WO2021082149A1 - 换热器和具有其的空调器 - Google Patents

换热器和具有其的空调器 Download PDF

Info

Publication number
WO2021082149A1
WO2021082149A1 PCT/CN2019/121279 CN2019121279W WO2021082149A1 WO 2021082149 A1 WO2021082149 A1 WO 2021082149A1 CN 2019121279 W CN2019121279 W CN 2019121279W WO 2021082149 A1 WO2021082149 A1 WO 2021082149A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat exchanger
capillary
heat exchange
capillaries
Prior art date
Application number
PCT/CN2019/121279
Other languages
English (en)
French (fr)
Inventor
李成恩
武滔
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921852142.5U external-priority patent/CN210688818U/zh
Priority claimed from CN201911046934.8A external-priority patent/CN110595112A/zh
Priority claimed from CN201921863484.7U external-priority patent/CN210688819U/zh
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021082149A1 publication Critical patent/WO2021082149A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/20Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being attachable to the element

Definitions

  • This application relates to the field of air conditioning technology, and in particular to a heat exchanger and an air conditioner having the same.
  • the tube-fin heat exchanger in the related art adopts horizontal refrigerant tubes with larger tube diameters and vertical fins, which results in poor condensate drainage, large air flow resistance, and the contact area between the fins and the refrigerant tube Small, low heat transfer efficiency of fins.
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent.
  • an object of the present application is to provide a heat exchanger, the heat exchange unit of the heat exchanger has a smooth discharge of condensed water, low air flow resistance, high heat exchange energy efficiency, and heat exchange effects between fins and capillary tubes. it is good.
  • Another object of the present application is to provide an air conditioner having the above-mentioned heat exchanger.
  • the heat exchanger includes at least one heat exchange unit, and the heat exchange unit includes: fins; The two sides of the length of the fin; a capillary tube, the capillary is provided on one side of the thickness of the fin, and both ends of the length of the capillary tube are respectively communicated with two collecting pipes.
  • the condensate discharge of the heat exchange unit of the heat exchanger is smooth, the air flow resistance is small, the heat exchange energy efficiency is high, and the heat exchange effect between the fin and the capillary tube is good.
  • the fin has a plurality of capillaries on one side of the thickness, and the plurality of capillaries are spaced apart in sequence along the width direction of the fin, and the two most distant from each other among the plurality of capillaries
  • Each of the capillaries is an edge capillary, the end distance W1 of the two edge capillaries is smaller than the inner diameter D1 of the collecting pipe, and the distance W2 between the two edge capillaries at at least one cross section of the fin
  • the width W3 of the fin is larger than the outer diameter D2 of the collecting pipe, and the width W3 of the fin is larger than the outer diameter D2 of the collecting pipe.
  • each of the capillary tubes includes a main body straight pipe section and end straight pipe sections located at both ends of the main body straight pipe section length, the main body straight pipe section and the end straight pipe section are arranged in parallel or coaxially, and more The main straight pipe sections of each of the capillary tubes are arranged in parallel, and the end straight pipe sections of a plurality of the capillary tubes are arranged in parallel, and the distance between each two adjacent main body straight pipe sections is greater than that of every two adjacent ends The distance between straight pipe sections.
  • At least the edge capillary of the plurality of capillaries further includes an elbow section connected between the main body straight pipe section and the end straight pipe section.
  • the plurality of capillaries are arranged symmetrically with respect to the width center line of the fin, and the width center line divides the fin into two halves of equal width located on both sides of the width center line,
  • the plurality of capillaries are arranged symmetrically with respect to the length center line of the fin, and the length center line divides the fin into two halves of equal length located on both sides of the length center line.
  • the thickness side of the fin has a positioning structure, and the capillary tube is positioned and fitted to the thickness side of the fin through the positioning structure.
  • the capillary tube is positioned and fitted to the fin by a plurality of the positioning structures spaced apart along the length of the capillary tube.
  • the fin is provided with a plurality of the capillaries spaced apart along the width direction of the fin, and each of the capillaries is positioned and fitted to the fin through at least one positioning structure .
  • the positioning structure defines a positioning groove, and a section in the length direction of the capillary is positioned and fitted in the positioning groove.
  • the positioning groove includes an inlet groove section and a positioning groove section, the inlet groove section is located on a side of the positioning groove section away from the fin, and the groove width of the inlet groove section is along The direction away from the positioning slot section gradually increases.
  • the groove width of the positioning groove section gradually increases along a direction away from the inlet groove section.
  • the positioning structure includes two plates, and the positioning groove is defined between the two plates.
  • the plate is punched out of the fin.
  • the heat exchange unit includes a plurality of the fins, the plurality of fins are sequentially arranged along the thickness direction of the fins, and the positioning structure is clamped between two adjacent ones. Between the fins to define the distance between two adjacent fins.
  • both of the headers extend in a horizontal direction
  • the heat exchange unit includes a plurality of the fins, and the plurality of fins are arranged at intervals along the length direction of the header.
  • Each of the fins extends in a vertical direction
  • a plurality of the capillaries are provided on one side of the thickness of each of the fins
  • the plurality of capillaries are arranged at intervals along the width direction of the fins ,
  • Each of the capillaries extends in a vertical direction.
  • the air conditioner according to the embodiment of the second aspect of the present application includes the heat exchanger according to the embodiment of the first aspect of the present application.
  • the air conditioner of the present application by providing the heat exchanger of the first aspect described above, the overall heat exchange performance of the air conditioner is improved.
  • Fig. 1 is a schematic diagram of an air conditioner according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of a heat exchange unit according to an embodiment of the present application, in which a fin is hidden between every two adjacent fins in the figure;
  • FIG. 3 is a schematic diagram of the cooperation of fins and capillary tubes according to an embodiment of the present application.
  • Fig. 4 is a partial schematic diagram of the cooperation of fins, capillary tubes and headers according to an embodiment of the present application
  • Fig. 5 is a schematic diagram of a fin and a capillary fitting according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the positioning and cooperation of the fin and the capillary tube through the positioning structure according to an embodiment of the present application;
  • Fig. 7 is an enlarged view of part A circled in Fig. 3;
  • Fig. 8 is a schematic diagram of a fin and a fin defined by a positioning structure according to an embodiment of the present application.
  • Fig. 9 is an experimental comparison curve of heat exchange between a heat exchanger, a tube-fin heat exchanger, and a micro-channel heat exchanger according to an embodiment of the present application;
  • Fig. 10 is an experimental comparison curve of the air-side heat transfer coefficient of a heat exchanger, a tube-fin heat exchanger, and a micro-channel heat exchanger according to an embodiment of the present application;
  • Fig. 11 is an experimental comparison curve of air-side pressure drop between a heat exchanger, a tube-fin heat exchanger, and a micro-channel heat exchanger according to an embodiment of the present application.
  • Air conditioner 1000 Air conditioner 1000;
  • Heat exchanger 100 side plate 200; middle partition 300; side plate 400;
  • Heat exchange unit 1 collecting pipe 11; fin 12; capillary tube 13; edge capillary tube 130;
  • the heat exchanger 100 may include at least one heat exchange unit 1.
  • the heat exchange unit 1 may include: a fin 12, a header 11 and a capillary 13, and the header 11 is Two and are respectively located on both sides of the length of the fin 12, the capillary 13 is arranged on the thickness side of the fin 12, and the two ends of the length of the capillary 13 are respectively communicated with the two headers 11.
  • the header 11 is located on both sides of the length of the fin 12, and the two ends of the capillary tube 13 are respectively connected to the two headers 11, it is explained that the capillary tube 13 extends along the extending direction of the fin 12, or The length direction of the capillary tube 13 is the same or substantially the same as the length direction of the fin 12. Therefore, firstly, the heat exchange area between the capillary tube 13 and the fin 12 can be increased, so that the heat exchange efficiency between the capillary tube 13 and the fin 12 is high, thereby The heat exchange speed between the fin 12 and the air can be accelerated.
  • the relative positional relationship between the fin 12 and the capillary 13 is not like the fin 12 and the refrigerant tube in the tube-fin heat exchanger 100, which are arranged perpendicular to each other, so it can be guaranteed Smooth discharge of condensate.
  • the capillary 13 refers to a thin tube with a small diameter (for example, the diameter can be about 0.5 mm).
  • the outer diameter D of the capillary 13 satisfies 0.6mm ⁇ D ⁇ 2mm
  • the wall thickness T of the capillary 13 satisfies 0.08mm ⁇ T ⁇ 0.2mm. Due to the smaller diameter of the capillary tube 13, compared to the tube-fin heat exchanger 100, the problem of refrigerant leakage is smaller, and the heat exchanger 100 and even the air conditioner 1000 to which it is applied are safer and more reliable. More assurance.
  • the thickness side of the fin 12 has a plurality of capillaries 13, and the plurality of capillaries 13 are sequentially spaced apart along the width direction of the fin 12 (the F1 direction shown in FIG. 3 indicates the width direction of the fin 12). , The F2 direction shown in FIG. 3 indicates the length direction of the fin 12).
  • the heat exchange area between the fin 12 and the capillary 13 can be increased, and the heat exchange performance of the heat exchanger 100 as a whole can be improved.
  • the two capillaries 13 farthest from each other among the plurality of capillaries 13 are edge capillaries 130, that is, the two capillaries 13 close to the two sides of the width of the fin 12 are edge capillaries 130, respectively.
  • the end distance W1 of the edge capillary tube 130 is smaller than the inner diameter D1 of the header 11, which shows that the position distance between the multiple capillary tubes 13 at the ends is relatively small to ensure that the multiple capillary tubes 13 can be inserted into the header 11 to It communicates with the refrigerant inside the header 11.
  • the distance W2 between the two edge capillary tubes 130 at at least one cross-section of the fin 12 is greater than the outer diameter D2 of the header 11, and the width W3 of the fin 12 is greater than the outer diameter D2 of the header 11.
  • the distance between the capillary 13 at the non-end part is larger, and the width of the fin 12 can be wider, so that the heat exchange range between the fin 12 and the capillary 13 is larger, and the heat exchange uniformity is better.
  • the multiple capillary tubes 13 are made to be in a form in which the ends converge at the collector 11 and are relatively dispersed at the non-end parts, thereby reducing the connection between the ends of the capillary tubes 13
  • the diameter of the header 11 reduces the internal volume of the heat exchanger 100, reduces the amount of refrigerant injected, and can improve the heat exchange range and uniformity of the fin 12 and the capillary 13.
  • each capillary tube 13 includes a main body straight pipe section 131 and an end straight pipe section 132 located at both ends of the main body straight pipe section 131, the main body straight pipe section 131 and an end portion.
  • the straight pipe sections 132 are arranged in parallel or coaxially, the main body straight pipe sections 131 of the multiple capillary tubes 13 are arranged in parallel, and the end straight pipe sections 132 of the multiple capillary tubes 13 are arranged in parallel.
  • the distance between each adjacent two main body straight pipe sections 131 is greater than that of each phase.
  • the distance between every two adjacent main straight pipe sections 131 may be equal or unequal, and the distance between every two adjacent end straight pipe sections 132 may be equal or unequal.
  • the distance between the main straight pipe section 131 of the first capillary 13a and the main straight pipe section 131 of the second capillary 13b is b1
  • the distance between the main straight pipe section 131 of the third capillary 13c and the main straight pipe section 131 of the fourth capillary 13d is b3
  • the end straight pipe section 132 of the first capillary 13a and the end straight pipe section 132 of the second capillary 13b are equal to each other.
  • the distance is a1, the end straight pipe section 132 of the second capillary 13b and the end straight pipe section 132 of the third capillary 13c are separated by a2, the end straight pipe section 132 of the third capillary 13c and the end straight pipe section of the fourth capillary 13d
  • the spacing of 132 is a3, where any two of b1, b2, and b3 can be equal or unequal, and any two of a1, a2, and a3 can be equal or unequal, but any one of b1, b2, and b3 is greater than a1 , A2 and a3, so as to ensure that the distance between two adjacent main straight pipe sections 131 is greater than the distance between every two adjacent end straight pipe sections 132.
