WO2021042588A1 - 换热器和具有其的空调器 - Google Patents

换热器和具有其的空调器 Download PDF

Info

Publication number
WO2021042588A1
WO2021042588A1 PCT/CN2019/121280 CN2019121280W WO2021042588A1 WO 2021042588 A1 WO2021042588 A1 WO 2021042588A1 CN 2019121280 W CN2019121280 W CN 2019121280W WO 2021042588 A1 WO2021042588 A1 WO 2021042588A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
fin
connecting piece
capillary
Prior art date
Application number
PCT/CN2019/121280
Other languages
English (en)
French (fr)
Inventor
李成恩
何哲旺
唐华
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021042588A1 publication Critical patent/WO2021042588A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • This application relates to the field of air conditioning technology, and in particular to a heat exchanger and an air conditioner having the same.
  • the tube-fin heat exchanger in the related art uses horizontal refrigerant tubes with a larger tube diameter and vertical fins.
  • the condensate is not drained smoothly, and the heat exchange efficiency of the fins is low.
  • the refrigerant tubes are Placed in the horizontal direction, affected by gravity, the refrigerant distribution in the upper and lower refrigerant pipes is uneven, and the overall heat exchange efficiency of the heat exchanger is not good.
  • This application aims to solve at least one of the technical problems existing in the related technology. For this reason, this application proposes a heat exchanger, which has high heat exchange efficiency, smooth discharge of condensate, and uniform heat exchange as a whole.
  • This application also proposes an air conditioner with the above heat exchanger.
  • the heat exchanger includes a heat exchange assembly, the heat exchange assembly includes: a collecting tube, a fin and a capillary tube, the collecting tube is two and spaced apart, the fin Is arranged between the two collecting pipes, the fins are multiple and are sequentially distributed along the extension direction of the collecting pipes, and the outer surface of each fin is provided with a plurality of the capillary tubes, Each of the capillary tubes extends along the extension direction of the corresponding fins, and both ends are respectively connected to the two headers; and a connecting assembly, the connecting assembly is connected to one of the two adjacent heat exchange assemblies
  • the connecting assembly includes: a connecting piece and a windshield, the connecting pieces are two and are arranged at intervals, the windshielding piece is connected between the two connecting pieces, wherein the collecting pipe is Straight pipe, the connecting piece is a elbow pipe, the extension directions of the collecting pipes belonging to different heat exchange components are different, and the connecting piece is used to connect the adjacent heat exchange components belonging to different heat exchange components Two
  • the heat exchange efficiency is high, the condensate discharge is smooth, and the overall heat exchange is uniform.
  • the header is connected to or separated from the connecting member.
  • the header and the connector are plug-fitted and fixedly connected.
  • one of the header and the connecting piece is an outer tube and the other is an inner tube.
  • the end of the inner tube is fitted into the end of the outer tube, and the outer tube There is a step inside the tube, and when the axial end surface of the inner tube abuts against the step, the inner tube and the outer tube are inserted and fitted in place.
  • the windshield is a curved panel, and the curved track of the windshield is the same and parallel to the curved track of the connecting piece.
  • the windshield has ventilation holes.
  • the ventilation holes are strip-shaped holes that extend from one connecting piece to the other connecting piece, and the ventilation holes are multiple and spaced apart along the extending direction of the connecting piece. .
  • the windshield includes a plurality of plates, the plurality of plates are spaced apart along the extending direction of the connecting member, and an air passage is defined between two adjacent plates.
  • the capillary tube is fixed on the outer surface of the fin.
  • two of the collecting pipes are arranged in parallel, and each of the fins and each of the capillary tubes are arranged perpendicular to the collecting pipe.
  • the two headers are spaced apart and distributed in the up and down direction.
  • the fin and the capillary provided thereon are an integral piece, or the heat exchange assembly is an integral piece.
  • the air conditioner according to the embodiment of the second aspect of the present application includes the heat exchanger according to the first aspect of the present application.
  • the heat exchange efficiency is high and the reliability is good.
  • Fig. 1 is an internal structure diagram of an air conditioner according to an embodiment of the present application
  • FIG 2 is a perspective view of the heat exchanger shown in Figure 1;
  • Fig. 3 is an enlarged view of part C circled in Fig. 2;
  • Figure 4 is an exploded view of a connector and a header according to an embodiment of the present application.
  • Figure 5 is a perspective view of a connecting assembly according to an embodiment of the present application.
  • Figure 6 is a perspective view of a windshield according to an embodiment of the present application.
  • Figure 7 is a perspective view of a windshield according to another embodiment of the present application.
  • Figure 8 is a perspective view of a fin and a capillary tube according to an embodiment of the present application.
  • Figure 9 is a perspective view of a heat exchange assembly according to an embodiment of the present application.
  • Fig. 10 is an experimental comparison curve of heat exchange between a heat exchanger according to an embodiment of the present application and a heat exchanger in the related art
  • Fig. 11 is an experimental comparison curve of the air-side heat transfer coefficient of a heat exchanger according to an embodiment of the present application and a heat exchanger in the related art;
  • Fig. 12 is an experimental comparison curve of the air-side pressure drop of a heat exchanger, a tube-fin heat exchanger, and a micro-channel heat exchanger according to an embodiment of the present application.
  • Air conditioner 1000 :
  • Heat exchanger 100 side plate 200; middle partition 300; side plate 400;
  • Heat exchange component 1 outer tube A; step A1; inner tube B;
  • the heat exchanger 100 may include a heat exchange assembly 1 and a connection assembly 2, where the heat exchange assembly 1 may include: a header 11, a fin 12 and a capillary 13, and the header 11 can Two and spaced apart, the fins 12 are arranged between the two collecting pipes 11.
  • the fins 12 are multiple and distributed in sequence along the extension direction of the collecting pipes 11.
  • the outer part of each fin 12 There are a plurality of capillary tubes 13 on the surface (it is understood as a broad sense here, it can be that two adjacent fins 12 share the capillary tube 13, at this time, the capillary tube 13 can be sandwiched between two adjacent fins 12, so that The outer surfaces of the two fins 12 share a group of capillary tubes 13.
  • each capillary 13 may not be shared between any two adjacent fins 12. At this time, the capillary tubes 13 on the outer surface of each fin 12 are no longer connected to each other. The outer surface of the other fin 12 contacts), each capillary 13 extends along the extension direction of the corresponding fin 12 (that is, the length direction of each capillary 13 is the same or substantially the same as the length direction of the fin 12 where it is located, However, it should be noted that the capillary 13 is not limited to extending along a straight line, for example, it can also extend along a curved line or a diagonal line, etc., but on the whole, the overall trend of its extension is the same as the overall trend of the extension of the fin 12), each capillary The two ends of each capillary tube 13 are respectively connected to the two headers 11, for example, the upper end of each capillary tube 13 shown in FIG. 1 is connected to the upper header 11, and the lower end of each capillary tube 13 is connected to the lower header. 11 Connected.
  • the heat exchange area between the capillary 13 and the fin 12 is larger, so that the heat exchange speed between the fin 12 and the air can be accelerated.
  • the capillary 13 extends along the extension direction of the corresponding fin 12, so that the fin 12 and The capillary tubes 13 are no longer arranged perpendicular to each other like the tube-fin heat exchanger, so the condensate drains smoothly.
  • a plurality of fins 12 are arranged in sequence along the extension direction of the header 11, a plurality of capillaries 13 are provided on each fin 12, so that the heat exchange of the heat exchange assembly 1 is uniform.
  • the diameter of the capillary 13 is small, for example, the inner diameter can be about 0.5 mm, for example, the outer diameter D of the capillary 13 satisfies 0.6mm ⁇ D ⁇ 2mm, and the wall thickness T of the capillary 13 satisfies 0.08mm ⁇ T ⁇ 0.2mm.
  • the sequential distribution refers to: at least partially spaced apart distribution, that is, some parts may be distributed without spaced apart.
  • the connecting component 2 is connected between two adjacent heat exchange components 1.
  • a connecting component 2 is connected between the heat exchange component 1a and the heat exchange component 1b.
  • the connecting assembly 2 may include: a connecting piece 21 and a windshield 22.
  • the connecting pieces 21 may be two and arranged at intervals.
  • the windshield 22 is connected between the two connecting pieces 21.
  • the collecting pipe 11 may be straight.
  • the connecting piece 21 may be a bent pipe, and the extension direction of the header 11 belonging to different heat exchange assemblies 1 is different.
  • in the heat exchange assembly 1a on the left side of the connecting assembly 2 up and down
  • the directions of the two headers 11 arranged at intervals extend along the direction shown in F1.
  • the two headers 11 arranged at intervals are all along the direction of F2.
  • the direction extends, where the direction of F1 is not parallel to the direction of F2, and the connecting member 21 can connect the header 11 belonging to the heat exchange assembly 1a and the header 11 belonging to the heat exchange assembly 1b.
  • two adjacent heat exchange components 1 in the heat exchanger 100 can be connected by the connecting component 2, so that the two adjacent heat exchange components 1 are combined into, for example, an L-shaped heat exchanger, a U-shaped heat exchanger, etc.
  • the structural stability of the heat exchanger 100 is high.
  • the windshield 22 can be arranged between the two connecting pieces 21. Increase the wind resistance to avoid the formation of a gap with a small wind resistance between the two connecting pieces 21, causing wind to pass through the gap, so that the wind can pass through the heat exchange components 1 on both sides of the connecting component 2.
  • the windshield 22 can exchange heat with the air, which is equivalent to increasing the heat exchange area of the heat exchanger 100.
  • the heat exchanger 100 has the advantages of high heat exchange efficiency, smooth discharge of condensate water, and uniform heat exchange as a whole.
