WO2021082117A1 - 一种同时测定汞、镉、锌、铅的装置和方法 - Google Patents

一种同时测定汞、镉、锌、铅的装置和方法 Download PDF

Info

Publication number
WO2021082117A1
WO2021082117A1 PCT/CN2019/119851 CN2019119851W WO2021082117A1 WO 2021082117 A1 WO2021082117 A1 WO 2021082117A1 CN 2019119851 W CN2019119851 W CN 2019119851W WO 2021082117 A1 WO2021082117 A1 WO 2021082117A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz
tube
atomic absorption
mercury
hydrogen
Prior art date
Application number
PCT/CN2019/119851
Other languages
English (en)
French (fr)
Inventor
冯礼
孙果
肖特
Original Assignee
长沙开元弘盛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙开元弘盛科技有限公司 filed Critical 长沙开元弘盛科技有限公司
Priority to JP2020541408A priority Critical patent/JP7224359B2/ja
Priority to US16/965,303 priority patent/US11754494B2/en
Priority to EP19908071.4A priority patent/EP3865856B1/en
Publication of WO2021082117A1 publication Critical patent/WO2021082117A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • G01N2021/3114Multi-element AAS arrangements

Definitions

  • the invention relates to the technical field of analytical chemistry, in particular to a device and method for simultaneously measuring mercury, cadmium, zinc, and lead.
  • the conventional method is to determine trace amounts of mercury, cadmium, zinc, lead and other heavy metal elements in complex matrix liquids and solids.
  • the conventional method is to digest, extract, and enrich the sample before the sample is converted into a simple liquid sample.
  • Analysis methods such as electrothermal-atomic spectroscopy, hydride-atomic spectroscopy, plasma emission spectroscopy/mass spectrometry, etc., these conventional analysis methods require a lot of time, manpower, and material resources.
  • the main methods for direct sampling analysis of trace heavy metal elements include continuous light source-graphite furnace atomic absorption method, electrothermal evaporation of cadmium-tungsten wire enrichment-atomic fluorescence method, mercury combustion-catalytic combustion-gold amalgam cold atomic absorption Method, electrothermal evaporation of zinc-tungsten filament enrichment-inductively coupled plasma mass spectrometry, X-ray fluorescence, neutron activation and LIBS, etc.
  • X-ray fluorescence and LIBS analysis methods can also directly determine these elements, their quantification limits are generally more than a few 10 mg/kg, which are not suitable for the determination of lower content of heavy metal elements; the operation of neutron activation method is more complicated and the cost is relatively high.
  • the technical problem to be solved by the present invention is to provide a device for simultaneously or separately measuring mercury, cadmium, zinc, and lead; the device of the present invention can realize the simultaneous measurement of mercury, cadmium, zinc, and lead with high accuracy. .
  • the present invention provides a device for simultaneously measuring mercury, cadmium, zinc, and lead, which includes: a gas generating device; a quartz analysis tube connected to the gas generating device; The sample heating zone, the high temperature packing zone and the quartz collimation tube; the atomic absorption detection device AA1 arranged behind the quartz analysis tube; the atomic absorption detection device includes an atomic absorption detector, a flame and a light source; and the atomic absorption detection device is arranged on the atomic absorption
  • the quartz catalytic tube behind the detection device; the quartz catalytic tube includes a flame buffer area and an adsorption filler area arranged in sequence; an atomic absorption mercury measuring device arranged behind the quartz catalytic tube; the atomic absorption mercury measuring device includes sequential arrangement The mercury enrichment tube, atomic absorption detector and gas pump.
  • the sample of the present invention decomposes the organic matter through high-temperature combustion (pyrolysis) in the heating zone of the sample, and the volatile matter is further decomposed through the high-temperature filler, purged out of the analysis pipeline system, and enters the atomic absorption mercury measuring device AA1.
  • the high-temperature filler is selective Catch volatile elements such as cadmium, lead, and zinc that are partly volatile during combustion. By gently switching the heating atmosphere to a reducing atmosphere, cadmium, lead, and zinc are released from the burning ash and the filler in the high-temperature filler area, and sent to the atomic absorption detection device for measurement.
  • the device of the invention can realize the simultaneous determination of mercury, cadmium, zinc and lead, and at the same time has a high accuracy rate.
  • Figure 1 is a schematic diagram of the device of the present invention
  • Fig. 2 is a schematic diagram of the structure of the nitrogen-hydrogen mixer generator provided by the present invention.
  • the present invention provides a device and method for simultaneously measuring mercury, cadmium, zinc, and lead.
  • Those skilled in the art can learn from the content of this article and appropriately improve the process parameters to achieve it.
  • all similar replacements and modifications are obvious to those skilled in the art, and they all fall within the protection scope of the present invention.
  • the method and application of the present invention have been described through the preferred embodiments. It is obvious that relevant personnel can modify or appropriately change and combine the methods and applications herein without departing from the content, spirit and scope of the present invention to realize and apply the present invention.
