super-ionic conductors”,2017,Nature Communications,Volume 8,Pages 15893.)报导的LGPS材料(硫化物固态电解质中的标杆性材料)的Li +迁移势垒约为0.2eV左右,由此可知,Li 2.5Al 2.5Si 0.5S 6材料晶格结构中Li +较为容易扩散,是一种很好的潜在的固态电解质材料。
通过上述示范实施例可知:本发明公开的Li 2+xM 2+xM′ 1-xS 6材料在组成上不含磷元素,具有改善的化学稳定性,较大的光学带隙(较宽的电化学窗口),还具有较好的Li +输运能力,从而具有很大的应用潜力。
二、电化学装置
本申请的电化学装置包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容。特别地,该电化学装置是锂二次电池,包括锂金属二次电池或锂离子二次电池。在一些实施例中,本申请的电化学装置包括正极,负极和本申请的固态电解质。
三、应用
根据本申请此制造的电化学装置适用于各种领域的电子设备。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何用途。在一个实施例中,本申请的电化学装置可用于,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打 印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
实施例
以下说明根据本申请的实施例进行性能评估
1、固态电解质材料的制备及性能评估
本发明公开的Li 2+xM 2+xM′ 1-xS 6材料可用多种常规方法进行制备。例如可用Li 2O,M 2O 3和M′O 2作为源材料,将其按照所需摩尔比进行混合均匀,在惰性气氛保护下球磨成均匀粉体,然后在惰性气氛或真空下用高温固相法进行烧结。可以理解的是,还可以选择其它的制备手段,如熔融淬冷法等。当然,也可以选择适当的靶材,通过物理或化学气相沉积的方法来制备该固态电解质材料,通过调节相关工艺参数,可以沉积得到期望的元素摩尔比。由于这些制备工艺都是本领域技术人员所熟知的,此处不再赘述。
2、电化学装置的制造
本发明的一些实施例还提供一种二次电池,其可以是锂离子电池或金属锂电池。在该二次电池中,可采用本发明前述实施例中描述的Li 2+xM 2+xM′ 1-xS 6材料,由于固态二次电池的结构也是本领域技术人员所熟知的,此处不再赘述。
上述实施例为本发明示范性的实施方式,但本发明的实施方式并不受上述实施例的限制。本发明的范围仅由所附权利要求及其等价物定义。

Claims (10)

  1. 一种固态电解质材料,其特征在于,所述材料的化学通式为Li 2+xM 2+xM’ 1-xS 6,其中M是Al、Ga或In中的至少一种,M’是Si或Ge中的至少一种,0<x≤0.5。
  2. 如权利要求1所述的固态电解质材料,其特征在于,所述材料的化学通式为Li 2+xAl 2+xSi 1-xS 6,其中0<x≤0.5。
  3. 如权利要求1所述的固态电解质材料,其晶胞参数约为
    Figure PCTCN2019124604-appb-100001
    Figure PCTCN2019124604-appb-100002
    α=90.0°±5°,β=110.0°±10°,γ=90.0°±5°。
  4. 如权利要求2所述的固态电解质材料,其晶胞参数约为
    Figure PCTCN2019124604-appb-100003
    Figure PCTCN2019124604-appb-100004
    α=90.0°±5°,β=105°±5°,γ=90.0°±5°。
  5. 如权利要求1或权利要求2所述的固态电解质材料,具有类金刚石型结构特征,其结构中M 3+和M’ 4+均与S 2-配位形成四面体[MS 4]和[M’S 4],所有四面体之间共顶连接,Li +填充在四面体空隙中。
  6. 如权利要求1所述的固态电解质材料,其XRD图谱中在约14.5°±3°,15.5°±3°,17°±3°,25.5°±3°,31.5°±3°,53.0°±3°等角度会出现衍射峰。
  7. 如权利要求2所述的固态电解质材料,其Li +迁移势垒不大于约0.45eV。
  8. 如权利要求2所述的固态电解质材料,其PBE带隙不小于约2.80eV。
  9. 一种电化学装置,包含正极,负极和权利要求1-8中任一权利要求所述的固态电解质材料。
  10. 一种电子装置,包含由权利要求9所述的电化学装置。
PCT/CN2019/124604 2019-11-01 2019-12-11 一种不含磷的硫化物固态电解质 WO2021082200A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19950266.7A EP4053958A4 (en) 2019-11-01 2019-12-11 PHOSPHORUS-FREE SULPHIDE SOLID STATE ELECTROLYTE
JP2022525919A JP7454665B2 (ja) 2019-11-01 2019-12-11 リンを含まない硫化物固体電解質
US17/708,180 US20220223909A1 (en) 2019-11-01 2022-03-30 Phosphorus-free sulfide solid electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911061250.5A CN110808407B (zh) 2019-11-01 2019-11-01 一种不含磷的硫化物固态电解质
CN201911061250.5 2019-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/708,180 Continuation US20220223909A1 (en) 2019-11-01 2022-03-30 Phosphorus-free sulfide solid electrolyte