  • two adjacent heat exchange components 1 can also be connected through the connecting assembly 2 to make The combination of two adjacent heat exchange components 1 into, for example, an L-shaped heat exchanger, a U-shaped heat exchanger, etc., increases the application range of the heat exchanger 100 and can also improve the overall heat exchange efficiency.
  • the micro-channel heat exchanger in the related art because the material of the collecting tube is hard and cannot be bent, it cannot be made into an L-shaped heat exchanger or a U-shaped heat exchanger. Therefore, the micro-channel in the related technology
  • the type heat exchanger can not meet the assembly of the whole machine well, which brings great inconvenience to product development, thus making the overall heat exchange efficiency of the heat exchanger difficult to meet the actual requirements.
  • the header 11 may have an escape hole into which the capillary 13 is inserted.
  • the capillary 13 is inserted into the header 11 through the escape hole before proceeding.
  • welding or the like can be used, as long as the sealing performance and structural stability of the capillary tube 13 and the collecting tube 11 are ensured, which is not limited here.
  • the manner in which the windshield 22 is connected to the connecting piece 21 is not limited.
  • the windshield 22 may be inserted into the connecting piece 21, or for example, the windshield 22 is not inserted into the connecting piece 21. It is fixed by means of welding, etc., which will not be repeated here.
  • the windshield 22 can be made of materials with high heat transfer coefficients, such as copper, aluminum, etc., so that the windshield 22 can be more effectively used to exchange heat with the air, which is equivalent to increasing the heat exchange rate.
  • the heat exchange area of the device 100 is equivalent to increasing the heat exchange rate.
  • the header 11 and the connecting member 21 may be connected or separated.
  • the connecting piece 21 and the header 11 may be connected to each other or not connected to each other.
  • the header 11 and the connecting piece 21 are in communication with each other.
  • the refrigerant in the header 11 can pass through the connecting piece 21, so that two adjacent heat exchange assemblies 1 are connected in series.
  • the connecting piece 21 when the header 11 is separated from the connecting piece 21, the connecting piece 21 can only serve to connect two adjacent headers 11 together, and the header 11 is connected to the connecting piece.
  • Piece 21 is not connected. Therefore, the connection form of the header 11 and the connecting piece 21 can be set differently according to actual needs, so that the connecting piece 21 can be used in different scenarios.
  • the header 11 and the connecting member 21 may be plug-fitted and fixedly connected.
  • the header 11 may be inserted into the connecting piece 21 and then fixedly connected, or the connecting piece 21 may be inserted into the connecting piece 11 and then fixedly connected.
  • the connecting piece 11 and the connecting piece 21 are connected.
  • the form is simple, and the structure stability after connection is high.
  • the capillary 21 is directly and fixedly connected to the connecting member 21, the middle part of the capillary 21 does not need to be welded. Therefore, the capillary 21 is not easy to leak the refrigerant, and the working reliability is more guaranteed.
  • header 11 and the connecting member 21 may not be mated with each other.
  • the header 11 and the connecting member 21 can be fixed by welding, etc., which is not limited herein. Therefore, the structural stability of the collecting pipe 11 and the connecting piece 21 can be improved, and the sealing performance of the collecting pipe 11 and the connecting piece 21 can also be ensured.
  • one of the header 11 and the connecting member 21 may be an outer tube A, and the other may be an inner tube B.
  • the end of the inner tube B is inserted into Inside the end of the outer tube A, the outer tube A has a step A1.
  • the inner tube B and the outer tube A are inserted and fitted in place.
  • the header 11 and the connector 21 are easily plugged and fit, and the fit depth during plug fit can be controlled, so as to improve the structural strength of the plug fit and the sealing performance of the plug fit.
  • the header 11 may be an inner tube B
  • the connecting piece 21 may be an outer tube A
  • the header 11 and the connecting piece 21 When mating and connecting, one end of the header 11 is inserted into the connecting piece 21 so that the end of the header 11 is stopped at the step A1, and then the connecting piece 21 is connected by welding or sealant. It is fixed with the header 11, for the same reason, for example, in some other specific embodiments, the header 11 can also be set as the outer tube A, and the connecting piece 21 is set as the inner tube B.
  • the two connecting pieces 21 The ends can be respectively inserted into the header 11 on both sides of the extension direction of the connecting member 21, and then the connecting member 21 and the header 11 are fixed by welding or sealing glue.
  • the pipe diameters of the header 11 and the connecting piece 21 can also be set to the same pipe diameter.
  • the windshield 22 may be a curved panel, and the bending track of the windshield 22 is the same as and parallel to the bending track of the connecting piece 21, for example, connecting the connecting piece 21 and the connecting piece 21
  • the orthographic projection of the center line of the connecting element 21 and the orthographic projection of the center line of the windshield 22 are coincident or geometrically similar.
  • the connection between the windshield 22 and the connecting piece 21 is facilitated, and the assembly efficiency of the windshield 22 and the connecting piece 21 is improved.
  • the windshield 22 may have ventilation holes 221. Therefore, the wind can pass through the heat exchange assembly 1 or through the ventilation holes 221 on the windshield 22, so that the wind resistance when the wind passes through the windshield 22 and the two heat exchange assemblies 1 is similar, so that The uniformity of the wind field on the air side of the heat exchange assembly 1 (that is, the side of the heat exchange assembly 1 that exchanges heat with the air first) can be improved, thereby improving the heat exchange efficiency of the heat exchange assembly 1.
  • the ventilation holes 221 may be strip-shaped holes extending from one connecting piece 21 to the other connecting piece 21 (the direction shown by F3 in FIG. 5).
  • the ventilation holes 221 are multiple and spaced apart along the extending direction of the connecting member 21 (the direction shown by F4 in FIG. 5).
  • the shape of the ventilation hole 221 can be made close to the shape between every two adjacent fins 12, so that the wind resistance when the wind passes through the windshield 22 and the two heat exchange assemblies 1 is similar, and the heat exchange can be improved.
  • the heat exchange efficiency of the air side of the heat exchanger 100 that is, the side of the heat exchanger 100 that exchanges heat with the air first
  • the uniformity of the wind field when the ventilation holes 221 are strip-shaped holes, the processing is convenient, so that the production efficiency of the windshield 22 can be improved.
  • the ventilation holes 221 may also be strip-shaped holes extending in other directions, for example, a plurality of short strip-shaped holes spaced apart along the direction parallel to the connecting member 21 and along the extension direction of the length of the windshield 22, for example, it may also be a plurality of circular holes, square holes, polygonal holes, etc., arranged at intervals, as long as it can ventilate and make the wind field at the heat exchange components 1 on both sides of the connecting component 2 uniform, which is not limited here.
  • the windshield 22 may also include a plurality of plates 222, and the plurality of plates 222 extend along the extension direction of the connecting member 21 (as shown in F5 in FIG. 7). The direction) is spaced apart and distributed, and an air passage 223 is defined between two adjacent plates 222. Therefore, it is not necessary to additionally provide a ventilation hole 221 in the plate 222, thereby reducing the processing difficulty of the plate 222 and improving production efficiency.
  • the windshield 22 can also be replaced by the fin 12 and the capillary tube 13, so that the area of the heat exchanger 100 can also be enlarged, thereby improving the heat exchange efficiency of the heat exchanger 100.
  • the fin 12 and the capillary tube 13 provided thereon may be an integral piece, or the heat exchange assembly 1 may be an integral piece (as shown in FIG. 9 ).
  • the heat transfer efficiency between the capillary tube 13 and the fin 12 can be improved, and the structural stability of the heat exchange assembly 1 can be improved.
  • the manufacture of the heat exchange assembly 1 is simpler and the production efficiency is higher.
  • the capillary 13 and the fin 12 may be an integral piece, or the heat exchange assembly 1 may be an integral piece (that is, the capillary 13, the fin 12 and the header 11 are an integral piece).
  • the integral piece can be an integrally formed piece, or it can be a non-detachable integral piece composed of multiple parts.
  • the fin 12 and the capillary 13 can be made separately, and then The capillary tube 13 is fixed on the fin 12, and finally the capillary tube 13 is fixedly connected with the header 11 to form a non-detachable integrated heat exchange assembly 1, and the heat exchange assembly 1 is now an integral piece.
  • each fin 12 and each capillary 13 can be vertical It is arranged in the header 11, that is, the longitudinal axis of each fin 12 (that is, the length extension line of the fin 12) is perpendicular to the longitudinal axis of the header 11 (that is, the length extension line of the header 11), and The longitudinal axis of each capillary tube 13 (that is, the length extension line of the capillary tube 13) is perpendicular to the longitudinal axis of the header 11 (that is, the length extension line of the header 11). Therefore, the structural stability of the heat exchange assembly 1 is high, and the heat exchange efficiency of the heat exchange assembly 1 is good. When the heat exchange assembly 1 is an evaporator, the drainage performance of the condensed water is excellent.
  • each fin 12 and each capillary tube 13 may not be arranged perpendicular to the header 11 (for example, approximately Vertical, etc.), which can be set according to the actual situation.
  • the installation space of the heat exchange assembly 1 allows, appropriately increase or decrease the outer dimensions of one of the heat exchange assemblies 1 (for example, increase or decrease the fin 12 and the length of the capillary 13), etc., so that the arrangement of the heat exchange assembly 1 is flexible, thereby increasing the application range of the heat exchanger 100.
  • two headers 11 are spaced apart in the up and down direction, that is, one of the headers 11 is placed horizontally above, and the other header 11 is placed horizontally below.
  • the length of the fin 12 and the header 13 extends in the up and down direction, which can increase the effect of the condensate drain of the heat exchange assembly 1 and reduce Small installation space.