  • Invent technology is obvious that relevant personnel can modify or appropriately change and combine the methods and applications herein without departing from the content, spirit and scope of the present invention to realize and apply the present invention.
  • the invention provides a device for simultaneously measuring mercury, cadmium, zinc, and lead, which includes:
  • a quartz analysis tube connected to the gas generating device; the quartz analysis tube includes a sample heating zone, a high-temperature packing zone and a quartz collimation tube arranged in sequence;
  • a quartz catalytic tube arranged behind the atomic absorption detection device includes a flame buffer area and an adsorption packing area arranged in sequence;
  • An atomic absorption mercury measuring device arranged behind the quartz catalytic tube; the atomic absorption mercury measuring device includes a mercury enrichment tube, an atomic absorption detector AA2 and an air pump arranged in sequence.
  • the AA2 described in the invention is disclosed in the patent CN204649610U, and the patent right belongs to the owner of the invention.
  • the device for simultaneously measuring mercury, cadmium, zinc, and lead provided by the present invention includes a gas generating device 1.
  • the gas generating device includes an air generator and a nitrogen and hydrogen mixer generator.
  • the present invention does not limit the air generator, as long as it is commercially available to those skilled in the art.
  • the nitrogen-hydrogen mixer generator of the present invention may preferably be as shown in FIG. 2, which is a schematic diagram of the structure of the nitrogen-hydrogen mixer generator provided by the present invention.
  • the nitrogen/hydrogen generator includes:
  • Burning head capable of igniting air and hydrogen
  • Water vapor structure capable of condensing water vapor generated by combustion (3) The water vapor structure (3) has an air inlet connected to the air source (2), a hydrogen inlet connected to the hydrogen generating device (1), and The generated gas outlet (6) at the top of the water vapor structure (3).
  • the air source 2 fills the water vapor structure 3 with air through an air inlet
  • the hydrogen generator 1 fills the water vapor structure 3 with hydrogen through the hydrogen inlet, and burns through the combustion head.
  • the oxygen in the air can be effectively removed by combustion; and the water vapor generated by combustion is condensed in the water vapor structure 3 to separate the generated gas from the condensed water, and the generated gas flows out from the generated gas outlet 6 at the top of the water vapor structure 3.
  • the deaerator has a simple structure, which effectively reduces the cost of the deaerator, and can also reduce the size of the deaerator according to requirements. .
  • the ratio of air and hydrogen can be adjusted so that hydrogen and oxygen completely react, leaving nitrogen as the generated gas.
  • the generated gas is nitrogen or the mixed gas of nitrogen and hydrogen does not contain oxygen, and can be used for gas analysis equipment, such as hydride generation atomic fluorescence/absorption, electrothermal evaporation spectroscopy/mass spectrometry combined instrument, lead, cadmium and mercury Arsenic special analyzer and so on.
  • the nitrogen-hydrogen mixer generator provided by the embodiment of the present invention further includes a refrigerator 4 for accelerating condensation of water vapor; the refrigerator 4 is located between the combustion area and the generated gas outlet 6; the combustion area It is the area where hydrogen and air combust in the water vapor structure 3. That is, the generated gas needs to be cooled by the refrigerator 4 before it can flow out through the generated gas outlet 6, which ensures the condensation effect and also accelerates the condensation of water vapor.
  • the refrigerator 4 is arranged outside the water vapor structure 3; the cooling components of the refrigerator 4 are in thermal contact with the outer shell of the water vapor structure 3.
  • the refrigerator 4 is made independent of the outside of the water vapor structure 3, which prevents condensed water or water vapor from corroding the refrigerator 4, and effectively improves the service life of the refrigerator 4.
  • the refrigerator 4 is a semiconductor refrigerator.
  • the refrigerator 4 can also be set as other types of refrigerators, which will not be repeated here.
  • the combustion head is arranged in the water vapor structure 3.
  • the combustion head can also be arranged outside the water vapor structure 3 so that the combustion head sprays sparks or flames into the water vapor structure 3. It is only necessary to enable the combustion head to ignite the mixed gas of hydrogen and air in the water vapor structure 3.
  • the nitrogen-hydrogen mixer generator provided by the embodiment of the present invention further includes a water-removing structure for removing condensed water in the water vapor structure 3. Since the combustion of air and hydrogen will produce water, in order to prevent water from affecting the subsequent use of gas (nitrogen), a water removal structure can be provided.
  • the bottom of the water vapor structure 3 has a water outlet
  • the water removal structure includes a pump 5
  • the water inlet of the pump 5 is connected to the water outlet
  • the water outlet of the pump 5 is connected to the water inlet of the hydrogen generator 1.
  • the pump 5 is preferably a peristaltic pump.
  • the produced gas outlet 6 is provided with a semi-permeable membrane, which can permeate gas but not water molecules. It is also possible to provide dry particles and the like in the generated gas outlet 6.