  • the distance W4 between the main straight pipe sections 131 of the two edge capillary tubes 130 is greater than one-half of the width W3 of the fin 12, that is, W4>W3/2.
  • the length L1 of the main straight pipe section 131 is greater than one-half of the length L of the fin 12. As a result, the heat exchange effect and heat exchange uniformity of the fin 12 and the capillary 13 can be improved.
  • the distance W5 between the end straight pipe sections 132 of the two edge capillary tubes 130 is less than one-half of the width W3 of the fin 12, that is, W5 ⁇ W3/2.
  • the diameter of the header 11 connected to both ends of the capillary tube 13 can be reduced, the internal volume of the heat exchanger 100 can be reduced, and the amount of refrigerant injected can be reduced.
  • At least the edge capillary 130 of the plurality of capillaries 13 further includes an elbow section 133 connected between the main body straight pipe section 131 and the end straight pipe section 132.
  • each capillary tube 13 may include an elbow section 133 connected between the main body straight tube section 131 and the end straight tube section 132, so as to ensure that each capillary tube 13 The flow resistance of the refrigerant is small.
  • the end straight pipe section 132 connected to the elbow section 133 includes a first part 132a and a second part 132b.
  • the first part 132a is opposite to the fin 12 in the thickness direction of the fin 12, and the second part 132b extends to the fin 12 The length of 12 is beyond one end.
  • the degree of bending of the elbow section 133 can be further reduced, thereby further reducing the flow resistance of the refrigerant in the capillary 13.
  • a plurality of capillary tubes 13 are arranged symmetrically with respect to the width center line of the fin 12 (line S1-S1 as shown in FIG. 5), and the width center line is the fin 12
  • the sheet 12 is divided into two halves of equal width located on both sides of the width center line.
  • a plurality of capillary tubes 13 are arranged symmetrically with respect to the length center line of the fin 12 (line S2-S2 as shown in FIG. 5), and the length center line divides the fin 12 into the length center line. Two halves of equal length on both sides. As a result, it can be ensured that the lengths of the capillaries 13 extending from the two ends of the fin 12 are equal in length, so as to facilitate assembly with the headers 11 on both sides, and improve the consistency of the heat exchanger 100.
  • the present application is not limited to this. In other embodiments of the present application, the plurality of capillaries 13 may not be arranged symmetrically with respect to the width center line or the length center line of the fin 12.
  • the fin 12, the capillary tube 13, and the header 11 can be welded into one body, thereby, the contact thermal resistance is small, and the heat exchange efficiency of the fin 12 can be effectively improved, and the heat exchanger can be improved.
  • the total heat transfer coefficient of 100 will ultimately increase the heat transfer, and the manufacturing will be simpler and more efficient.
  • the heat exchanger 100 may include a plurality of heat exchange units 1, so that the overall heat exchange performance of the heat exchanger 100 can be further improved.
  • the heat exchanger 100 may include two heat exchange units 1 and a connection unit 2 connected between the two heat exchange units 1, wherein each heat exchange unit 1
  • Each unit 1 may include two headers 11 spaced in the vertical direction and arranged in parallel, fins 12 and capillary tubes 13 arranged perpendicular to the direction of the header 11, and the headers 11 of the two heat exchange units 1 are arranged perpendicular to each other.
  • the heat exchanger 100 is generally L-shaped when the heat exchanger 100 is projected from top to bottom.
  • the connecting unit 2 may include two connecting pipes 21 and a baffle 22.
  • the two connecting pipes 21 are respectively connected to two
  • the two headers 11 and the baffle 22 of the heat exchange unit 1 are connected between the two connecting pipes 21, so as to avoid the problem of large air flowing away between the two connecting pipes 21 and reducing the heat exchange efficiency.
  • the present application is not limited to this.
  • the structure of the connecting unit 2 and the number of the heat exchange units 1 can also be adjusted so that the heat exchanger 100 can be roughly projected from top to bottom. U-shaped heat exchanger 100, etc., thereby increasing the heat exchange area of the heat exchanger 100, thereby increasing the heat exchange efficiency of the heat exchanger 100, so as to adapt to energy efficiency upgrades.
  • the thickness side of the fin 12 has a positioning structure 14, and the capillary 13 is positioned and fitted to the thickness side of the fin 12 through the positioning structure 14. Therefore, by providing the positioning structure 14 on the fin 12, the capillary 13 can be positioned and matched with the fin 12, thereby improving the assembly efficiency of the capillary 13 and the fin 12.
  • the capillary 13 needs to be welded and connected to the fin 12 When welding, the capillary 13 can be positioned and matched with the positioning structure 14 first, so that there is no need to hold the capillary 13 to limit the position, which greatly reduces the difficulty of operation, improves the assembly efficiency, and improves the manual operation of the capillary 13 Inaccurate positioning of the support, resulting in uneven heat transfer problems.
  • the capillary tube 13 extends along the extension direction of the fin 12, or the capillary tube
  • the length direction of the capillary 13 and the length of the fin 12 are the same or substantially the same. Therefore, firstly, the heat exchange area between the capillary 13 and the fin 12 can be increased, so that the heat exchange efficiency between the capillary 13 and the fin 12 is high, so that Speed up the heat exchange speed between the fin 12 and the air. Second, the relative positional relationship between the fin 12 and the capillary 13 is not like the fin and the refrigerant tube in the tube-fin heat exchanger. Smooth discharge.
  • the capillary tube 13 refers to a thin tube with a small tube diameter, for example, the tube diameter may be about 0.5 mm. Due to the smaller diameter of the capillary tube 13, the refrigerant leakage problem is smaller than that of the tube-fin heat exchanger. The heat exchanger 100 and even the air conditioner 1000 to which it is applied are safer and more reliable. Guaranteed.
  • the capillary 13 is positioned and fitted to the fin 12 by a plurality of positioning structures 14 spaced apart along the length of the capillary 13.
  • the plurality of positioning structures 14 for positioning a capillary 13 may be evenly spaced apart, that is, one of the plurality of positioning structures 14 for positioning a capillary 13 may be one of the two adjacent positioning structures 14 The distance between the two is equal, which can improve the uniformity of heat exchange and the convenience of manufacturing.
  • the fin 12 is provided with a plurality of capillaries 13 spaced apart along the width direction of the fin 12, and each capillary 13 is positioned and matched by at least one positioning structure 14. ⁇ Fin 12.
  • the thickness side of the fin 12 is provided with a plurality of capillaries 13 spaced apart along the width direction of the fin 12, and each capillary 13 has at least one positioning structure 14 for positioning and matching.
  • the heat exchange area between the capillary 13 and the fin 12 can be further increased, and the heat exchange efficiency of the entire heat exchange unit 1 can be improved.
  • the multiple capillaries 13 distributed on the same side of the fin 12 can be evenly spaced apart, that is, the distance between two adjacent capillaries 13 is equal, thereby improving the uniformity of heat exchange and the convenience of manufacturing. .
  • the fin 12 may have multiple rows of positioning groups spaced apart along the width direction of the fin 12, and each row of positioning groups includes a length along the length of the fin 12.
  • a plurality of positioning structures 14 spaced apart in the direction, so that the thickness side of the fin 12 may be provided with a plurality of capillaries 13 spaced apart along the width direction of the fin 12, and each capillary 13 passes along the length direction of the fin 12
  • a plurality of positioning structures 14 spaced apart are positioned and fitted to the fin 12. Thereby, the heat exchange efficiency between the fin 12 and the environment can be improved.
  • the fin 12 may have four rows of positioning groups spaced apart along the width direction of the fin 12, and each row of positioning groups includes an interval along the length of the fin 12
  • the three positioning structures 14 are distributed, so that the thickness side of the fin 12 can be provided with four capillary tubes 13 spaced apart along the width direction of the fin 12, and each capillary tube 13 is spaced apart along the length direction of the fin 12
  • the three distributed positioning structures 14 are positioned and matched to the fin 12. As a result, the heat exchange effect is better, and the structure is simpler and the processing and manufacturing are relatively simple.
  • the positioning structure 14 may define a positioning groove 140, and a section of the capillary tube 13 in the length direction is positioned and fitted in the positioning groove 140. Therefore, the assembly of the capillary 13 and the positioning structure 14 is quick and easy to operate.
  • the positioning structure 14 may include two plates 141, and a positioning slot 140 is defined between the two plates 141. Therefore, the positioning structure 14 has a simple structure and is convenient for processing.
  • the positioning groove 140 can be defined simply and conveniently.
  • the plate 141 may be punched out of the fin 12, that is, a part of the fin 12 is a punching part, and the contour edge of the punching part includes the first edge section. And the second edge section, when punching, the second edge section is punched off, and the punching section is folded along the first edge section so that the punching section can be folded to the thickness side of the fin 12.
  • the punching part can be used as a plate 141, which means that the plate 141 is punched out of the fin 12, thus, the processing is convenient and the material is saved.
  • the two plates 141 that define the positioning groove 140 are both punched out of the fins 12, the two plates 141 are used to form the two punching portions of the two plates 141. A part of the second edge segment can be overlapped. In this way, after the punching operation, the two punching holes can be combined into one large hole, that is, there is no cross rib intercepting between the two punching holes, so that the processing difficulty can be reduced.
  • the plate 141 may also be welded to the fin 12; or, in other embodiments, the positioning groove 140 may also be defined in other ways.
  • the positioning groove 140 may also be formed.
  • a positioning seat (not shown in the figure) and the like are welded to the fin 12 instead of the two plates 141; in addition, the positioning structure 14 can also be constructed as other more complex structures, for example, the positioning structure 14 can include a rotating clamp ( (Not shown in the figure), one end of the rotating clamp is hinged with the fin 12, and the other end of the rotating clamp is free.
  • the other end of the rotating clamp can be pulled, and The other end of the rotating clamp is locked on the fin 12 so that the rotating clamp and the fin 12 encircle the capillary 13 together to position the capillary 13.
  • the positioning groove 140 may include an inlet groove section 1401 and a positioning groove section 1402.
  • the inlet groove section 1401 is located on the side of the positioning groove section 1402 away from the fin 12, and the inlet groove
  • the groove width of the segment 1401 may gradually increase along the direction away from the positioning groove segment 1402.
  • the groove width of the positioning groove section 1402 when the groove width of the inlet groove section 1401 gradually increases in the direction away from the positioning groove section 1402, the groove width of the positioning groove section 1402 may be along the distance away from the inlet groove section.
  • the direction of 1401 gradually increases, which means that the overall groove width of the positioning groove 140 can be reduced and then increased along the direction away from the fin 12, or in other words, when the positioning groove 140 is defined by two plates 141 When exiting, the two plates 141 can be distributed in an X shape (for example, when the plate 141 is punched out of the fin 12, the punched portion can be folded along the first edge section, and then bent into an X shape. ).
  • the positioning groove section 1402 has a shape that is flared toward the fin 12, so that the capillary tube 13 can be closer to the fin 12, so that the capillary tube 13 is close to the fin 12 Therefore, the heat exchange effect is improved, and the connection between the inlet groove section 1401 and the positioning groove section 1402 can form a constriction (that is, the groove width is small), thereby preventing the capillary 13 from falling out of the positioning groove section 1402 to the inlet groove section 1401 .
  • the positioning slot section 1402 may also be a slot section of equal width, etc., which will not be repeated here.
  • the shape of the positioning groove section 1402 can also be set to match the shape of the capillary 13, so that the contact thermal resistance between the capillary 13 and the positioning structure 14 can be reduced to a certain extent.
  • the capillary 13 can also be welded and fixed to the fin 12, that is, after the capillary 13 is positioned and fitted to the fin 12 through the positioning structure 14, the capillary 13 can also be welded to the fin 12 by welding.
  • the fins 12 are fixed together to ensure the reliability of the connection between the capillary 13 and the fin 12 and increase the heat exchange efficiency between the capillary 13 and the fin 12.
  • the present application is not limited to this.
  • the welding step can also be omitted. However, it can be understood that the provision of a welding step will improve the reliability of the connection between the capillary 13 and the fin 12.
  • the capillary tube 13 and the header 11 can also be welded and connected, so that the heat exchange unit 1 as a whole can be an inseparable integrated piece, thereby improving