  • the two headers 11 are spaced apart in the up and down direction, the distribution of the refrigerant is not easily affected by gravity, so that two-phase flow distribution can be realized.
  • the fin 12 and the capillary 13 arranged between the two headers 11 can be perpendicular or approximately perpendicular to the two headers 11, at this time, the two headers 11
  • the direction of the refrigerant in the header 11 is up and down. It can be understood that the refrigerant can be more evenly distributed when it is distributed to each capillary 13 up and down.
  • the arrangement adopted in the embodiment of the present application is According to the method, the distribution of the refrigerant will not be affected by the gravity of the refrigerant, thereby improving the heat exchange efficiency of the heat exchange assembly 1.
  • the capillary tube 13 is a stainless steel tube, and the capillary tube 13 is an extruded part, that is, the capillary tube 13 can be processed by extrusion molding, which facilitates batch processing of the capillary tube 13.
  • the fin 12 is a stainless steel piece or an aluminum piece to ensure that the fin 12 has good thermal conductivity.
  • the fin 12 can also be made of other materials with good thermal conductivity, and is not limited thereto.
  • the fin 12 is formed into a flat plate structure or a curved plate structure, which facilitates the realization of flexible and diversified designs of the heat exchanger 100 to better meet the requirements for high energy efficiency.
  • the fin 12 may be formed as a corrugated plate structure.
  • the width of the fin 12 is w, and w satisfies 8mm ⁇ w ⁇ 28mm.
  • w can be 8mm, or 10mm, or 20mm, or 23mm, or 26mm, etc., to ensure that the heat exchange unit 1 has enough
  • the heat exchange area ensures the heat exchange efficiency of the heat exchange unit 1, and at the same time avoids the excessive width of the fin 12, which causes the heat exchange unit 1 to be too heavy and occupy a large space.
  • the width of the fin 12 can also be set to other values, and is not limited thereto.
  • the thickness of the fin 12 is t, and t satisfies 0.08mm ⁇ t ⁇ 0.15mm.
  • t can be 0.08mm, or 0.1mm, or 0.12mm, or 0.15mm, etc., to ensure the fin 12 The structure is strong, and at the same time, the processing of the fin 12 is facilitated. It can be understood that the thickness of the fin 12 can also be set to other values, and is not limited thereto.
  • a plurality of capillaries 13 on the fin 12 are arranged at equal intervals along the width direction of the fin 12 to ensure the uniformity of heat exchange of the heat exchange unit 1; wherein, the fin 12 There are N capillary tubes 13, and the distance between two adjacent capillary tubes 13 is S, then the width of the fin 12 is w ⁇ (N+1)*S; for example, when N satisfies 2 ⁇ N ⁇ 3, then the fin 12 The width w of the fin 12 satisfies 8mm ⁇ w ⁇ 10mm, and when N satisfies 3 ⁇ N ⁇ 5, the width w of the fin 12 satisfies 10mm ⁇ w ⁇ 12mm, but is not limited to this.
  • the multiple capillaries 13 may also be arranged at non-equal intervals.
  • the heat exchanger 100 in this application uses R32 or R290 as the refrigerant, but it is not limited thereto.
  • the air conditioner 1000 may include the heat exchanger 100 according to the first embodiment of the present application.
  • the heat exchange efficiency of the heat exchanger 100 can be improved through the capillary tube 13 and the fin 12, and at the same time, two adjacent heat exchangers 100 can be connected through the connecting assembly 2, so that two Adjacent heat exchange components 1 are combined into, for example, L-shaped heat exchangers, U-shaped heat exchangers, etc., so as to increase the heat exchange area of the heat exchanger 100, thereby increasing the heat exchange efficiency of the heat exchanger 100 to adapt to energy efficiency upgrades.
  • the heat exchanger 100 may include two heat exchange components 1, each heat exchange component 1 may be an integral piece, and each heat exchange component 1 may include two edges.
  • the collecting pipe 11 arranged in the vertical direction and the fin 12 and the capillary tube 13 arranged perpendicular to the direction of the collecting pipe 11 are connected by a connecting piece 21 between the two heat exchange components 1 so that the two heat exchange components 1 are formed from above.
  • the heat exchanger 100 is generally L-shaped when used for orthographic projection, and the heat exchanger 100 is detachably fixed in the outdoor unit of the air conditioner 1000.
  • the heat exchange efficiency of the air conditioner 1000 is high.
  • the heat exchanger 100 when the heat exchanger 100 is detachably fixed in the air conditioner 1000, it can be fixed in the form of bolts, buckles, etc.
  • the fixing position of the heat exchanger 100 is not limited.
  • the heat exchanger 100 when installed in the outdoor unit of the air conditioner 1000, the heat exchanger 100 can be fixed to the side plate 200, the central partition 300, the side plate 400, etc. of the outdoor unit, as long as the heat exchanger 100 can be fixed to the air conditioner.
  • the structure of the 1000 outdoor unit needs to be stable, so I won’t repeat it here.
  • heat transfer and pressure drop are the most critical performance parameters in the design; among them, the size of the air side pressure drop will affect the selection of the corresponding fan, and the size of the wind speed affects the heat transfer.
  • the pressure drop on the refrigerant side affects the condensation and evaporation temperature, which in turn affects the heat transfer temperature difference.
  • the inventor compared the heat exchanger 100 of the embodiment of the present application with the heat exchanger in the related art.
  • Air side heat transfer coefficient h o (Ap+ ⁇ Af)/A o ⁇ h a
  • Q is the heat transfer of the heat exchanger
  • K is the total heat transfer coefficient of the heat exchanger
  • h w is the heat conductivity of the refrigerant side
  • a o is the heat transfer area of the air side of the heat exchanger
  • h o is the heat exchanger’s heat transfer coefficient.
  • Ap is the area of the thermally conductive capillary
  • h a is the conductivity of the fins on the air side
  • Api is a refrigerant-side heat transfer area
  • Af fin heat-transfer area is a co contact area of the capillary fins
  • h c is the contact conductivity between the fin and the capillary tube
  • ⁇ T is the temperature difference
  • tp is the air side temperature difference of the heat exchanger
  • ⁇ p is the thermal conductivity of air.
  • the factors that affect the heat transfer Q include fluid flow rate, pipe diameter, density, dynamic viscosity, thermal conductivity, heat transfer coefficient, specific heat capacity at constant pressure, fin 12 width and fin 12 thickness, etc., and under certain conditions, increase A large heat transfer coefficient, an increase in the overall efficiency of the fin 12, and an increase in the ratio of the outer and inner areas of the capillary 13 can all increase the heat exchange Q.
  • G is the mass flow rate of the refrigerant, and the mass flow rate is mainly affected by the flow velocity;
  • L flow is the length of the refrigerant flow channel, which is mainly affected by the distance between the fins 12, and D h is the hydraulic radius of the refrigerant flow channel, which is mainly affected by the fins.
  • 12 is the influence of the width;
  • is the shrinkage rate of the refrigerant channel, which is mainly affected by the spacing of the fins 12;
  • ⁇ in is the density at the inlet of the refrigerant, and ⁇ out is the density at the outlet of the refrigerant. Is the average density of the refrigerant.
  • the factors that affect the pressure drop ⁇ p on the refrigerant side include fluid flow rate, density, pipe diameter, fin 12 width, fin 12 thickness, and fin 12 spacing. Under certain conditions, increase and decrease the diameter of the capillary 13 The length of the small capillary 13 can reduce the pressure drop ⁇ p on the refrigerant side.
  • the inventor conducted a relevant analysis on the air side pressure drop, and found that under certain conditions, reducing the wind speed and reducing the compactness of the heat exchanger 100 (for example, increasing the distance between adjacent fins 12) can both be reduced. Pressure drop on the air side.
  • the abscissa is the wind speed
  • the ordinate is the heat exchange amount
  • the curve shown in L1 represents the wind speed-heat exchange curve of the heat exchanger 100 of the embodiment of the present application
  • the curve shown in L2 represents the heat exchange rate of the microchannel heat exchanger.
  • the curve shown in L3 represents the wind speed-heat transfer curve of the tube-fin heat exchanger. It can be seen from the figure that under the condition of the same wind speed, the heat exchange amount Q of the heat exchanger 100 is relatively high.
  • Winds in FIG. 11 the abscissa is the wind speed, the ordinate is the air side heat transfer coefficient h o, L4 curve represents the embodiment shown in the present application embodiment 100 of a heat exchanger - air-side heat transfer coefficient curve L5 shown in curve represents The wind speed-air side heat transfer coefficient curve of the micro-channel heat exchanger.
  • the curve shown in L6 represents the wind speed-air side heat transfer coefficient curve of the tube-fin heat exchanger. It can be seen from the figure that under the condition of the same wind speed, the air-side heat transfer coefficient h o of the heat exchanger 100 is relatively high.
  • the abscissa is the wind speed
  • the ordinate is the air side pressure drop
  • the curve shown in L7 represents the wind speed-air side pressure drop curve of the heat exchange unit 1 of this example
  • the curve shown in L8 represents the tube-fin heat exchanger
  • the wind speed-air side pressure drop curve of L9 represents the wind speed-air side pressure drop curve of the microchannel heat exchanger.
  • the heat exchanger 100 according to the embodiments of the present application may have better heat exchange performance. Therefore, through analysis, it can also be known that the contact thermal resistance of the heat exchanger 100 according to the embodiment of the present application is small, and the heat exchange efficiency ⁇ of the fin 12 can be effectively improved, and the total heat transfer coefficient K of the heat exchanger can be improved. , And finally increase the heat transfer capacity Q of the heat exchanger.
  • the inventor also analyzed the heat exchange unit 1 of the present application, respectively taking the number of capillaries 13 on the same fin 12 and the diameter of the capillaries 13 as the only variables, and obtained: 1.
  • Other structures of the heat exchange unit 1 In the same situation, if the heat exchange per unit ventilation area is the same, reducing the tube diameter of the capillary 13 will help reduce the pressure drop on the refrigerant side to a certain extent.
  • the other structures of the heat exchange unit 1 are the same, and the fins 12 There are 4 capillary tubes 13 on the top.
  • the capillary tube 13 with a diameter of 0.4mm corresponds to a larger heat exchange per unit ventilation area; 2.
  • the capillary 13 has the same The pipe diameter is 0.4mm.
  • the five capillary tubes 13 are provided on the fin 12
  • the example corresponds to a larger heat exchange per unit ventilation area.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Abstract