  • the air inlet is provided with an air on-off valve for controlling its opening and closing;
  • the hydrogen inlet is provided with a hydrogen on-off valve for controlling its opening and closing.
  • the nitrogen-hydrogen mixer generator may also include a control device for controlling the amount of hydrogen entering the water vapor structure 3 from the hydrogen inlet and the amount of air entering the water vapor structure 3 from the air inlet.
  • the control device can adjust the opening of the air on-off valve and the hydrogen on-off valve according to the flow rate of air passing through the air inlet and the flow rate of hydrogen passing through the hydrogen inlet, thereby completing the adjustment of the amount of hydrogen and air.
  • the nitrogen-hydrogen mixer generator is a nitrogen generator.
  • the gas can also be used in an instrument that can achieve deoxygenation operation.
  • an outlet on-off valve is provided at the generated gas outlet 6 to control the opening and closing of the generated gas outlet 6.
  • the flow control can be accomplished by adjusting the opening of the above-mentioned on-off valve.
  • the embodiment of the present invention also provides a method for generating a nitrogen-hydrogen mixer (deoxygenation method), which is applied to any of the above-mentioned nitrogen-hydrogen mixer generators;
  • the mixing ratio of hydrogen and air is adjusted according to the required composition of the generated gas (such as nitrogen or a mixed gas of nitrogen and hydrogen).
  • the above-mentioned deaeration device has the above-mentioned technical effect
  • the above-mentioned deaeration method should also have the same technical effect, which will not be repeated here.
  • the volume ratio of the volume of hydrogen to the expected oxygen content in the air is 2:1.
  • the principle is: to obtain a mixture of nitrogen and hydrogen, the excess hydrogen provided by the air and hydrogen generator is ignited to consume oxygen in the air, and the generated water vapor is condensed to obtain a mixture of dry nitrogen and hydrogen. ,
  • the oxygen content of this mixture is less than 5ppm.
  • the device for simultaneously measuring mercury, cadmium, zinc, and lead provided by the present invention includes a quartz analysis tube connected with a gas generating device.
  • the quartz analysis tube of the present invention includes a sample heating zone, a high-temperature packing zone and a quartz collimation tube arranged in sequence.
  • the sample heating zone 2, the high temperature packing zone 3, and the quartz collimating tube 4 are connected in sequence, and the whole is called a quartz analysis tube.
  • Air flow is input into the integrated combustion catalytic quartz tube composed of sample heating zone, high temperature packing zone and quartz collimating tube, entering from the left end of the sample heating zone and exiting from the far right end of the quartz collimating tube; sample heating zone, high temperature packing zone
  • An integrated quartz tube composed of a quartz collimator tube
  • the inner diameter of the sample heating zone in the quartz analysis tube is 19mm, the outer diameter is 22mm; the length is 30-200mm, the inner diameter of the high temperature packing zone is 19mm, the outer diameter is 22mm; the length is 30-200mm, the outer diameter of the quartz collimating tube The diameter is 4mm, the inner diameter is 2mm; the length is 5-100mm.
  • the gas generating device, the sample heating zone, the high temperature packing zone and the quartz collimating tube form an airtight transmission flow path, and the gas generating device provides power gas.
  • the integrated quartz tube composed of 2,3,4 is placed in the tube furnace, so that the 2,3,4 quartz tube can be heated to 1100 degrees.
  • 2 sections are heated to 0-1100 degrees to achieve programmed temperature rise to remove moisture and decompose organic matter in the sample.
  • Moisture and combustion products pass through 3 sections, this section has a constant temperature of 800-900, preferably 850 degrees.
  • 3 is filled with magnesium oxide, calcium oxide or kaolin particles to absorb part of the cadmium, lead, and lead in the combustion flue gas.
  • Elements such as zinc.
  • 4 is a quartz collimating tube, which can gather the analytes released in 2, 3 into a beam, and 4 is heated by a tube furnace to 800-900, preferably 850 degrees.
  • the filler in the high-temperature filler zone of the present invention is preferably magnesium oxide, calcium oxide or kaolin; more preferably magnesium oxide, with a specific surface area of 2m 2 /g-300m 2 /g, and a filler mesh number of 10-80 mesh.
  • the present invention does not limit its source, and it can be sold commercially.
  • the device for simultaneously measuring mercury, cadmium, zinc, and lead provided by the present invention includes an atomic absorption detection device AA1 arranged behind the quartz analysis tube.
  • the atomic absorption detection device includes an atomic absorption detector 7, a flame 5, and a light source 6.
  • 6-1 is the full-spectrum light of the light source
  • 6-2 is the lens
  • 6-3 is the characteristic spectrum
  • 7 is the scanning fiber spectrometer
  • 7 -1, 7-2, and 7-3 are components of the internal optical structure.
  • 7-4 is the emitted light.
  • the atomic absorption detector 7 is a CCD scanning optical fiber spectrometer; the light source 6 is a composite element lamp in which the light source is cadmium, zinc, and lead; preferably a hollow cathode lamp or a glow discharge lamp of cadmium, zinc, and lead .