  • the overall reliability and heat exchange performance of the heat exchanger 100 also reduces the processing difficulty of the heat exchange unit 1, making the manufacturing simpler and more efficient.
  • the heat exchange unit 1 may include a plurality of fins 12, the plurality of fins 12 are arranged in sequence along the thickness direction of the fins 12, and the positioning structure 14 is clamped in the phase Between two adjacent fins 12, that is, the end of the positioning structure 14 away from the fin 12 where it is located is stopped at the next fin 12 adjacent to the fin 12 to define the space between the two adjacent fins 12 distance.
  • the positioning structure 14 can be used to position the capillary 13 but also the positioning structure 14 can be used to limit the distance between adjacent fins 12, thereby ensuring the air flow efficiency, improving the heat exchange effect, and improving the fin 12 rewinding problem.
  • the height of the positioning structure 14 (that is, the height along the thickness direction of the fin 12) can be set between 1.1 mm and 1.5 mm, so as to not only ensure the positioning effect of the positioning structure 14 on the capillary 13 , And it can also ensure that the distance between two adjacent fins 12 meets the ventilation and heat exchange requirements.
  • the heat exchanger 100 may include a plurality of heat exchange units 1, so that the overall heat exchange performance of the heat exchanger 100 can be further improved.
  • the heat exchanger 100 may include two heat exchange units 1 and a connecting unit 2 connected between the two heat exchange units 1, wherein each heat exchange unit 1 may include two Two headers 11 arranged in parallel and spaced in the up and down direction, fins 12 and capillary tubes 13 arranged perpendicular to the direction of the header 11, the headers 11 of the two heat exchange units 1 are arranged perpendicular to each other, so that the heat exchanger 100.
  • the heat exchanger 100 is generally L-shaped when it is projected from top to bottom.
  • the connecting unit 2 may include two connecting pipes 21 and a baffle 22.
  • the two connecting pipes 21 are respectively connected to two heat exchange units 1
  • a collecting pipe 11 and a baffle 22 are connected between the two connecting pipes 21, so as to avoid the problem of large air flowing away between the two connecting pipes 21 and reducing the heat exchange efficiency.
  • the present application is not limited to this.
  • the structure of the connecting unit 2 and the number of the heat exchange units 1 can also be adjusted so that the heat exchanger 100 can be roughly projected from top to bottom. U-shaped heat exchanger 100, etc., thereby increasing the heat exchange area of the heat exchanger 100, thereby increasing the heat exchange efficiency of the heat exchanger 100, so as to adapt to energy efficiency upgrades.
  • the capillary tube 13 is a stainless steel tube, and the capillary tube 13 is an extruded part, that is, the capillary tube 13 can be processed by extrusion molding, which facilitates batch processing of the capillary tube 13.
  • the fin 12 is a stainless steel piece or an aluminum piece to ensure that the fin 12 has good thermal conductivity.
  • the fin 12 can also be made of other materials with good thermal conductivity, and is not limited thereto.
  • the fin 12 is formed into a flat plate structure or a curved plate structure, which facilitates the realization of flexible and diversified designs of the heat exchanger 100 to better meet the requirements for high energy efficiency.
  • the fin 12 may be formed as a corrugated plate structure.
  • the width of the fin 12 is w, and w satisfies 8mm ⁇ w ⁇ 28mm.
  • w can be 8mm, or 10mm, or 20mm, or 23mm, or 26mm, etc., to ensure that the heat exchange unit 1 has sufficient
  • the heat exchange area ensures the heat exchange efficiency of the heat exchange unit 1, and at the same time avoids the excessive width of the fin 12, which causes the heat exchange unit 1 to be too heavy and occupy a large space.
  • the width of the fin 12 can also be set to other values, and is not limited thereto.
  • the thickness of the fin 12 is t, and t satisfies 0.08mm ⁇ t ⁇ 0.15mm.
  • t can be 0.08mm, or 0.1mm, or 0.12mm, or 0.15mm, etc., to ensure the fin 12
  • the structural strength is also convenient for the processing of the fin 12. It can be understood that the thickness of the fin 12 can also be set to other values, and is not limited thereto.
  • the multiple capillary tubes 13 on the fin 12 are arranged at equal intervals along the width direction of the fin 12 to ensure the heat exchange uniformity of the heat exchange unit 1; wherein, there are N capillary tubes on the fin 12 13.
  • the distance between two adjacent capillaries 13 is S, then the width of the fin 12 is w ⁇ (N+1)*S; for example, when N satisfies 2 ⁇ N ⁇ 3, the width w of the fin 12 satisfies 8mm ⁇ w ⁇ 10mm, when N satisfies 3 ⁇ N ⁇ 5, the width w of the fin 12 satisfies 10mm ⁇ w ⁇ 12mm, but is not limited to this.
  • the multiple capillaries 13 may also be arranged at non-equal intervals.
  • the heat exchanger 100 in this application uses R32 or R290 as the refrigerant, but it is not limited thereto.
  • the air conditioner 1000 according to the embodiment of the second aspect of the present application may include the heat exchanger 100 according to the embodiment of the first aspect of the present application. According to the air conditioner 1000 of the embodiment of the present application, since the heat exchange efficiency of the heat exchanger 100 can be improved, the overall energy efficiency of the air conditioner 1000 can be improved.
  • the type of the air conditioner 1000 according to the embodiment of the second aspect of the present application is not limited, that is, the type of the air conditioner 1000 applied to the heat exchanger 100 according to the embodiment of the first aspect of the present application is not limited, and
  • the heat exchanger 100 may be applied to an indoor unit of the air conditioner 1000 or an outdoor unit of the air conditioner 1000.
  • the heat exchanger 100 can be detachably fixed in the air conditioner 1000. At this time, it can be fixed in the form of bolts, buckles, etc., in addition, the heat exchanger 100 is installed in the air conditioner 1000.
  • the fixed position is not limited.
  • the heat exchanger 100 when the heat exchanger 100 is installed in the outdoor unit of the air conditioner 1000, the heat exchanger 100 can be fixedly connected with the side plate 200, the central partition 300, the side plate 400, etc. of the outdoor unit. I will not repeat them here.
  • the two headers 11 extend in the horizontal direction
  • the heat exchange unit 1 includes a plurality of fins 12, and the plurality of fins 12 are arranged at intervals along the length of the header 11, and each fin 12 extend in the vertical direction, each fin 12 is provided with a plurality of capillaries 13 on one side of the thickness, and the plurality of capillaries 13 are spaced and arranged along the width direction of the fin 12, and each capillary 13 extends in the vertical direction .
  • each capillary tube 13 is installed vertically, compared to the solution in which the refrigerant tubes in the tube-fin heat exchanger 100 extend in the horizontal direction and are spaced apart in the vertical direction, the refrigerant in each capillary tube 13 is not distributed. Affected by gravity, the two-phase flow is evenly distributed.
  • the heat exchanger 100 of the present application is not limited to the above arrangement, and the heat exchanger 100 is not limited to be used as an evaporator.
  • the end of the capillary tube 13 is designed with a converging structure to reduce the diameter of the header 11 connected at the ends of the capillary tube 13, thereby reducing the internal volume of the heat exchanger 100 and reducing the amount of refrigerant charged.
  • the multiple capillary tubes 13 converge symmetrically about the width center line of the fin 12, and the ends of the fin 12 extend out to match with the header 11 at both ends.
  • the multiple capillary tubes 13 are also symmetrical about the length center line of the fin 12 to ensure that the fins 12
  • the lengths of the ends of the fins 12 are the same to match with the headers 11 at both ends to improve the consistency of the heat exchanger 100.
  • a plurality of fins 12 are arranged at equal intervals along the length of the header 11 to facilitate the capillary 13
  • the two ends are respectively fitted in the collecting pipes 11 on both sides.
  • heat transfer and pressure drop are the most critical performance parameters in the design; among them, the size of the air side pressure drop will affect the selection of the corresponding fan, and the size of the wind speed affects the heat transfer.
  • the pressure drop on the refrigerant side affects the condensation and evaporation temperature, which in turn affects the heat transfer temperature difference.
  • the inventor Based on the theory of heat transfer, the inventor combined the heat exchange unit 1 of this example with the tube-fin heat exchanger 100 and the microchannel heat exchanger in the related art. 100 conducted an experimental comparison.
  • Air side heat transfer coefficient h o (Ap+ ⁇ Af)/A o ⁇ h a
  • Q is the heat transfer amount of the heat exchanger 100
  • K is the total heat transfer coefficient of the heat exchanger 100
  • h w is the heat conductivity of the refrigerant side
  • a o is the heat transfer area of the air side of the heat exchanger 100
  • h o is the heat transfer 100 hot air side heat transfer coefficient
  • Ap is the area of the thermally conductive capillary 13
  • h a is the conductivity of the air side fins 12
  • Api is a refrigerant-side heat transfer area
  • Af is the heat transfer area of the fins 12, a co fin
  • is the heat transfer efficiency of the fin 12
  • h c is the contact conductivity between the fin 12 and the capillary 13
  • ⁇ T is the temperature difference
  • tp is the air side temperature difference of the heat exchanger 100
  • ⁇ p is The thermal conductivity of the air side of the heat exchanger 100.
  • the factors that affect the heat transfer Q include fluid flow rate, pipe diameter, density, dynamic viscosity, thermal conductivity, heat transfer coefficient, specific heat capacity at constant pressure, fin 12 width and fin 12 thickness, etc., and under certain conditions, increase A large heat transfer coefficient, an increase in the overall efficiency of the fin 12, and an increase in the ratio of the outer and inner areas of the capillary 13 can all increase the heat exchange amount Q.
  • G is the mass flow rate of the refrigerant, and the mass flow rate is mainly affected by the flow velocity;
  • L flow is the length of the refrigerant flow channel, which is mainly affected by the distance between the fins 12, and D h is the hydraulic radius of the refrigerant flow channel, which is mainly affected by the fins.
  • 12 is the influence of the width;
  • is the shrinkage rate of the refrigerant channel, which is mainly affected by the spacing of the fins 12;
  • ⁇ in is the density at the inlet of the refrigerant, and ⁇ out is the density at the outlet of the refrigerant. Is the average density of the refrigerant.
  • the factors that affect the pressure drop ⁇ p on the refrigerant side include fluid flow rate, density, pipe diameter, fin 12 width, fin 12 thickness, and fin 12 spacing. Under certain conditions, increase and decrease the diameter of the capillary 13 The length of the small capillary 13 can reduce the pressure drop ⁇ p on the refrigerant side.
  • the inventor conducted a relevant analysis on the air side pressure drop, and found that under certain conditions, reducing the wind speed and reducing the compactness of the heat exchanger 100 (for example, increasing the distance between adjacent fins 12) can both be reduced. Pressure drop on the air side.
  • the abscissa is the wind speed
  • the ordinate is the heat exchange amount of the heat exchanger 100
  • the curve shown in L1 represents the wind speed-heat exchange curve of the heat exchange unit 1 of this example
  • the curve shown in L2 represents the tube-fin type
  • the curve shown in L3 represents the wind speed-heat exchange curve of the micro-channel heat exchanger 100. It can be seen from the figure that under the condition of the same wind speed, the heat exchange amount Q of the heat exchange unit 1 of this example is relatively high.
  • the abscissa is the wind speed
  • the ordinate is the air-side heat transfer coefficient ho
  • the curve shown in L1' represents the wind speed-air-side heat transfer coefficient curve of the heat exchange unit 1 of this example
  • the curve shown in L2' represents The wind speed-air-side heat transfer coefficient curve of the tube-fin heat exchanger 100
  • the curve shown in L3′ represents the wind speed-air-side heat transfer coefficient curve of the microchannel heat exchanger 100. It can be seen from the figure that under the condition of the same wind speed, the air-side heat transfer coefficient h o of the heat exchange unit 1 of this example is relatively high.
  • the abscissa is the wind speed
  • the ordinate is the air side pressure drop
  • the curve shown in L1" represents the wind speed-air side pressure drop curve of the heat exchange unit 1 of this example
  • the curve shown in L2 represents the tube-fin type exchange.
  • the wind speed-air side pressure drop curve of the heat exchanger 100 The curve shown in L3" represents the wind speed-air side pressure drop curve of the microchannel heat exchanger 100. It can be seen from the figure that under the same wind speed conditions, this example The air side pressure drop of the heat exchange unit 1 and the microchannel heat exchanger 100 are relatively low, indicating that the wind resistance is smaller and the heat exchange efficiency is better.
  • the inventor also analyzed the heat exchange unit 1 of the present application, respectively taking the number of capillaries 13 on the same fin 12 and the diameter of the capillaries 13 as the only variables, and obtained: 1.
  • Other structures of the heat exchange unit 1 In the same situation, if the heat exchange per unit ventilation area is the same, reducing the tube diameter of the capillary 13 will help reduce the pressure drop on the refrigerant side to a certain extent.
  • the other structures of the heat exchange unit 1 are the same, and the fins 12 There are 4 capillary tubes 13 on the top.
  • the capillary tube 13 with a diameter of 0.4mm corresponds to a larger heat exchange per unit ventilation area; 2.
  • the capillary 13 has the same The pipe diameter is 0.4mm.
  • the five capillary tubes 13 are provided on the fin 12
  • the example corresponds to a larger heat exchange per unit ventilation area.