一种换热器(100)和具有其的空调器(1000),换热器(100)包括换热组件(1)和连接组件(2),换热组件(1)包括集流管(11)、翅片(12)和毛细管(13),每个翅片(12)的外表面上设有多个毛细管(13),每个毛细管(13)两端分别与两个集流管(11)连通,连接组件(2)连接在相邻两个换热组件(1)之间且包括连接件(21)和挡风件(22),挡风件(22)连接在两个连接件(21)之间,所属于不同换热组件(1)的集流管(11)的延伸方向不同,连接件(21)用于连接所属于不同换热组件(1)且相邻设置的两个集流管(11)。

Description

换热器和具有其的空调器
相关申请的交叉引用
本申请基于申请号为201921487970.3、申请日为2019年09月06日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,尤其是涉及一种换热器和具有其的空调器。
背景技术
相关技术中的管翅式换热器,采用管径较大的横置冷媒管,以及竖置设置的翅片,冷凝水排放不畅,翅片换热效率较低,此外,由于冷媒管为水平方向放置,受重力影响,上方和下方冷媒管中的冷媒分配不均,换热器整体的换热效率不佳。
发明内容
本申请旨在至少解决相关技术中存在的技术问题之一。为此,本申请提出一种换热器,所述换热器的换热效率高、冷凝水排放顺畅、整体换热均匀。
本申请还提出一种具有上述换热器的空调器。
根据本申请第一方面实施例的换热器,包括换热组件,所述换热组件包括:集流管、翅片和毛细管,所述集流管为两个且间隔设置,所述翅片设在两个所述集流管之间,所述翅片为多个且沿所述集流管的延伸方向依次分布,每个所述翅片的外表面上设有多个所述毛细管,每个所述毛细管沿相应所述翅片的延伸方向延伸且两端分别与两个所述集流管连通;和连接组件,所述连接组件连接在相邻的两个所述换热组件之间,所述连接组件包括:连接件和挡风件,所述连接件为两个且间隔设置,所述挡风件连接在两个所述连接件之间,其中,所述集流管为直管,所述连接件为弯管,所属于不同所述换热组件的所述集流管的延伸方向不同,所述连接件用于连接所属于不同所述换热组件且相邻设置的两个集流管。
根据本申请的用于气垫带式输送机的换热器,换热效率高、冷凝水排放顺畅、整体换热均匀。
在一些实施例中,所述集流管与所述连接件连通或隔断。
在一些实施例中,所述集流管与所述连接件插接配合并固定连接。
在一些实施例中,所述集流管和所述连接件中的一个为外管、另一个为内管,所述内管的端部插配到所述外管的端部内,所述外管内具有台阶,在所述内管的轴向端面止抵于所述台阶时,所述内管与所述外管插接配合到位。
在一些实施例中,所述挡风件为曲面板,且所述挡风件的弯曲轨迹与所述连接件的弯曲轨迹相同且平行。
在一些实施例中,所述挡风件上具有通风孔。
在一些实施例中,所述通风孔为从一个所述连接件向另一个所述连接件方向延伸的条形孔,所述通风孔为多个且沿所述连接件的延伸方向间隔开分布。
在一些实施例中,所述挡风件包括多个板片,多个所述板片沿所述连接件的延伸方向间隔开分布,相邻两个所述板片之间限定出过风口。
在一些实施例中,所述毛细管固定在所述翅片的外表面上。
在一些实施例中,在至少一个所述换热组件中:两个所述集流管平行设置,每个所述翅片和每个所述毛细管均垂直于所述集流管设置。
在一些实施例中,在至少一个所述换热组件中:两个所述集流管在上下方向上间隔开分布。
在一些实施例中,所述翅片与设在其上的所述毛细管为一体件,或者所述换热组件为一体件。
根据本申请第二方面实施例的空调器,包括根据本申请第一方面的换热器。
根据本申请的空调器,通过设置上述第一方面实施例的换热器,换热效率高、可靠性好。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请一个实施例的空调器的内部结构图;
图2是图1中所示的换热器的立体图;
图3是图2中圈示的C部的放大图;
图4是根据本申请一个实施例的连接件与集流管的爆炸图;
图5是根据本申请一个实施例的连接组件的立体图;
图6是根据本申请一个实施例的挡风件的立体图;
图7是根据本申请另外一个实施例的挡风件的立体图;
图8是根据本申请一个实施例的翅片和毛细管的立体图;
图9是根据本申请一个实施例的换热组件的立体图;
图10是根据本申请一个实施例的换热器与相关技术中的换热器的换热量的实验对比曲线;
图11是根据本申请一个实施例的换热器与相关技术中的换热器的空气侧换热系数的实验对比曲线;
图12根据本申请一个实施例的换热器与管翅式换热器、微通道式换热器的空气侧压降的实验对比曲线。
附图标记:
空调器1000:
换热器100;边板200;中隔板300;侧板400;
换热组件1;外管A;台阶A1;内管B;
集流管11;翅片12;毛细管13;
连接组件2;
连接件21;
挡风件22;
通风孔221;板片222;过风口223。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,参照附图,描述根据本申请第一方面实施例的换热器100。
如图1和图2所示,换热器100可以包括换热组件1和连接组件2,其中,换热组件1可以包括:集流管11、翅片12和毛细管13,集流管11可以为两个且间隔设置,翅片12设在两个集流管11之间,结合图3,翅片12为多个且沿集流管11的延伸方向依次分布, 每个翅片12的外表面上设有多个毛细管13(此处当作广义理解,既可以是相邻两个翅片12共用毛细管13,此时毛细管13可以夹设在相邻两个翅片12之间,以使两个翅片12的外表面共用一组毛细管13,当然,也可以任意相邻两个翅片12之间不共用毛细管13,此时,每个翅片12外表面上的毛细管13不再与另外的翅片12的外表面接触),每个毛细管13沿相应翅片12的延伸方向延伸(也就是说,每个毛细管13的长度方向与其所在的翅片12的长度方向相同或大体相同,但是需要说明的是,毛细管13不限于沿直线延伸,例如还可以沿曲线或斜线延伸等等,但是整体上来说,其延伸的整体趋势与翅片12延伸的整体趋势相同),每个毛细管13的两端分别与两个集流管11连通,例如图1中所示的每个毛细管13的上端均与上方的集流管11连通,每个毛细管13的下端均与下方的集流管11连通。
由此,毛细管13与翅片12的换热面积较大,从而可以加快翅片12与空气的热交换速度,同时,由于毛细管13沿相应翅片12的延伸方向延伸,从而使得翅片12与毛细管13不再向管翅式换热器那样相互垂直设置,因此冷凝水的排放顺畅。另外,由于多个翅片12沿集流管11的延伸方向依次分布设置,在每个翅片12上面均设有多个毛细管13,从而使得换热组件1的换热均匀。此外,需要说明的是,毛细管13的管径较小,例如内径可以为0.5mm左右,例如毛细管13的外径D满足0.6mm≤D≤2mm,毛细管13的壁厚T满足0.08mm≤T≤0.2mm。另外,还需要说明的是,依次分布指的是:至少部分间隔开分布,也就是说,可以有一部分不间隔开分布。
如图2所示,连接组件2连接在相邻的两个换热组件1之间,例如在图2所示的示例中,换热组件1a和换热组件1b之间连接有一个连接组件2,连接组件2可以包括:连接件21和挡风件22,连接件21可以为两个且间隔设置,挡风件22连接在两个连接件21之间,其中,集流管11可以为直管,连接件21可以为弯管,所属于不同换热组件1的集流管11的延伸方向不同,例如图2所示的示例中,在连接组件2左侧的换热组件1a中,上下间隔设置的两个集流管11的方向均沿图示F1的方向延伸,连接组件2的右侧的换热组件1b中,上下间隔设置的两个集流管11的均沿图示F2的方向延伸,其中F1的方向与F2的方向不平行,连接件21可以连接属于换热组件1a的集流管11和属于换热组件1b的集流管11。