  • the device for simultaneously measuring mercury, cadmium, zinc, and lead includes a quartz catalytic tube arranged behind the atomic absorption detection device; the quartz catalytic tube includes a flame buffer area 8 and an adsorption packing area 9 arranged in sequence.
  • the quartz catalyst tube of the present invention has an inner diameter of 19mm, an outer diameter of 22mm, and a length of 30-200mm; the length of the flame buffer zone is 5-100mm; the filler in the adsorption filler zone is calcium oxide and manganese dioxide. One or more.
  • the device for simultaneously measuring mercury, cadmium, zinc, and lead includes an atomic absorption mercury measuring device arranged behind the quartz catalyst tube; the atomic absorption mercury measuring device includes a mercury enrichment tube 10 and an atomic absorption Detector 11 and air pump 12.
  • the combustion products ejected from the right end of 4 form a stable high-speed air flow 5 and are injected into the quartz tube 8 of the mercury measuring system B.
  • 8 and 9, 10 are all quartz tubes, and the diameters of 9, 8 are the same.
  • 9 contains oxide particles of calcium oxide and manganese dioxide to absorb acid gas and nitrogen oxides produced during the combustion process, and at the same time completely decompose the unburned organic matter.
  • 10 is equipped with gold-plated quartz sand, which is used to enrich the mercury element in the combustion products.
  • 11 is a dual-beam cold atomic fluorescence mercury measuring device, used to detect the mercury released from 10 thermally.
  • 12 is a suction pump, which is used to provide power gas for the combustion products ejected from the end of 4 to flow in 8,9,10,11. 5,8,9,10,11,12 form an airtight transmission flow path, and 12 provides power gas.
  • the mercury enrichment tube has an inner diameter of 3mm, an outer diameter of 5mm, and a length of 30-150mm.
  • the mercury enrichment tube is filled with gold-plated quartz sand.
  • the mercury enrichment pipe is connected with the outlet of the adsorption packing zone.
  • Figure 1 is a schematic diagram of the device of the present invention.
  • the present invention provides a method for simultaneously measuring mercury, cadmium, zinc, and lead with the device according to any one of the above technical solutions, including:
  • the sample is burned and pyrolyzed in the heating zone of the sample, and some cadmium, zinc, and lead are selectively captured by the high-temperature filler, and the mercury element is purged into the atomic absorption mercury measuring device for determination;
  • the sample is firstly burned and pyrolyzed in the heating zone of the sample under an air atmosphere, and some elements of cadmium, zinc, lead, and mercury in the flue gas are selectively captured by a high-temperature filler, and then the atmosphere is switched and purged into the atomic absorption mercury measuring device for measurement. .
  • the heating temperature of the sample heating zone is 200 to 1100°C; the heating temperature of the high-temperature filling zone is 500°C to 1100°C; the heating temperature of the quartz collimator tube is 500°C to 1100°C.
  • the air flow rate of the present invention is 200-1000ml/min; more preferably 350-500ml/min.
  • the sample undergoes temperature-programmed combustion decomposition to remove moisture and decompose organic matter in the sample; the filler area is used to adsorb some elements such as cadmium, lead, zinc and other elements carried in the combustion flue gas; the quartz collimator tube can release the analysis in 2, 3
  • the combustion products ejected from the right end of 4 form a stable high-speed air flow 5, which is injected into the quartz tube 8 of the mercury measuring system B.
  • 9 contains oxide particles of calcium oxide and manganese dioxide. It absorbs acid gases and nitrogen oxides produced in the combustion process, and at the same time completely decomposes the unburned organic matter.
  • 10 is equipped with gold-plated quartz sand, which is used to enrich the mercury element in the combustion products.
  • the combustion products are pumped into unit B to complete the accurate determination of mercury in the sample.
  • the sample completes the combustion process in the A system, which actually removes a large amount of complex organic matrix from the sample, and obtains a relatively simple inorganic matrix.
  • the method of measuring mercury in the present invention is: the atomic absorption detector AA1 is a CCD scanning fiber optic spectrometer; the analysis wavelengths of cadmium, zinc, and lead are respectively selected as 228.8nm, 213.8nm, and 283.3nm; the present invention does not limit the specific measurement parameters. As long as those skilled in the art are well-known.
  • the sample continues to be heated, the gas purges the quartz tube, cadmium, zinc, and lead are released and enter the atomic absorption detector AA1 for detection.
  • the atmosphere in 1 is switched to a mixture of nitrogen and hydrogen.
  • the atmosphere in 2, 3, and 4 is switched to a mixture of nitrogen and hydrogen, the sample in 2 burns ash and the cadmium, zinc, lead, etc. that may be adsorbed in 3
  • the element is released rapidly under the reducing atmosphere of hydrogen, and it is carried by the nitrogen and hydrogen mixture through the quartz collimation tube 4 and 4, which can gather and concentrate the analytes released in 2, 3 into a beam, at the end of 4 Enter the atmosphere.