Abstract

一种换热器(100)和具有其的空调器(1000),该换热器(100)包括至少一个换热单元(1),换热单元(1)包括:翅片(12)、集流管(11)和毛细管(13),集流管(11)为两个且分别位于翅片(12)的长度两侧,毛细管(13)设于翅片(12)的厚度一侧,且毛细管(13)的长度两端分别与两个集流管(11)连通。

Description

换热器和具有其的空调器
相关申请的交叉引用
本申请基于申请号为201911046934.8、申请日为2019年10月30日的中国专利申请、申请号为201921852142.5、申请日为2019年10月30日的中国专利申请以及申请号为201921863484.7、申请日为2019年10月31日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,尤其是涉及一种换热器和具有其的空调器。
背景技术
相关技术中的管翅式换热器,采用管径较大的横置冷媒管,以及竖置设置的翅片,冷凝水排放不畅,空气流动阻力大,且翅片与冷媒管的接触面积小,翅片换热效率较低。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的一个目的在于提出一种换热器,所述换热器的换热单元的冷凝水排放顺畅、空气流动阻力小、换热能效高,且翅片与毛细管的换热效果好。
本申请的另一目的在于提出一种具有上述换热器的空调器。
根据本申请第一方面实施例的换热器,所述换热器包括至少一个换热单元,所述换热单元包括:翅片;集流管,所述集流管为两个且分别位于所述翅片的长度两侧;毛细管,所述毛细管设于所述翅片的厚度一侧,且所述毛细管的长度两端分别与两个集流管连通。
根据本申请的换热器,所述换热器的换热单元的冷凝水排放顺畅、空气流动阻力小、换热能效高,且翅片与毛细管的换热效果好。
在一些实施例中,所述翅片的厚度一侧具有多个所述毛细管,多个所述毛细管沿所述翅片的宽度方向依次间隔开分布,多个所述毛细管中相距最远的两个所述毛细管为边缘毛细管,两个所述边缘毛细管的端部间距W1小于所述集流管的内直径D1,两个所述边缘毛细管在所述翅片的至少一个横截面处的间距W2大于所述集流管的外直径D2,所述翅片的宽度W3大于所述集流管的外直径D2。
在一些实施例中,每个所述毛细管均包括主体直管段和位于所述主体直管段长度两端的端部直管段,所述主体直管段和所述端部直管段平行或同轴设置,多个所述毛细管的所述 主体直管段平行设置,多个所述毛细管的所述端部直管段平行设置,每相邻的两个所述主体直管段的间距均大于每相邻的两个端部直管段的间距。
在一些实施例中,多个所述毛细管中的至少所述边缘毛细管还包括连接在所述主体直管段和所述端部直管段之间的弯管段。
在一些实施例中,多个所述毛细管关于所述翅片的宽度中心线对称设置,所述宽度中心线为将所述翅片划分为位于所述宽度中心线两侧的等宽度两半,多个所述毛细管关于所述翅片的长度中心线对称设置,所述长度中心线为将所述翅片划分为位于所述长度中心线两侧的等长度两半。
在一些实施例中,所述翅片的厚度一侧具有定位结构,所述毛细管通过所述定位结构定位配合于所述翅片的厚度一侧。
在一些实施例中,所述毛细管通过沿所述毛细管的长度方向间隔开设置的多个所述定位结构定位配合于所述翅片。
在一些实施例中,所述翅片上设有沿所述翅片的宽度方向间隔开分布的多个所述毛细管,每个所述毛细管均通过至少一个所述定位结构定位配合于所述翅片。
在一些实施例中,所述定位结构限定出定位槽,所述毛细管长度方向上的一截定位配合在所述定位槽内。
在一些实施例中,所述定位槽包括入口槽段和定位槽段,所述入口槽段位于所述定位槽段的远离所述翅片的一侧,所述入口槽段的槽宽沿着远离所述定位槽段的方向逐渐增大。
在一些实施例中,所述定位槽段的槽宽沿着远离所述入口槽段的方向逐渐增大。
在一些实施例中,所述定位结构包括两个板片,两个所述板片之间限定出所述定位槽。
在一些实施例中,所述板片由所述翅片冲孔而成。
在一些实施例中,所述换热单元包括多个所述翅片,多个所述翅片沿所述翅片的厚度方向依次排布,所述定位结构夹止在相邻两个所述翅片之间,以限定相邻两个所述翅片之间的距离。
在一些实施例中,两个所述集流管均沿水平方向延伸,所述换热单元包括多个所述翅片,多个所述翅片沿所述集流管的长度方向间隔开排布,每个所述翅片均沿竖置方向延伸,每个所述翅片的厚度一侧设有多个所述毛细管,多个所述毛细管沿所述翅片的宽度方向间隔开排布,每个所述毛细管均沿竖置方向延伸。
根据本申请第二方面实施例的空调器,包括根据本申请第一方面实施例的换热器。
根据本申请的空调器,通过设置上述第一方面的换热器,从而提高了空调器的整体换热性能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本申请的实践了解到。
附图说明
图1是根据本申请一个实施例的空调器的示意图;
图2是根据本申请一个实施例的换热单元的示意图,图中每相邻的两个翅片之间隐藏了一个翅片;
图3是根据本申请一个实施例的翅片与毛细管配合的示意图;
图4是根据本申请一个实施例的翅片与毛细管、集流管配合的局部示意图;
图5是根据本申请一个实施例的翅片与毛细管配合的示意图;
图6是根据本申请一个实施例的翅片与毛细管通过定位结构定位配合的示意图;
图7是图3中圈示的A部放大图;
图8是根据本申请一个实施例的翅片与翅片通过定位结构限定间距的示意图;
图9是根据本申请一个实施例的换热器与管翅式换热器、微通道式换热器的换热量的实验对比曲线;
图10是根据本申请一个实施例的换热器与管翅式换热器、微通道式换热器的空气侧换热系数的实验对比曲线;
图11是根据本申请一个实施例的换热器与管翅式换热器、微通道式换热器的空气侧压降的实验对比曲线。
附图标记:
空调器1000;
换热器100;边板200;中隔板300;侧板400;
换热单元1;集流管11;翅片12;毛细管13;边缘毛细管130;
第一毛细管13a;第二毛细管13b;第三毛细管13c;第四毛细管13d;
主体直管段131;端部直管段132;第一部分132a;第二部分132b;弯管段133;
定位结构14;板片141;定位槽140;入口槽段1401;定位槽段1402;
连接单元2;连接管21;挡板22。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,参照附图,描述根据本申请第一方面实施例的换热器100。
如图1所示,换热器100可以包括至少一个换热单元1,结合图2-图3,换热单元1可以包括:翅片12、集流管11和毛细管13,集流管11为两个且分别位于翅片12的长度两侧,毛细管13设于翅片12的厚度一侧,且毛细管13的长度两端分别与两个集流管11连通。
由此,由于集流管11分别位于翅片12的长度两侧,且毛细管13的长度两端分别与两个集流管11连通,从而说明毛细管13沿翅片12的延伸方向延伸,或者说毛细管13的长度方向和翅片12的长度方向相同或者大体相同,由此,第一、可以提高毛细管13与翅片12的换热面积,使得毛细管13与翅片12的换热效率高,从而可以加快翅片12与空气的热交换速度,第二,翅片12与毛细管13的相对位置关系,不像管翅式换热器100中翅片12和冷媒管那样相互垂直设置,因此可以保证冷凝水的顺畅排放。
需要说明的是,毛细管13指的是管径较小的细管(例如管径可以为0.5mm左右),例如毛细管13的外径D满足0.6mm≤D≤2mm,毛细管13的壁厚T满足0.08mm≤T≤0.2mm。由于毛细管13的管径较小,相比于管翅式换热器100来说,冷媒泄漏问题更小,换热器100乃至其所应用的空调器1000的安全性都更有保证,可靠性更有保证。
如图3所示,翅片12的厚度一侧具有多个毛细管13,多个毛细管13沿翅片12的宽度方向依次间隔开分布(图3中所示的F1方向指示翅片12的宽度方向,图3中所示的F2方向指示翅片12的长度方向)。由此,可以提高翅片12与毛细管13的换热面积,提高换热器100整体的换热性能。
在一些实施例中,结合图4,多个毛细管13中相距最远的两个毛细管13为边缘毛细管130,即靠近翅片12宽度两侧边缘的两个毛细管13分别为边缘毛细管130,两个边缘毛细管130的端部间距W1小于集流管11的内直径D1,由此说明,多个毛细管13在端部的位置间距较小,保证多个毛细管13均可以插入集流管11内,以与集流管11内部的冷媒连通。两个边缘毛细管130在翅片12的至少一个横截面处的间距W2大于集流管11的外直径D2,翅片12的宽度W3大于集流管11的外直径D2,由此说明,多个毛细管13在非端部的位置 间距较大,且翅片12的宽度可以较宽,从而翅片12与毛细管13的换热范围较大,换热均匀性较好。
由此,通过如上设置多个毛细管13的间距,从而使得多个毛细管13呈现端部在集流管11处汇聚、在非端部较为分散的形式,从而可以减小毛细管13两端所连接的集流管11的直径,减小换热器100的内容积,减小冷媒冲注量,而且可以提高翅片12与毛细管13的换热范围和换热均匀性。
在本申请的一些实施例中,如图3和图4所示,每个毛细管13均包括主体直管段131和位于主体直管段131长度两端的端部直管段132,主体直管段131和端部直管段132平行或同轴设置,多个毛细管13的主体直管段131平行设置,多个毛细管13的端部直管段132平行设置,每相邻的两个主体直管段131的间距均大于每相邻的两个端部直管段132的间距。由此,毛细管13的结构简单、方便加工,且方便毛细管13与翅片12的定位装配等,而且可以简单且有效地保证多个毛细管13之间的间距符合上述要求。