由此,换热器100中的相邻的两个换热组件1可以通过连接组件2连接,使两个相邻换热组件1组合成例如L形换热器、U形换热器等,以增加换热器100的使用范围,同时换热器100的结构稳定性高,此外,由于两个换热组件1的延伸方向不同,因此在两个连接件21之间设置挡风件22可以加大风阻,避免在两个连接件21之间形成风阻较小的缺口,导致风从缺口处通过,使得风可以从连接组件2两侧的换热组件1通过,同时在一些情况下,还可以通过挡风件22与空气进行热交换,由此相当于加大了换热器100的换热面积。
根据本申请实施例的换热器100,具有换热效率高、冷凝水排放顺畅、整体换热均匀等优点,同时,通过连接组件2还可以将两个相邻的换热组件1连接,使两个相邻换热组件1组合成例如L形换热器、U形换热器等,增加了换热器100的使用范围,同时还可以提高整体换热效率。此外,在相关技术中的微通道式换热器中,由于集流管的材质较硬,不能折弯,做不成L型换热器或者U型换热器,因此,相关技术中的微通道式换热器不能很好地满足整机装配,给产品开发带来很大的不便,从而,使换热器的整体换热效率难以满足实际要求。
需要说明的是,毛细管13与集流管11的连通方式不限,例如可以是在集流管11上具有毛细管13插入的避让孔,毛细管13由避让孔插入到集流管11内部后再进行固定,又例如在集流管11上具有外接管段,毛细管13也可以不插入到集流管11内部,在集流管11外与外接管段固定等等。此外,在固定时,可以采用焊接等方式,只要保证毛细管13与集流管11连接后的密封性和结构稳定性即可,在此不作限定。
此外,挡风件22与连接件21连接的方式也不限,例如可以是挡风件22插入到连接件21内部,又例如挡风件22不插入到连接件21内部,在固定时,可以采用例如焊接等形式进行固定,在此不作赘述。
另外,挡风件22的制作材料可以为具有高换热系数的材料,例如铜、铝等,由此,可以更加有效地利用挡风件22与空气进行热交换,相当于加大了换热器100的换热面积。
在一些实施例中,集流管11与连接件21可以连通或隔断。也就是说,连接件21与集流管11既可以是互相连通的也可以使互相不连通的。例如在一些具体的实施例中,集流管11与连接件21是互相连通的,此时集流管11中的冷媒可以从连接件21中通过,使两个相邻的换热组件1串联在一起。例如在另外一些具体的实施例中,当集流管11与连接件21隔断时,连接件21可以只起到将两个相邻集流管11连接在一起的作用,集流管11与连接件21是并非连通的。由此,集流管11与连接件21的连接形式可以根据实际需要进行不同的设置,从而使连接件21可以应用到不同的场景中使用。
在一些实施例中,如图2所示,集流管11与连接件21可以插接配合并固定连接。也就是说,可以是集流管11插入到连接件21内后固定连接,还可以是连接件21插入到集流管11内后固定连接,由此,集流管11与连接件21的连接形式简单,且连接后的结构稳定性高。此外,毛细管21直接与连接件21固定连接时,毛细管21的中间部位不需要进行焊接,因此,使得毛细管21不易泄露冷媒,工作可靠性更有保障。
需要说明的是,集流管11与连接件21也可以不通过插接配合,例如集流管11与连接件21可以通过焊接的方法固定等,在此不作限定。由此,既可以提高集流管11与连接件 21的结构稳定性,也可以保证集流管11与连接件21的密封性。
在一些实施例中,如图2所示,集流管11和连接件21中的一个可以为外管A、另一个可以为内管B,结合图4,内管B的端部插配到外管A的端部内,外管A内具有台阶A1,在内管B的轴向端面止抵于台阶A1时,内管B与外管A插接配合到位。由此,通过集流管11与连接件21插接配合方便,且可以控制插接配合时的配合深度,以提高插接配合的结构强度和插接配合的密封性。
例如,在如图4所示的具体实施例中,集流管11可以为内管B,连接件21可以为外管A,在连接件21内具有台阶A1,当集流管11与连接件21插配连接时,是将集流管11的一端插到连接件21内,使集流管11的端部止抵在台阶A1处,然后再通过使用焊接或者密封胶等方法将连接件21与集流管11进行固定,同理,例如在另外一些具体实施例中,也可以将集流管11设置成外管A,连接件21设置成内管B,此时,连接件21的两端可以分别插入连接件21延伸方向两侧的集流管11内,然后再通过使用焊接或者使用密封胶等方法将连接件21与集流管11进行固定。当然本申请不限于此,也可以将集流管11与连接件21的管径设置成相同管径,在连接时,可以采用在集流管11与连接件21对接的外侧加设管箍结构,将集流管11与连接件21的对接后由管箍结构进行覆盖,然后再通过使用焊接或者密封胶等方法将连接件21与集流管11进行固定等等,在此不作赘述。
在一些实施例中,如图5和图6所示,挡风件22可以为曲面板,且挡风件22的弯曲轨迹与连接件21的弯曲轨迹相同且平行,例如将连接件21与挡风件22同时沿挡风件22的长度方向作正投影时,连接件21中心线的正投影与挡风件22中心线的正投影重合或几何相似。由此,便于挡风件22与连接件21的连接,从而提高挡风件22与连接件21的组装效率。
在一些实施例中,如图6所示,挡风件22上可以具有通风孔221。由此,风既可以从换热组件1处通过,也可以从挡风件22上的通风孔221处通过,使风在挡风件22和两个换热组件1通过时的风阻相近,从而可以提高换热组件1的空气侧(即换热组件1中先与空气换热的一侧)的风场均匀性,从而提高换热组件1的换热效率。
例如,在一些具体实施例中,如图5结合图6所示,通风孔221可以为从一个连接件21向另一个连接件21方向(如图5中F3所示方向)延伸的条形孔,通风孔221为多个且沿连接件21的延伸方向(如图5中F4所示方向)间隔开分布。由此,可以使得通风孔221的形状与每相邻两个翅片12之间的形状接近,使风在挡风件22和两个换热组件1通过时的风阻相近,进而可以提高换热器100空气侧(即换热器100中先与空气换热的一侧)的换热效率和风场的均匀性。此外,通风孔221为条形孔时的加工方便,从而可以提高挡风 件22的生产效率。
需要说明的是,设在挡风件22上的通风孔221的数量越多,分得越细越好。此外,通风孔221也可以是沿其他方向延伸的条形孔,例如沿平行于连接件21的方向,并沿挡风件22的长度的延伸方向间隔设置的多个较短的条形孔,还例如可以是间隔设置的多个圆形孔、方形孔、多边形孔等等,只要满足可以通风并且使连接组件2两侧的换热组件1处的风场均匀即可,在此不作限定。
此外,在另外一些具体实施例中,如图7所示,挡风件22还可以是包括多个板片222,多个板片222沿连接件21的延伸方向(如图7中所示F5方向)间隔开分布,相邻两个板片222之间限定出过风口223。由此,可以不必在板片222中额外设置通风孔221,从而降低板片222的加工难度,提高生产效率。
另外,若工艺条件允许的情况下,也可以将挡风件22由翅片12以及毛细管13替代,由此还可以加大换热器100的面积,从而提高换热器100的换热效率。
在一些实施例中,如图8所示,翅片12与设在其上的毛细管13可以为一体件,或者换热组件1可以为一体件(如图9所示)。由此,可以提高毛细管13与翅片12之间的导热效率,和提高换热组件1的结构稳定性,同时,换热组件1的制造更简单且生产效率较高。