  • the nitrogen and hydrogen sprayed from the end of 4 are ignited to form flame 5.
  • Elements such as cadmium, zinc, and lead are atomized in the flame.
  • the atomic cadmium, zinc, lead and other elements selectively absorb light under the irradiation of the characteristic spectrum 6-3, and the light attenuated by the flame 7-4 is detected by 7 to obtain the content of cadmium, zinc, lead and other elements .
  • hollow cathode lamps or other glow discharge lamps with elements such as cadmium, zinc, lead, etc. also include their composite element lamps.
  • 6 is a composite element lamp of cadmium, zinc, lead and other elements. It is especially emphasized that the nitrogen-hydrogen diffusion flame formed at the 4 end is an atomizer, and there is no re-ignition after the 4 end is transmitted through the cold end.
  • AA1 is composed of 5, 6, and 7 parts, and AA2 is 11.
  • the flow rate of the suction pump is 100-1500 mL/min.
  • the present invention does not limit the specific measurement parameters, as long as they are well known to those skilled in the art.
  • the invention provides a device for simultaneously measuring mercury, cadmium, zinc, and lead, comprising: a gas generating device; a quartz analysis tube connected to the gas generating device; the quartz analysis tube includes a sample heating zone and a high-temperature filling zone arranged in sequence And a quartz collimator tube; an atomic absorption detection device AA1 arranged behind the quartz analysis tube; the atomic absorption detection device includes an atomic absorption detector, a flame and a light source; a quartz catalytic tube arranged behind the atomic absorption detection device
  • the quartz catalytic tube includes a flame buffer area and an adsorption packing area arranged in sequence; an atomic absorption mercury measuring device is arranged behind the quartz catalytic tube; the atomic absorption mercury measuring device includes a mercury enrichment tube and an atomic Absorption detector AA2 and air pump.
  • the sample of the present invention undergoes high-temperature combustion (pyrolysis) in the sample heating zone to decompose the organic matter, and the volatile components are further decomposed through the high-temperature filler, purged out of the analysis pipeline system, and enters the atomic absorption mercury measuring device.
  • the high-temperature filler selectively captures Capture volatile elements such as cadmium, lead, zinc, etc. that are partly volatilized during combustion.
  • cadmium, lead, and zinc are released from the combustion ash and the filler in the high-temperature filler area, and sent to the atomic absorption detection device AA1 for measurement.
  • the device of the invention can realize the simultaneous determination of mercury, cadmium, zinc and lead, and at the same time has a high accuracy rate.
  • the assembled device including an air generator and a nitrogen and hydrogen mixer generator; a quartz analysis tube connected to the gas generating device; the quartz analysis tube includes an outer diameter of 22mm and an inner diameter of 19mm arranged in sequence Sample heating zone, 22mm outer diameter, 19mm inner diameter high temperature packing area (with magnesium oxide particles) and 4mm, 2mm inner diameter quartz collimator tube; an atomic absorption detection device arranged behind the quartz analysis tube; the atomic absorption detection device includes Atomic absorption detector AA1, a hollow cathode lamp light source for flame and cadmium, zinc, lead and other elements; a quartz catalyst tube with an inner diameter of 19mm and an outer diameter of 22mm arranged behind the atomic absorption detection device; the quartz catalyst tubes are arranged in sequence The flame buffer area and the oxide particle adsorption filler area containing calcium oxide and manganese dioxide; an atomic absorption mercury measuring device arranged behind the quartz catalytic tube; the atomic absorption mercury measuring device includes successively arranged gold-plated Quartz
  • the air flow rate is 350 mL/min; the sample is heated to 1100°C in the sample heating zone for combustion pyrolysis, and cadmium, zinc, and lead are selectively captured by the high temperature filler at a constant temperature of 850°C.
  • the mercury element is purged into the atomic absorption mercury measuring device for measurement; that is, the combustion product ejected from the right end of 4 during the air-passing combustion process forms a stable high-speed airflow 5 and is injected into the quartz tube 8 of the mercury measuring system B Middle; 11 is a dual-beam cold atomic fluorescence mercury measuring device, used to detect the mercury released from 10 thermally.
  • a suction pump which is used to provide power gas for the combustion products ejected from the end of 4 to flow in 8,9,10,11. After the combustion process is over, the combustion products are pumped into unit B to complete the accurate determination of mercury in the sample.
  • the sample continues to be heated, the gas purges the quartz tube, and cadmium, zinc, and lead are released.
  • the sample burns ash and the cadmium, zinc, lead and other elements that may be adsorbed in 3 are under the reducing atmosphere of hydrogen Rapid release, carried by the mixed gas of nitrogen and hydrogen through 4, 4 is a quartz collimator tube, which can aggregate and concentrate the analytes released in 2, 3 into a beam; because 4 is maintained at a high temperature of 850 degrees, the temperature of 4
  • the nitrogen and hydrogen sprayed from the end are ignited to form a flame 5.