需要说明的是,每相邻的两个主体直管段131的间距可以相等、也可以不等,每相邻的两个端部直管段132的间距可以相等、也可以不等。例如图4所示,第一毛细管13a的主体直管段131和第二毛细管13b的主体直管段131的间距为b1、第二毛细管13b的主体直管段131和第三毛细管13c的主体直管段131的间距为b2、第三毛细管13c的主体直管段131和第四毛细管13d的主体直管段131的间距为b3,第一毛细管13a的端部直管段132和第二毛细管13b的端部直管段132的间距为a1、第二毛细管13b的端部直管段132和第三毛细管13c的端部直管段132的间距为a2、第三毛细管13c的端部直管段132和第四毛细管13d的端部直管段132的间距为a3,其中,b1、b2、b3中任意两个可以相等或者不等,a1、a2、a3中任意两个可以相等或者不等,但是,b1、b2、b3中任意一个大于a1、a2、a3中任意一个,从而保证每相邻的两个主体直管段131的间距均大于每相邻的两个端部直管段132的间距。
在本申请的一些实施例中,多个主体直管段131可以等间距排布,例如图4中所示的b1=b2=b3,由此,翅片12与多个毛细管13的换热均匀。在本申请的一些实施例中,多个端部直管段132可以等间距排布,例如图4中所示的a1=a2=a3。由此,方便加工和装配。
在本申请的一些实施例中,如图4所示,两个边缘毛细管130的主体直管段131的间距W4大于翅片12的宽度W3的二分之一,即W4>W3/2。由此,可以提高翅片12与毛细管13的换热效果和换热均匀性。
在本申请的一些实施例中,如图5所示,主体直管段131的长度L1大于翅片12的长 度L的二分之一。由此,可以提高翅片12与毛细管13的换热效果和换热均匀性。
在本申请的一些实施例中,如图4所示,两个边缘毛细管130的端部直管段132的间距W5小于翅片12的宽度W3的二分之一,即W5<W3/2。由此,可以减小毛细管13两端所连接的集流管11的直径,减小换热器100的内容积,减小冷媒冲注量。
在本申请的一些实施例中,如图3所示,多个毛细管13中的至少边缘毛细管130还包括连接在主体直管段131和端部直管段132之间的弯管段133。由此,可以避免毛细管13中出现直角弯折部,从而可以降低毛细管13内冷媒的流动阻力,提高换热器100的性能。在图3中所示的具体示例中,还可以是每个毛细管13均可以包括连接在主体直管段131和端部直管段132之间的弯管段133,从而可以保证每个毛细管13内的冷媒流动阻力均较小。
结合图4,与弯管段133相连的端部直管段132包括第一部分132a和第二部分132b,第一部分132a与翅片12沿翅片12的厚度方向相对,第二部分132b延伸到翅片12的长度一端之外。由此,可以进一步降低弯管段133的弯曲程度,从而进一步降低毛细管13内的冷媒流动阻力。
需要说明的是,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。例如,上述多个实施例中的任意两个或多个均可以结合为一个具体实施例。
在本申请的一些实施例中,如图5中所示,多个毛细管13关于翅片12的宽度中心线(如图5中所示的S1-S1线)对称设置,宽度中心线为将翅片12划分为位于宽度中心线两侧的等宽度两半。由此,可以降低装配难度,而且可以较为简单地保证集流管11的中心和翅片12的中心位于同一平面内,从而可以有效地保证换热器100整体的重心稳定,应用于空调器1000等设备中,方便安装。
此外,如图5所示,多个毛细管13关于翅片12的长度中心线(如图5中所示的S2-S2线)对称设置,长度中心线为将翅片12划分为位于长度中心线两侧的等长度两半。由此,可以保证伸出翅片12长度两端的毛细管13的长度相等,以便于与两侧的集流管11装配,改善换热器100的一致性。当然,本申请不限于此,在本申请的其他实施例中,多个毛细管13还可以并不关于翅片12的宽度中心线或长度中心线对称设置。
在本申请的一些实施例中,翅片12、毛细管13、集流管11可以焊接为一体式,由此,接触热阻小,能够有效的提升翅片12的换热效率,提升换热器100的总传热系数,最终提升换热量,而且制造更简单高效。
在本申请的一些实施例中,换热器100可以包括多个换热单元1,从而可以进一步提高 换热器100整体的换热性能。例如在本申请的一个具体示例中,如图1所示,换热器100可以包括两个换热单元1和连接在两个换热单元1之间的连接单元2,其中,每个换热单元1均可以包括两个沿上下方向间隔且平行设置的集流管11和垂直于集流管11方向设置的翅片12与毛细管13,两个换热单元1的集流管11相互垂直设置,以使换热器100自上而下作正投影时大体为L形的换热器100,连接单元2可以包括两个连接管21和挡板22,两个连接管21分别对应连接两个换热单元1的两个集流管11,挡板22连接在两个连接管21之间,从而可以避免大气流从两个连接管21之间流走、降低换热效率的问题。当然,本申请不限于此,在本申请的其他实施例中,还可以通过调节连接单元2的结构和换热单元1的数量,可以使得换热器100自上而下作正投影时大体为U形的换热器100等,从而加大换热器100的换热面积,进而提高换热器100的换热效率,以适应能效升级。
在一些实施例中,翅片12的厚度一侧具有定位结构14,毛细管13通过定位结构14定位配合于翅片12的厚度一侧。由此,通过在翅片12上设置定位结构14,使得毛细管13可以与翅片12定位配合,从而可以提高毛细管13与翅片12的装配效率,例如,在毛细管13需要与翅片12焊接相连时,在焊接前,可以先将毛细管13与定位结构14定位配合,从而就无需再手扶毛细管13进行限位,从而极大地降低了操作难度,提高了装配效率,还改善了由于毛细管13手扶定位不精准,而引起的换热不均等问题。
另外,由于集流管11分别位于翅片12的长度两侧,且毛细管13的长度两端分别与两个集流管11连通,从而说明毛细管13沿翅片12的延伸方向延伸,或者说毛细管13的长度方向和翅片12的长度方向相同或者大体相同,由此,第一、可以提高毛细管13与翅片12的换热面积,使得毛细管13与翅片12的换热效率高,从而可以加快翅片12与空气的热交换速度,第二,翅片12与毛细管13的相对位置关系,不像管翅式换热器中翅片和冷媒管那样相互垂直设置,因此可以保证冷凝水的顺畅排放。
此外,需要说明的是,毛细管13指的是管径较小的细管,例如管径可以为0.5mm左右。由于毛细管13的管径较小,相比于管翅式换热器来说,冷媒泄漏问题更小,换热器100乃至其所应用的空调器1000的安全性都更有保证,可靠性更有保证。
在本申请的一些实施例中,如图6所示,毛细管13通过沿毛细管13的长度方向间隔开设置的多个定位结构14定位配合于翅片12。由此,可以提高毛细管13与翅片12相对位置定位的可靠性与稳定性。另外,在一些实施例中,用于定位一个毛细管13的多个定位结构14可以均匀间隔开分布,即用于定位一个毛细管13的多个定位结构14中每相邻的两个定位结构14之间的间距相等,从而可以提高换热均匀性和制造便捷性。
在本申请的一些实施例中,如图6所示,翅片12上设有沿翅片12的宽度方向间隔开分布的多个毛细管13,每个毛细管13均通过至少一个定位结构14定位配合于翅片12。也就 是说,翅片12的厚度一侧设置有沿翅片12的宽度方向间隔开分布的多个毛细管13,且每个毛细管13分别有至少一个定位结构14定位配合。由此,可以进一步提高毛细管13与翅片12的换热面积,提高换热单元1整体的换热效率。另外,在一些实施例中,分布在翅片12同侧的多个毛细管13可以均匀间隔开分布,即相邻的两个毛细管13之间间距相等,从而可以提高换热均匀性和制造便捷性。
需要说明的是,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
例如,在本申请的一个实施例中,如图6所示,翅片12上可以具有沿翅片12的宽度方向间隔开分布的多列定位组,每列定位组包括沿翅片12的长度方向间隔开分布的多个定位结构14,从而翅片12的厚度一侧可以设置有沿翅片12的宽度方向间隔开分布的多个毛细管13,每个毛细管13通过沿翅片12的长度方向间隔开分布的多个定位结构14定位配合于翅片12。由此,可以提高翅片12与环境的换热效率。
此外,需要说明的是,本文所述的多个指的是两个及多于两个,例如可以是两个、三个、四个等等。在本申请的一个具体示例中,如图6所示,翅片12上可以具有沿翅片12的宽度方向间隔开分布的四列定位组,每列定位组包括沿翅片12的长度方向间隔开分布的三个定位结构14,从而翅片12的厚度一侧可以设置有沿翅片12的宽度方向间隔开分布的四个毛细管13,每个毛细管13通过沿翅片12的长度方向间隔开分布的三个定位结构14定位配合于翅片12。由此,换热效果较好,且结构较为简单和加工制造。
在本申请的一些实施例中,如图7所示,定位结构14可以限定出定位槽140,毛细管13长度方向上的一截定位配合在定位槽140内。由此,毛细管13与定位结构14的装配快捷,方便操作。例如在一些具体示例中,如图7所示,定位结构14可以包括两个板片141,两个板片141之间限定出定位槽140,由此,定位结构14的结构简单,方便加工,可以简单且方便地限定出定位槽140。
另外,在本申请的一些具体示例中,板片141可以由翅片12冲孔而成,也就是说,翅片12上的一部分为冲孔部,冲孔部的轮廓边缘包括第一边缘段和第二边缘段,冲孔时,将第二边缘段冲断,并将冲孔部沿第一边缘段翻折,以使冲孔部可以翻折到翅片12的厚度一侧,此时,冲孔部可以作为一个板片141,即说明该板片141由翅片12冲孔而成,由此,加工方便,且节约材料。
此外,在图7所示的具体示例中,当限定出定位槽140的两个板片141均由翅片12冲孔而成时,用于构成两个板片141的两个冲孔部的第二边缘段的一部分可以重合,这样,在冲孔操作后,两个冲孔可以合为一个大孔,即不存在拦截在两个冲孔之间的横筋,从而可以降低加工难度。
当然,本申请不限于此,板片141还可以焊接在翅片12上;或者,在其他实施例中,还可以通过其他方式限定出定位槽140,例如,还可以将形成有定位槽140的定位座(图未示出)等焊接在翅片12上,以代替两个板片141;此外,定位结构14还可以构造为其他更加复杂的结构,例如,定位结构14可以包括转动卡箍(图未示出),转动卡箍的一端与翅片12铰接,转动卡箍的另一端自由,当将毛细管13设置在翅片12的厚度一侧后,可以拉动转动卡箍的另一端,并使转动卡箍的另一端锁定在翅片12上,以使转动卡箍和翅片12共同环抱毛细管13,对毛细管13进行定位。