Publications (1)

Publication Number Publication Date
WO2021082200A1 true WO2021082200A1 (zh) 2021-05-06

Family

ID=69501022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124604 WO2021082200A1 (zh) 2019-11-01 2019-12-11 一种不含磷的硫化物固态电解质

Country Status (5)

Country Link
US (1) US20220223909A1 (zh)
EP (1) EP4053958A4 (zh)
JP (1) JP7454665B2 (zh)
CN (1) CN110808407B (zh)
WO (1) WO2021082200A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937301A (zh) * 2006-09-29 2007-03-28 中国科学院上海硅酸盐研究所 一种可用作锂离子电池固体电解质的硫化物材料及其制备方法
CN103290480A (zh) * 2012-02-27 2013-09-11 中国科学院理化技术研究所 Li2In2SiS6化合物、Li2In2SiS6非线性光学晶体及制法和用途
CN103288058A (zh) * 2012-02-27 2013-09-11 中国科学院理化技术研究所 Li2In2GeSe6化合物、Li2In2GeSe6非线性光学晶体及制法和用途
CN104185873A (zh) * 2012-02-06 2014-12-03 丰田自动车株式会社 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
US9231275B2 (en) * 2013-07-22 2016-01-05 Electronics And Telecommunications Research Institute Method for manufacturing sulfide-based solid electrolyte
CN106684437A (zh) 2017-01-22 2017-05-17 中国科学院物理研究所 固态电解质材料和包括其的二次电池
CN109761265A (zh) * 2019-01-23 2019-05-17 宁德新能源科技有限公司 固态电解质及其制备方法与包含其的电化学装置及电子装置
CN109841898A (zh) * 2019-03-13 2019-06-04 宁德新能源科技有限公司 固态电解质及其制法与包含其的电化学装置及电子装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234665B2 (ja) * 2011-11-07 2017-11-22 出光興産株式会社 固体電解質
CN103290478B (zh) * 2012-02-27 2015-11-11 中国科学院理化技术研究所 Li2In2GeS6化合物、Li2In2GeS6非线性光学晶体及制法和用途
JP5971756B2 (ja) * 2012-09-11 2016-08-17 トヨタ自動車株式会社 硫化物固体電解質
WO2014171483A1 (ja) * 2013-04-16 2014-10-23 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US10854912B2 (en) * 2016-01-12 2020-12-01 Lg Chem, Ltd. Sulfide-based solid electrolyte and all-solid-state battery applied therewith
JP6352960B2 (ja) 2016-02-09 2018-07-04 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US10158142B1 (en) 2017-06-19 2018-12-18 Toyota Motor Engineering & Manufacturing North America, Inc. Lithium composite compounds with anionic framework isostructural to Laves Mg2Cu lattice as solid Li-ion conductors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937301A (zh) * 2006-09-29 2007-03-28 中国科学院上海硅酸盐研究所 一种可用作锂离子电池固体电解质的硫化物材料及其制备方法
CN104185873A (zh) * 2012-02-06 2014-12-03 丰田自动车株式会社 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
CN103290480A (zh) * 2012-02-27 2013-09-11 中国科学院理化技术研究所 Li2In2SiS6化合物、Li2In2SiS6非线性光学晶体及制法和用途
CN103288058A (zh) * 2012-02-27 2013-09-11 中国科学院理化技术研究所 Li2In2GeSe6化合物、Li2In2GeSe6非线性光学晶体及制法和用途
US9231275B2 (en) * 2013-07-22 2016-01-05 Electronics And Telecommunications Research Institute Method for manufacturing sulfide-based solid electrolyte
CN106684437A (zh) 2017-01-22 2017-05-17 中国科学院物理研究所 固态电解质材料和包括其的二次电池
CN109761265A (zh) * 2019-01-23 2019-05-17 宁德新能源科技有限公司 固态电解质及其制备方法与包含其的电化学装置及电子装置
CN109841898A (zh) * 2019-03-13 2019-06-04 宁德新能源科技有限公司 固态电解质及其制法与包含其的电化学装置及电子装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CEDER ET AL.: "First principles study of the Li GeP S lithium super ionic conductor material", CHEMISTRY OF MATERIALS, vol. 24, 2012, pages 15 - 17, XP055502954, DOI: 10.1021/cm203303y
HAYASHI ET AL.: "Characterization of Li S-SiS -Li M0 M=B, Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries", SOLID STATE IONICS, vol. 152, no. 153, 2002, pages 285 - 290, XP004398241, DOI: 10.1016/S0167-2738(02)00313-2
KAMAYA ET AL.: "A lithium superionic conductor", NATURE MATERIALS, vol. 10, 2011, pages 682 - 686, XP055386603, DOI: 10.1038/nmat3066
MO ET AL.: "Origin of fast ion diffusion in super-ionic conductors", NATURE COMMUNICATIONS, vol. 8, 2017, pages 15893
See also references of EP4053958A4
TATSUMISAGO ET AL.: "New, Highly Ion-Conductive Crystals Precipitated from Li S-P S Glasses", ADVANCED MATERIALS, vol. 17, 2005, pages 918 - 921, XP055082634, DOI: 10.1002/adma.200401286
TATSUMISAGO ET AL.: "Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li S-0.4SiS ) xLi SiO obtained by mechanochemical synthesis", SOLID STATE IONICS, vol. 140, 2001, pages 83 - 87, XP004232142, DOI: 10.1016/S0167-2738(01)00711-1
YIN ET AL.: "Synthesis, Structure, and Properties of Li ln MQ (M = Si, Ge; Q = S, Se): A New Series of IR Nonlinear Optical Materials", INORGANIC CHEMISTRY, vol. 51, 2012, pages 5839 - 5843