在换热器100中,毛细管13与翅片12可以为一体件,或者换热组件1可以为一体件(即毛细管13、翅片12和集流管11三者为一体件)。这里需要解释的是,一体件可以是一体成型件,也可以是由多个零件组合而成且不可拆卸的整体件,例如在一些具体示例中,可以分别制作翅片12和毛细管13,然后再将毛细管13固定在翅片12上,最后再将毛细管13与集流管11固定连通,组成不可拆卸的一个整体的换热组件1,此时换热组件1即为一体件。
在一些实施例中,如图2所示,在换热器100中的至少一个换热组件1中:两个集流管11可以平行设置,每个翅片12和每个毛细管13均可以垂直于集流管11设置,也就是说每个翅片12的纵轴线(即翅片12的长度延伸线)垂直于集流管11的纵轴线(即集流管11的长度延伸线),且每个毛细管13的纵轴线(即毛细管13的长度延伸线)垂直于集流管11的纵轴线(即集流管11的长度延伸线)。由此,换热组件1的结构稳定性高,换热组件1的换热效率好,当换热组件1为蒸发器时,冷凝水的排水性能优良。
此外,换热组件1中的两个集流管11也可以不平行设置(例如近似平行等),或者是每个翅片12和每个毛细管13均不垂直于集流管11设置(例如近似垂直等),由此可以根据实际情况进行设置,例如可以在换热组件1安装空间允许的情况下,适当加大或减小其中一个换热组件1的外形尺寸(例如增加或减小翅片12与毛细管13的长度)等,从而换热 组件1的设置灵活,进而增加换热器100的应用范围。
在一些实施例中,如图2所示,在换热器100中的至少一个换热组件1中:两个集流管11在上下方向上间隔开分布,也就是说,其中一个集流管11横置在上方,另一个集流管11横置在下方,此时,翅片12与集流管13的长度方向沿上下方向延伸,从而可以增加换热组件1排冷凝水的效果,减小安装空间。此外,两个集流管11在上下方向上间隔开分布时,冷媒分配不易受到重力的影响,从而可以实现两相流分配。
例如,当两个集流管11上下方向间隔分布时,两个集流管11之间设置的翅片12与毛细管13方向可以垂直或近似垂直两个集流管11,此时,在两个集流管11内的冷媒方向为上下方向流动,可以理解的是,冷媒上下分配到每个毛细管13时可以分配得更均匀,相比相关技术中的冷媒分配,本申请实施例中采用的设置方法,不会受到冷媒自身重力影响冷媒的分配,从而提高了换热组件1的换热效率。
在一些实施例中,毛细管13为不锈钢管,毛细管13为挤压成型件,即毛细管13可以采用挤压成型的方式加工,便于实现毛细管13的批量加工。
在一些实施例中,翅片12为不锈钢件或铝件,以保证翅片12具有良好的导热性。当然,翅片12还可以为其他导热性良好的材料件,而不限于此。
在一些实施例中,翅片12形成为平板结构或曲板结构,便于实现换热器100的灵活多样化设计,以更好地满足高能效需求。例如,翅片12可以形成为波纹板结构。
在一些实施例中,翅片12的宽度为w,w满足8mm≤w≤28mm,例如w可以为8mm、或10mm、或20mm、或23mm、或26mm等,保证了换热单元1具有足够的换热面积,从而保证了换热单元1的换热效率,同时避免了翅片12宽度过大而导致换热单元1过重、占用空间较大。可以理解的是,翅片12的宽度还可以设置为其他数值,而不限于此。
在一些实施例中,翅片12的厚度为t,t满足0.08mm≤t≤0.15mm,例如t可以为0.08mm、或0.1mm、或0.12mm、或0.15mm等,保证了翅片12的结构强度,同时便于翅片12的加工。可以理解的是,翅片12的厚度还可以设置为其他数值,而不限于此。
在一些实施例中,如图3所示,翅片12上的多个毛细管13沿翅片12的宽度方向等间距排布,以保证换热单元1的换热均匀性;其中,翅片12上设有N个毛细管13,相邻两个毛细管13之间的距离为S,则翅片12的宽度w≥(N+1)*S;例如当N满足2≤N≤3时,则翅片12的宽度w满足8mm≤w≤10mm,当N满足3≤N≤5时,则翅片12的宽度w满足10mm≤w≤12mm,但不限于此。当然,多个毛细管13也可以非等间距排布。
在一些实施例中,本申请中的换热器100相应选用冷媒R32、或R290,但不限于此。
如图1所示,根据本申请第二方面实施例的空调器1000,可以包括根据本申请第一方 面实施例的换热器100。
根据本申请实施例的空调器1000,通过毛细管13与翅片12可以提高换热器100的换热效率,同时,通过连接组件2可以将连个相邻的换热器100连接,使两个相邻换热组件1组合成例如L形换热器、U形换热器等,从而加大换热器100的换热面积,进而提高换热器100的换热效率,以适应能效升级。
例如在一个具体示例中,如图1所示,换热器100可以包括两个换热组件1,每个换热组件1均可以是一体件,每个换热组件1均可以包括两个沿上下方向间隔设置的集流管11和垂直于集流管11方向设置的翅片12与毛细管13,两个换热组件1之间通过连接件21连接,使两个换热组件1形成自上而下作正投影时大体为L形的换热器100,换热器100可拆卸地固定在空调器1000的室外机内。由此,空调器1000的换热效率高。
需要说明的是,换热器100可拆卸地固定在空调器1000内时,可以采用例如螺栓、卡扣等形式固定,此外,换热器100的固定位置不限,例如当将换热器100安装于空调器1000的室外机内时,可以将换热器100与室外机的边板200、中隔板300、侧板400等位置进行固定,只要可以满足将换热器100固定在空调器1000的室外机内时的结构稳定即可,在此不作赘述。
此外,对于风冷式换热器,换热量和压降是设计中最为关键的性能参数;其中,空气侧压降的大小会影响对应风机的选型,而风速的大小是影响换热量的最关键的因素之一,冷媒侧压降会影响冷凝和蒸发温度,进而影响传热温差。然而,换热量和压降之间存在矛盾关系,发明人根据传热学的理论,将本申请实施例的换热器100和相关技术中的换热器进行了实验对比,在实验中设定了在同等情况下的不同换热器的换热量Q的数据(如图10所示)和空气侧换热系数h o的数据(如图11所示);结果表明,本申请的换热器100具有更加优良的换热能力,换热效率较高,在相同换热量的情况下,本示例的换热单元1需要的风量相对较少,且在相同发换热量的情况下,本示例的换热单元1的换热面积可以适当减小,从而本示例的换热单元1可以在换热量和压降之间取得良好的平衡。其中传热学理论公式为:
换热量Q=K·A 0·ΔT
总传热系数
Figure PCTCN2019121280-appb-000001
空气侧换热系数h o=(Ap+η·Af)/A o×h a
其中,Q为换热器的换热量,K为换热器的总传热系数,h w为冷媒侧热传导率,A o为换热器的空气侧导热面积,h o为换热器的空气侧换热系数,Ap为毛细管导热面积,h a为翅 片的空气侧传导率,Api为冷媒侧导热面积,Af为翅片的导热面积,A co为翅片与毛细管的接触面积,η为翅片的换热效率,h c为翅片与毛细管的接触传导率,ΔT为温度差,tp为换热器的空气侧温差,λp为空气的导热率。
在本申请中,由于换热单元1自身的结构设计,相对于管翅式换热器,h c很大,则
Figure PCTCN2019121280-appb-000002
可以忽略不计,则传热学理论公式可转化为:
换热量
Figure PCTCN2019121280-appb-000003
其中,η o为翅片12的总效率,且η o=f(对流换热系数,翅片长度,翅片厚度,导热系数),即η o受传热系数、材料的导热系数以及翅片的结构参数影响,影响对流换热系数的因素包括流体流速、特征长度、密度、动力粘度、导热系数和定压比热容等;β为毛细管13的外内面积比,即β为毛细管13的外表面面积与内表面面积之比;h o为管外传热系数,且管外传热系数主要受流速和翅片12宽度的影响;δ/λ为管壁导热热阻,且δ/λ较小、可以忽略不计;h i为管内传热系数,且管内传热系数主要受流体的流速和管径的影响;T fi-T fo为温度差。