在本申请的一些实施例中,如图7所示,定位槽140可以包括入口槽段1401和定位槽段1402,入口槽段1401位于定位槽段1402的远离翅片12的一侧,入口槽段1401的槽宽可以沿着远离定位槽段1402的方向逐渐增大。由此,说明入口槽段1401为扩口形式,从而方便将毛细管13伸入定位到定位槽140内,提高定位操作的快捷性。
另外,在一些实施例中,如图7所示,当入口槽段1401的槽宽沿着远离定位槽段1402的方向逐渐增大时,定位槽段1402的槽宽可以沿着远离入口槽段1401的方向逐渐增大,从而说明定位槽140整体的槽宽可以是沿着远离翅片12的方向先减小、再增大,或者说,当定位槽140由两个板片141之间限定出时,两个板片141可以成X形分布(例如,当板片141由翅片12冲孔而成时,可以将冲孔部沿第一边缘段翻折后,再弯折成X形)。
由此,在毛细管13伸入定位槽段1402内后,由于定位槽段1402为朝向翅片12扩口的形状,从而使得毛细管13可以更加靠近翅片12,达到毛细管13贴紧翅片12的效果,从而提高换热效果,而且,入口槽段1401和定位槽段1402的连接处可以形成缩颈(即槽宽较小),从而可以防止毛细管13从定位槽段1402向入口槽段1401脱出。当然,本申请不限于此,在本申请的其他实施例中,定位槽段1402还可以为等宽槽段等等,这里不作赘述。此外,在加工条件允许的情况下,还可以将定位槽段1402的形状设置为与毛细管13的外形相匹配,从而可以在一定程度上降低毛细管13与定位结构14之间的接触热阻。
在本申请的一些实施例中,毛细管13还可以焊接固定于翅片12,也就是说,在通过定位结构14将毛细管13定位配合于翅片12后,还可以利用焊接的方式将毛细管13与翅片12固定在一起,从而保证毛细管13与翅片12的连接可靠性,增大毛细管13和翅片12之间的换热效率。当然,本申请不限于此,在本申请的另外一些实施例中,当定位结构14的定位可靠性满足连接要求时,还可以省去焊接步骤。但是,可以理解的是,设置焊接步骤会提高毛细管13与翅片12的连接可靠性。
在本申请的一些实施例中,当翅片12与毛细管13焊接相连时,毛细管13与集流管11也可以焊接相连,从而换热单元1整体可以为不可拆分的一体件,从而可以提高换热器100整体的可靠性和换热性能,而且降低了换热单元1的加工难度,使得制造更加简单、高效。
在本申请的一些实施例中,如图8所示,换热单元1可以包括多个翅片12,多个翅片12沿翅片12的厚度方向依次排布,定位结构14夹止在相邻两个翅片12之间,即定位结构14的远离其所在翅片12的一端止抵于与该翅片12相邻的下一个翅片12,以限定相邻两个翅片12之间的距离。
由此,不但可以利用定位结构14对毛细管13进行定位,而且可以利用定位结构14来限定相邻翅片12之间距离,从而保证气流通过效率,提高换热效果,改善翅片12倒片问题。此外,在一些实施例中,可以将定位结构14的高度(即沿翅片12厚度方向的高度)设定在1.1mm-1.5mm之间,从而不但可以保证定位结构14对于毛细管13的定位效果,而且还可以保证相邻两个翅片12之间的间距满足通风换热要求。
在本申请的一些实施例中,如图1所示,换热器100可以包括多个换热单元1,从而可以进一步提高换热器100整体的换热性能。例如在本申请的一个具体示例中,换热器100可以包括两个换热单元1和连接在两个换热单元1之间的连接单元2,其中,每个换热单元1均可以包括两个沿上下方向间隔且平行设置的集流管11和垂直于集流管11方向设置的翅片12与毛细管13,两个换热单元1的集流管11相互垂直设置,以使换热器100自上而下作正投影时大体为L形的换热器100,连接单元2可以包括两个连接管21和挡板22,两个连接管21分别对应连接两个换热单元1的两个集流管11,挡板22连接在两个连接管21之间,从而可以避免大气流从两个连接管21之间流走、降低换热效率的问题。当然,本申请不限于此,在本申请的其他实施例中,还可以通过调节连接单元2的结构和换热单元1的数量,可以使得换热器100自上而下作正投影时大体为U形的换热器100等,从而加大换热器100的换热面积,进而提高换热器100的换热效率,以适应能效升级。
在一些实施例中,毛细管13为不锈钢管,毛细管13为挤压成型件,即毛细管13可以采用挤压成型的方式加工,便于实现毛细管13的批量加工。
在一些实施例中,翅片12为不锈钢件或铝件,以保证翅片12具有良好的导热性。当然,翅片12还可以为其他导热性良好的材料件,而不限于此。
在一些实施例中,翅片12形成为平板结构或曲板结构,便于实现换热器100的灵活多样化设计,以更好地满足高能效需求。例如,翅片12可以形成为波纹板结构。
在一些实施例中,翅片12的宽度为w,w满足8mm≤w≤28mm,例如w可以为8mm、或10mm、或20mm、或23mm、或26mm等,保证了换热单元1具有足够的换热面积,从而保证了换热单元1的换热效率,同时避免了翅片12宽度过大而导致换热单元1过重、占用空间较大。可以理解的是,翅片12的宽度还可以设置为其他数值,而不限于此。
在一些实施例中,翅片12的厚度为t,t满足0.08mm≤t≤0.15mm,例如t可以为0.08mm、或0.1mm、或0.12mm、或0.15mm等,保证了翅片12的结构强度,同时便于翅片12的加 工。可以理解的是,翅片12的厚度还可以设置为其他数值,而不限于此。
在一些实施例中,翅片12上的多个毛细管13沿翅片12的宽度方向等间距排布,以保证换热单元1的换热均匀性;其中,翅片12上设有N个毛细管13,相邻两个毛细管13之间的距离为S,则翅片12的宽度w≥(N+1)*S;例如当N满足2≤N≤3时,则翅片12的宽度w满足8mm≤w≤10mm,当N满足3≤N≤5时,则翅片12的宽度w满足10mm≤w≤12mm,但不限于此。当然,多个毛细管13也可以非等间距排布。
在一些实施例中,本申请中的换热器100相应选用冷媒R32、或R290,但不限于此。
下面,描述根据本申请第二方面实施例的空调器1000。
如图1所示,根据本申请第二方面实施例的空调器1000,可以包括根据本申请第一方面实施例的换热器100。根据本申请实施例的空调器1000,由于换热器100的换热效率可以得到提高,从而可以提高空调器1000的整体能效。
具体而言,根据本申请第二方面实施例的空调器1000的类型不限,也就是说,据本申请第一方面实施例的换热器100所应用的空调器1000的类型不限,而且换热器100可以应用于空调器1000的室内机、或空调器1000的室外机。
在本申请的一些实施例中,换热器100可以可拆卸地固定在空调器1000内,此时,可以采用例如螺栓、卡扣等形式固定,此外,换热器100在空调器1000内的固定位置不限,例如当将换热器100安装于空调器1000的室外机内时,可以将换热器100与室外机的边板200、中隔板300、侧板400等进行固定相连,在此不作赘述。
此外,根据本申请实施例的空调器1000的其他构成,在空调器1000的类型确定后,空调器1000的其他构成,例如风机等对于本领域普通技术人员而言都是已知的,这里不再详细描述。
下面,描述根据本申请一个具体示例的换热单元1。
在本示例中,两个集流管11均沿水平方向延伸,换热单元1包括多个翅片12,多个翅片12沿集流管11的长度方向间隔开排布,每个翅片12均沿竖置方向延伸,每个翅片12的厚度一侧设有多个毛细管13,多个毛细管13沿翅片12的宽度方向间隔开排布,每个毛细管13均沿竖置方向延伸。
由此,当换热器100作为蒸发器使用时,便于冷凝水的排放。而且,由于每个毛细管13均竖置设置,相比于管翅式换热器100中冷媒管均沿水平方向延伸且在上下方向上间隔开分布的方案,每个毛细管13内的冷媒分配不受重力影响,实现两相流均匀分配。当然,本申请的换热器100不限于上述摆放方式,而且,换热器100不限于作为蒸发器使用。
如图4所示的具体示例中,毛细管13的端部汇聚结构设计,减小毛细管13两端所连接的集流管11直径,从而可以减小换热器100内容积,减少冷媒充注量,多个毛细管13以 翅片12宽度中心线对称汇聚,伸出翅片12端部以便与两端集流管11配合,多个毛细管13还以翅片12长度中心线对称,保证伸出翅片12端部的长度一致,以便与两端集流管11配合,改善换热器100的一致性,多个翅片12沿着集流管11的长度方向按等间距排列分布,便于毛细管13两端分别配合在两侧的集流管11内。
此外,对于风冷式换热器,换热量和压降是设计中最为关键的性能参数;其中,空气侧压降的大小会影响对应风机的选型,而风速的大小是影响换热量的最关键的因素之一,冷媒侧压降会影响冷凝和蒸发温度,进而影响传热温差。然而,换热量和压降之间存在矛盾关系,发明人根据传热学的理论,将本示例的换热单元1与相关技术中的管翅式换热器100、微通道式换热器100进行了实验对比,在实验中设定了在同等情况下的不同换热器100的换热量Q(单位:Kcal/h.k)的数据(如图9所示)、空气侧换热系数h o(单位:W/m2.k)的数据(如图10所示)、以及空气侧压降(单位:Pa)的数据(如图11所示),结果表明,本示例的换热单元1具有更加优良的换热能力,换热效率较高,在相同换热量的情况下,本示例的换热单元1需要的风量相对较少,且在相同发换热量的情况下,本示例的换热单元1的换热面积可以适当减小,从而本示例的换热单元1可以在换热量和压降之间取得良好的平衡。
根据传热学理论公式:
换热量Q=K·A 0·ΔT
总传热系数
Figure PCTCN2019121279-appb-000001
空气侧换热系数h o=(Ap+η·Af)/A o×h a