  • Cadmium, zinc, lead and other elements are atomized in the flame; enter the atomic absorption detector for detection AA2.
  • the atomic cadmium, zinc, lead and other elements selectively absorb light under the irradiation of the characteristic spectrum 6-3, and the light attenuated by the flame 7-4 is detected by 7 to obtain the content of cadmium, zinc, lead and other elements .
  • Example 1 Select rice, soil and standard solution as samples, and use the device of Example 1 and the method described in Example 2 respectively.
  • the measurement results are as described in Table 1.
  • it is compared with the prior art ICP-MS and GF-AAS. The results show that the accuracy is good.
  • the salt and soy sauce were selected for the determination of the recovery rate of the standard addition.
  • the results are shown in Table 2.
  • Table 2 shows that the recovery rate of the standard addition is satisfactory.
  • the determination of cadmium in high-salt samples is a difficult point in the field of analysis.
  • the following data shows that the analytical method described in the patent of the present invention has the ability to resist high-salt interference, and is a direct sample injection analysis, which has higher method superiority.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种同时测定汞、镉、锌、铅的装置和方法,该装置包括:气体发生装置;与气体发生装置相连的石英分析管;该石英分析管包括依次设置的样品加热区(2)、高温填料区(3)和石英准直管(4);设置于石英分析管后方的原子吸收检测装置AA1;原子吸收检测装置AA1包括原子吸收检测器(7)、火焰(5)和光源(6);设置于原子吸收检测装置AA1后的石英催化管;石英催化管包括依次设置的火焰缓存区(8)和吸附填料区(9);设置于石英催化管后的原子吸收测汞装置;该原子吸收测汞装置包括依次设置的汞富集管(10)、原子吸收检测器AA2(11)和气泵(12)。

Description

一种同时测定汞、镉、锌、铅的装置和方法
本申请要求于2019年10月29日提交中国专利局、申请号为201911038388.3、发明名称为“一种同时测定汞、镉、锌、铅的装置和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及分析化学技术领域,尤其是涉及一种同时测定汞、镉、锌、铅的装置和方法。
背景技术
目前,测定复杂基质液体和固体中痕量汞、镉、锌、铅等重金属元素,常规方法是样品经消解、提取、富集等样品前处理过程,样品转化为基体简单的液体样品后,采用电热-原子光谱、氢化物-原子光谱、等离子体发射光谱/质谱等分析方法分析,这些常规的分析方法需要消耗较多时间、人力、物力成本。
目前对于直接进样分析痕量重金属元素的方法主要有连续光源-石墨炉原子吸收法,镉的电热蒸发-钨丝富集-原子荧光法,汞的燃烧-催化燃烧-金汞齐冷原子吸收法,锌的电热蒸发-钨丝富集-电感耦合等离子体质谱法,X射线荧光,中子活化和LIBS等。X射线荧光和LIBS分析方法虽然也可直接测定这些元素,但其方法定量限一般在数10mg/kg以上,不适用于较低含量的重金属元素测定需求;中子活化法操作较为复杂且成本较高;连续光源石墨炉原子吸收法的应用中,样品置于石墨炉中加热并在石墨管中原位检测,所以进样仅量允在数毫克以下,对于部分样品的分析可能缺乏样品代表性,且不易操作;镉的电热蒸发-钨丝富集-原子荧光法(US8969832B2),汞的燃烧-催化燃烧-金汞齐冷原子吸收法(文献W.Frech,D.C.Baxter,G.Dyvik,B.Dybdahl,On the determination of totalmercury in natural gases using the amalgamation technique and cold vapor atomic-absorption spectrometry,J.Anal.At.Spectrom.1995,10769–775.),锌的电热蒸发-钨丝富集-电感耦合等离子体质谱法(201510409052.9中国专利)等分析方法只能一次分析一种元素。