显然,影响换热量Q的因素包括流体流速、管径、密度、动力粘度、导热系数、传热系数、定压比热容、翅片12宽度和翅片12厚度等,且在一定条件下,增大传热系数、增大翅片12总效率和增大毛细管13的外内面积比均可以增大换热量Q。
并结合冷媒侧压降的计算公式:
Figure PCTCN2019121280-appb-000004
其中,G为冷媒的质量流速,且质量流速主要受流速的影响;L flow为冷媒流道的长度,主要受翅片12间距的影响,D h为冷媒流道的水利半径,主要受翅片12宽度的影响;σ为冷媒流道收缩率,主要受翅片12间距的影响;ρ in为冷媒进口处的密度,ρ out为冷媒出口处的密度,
Figure PCTCN2019121280-appb-000005
为冷媒的平均密度。
显然,影响冷媒侧压降Δp的因素包括流体流速、密度、管径、翅片12宽度、翅片12厚度和翅片12间距等,且在一定条件下,增大毛细管13的管径和减小毛细管13的管长均可以降低冷媒侧压降Δp。
此外,发明人对空气侧压降进行了相关分析,得出,在一定条件下,减小风速和减小换 热器100的紧凑性(例如增大相邻翅片12的间距)均可以降低空气侧压降。
在图10中,横坐标为风速,纵坐标为换热量,L1所示曲线代表本申请实施例的换热器100的风速-换热量曲线,L2所示曲线代表微通道换热器的风速-换热量曲线,L3所示曲线代表管翅式换热器的风速-换热量曲线。从图中可以看出,在同等风速的条件下,换热器100的换热量Q相对较高。
在图11中,横坐标为风速,纵坐标为空气侧换热系数h o,L4所示曲线代表本申请实施例的换热器100的风速-空气侧换热系数曲线,L5所示曲线代表微通道换热器的风速-空气侧换热系数曲线,L6所示曲线代表管翅式换热器的风速-空气侧换热系数曲线。从图中可以看出,在同等风速的条件下,换热器100的空气侧换热系数h o相对较高。
在图12中,横坐标为风速,纵坐标为空气侧压降,L7所示曲线代表本示例的换热单元1的风速-空气侧压降曲线,L8所示曲线代表管翅式换热器的风速-空气侧压降曲线,L9所示曲线代表微通道式换热器的风速-空气侧压降曲线。从图中可以看出,在同等风速的条件下,本示例的换热单元1和微通道式换热器的空气侧压降都相对较低,说明风阻较小,换热效率更好。
通过以上多组实验可以得出,根据本申请实施例的换热器100可以具有更加优良的换热性能。由此,通过分析还可以得知,根据本申请实施例的换热器100的接触热阻小,能够有效地提升翅片12的换热效率η,以及提升换热器的总传热系数K,最终提升换热器的换热量Q。
而且,发明人还针对将本申请的换热单元1,分别将同一翅片12上毛细管13的数量和毛细管13的管径作为唯一变量进行了分析,得出,1、换热单元1其他结构相同的情况下,如果单位通风面积的换热量相同时,减小毛细管13的管径在一定程度上有利于减小冷媒侧压降,例如,换热单元1其他结构相同,且翅片12上设有4个毛细管13,对于毛细管13管径为0.4mm的示例和毛细管13管径为0.6mm的示例而言,单位通风面积的换热量相同时,毛细管13管径为0.4mm的示例对应的冷媒侧压降较小,且冷媒侧压降相同时,毛细管13管径为0.4mm的示例对应的单位通风面积的换热量较大;2、换热单元1其他结构相同的情况下,如果单位通风面积的换热量相同时,增大翅片12上毛细管13的数量在一定程度上有利于提升单位通风面积的换热量,例如,换热单元1其他结构相同,毛细管13的管径为0.4mm,对于翅片12上设置4个毛细管14的示例和翅片12上设置5个毛细管13的示例而言,冷媒侧压降相同时,翅片12上设置5个毛细管13的示例对应的单位通风面积的换热量较大。
根据本申请实施例的空调器的其他构成例如电控系统和送风系统等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本申请的描述中,需要理解的是,术语“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、“左”、“右”、“内”、“外”、“轴向”、“径向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种换热器,其特征在于,包括
    换热组件,所述换热组件包括:集流管、翅片和毛细管,所述集流管为两个且间隔设置,所述翅片设在两个所述集流管之间,所述翅片为多个且沿所述集流管的延伸方向依次分布,每个所述翅片的外表面上设有多个所述毛细管,每个所述毛细管沿相应所述翅片的延伸方向延伸且两端分别与两个所述集流管连通;和
    连接组件,所述连接组件连接在相邻的两个所述换热组件之间,所述连接组件包括:连接件和挡风件,所述连接件为两个且间隔设置,所述挡风件连接在两个所述连接件之间,其中,所述集流管为直管,所述连接件为弯管,所属于不同所述换热组件的所述集流管的延伸方向不同,所述连接件用于连接所属于不同所述换热组件且相邻设置的两个集流管。
  2. 根据权利要求1所述的换热器,其特征在于,所述集流管与所述连接件连通或隔断。
  3. 根据权利要求1或2所述的换热器,其特征在于,所述集流管与所述连接件插接配合并固定连接。
  4. 根据权利要求3所述的换热器,其特征在于,所述集流管和所述连接件中的一个为外管、另一个为内管,所述内管的端部插配到所述外管的端部内,所述外管内具有台阶,在所述内管的轴向端面止抵于所述台阶时,所述内管与所述外管插接配合到位。
  5. 根据权利要求1-4中任一项所述的换热器,其特征在于,所述挡风件为曲面板,且所述挡风件的弯曲轨迹与所述连接件的弯曲轨迹相同且平行。
  6. 根据权利要求5所述的换热器,其特征在于,所述挡风件上具有通风孔。
  7. 根据权利要求6所述的换热器,其特征在于,所述通风孔为从一个所述连接件向另一个所述连接件方向延伸的条形孔,所述通风孔为多个且沿所述连接件的延伸方向间隔开分布。
  8. 根据权利要求1-7中任一项所述的换热器,其特征在于,所述挡风件包括多个板片,多个所述板片沿所述连接件的延伸方向间隔开分布,相邻两个所述板片之间限定出过风口。
  9. 根据权利要求1-8中任一项所述的换热器,其特征在于,在至少一个所述换热组件中:两个所述集流管平行设置,每个所述翅片和每个所述毛细管均垂直于所述集流管设置。
  10. 根据权利要求1-9中任一项所述的换热器,其特征在于,在至少一个所述换热组件中:两个所述集流管在上下方向上间隔开分布。
  11. 根据权利要求1-10中任一项所述的换热器,其特征在于,所述翅片与设在其上的所述毛细管为一体件,或者所述换热组件为一体件。
  12. 一种空调器,其特征在于,包括根据权利要求1-11中任一项所述的换热器。
PCT/CN2019/121280 2019-09-06 2019-11-27 换热器和具有其的空调器 WO2021042588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921487970.3U CN210688491U (zh) 2019-09-06 2019-09-06 换热器和具有其的空调器
CN201921487970.3 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021042588A1 true WO2021042588A1 (zh) 2021-03-11