其中,Q为换热器100的换热量,K为换热器100的总传热系数,h w为冷媒侧热传导率,A o为换热器100的空气侧导热面积,h o为换热器100的空气侧换热系数,Ap为毛细管13导热面积,h a为翅片12的空气侧传导率,Api为冷媒侧导热面积,Af为翅片12的导热面积,A co为翅片12与毛细管13的接触面积,η为翅片12的换热效率,h c为翅片12与毛细管13的接触传导率,ΔT为温度差,tp为换热器100的空气侧温差,λp为换热器100的空气侧导热率。
在本申请中,由于换热单元1自身的结构设计,相对于管翅式换热器,h c很大,则
Figure PCTCN2019121279-appb-000002
可以忽略不计,则传热学理论公式可转化为:
换热量
Figure PCTCN2019121279-appb-000003
其中,η o为翅片12的总效率,且η o=f(对流换热系数,翅片长度,翅片厚度,导热系数),即η o受传热系数、材料的导热系数以及翅片的结构参数影响,影响对流换热系数的因素包括流体流速、特征长度、密度、动力粘度、导热系数和定压比热容等;β为毛细管13的外内面积比,即β为毛细管13的外表面面积与内表面面积之比;h o为管外传热系数,且管外传热系数主要受流速和翅片12宽度的影响;δ/λ为管壁导热热阻,且δ/λ较小、可以忽略不计;h i为管内传热系数,且管内传热系数主要受流体的流速和管径的影响;T fi-T fo为温度差。
显然,影响换热量Q的因素包括流体流速、管径、密度、动力粘度、导热系数、传热系数、定压比热容、翅片12宽度和翅片12厚度等,且在一定条件下,增大传热系数、增大翅片12总效率和增大毛细管13的外内面积比均可以增大换热量Q。
并结合冷媒侧压降的计算公式:
Figure PCTCN2019121279-appb-000004
其中,G为冷媒的质量流速,且质量流速主要受流速的影响;L flow为冷媒流道的长度,主要受翅片12间距的影响,D h为冷媒流道的水利半径,主要受翅片12宽度的影响;σ为冷媒流道收缩率,主要受翅片12间距的影响;ρ in为冷媒进口处的密度,ρ out为冷媒出口处的密度,
Figure PCTCN2019121279-appb-000005
为冷媒的平均密度。
显然,影响冷媒侧压降Δp的因素包括流体流速、密度、管径、翅片12宽度、翅片12厚度和翅片12间距等,且在一定条件下,增大毛细管13的管径和减小毛细管13的管长均可以降低冷媒侧压降Δp。
此外,发明人对空气侧压降进行了相关分析,得出,在一定条件下,减小风速和减小换热器100的紧凑性(例如增大相邻翅片12的间距)均可以降低空气侧压降。
在图9中,横坐标为风速,纵坐标为换热器100的换热量,L1所示曲线代表本示例的换热单元1的风速-换热量曲线,L2所示曲线代表管翅式换热器100的风速-换热量曲线,L3所示曲线代表微通道式换热器100的风速-换热量曲线。从图中可以看出,在同等风速的条件下,本示例的换热单元1的换热量Q相对较高。
在图10中,横坐标为风速,纵坐标为空气侧换热系数h o,L1’所示曲线代表本示例的换热单元1的风速-空气侧换热系数曲线,L2’所示曲线代表管翅式换热器100的风速-空气侧换热系数曲线,L3’所示曲线代表微通道式换热器100的风速-空气侧换热系数曲线。从图中可以看出,在同等风速的条件下,本示例的换热单元1的空气侧换热系数h o相对较高。
在图11中,横坐标为风速,纵坐标为空气侧压降,L1”所示曲线代表本示例的换热单元1的风速-空气侧压降曲线,L2”所示曲线代表管翅式换热器100的风速-空气侧压降曲线, L3”所示曲线代表微通道式换热器100的风速-空气侧压降曲线。从图中可以看出,在同等风速的条件下,本示例的换热单元1和微通道式换热器100的空气侧压降都相对较低,说明风阻较小,换热效率更好。
通过以上三组实验可以得出,本示例的换热单元1,毛细管13与翅片12的接触热阻小,能够有效提升翅片12的换热效率,提成换热单元1的总传热系数,进而提升换热器100的整体换热量。
而且,发明人还针对将本申请的换热单元1,分别将同一翅片12上毛细管13的数量和毛细管13的管径作为唯一变量进行了分析,得出,1、换热单元1其他结构相同的情况下,如果单位通风面积的换热量相同时,减小毛细管13的管径在一定程度上有利于减小冷媒侧压降,例如,换热单元1其他结构相同,且翅片12上设有4个毛细管13,对于毛细管13管径为0.4mm的示例和毛细管13管径为0.6mm的示例而言,单位通风面积的换热量相同时,毛细管13管径为0.4mm的示例对应的冷媒侧压降较小,且冷媒侧压降相同时,毛细管13管径为0.4mm的示例对应的单位通风面积的换热量较大;2、换热单元1其他结构相同的情况下,如果单位通风面积的换热量相同时,增大翅片12上毛细管13的数量在一定程度上有利于提升单位通风面积的换热量,例如,换热单元1其他结构相同,毛细管13的管径为0.4mm,对于翅片12上设置4个毛细管14的示例和翅片12上设置5个毛细管13的示例而言,冷媒侧压降相同时,翅片12上设置5个毛细管13的示例对应的单位通风面积的换热量较大。
在本申请的描述中,需要理解的是,术语“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种换热器,其特征在于,所述换热器包括至少一个换热单元,所述换热单元包括:
    翅片;
    集流管,所述集流管为两个且分别位于所述翅片的长度两侧;
    毛细管,所述毛细管设于所述翅片的厚度一侧,且所述毛细管的长度两端分别与两个集流管连通。
  2. 根据权利要求1所述的换热器,其特征在于,所述翅片的厚度一侧具有多个所述毛细管,多个所述毛细管沿所述翅片的宽度方向依次间隔开分布,多个所述毛细管中相距最远的两个所述毛细管为边缘毛细管,两个所述边缘毛细管的端部间距W1小于所述集流管的内直径D1,两个所述边缘毛细管在所述翅片的至少一个横截面处的间距W2大于所述集流管的外直径D2,所述翅片的宽度W3大于所述集流管的外直径D2。
  3. 根据权利要求2所述的换热器,其特征在于,每个所述毛细管均包括主体直管段和位于所述主体直管段长度两端的端部直管段,所述主体直管段和所述端部直管段平行或同轴设置,多个所述毛细管的所述主体直管段平行设置,多个所述毛细管的所述端部直管段平行设置,每相邻的两个所述主体直管段的间距均大于每相邻的两个端部直管段的间距。
  4. 根据权利要求3所述的换热器,其特征在于,多个所述毛细管中的至少所述边缘毛细管还包括连接在所述主体直管段和所述端部直管段之间的弯管段。
  5. 根据权利要求1-4中任一项所述的换热器,其特征在于,多个所述毛细管关于所述翅片的宽度中心线对称设置,所述宽度中心线为将所述翅片划分为位于所述宽度中心线两侧的等宽度两半,多个所述毛细管关于所述翅片的长度中心线对称设置,所述长度中心线为将所述翅片划分为位于所述长度中心线两侧的等长度两半。
  6. 根据权利要求1-5中任一项所述的换热器,其特征在于,所述翅片的厚度一侧具有定位结构,所述毛细管通过所述定位结构定位配合于所述翅片的厚度一侧。
  7. 根据权利要求6所述的换热器,其特征在于,所述毛细管通过沿所述毛细管的长度方向间隔开设置的多个所述定位结构定位配合于所述翅片。
  8. 根据权利要求6或7所述的换热器,其特征在于,所述翅片上设有沿所述翅片的宽度方向间隔开分布的多个所述毛细管,每个所述毛细管均通过至少一个所述定位结构定位配合于所述翅片。
  9. 根据权利要求6-8中任一项所述的换热器,其特征在于,所述定位结构限定出定位槽,所述毛细管长度方向上的一截定位配合在所述定位槽内。
  10. 根据权利要求9所述的换热器,其特征在于,所述定位槽包括入口槽段和定位槽段,所述入口槽段位于所述定位槽段的远离所述翅片的一侧,所述入口槽段的槽宽沿着远离所述定位槽段的方向逐渐增大。
  11. 根据权利要求10所述的换热器,其特征在于,所述定位槽段的槽宽沿着远离所述入口槽段的方向逐渐增大。
  12. 根据权利要求9-11中任一项所述的换热器,其特征在于,所述定位结构包括两个板片,两个所述板片之间限定出所述定位槽。
  13. 根据权利要求12所述的换热器,其特征在于,所述板片由所述翅片冲孔而成。
  14. 根据权利要求6-13中任一项所述的换热器,其特征在于,所述换热单元包括多个所述翅片,多个所述翅片沿所述翅片的厚度方向依次排布,所述定位结构夹止在相邻两个所述翅片之间,以限定相邻两个所述翅片之间的距离。
  15. 根据权利要求1-14中任一项所述的换热器,其特征在于,两个所述集流管均沿水平方向延伸,所述换热单元包括多个所述翅片,多个所述翅片沿所述集流管的长度方向间隔开排布,每个所述翅片均沿竖置方向延伸,每个所述翅片的厚度一侧设有多个所述毛细管,多个所述毛细管沿所述翅片的宽度方向间隔开排布,每个所述毛细管均沿竖置方向延伸。
  16. 一种空调器,其特征在于,包括根据权利要求1-15中任一项所述的换热器。
PCT/CN2019/121279 2019-10-30 2019-11-27 换热器和具有其的空调器 WO2021082149A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201921852142.5U CN210688818U (zh) 2019-10-30 2019-10-30 换热器和具有其的空调器
CN201921852142.5 2019-10-30
CN201911046934.8 2019-10-30
CN201911046934.8A CN110595112A (zh) 2019-10-30 2019-10-30 换热器和具有其的空调器
CN201921863484.7 2019-10-31
CN201921863484.7U CN210688819U (zh) 2019-10-31 2019-10-31 换热器和具有其的空调器