因此,提供一种免化学前处理的样品进样方式和检测方法,实现复杂基质液体和固体中汞、镉、锌、铅等重金属元素的直接进样、同时或单独准确分析是非常必要的。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种同时或单独测定汞、镉、锌、铅的装置;本发明的装置可以实现汞、镉、锌、铅的同时测定,同时准确率高。
与现有技术相比,本发明提供了一种同时测定汞、镉、锌、铅的装置,包括:气体发生装置;与气体发生装置相连的石英分析管;所述石英分析管包括依次设置的样品加热区、高温填料区和石英准直管;设置于所述石英分析管后方的原子吸收检测装置AA1;所述原子吸收检测装置包括原子吸收检测器、火焰和光源;设置于所述原子吸收检测装置后的石英催化管;所述石英催化管包括依次设置的火焰缓存区和吸附填料区;设置于所述石英催化管后的原子吸收测汞装置;所述原子吸收测汞装置包括依次设置的汞富集管、原子吸收检测器和气泵。本发明样品经过样品加热区高温燃烧(热解)的方式,将有机质分解,挥发分经过高温填料进一步分解,吹扫出分析管路系统,进入原子吸收测汞装置AA1,同时,高温填料选择性抓捕燃烧中部分挥发的镉、铅、锌等易挥发元素。通过将加热气氛温和地切换为还原性气氛,镉、铅、锌从燃烧灰分和高温填料区填料中释出,送入原子吸收检测装置中进行测定。本发明装置可以实现汞、镉、锌、铅的同时测定,同时准确率高。
附图说明
图1为本发明所述装置示意图;
图2为本发明提供的氮气氢气混合器发生器的结构示意图。
具体实施方式
本发明提供了一种同时测定汞、镉、锌、铅的装置和方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都属于本发明保护的范围。本发明的方法及应用已经通过较佳实施例进行了描 述,相关人员明显能在不脱离本发明内容、精神和范围内对本文的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
本发明提供了一种同时测定汞、镉、锌、铅的装置,包括:
气体发生装置;
与气体发生装置相连的石英分析管;所述石英分析管包括依次设置的样品加热区、高温填料区和石英准直管;
设置于所述石英分析管后方的原子吸收检测装置AA1;所述原子吸收检测装置包括原子吸收检测器、火焰和光源;
设置于所述原子吸收检测装置后的石英催化管;所述石英催化管包括依次设置的火焰缓存区和吸附填料区;
设置于所述石英催化管后的原子吸收测汞装置;所述原子吸收测汞装置包括依次设置的汞富集管、原子吸收检测器AA2和气泵。发明所述的AA2为专利CN204649610U公开的,专利权属于本发明所有权人。
本发明提供的同时测定汞、镉、锌、铅的装置,包括气体发生装置1。所述气体发生装置包括空气发生器和氮气氢气混合器发生器。
本发明对于所述空气发生器不进行限定,本领域技术人员熟知的市售即可。本发明所述氮气氢气混合器发生器优选可以如图2所示,图2为本发明提供的氮气氢气混合器发生器的结构示意图。
具体包括:
所述氮气/氢气发生器包括:
空气源(2);
氢气发生装置(1);
能够点燃空气及氢气的燃烧头;
能够使燃烧产生的水汽凝结的水汽结构(3)所述水汽结构(3)具有与所述空气源(2)连接的空气进口、与所述氢气发生装置(1)连接的氢气进口及设置于所述水汽结构(3)顶部的生成气体出口(6)。
本发明实施例提供的氮气氢气混合器发生器,空气源2通过空气进口向水汽结构3中充入空气,氢气发生装置1通过氢气进口向水汽结构3 中充入氢气,并通过燃烧头进行燃烧,其主要的反应化学方程式为
Figure PCTCN2019119851-appb-000001
由此可知,通过燃烧能够有效地去除空气中的氧气;并且,在水汽结构3使燃烧产生的水汽凝结,将生成气体与凝结水分离,生成气体由水汽结构3顶部的生成气体出口6流出。与现有的采用分子筛为吸附剂,采用变压吸附原理分离空气制取氮气相比,除氧装置的结构简单,有效降低了除氧装置的成本,也可以依据需求减小除氧装置的体积。
可以通过调整空气及氢气的比例,使得氢气与氧气完全反应,剩下氮气作为生成气体。
也可以通过调整空气及氢气的比例,使得全部氧气与部分氢气反应,剩下氮气与另一部分氢气形成的混合气体作为生成气体。如下所示:
Figure PCTCN2019119851-appb-000002
其中,生成气体为氮气或氮气与氢气的混合气体均不含氧气成分,可以用于分析仪器的气体,比如应用于氢化物发生原子荧光/吸收,电热蒸发光谱/质谱联用仪器,铅镉汞砷专用分析仪等等。