Family

ID=70896841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121280 WO2021042588A1 (zh) 2019-09-06 2019-11-27 换热器和具有其的空调器

Country Status (2)

Country Link
CN (1) CN210688491U (zh)
WO (1) WO2021042588A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107103A (ja) * 2008-10-30 2010-05-13 Sharp Corp 空気調和機の室外機
CN101782298A (zh) * 2009-01-19 2010-07-21 三花丹佛斯(杭州)微通道换热器有限公司 一种热交换器
CN203100522U (zh) * 2012-12-26 2013-07-31 广东美的制冷设备有限公司 集流管及平行流换热器
CN103890531A (zh) * 2011-08-29 2014-06-25 三电有限公司 热交换器
CN204165425U (zh) * 2014-10-08 2015-02-18 深圳麦克维尔空调有限公司 一种翅片式换热器组件及换热装置
CN204329670U (zh) * 2014-12-11 2015-05-13 丹佛斯微通道换热器(嘉兴)有限公司 换热器、换热模块、换热装置以及热源单元
CN206176583U (zh) * 2016-11-11 2017-05-17 珠海格力电器股份有限公司 换热器及空调室外机
JP2019128090A (ja) * 2018-01-24 2019-08-01 東芝キヤリア株式会社 熱交換器及び冷凍サイクル装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107103A (ja) * 2008-10-30 2010-05-13 Sharp Corp 空気調和機の室外機
CN101782298A (zh) * 2009-01-19 2010-07-21 三花丹佛斯(杭州)微通道换热器有限公司 一种热交换器
CN103890531A (zh) * 2011-08-29 2014-06-25 三电有限公司 热交换器
CN203100522U (zh) * 2012-12-26 2013-07-31 广东美的制冷设备有限公司 集流管及平行流换热器
CN204165425U (zh) * 2014-10-08 2015-02-18 深圳麦克维尔空调有限公司 一种翅片式换热器组件及换热装置
CN204329670U (zh) * 2014-12-11 2015-05-13 丹佛斯微通道换热器(嘉兴)有限公司 换热器、换热模块、换热装置以及热源单元
CN206176583U (zh) * 2016-11-11 2017-05-17 珠海格力电器股份有限公司 换热器及空调室外机
JP2019128090A (ja) * 2018-01-24 2019-08-01 東芝キヤリア株式会社 熱交換器及び冷凍サイクル装置

Also Published As

Publication number Publication date
CN210688491U (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
EP3279598B1 (en) Heat exchanger and air conditioner
EP3021064B1 (en) Heat pump device
CN106288911A (zh) 一种翅片及包括该翅片的散热器
US9429373B2 (en) Heat exchanger
CN110741216B (zh) 热交换器、制冷循环装置及空调机
WO2021018126A1 (zh) 换热器和换热系统
CN210861813U (zh) 换热器和具有其的空调器
WO2009109112A1 (zh) 一种专用于空调机的平行流热交换器
CN107843031B (zh) 微通道换热器
CN211855020U (zh) 换热管和具有其的换热器
WO2021042588A1 (zh) 换热器和具有其的空调器
WO2013125625A1 (ja) フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
CN110736268A (zh) 换热器和具有其的空调器
CN210688819U (zh) 换热器和具有其的空调器
CN210688818U (zh) 换热器和具有其的空调器
JP5591285B2 (ja) 熱交換器および空気調和機
CN210861814U (zh) 换热器和具有其的空调器
WO2018040036A1 (zh) 微通道换热器及风冷冰箱
WO2018040037A1 (zh) 微通道换热器及风冷冰箱
CN211626225U (zh) 一种传热管散热结构
CN110595112A (zh) 换热器和具有其的空调器
WO2021082149A1 (zh) 换热器和具有其的空调器
CN111380394B (zh) 换热器
CN211120125U (zh) 换热器和具有其的空调器
CN112066598A (zh) 换热器及空调设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944484

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19944484

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19944484

Country of ref document: EP

Kind code of ref document: A1