Also Published As

Publication number Publication date
US20220223909A1 (en) 2022-07-14
JP2023500135A (ja) 2023-01-04
CN110808407A (zh) 2020-02-18
EP4053958A1 (en) 2022-09-07
JP7454665B2 (ja) 2024-03-22
CN110808407B (zh) 2020-11-20
EP4053958A4 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
Chen et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application
KR101886003B1 (ko) Li 리치 안티페로브스카이트 화합물, 이를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
Manthiram et al. Lithium battery chemistries enabled by solid-state electrolytes
Yao et al. All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science
Ma et al. Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance
Tao et al. Reality and future of rechargeable lithium batteries
WO2015198848A1 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
CN109888373A (zh) 一种有机/无机复合固态电解质及其制备方法
JP5682318B2 (ja) 全固体電池
Liu et al. Surficial structure retention mechanism for LiNi0. 8Co0. 15Al0. 05O2 in a full gradient cathode
JP2023513248A (ja) 表面改質電極、調製方法および電気化学セルにおける使用
CN109638255A (zh) 一种碱金属负极表面原位处理方法及其应用
Carbone et al. A low-cost, high-energy polymer lithium-sulfur cell using a composite electrode and polyethylene oxide (PEO) electrolyte
Tao et al. Understanding the role of interfaces in solid-state lithium-sulfur batteries
De Luna et al. All-solid lithium-sulfur batteries: Present situation and future progress
Fan et al. Zn/Ti/F synergetic-doped Na 0.67 Ni 0.33 Mn 0.67 O 2 for sodium-ion batteries with high energy density
Liu et al. Strippable and flexible solid electrolyte membrane by coupling Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 and insulating polyvinylidene fluoride for solid state lithium ion battery
CN102956890B (zh) 低温碳包覆复合材料、其制备方法及其应用
CN116344923A (zh) 一类固态电解质材料及其制备方法与应用
WO2021082200A1 (zh) 一种不含磷的硫化物固态电解质
KR101853899B1 (ko) 리튬 이차전지용 전극 물질 및 이를 포함하는 리튬 이차전지
Hayashi et al. Sulfide‐glass Electrolytes for All‐solid‐state Batteries
KR20190142572A (ko) 황화물계 고체 전해질 및 이를 함유하는 전고체형 리튬이온 2차 전지
CN114256505B (zh) 一种转化型过渡金属化合物基固态电池及其制备方法
WO2022021146A1 (zh) 固态电解质、电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019950266

Country of ref document: EP

Effective date: 20220601