Publications (1)

Publication Number Publication Date
WO2021082149A1 true WO2021082149A1 (zh) 2021-05-06

Family

ID=75715594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121279 WO2021082149A1 (zh) 2019-10-30 2019-11-27 换热器和具有其的空调器

Country Status (1)

Country Link
WO (1) WO2021082149A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496330A2 (en) * 2003-07-07 2005-01-12 Calsonic Kansei Corporation Heat exchanger having header tanks
JP2012083070A (ja) * 2010-10-14 2012-04-26 Nippon Light Metal Co Ltd コルゲートフィン式熱交換器の排水構造
CN104976817A (zh) * 2014-04-08 2015-10-14 杭州三花研究院有限公司 换热器组件及其应用
CN106152613A (zh) * 2015-04-21 2016-11-23 杭州三花研究院有限公司 一种换热器及具有该换热器的空调系统
CN109506497A (zh) * 2018-10-26 2019-03-22 中国石油大学(华东) 一种高效紧凑毛细管换热器
CN110392814A (zh) * 2017-03-16 2019-10-29 大金工业株式会社 具有传热管单元的热交换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496330A2 (en) * 2003-07-07 2005-01-12 Calsonic Kansei Corporation Heat exchanger having header tanks
JP2012083070A (ja) * 2010-10-14 2012-04-26 Nippon Light Metal Co Ltd コルゲートフィン式熱交換器の排水構造
CN104976817A (zh) * 2014-04-08 2015-10-14 杭州三花研究院有限公司 换热器组件及其应用
CN106152613A (zh) * 2015-04-21 2016-11-23 杭州三花研究院有限公司 一种换热器及具有该换热器的空调系统
CN110392814A (zh) * 2017-03-16 2019-10-29 大金工业株式会社 具有传热管单元的热交换器
CN109506497A (zh) * 2018-10-26 2019-03-22 中国石油大学(华东) 一种高效紧凑毛细管换热器

Similar Documents

Publication Publication Date Title
JP4679542B2 (ja) フィンチューブ熱交換器、およびそれを用いた熱交換器ユニット並びに空気調和機
JP4096226B2 (ja) フィンチューブ型熱交換器、その製造方法及び冷凍空調装置
EP3021064B1 (en) Heat pump device
CN110741216B (zh) 热交换器、制冷循环装置及空调机
JP2018021756A (ja) フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
CN106796088A (zh) 多端口挤出式热交换器
WO2009109112A1 (zh) 一种专用于空调机的平行流热交换器
CN107843031B (zh) 微通道换热器
WO2021018126A1 (zh) 换热器和换热系统
JP2009270792A (ja) 熱交換器
CN210688819U (zh) 换热器和具有其的空调器
CN210861813U (zh) 换热器和具有其的空调器
EP4155652A1 (en) Heat exchanger and air conditioner
JP2016148480A (ja) 熱交換器
WO2021082149A1 (zh) 换热器和具有其的空调器
CN210688818U (zh) 换热器和具有其的空调器
JP2018162953A (ja) 熱交換器
CN210861814U (zh) 换热器和具有其的空调器
CN110595112A (zh) 换热器和具有其的空调器
WO2021042588A1 (zh) 换热器和具有其的空调器
CN212205788U (zh) 换热器及空调器
CN112066598A (zh) 换热器及空调设备
CN211120125U (zh) 换热器和具有其的空调器
WO2023208073A1 (zh) 换热器
CN215637599U (zh) 一种飞翼式换热器连接组件及其形成的换热器结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950839

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19950839

Country of ref document: EP

Kind code of ref document: A1