为了加速生成气体与凝结水的分离,本发明实施例提供的氮气氢气混合器发生器还包括用于加速水汽凝结的制冷器4;制冷器4位于燃烧区域与生成气体出口6之间;燃烧区域为水汽结构3内氢气与空气燃烧的区域。即,生成气体需要经过制冷器4的制冷才能经过生成气体出口6流出,确保了凝结效果,也加速了水汽凝结。
制冷器4设置于水汽结构3的外部;制冷器4的制冷部件与水汽结构3的外壳导温接触。通过上述设置,使得制冷器4独立于水汽结构3的外部,避免凝结水或水汽侵蚀制冷器4,有效提高了制冷器4的使用寿命。
优选地,制冷器4为半导体制冷器。也可以将制冷器4设置为其他类型的制冷器,在此不再一一赘述。
燃烧头设置于水汽结构3内。也可以将燃烧头设置于水汽结构3外,使得燃烧头喷出火星或火苗进入水汽结构3内。仅需使得燃烧头能够点燃 水汽结构3内的氢气与空气的混合气体即可。
本发明实施例提供的氮气氢气混合器发生器中,还包括去除水汽结构3内凝结水的除水结构。由于空气及氢气的燃烧会生成水,为了避免水影响后续气体(氮气)的使用,可以设置除水结构。
本实施例中,水汽结构3的底部具有出水口,除水结构包括泵5,泵5的进水口与出水口连通,泵5的出水口与氢气发生装置1的进水口连通。通过上述设置,实现了成分的循环利用。
泵5优选为蠕动泵。
为了避免水分由生成气体出口6流出,生成气体出口6设置有半透膜,半透膜能够透过气体且不能透过水分子。也可以在生成气体出口6设置干燥颗粒等。
空气进口设置有用于控制其开启及关闭的空气开关阀;氢气进口置有用于控制其开启及关闭的氢气开关阀。通过控制空气开关阀及氢气开关阀的开度及开启时间,并依据空气及氢气进入水汽结构3的流速,可以调整空气及氢气的比例,从而实现控制生成气体的成分的作用。可以使生成气体仅为氮气,也可以使生成气体为氮气与氢气的混合气体。
为了提高自动化程度,氮气氢气混合器发生器还可以包括控制由氢气进口进入水汽结构3的氢气量及由空气进口进入水汽结构3的空气量的控制装置。其中,控制装置可以依据空气经过空气进口的流速及氢气经过氢气进口的流速调整空气开关阀及氢气开关阀的开度,进而完成氢气量及空气量的调节。
本实施例中,氮气氢气混合器发生器为氮气发生器。当然,也可以为气体能够实现除氧操作的仪器中。
为了确保燃烧完全,在燃烧过程中,需要确保水汽结构3的封闭,因此,设置于生成气体出口6出,用于控制生成气体出口6开启及关闭的出口开关阀。
其中,可以通过调节上述开关阀的开度完成流量控制。
本发明实施例还提供了一种氮气氢气混合器发生方法(除氧方法),应用如上述任一种氮气氢气混合器发生器;
包括步骤:
将氢气与空气混合并形成混合气体;
其中,依据需要的生成气体的成分(如氮气或氮气与氢气的混合气体),调整氢气与空气的混合比例。
使得混合气体充分燃烧并输出生成气体。
由于上述除氧装置具有上述技术效果,上述除氧方法也应具有同样地技术效果,在此不再一一累述。
优选地,步骤将氢气与空气混合并形成混合气体中,通过控制氢气与空气的比例,使得氢气的体积与空气中预计氧含量的体积比为2:1。
原理为:为获得氮气和氢气的混合气,是通过将空气和氢气发生器提供的过量氢气在点燃状态下,将空气中氧气消耗,生成的水汽被冷凝,获得干燥的氮气和氢气的混合气,此混合气氧气含量低于5ppm。
本发明提供的同时测定汞、镉、锌、铅的装置包括与气体发生装置相连的石英分析管。
本发明所述石英分析管包括依次设置的样品加热区、高温填料区和石英准直管。
即为样品加热区2、高温填料区3和石英准直管4依次连通,整体称为石英分析管。
空气气流输入样品加热区、高温填料区和石英准直管组成的一体化燃烧催化石英管中,从样品加热区的左端进,从石英准直管的最右端出;样品加热区、高温填料区和石英准直管组成的一体化石英管,
所述石英分析管中样品加热区的内径为19mm,外径22mm;长度为30-200mm,高温填料区的内径为19mm,外径22mm;长度为30-200mm,所述石英准直管的外径为4mm,内径为2mm;长度为5-100mm。
气体发生装置与样品加热区、高温填料区和石英准直管组成气密性传输流路,由气体发生装置提供动力气。
2,3,4组成的一体化石英管,置于管式炉中,使得2,3,4石英管可被加热到1100度。2区段加热到0-1100度,实现程序升温,去除样品中水分和分解有机物。水分和燃烧产物通过3区段,此区段恒温在800~900,优 选为850度,3中装填有氧化镁、氧化钙或高岭土颗粒,用以吸附燃烧烟气中部分携带的镉、铅、锌等元素。4为石英准直管,可将2,3中释出的分析物聚集成束,4被管式炉加热到800~900,优选为850度。
本发明所述高温填料区中的填料优选为氧化镁、氧化钙或高岭土;更优选为氧化镁,且比表面积在2m 2/g-300m 2/g,填料目数为10-80目。本发明对其来源不进行限定,市售即可。
本发明提供的同时测定汞、镉、锌、铅的装置包括设置于所述石英分析管后方的原子吸收检测装置AA1。
所述原子吸收检测装置包括原子吸收检测器7、火焰5和光源6;其中6-1为光源全谱光,6-2为透镜,6-3为特征光谱;7是扫描型光纤光谱仪,7-1,7-2,7-3为其内部光学结构组成部分,此部分市售不做限制,7-4为出射光。
所述原子吸收检测器7为CCD扫描型光纤光谱仪;所述光源6为所述光源为镉、锌、铅元素的复合元素灯;优选为镉、锌、铅的空心阴极灯或辉光放电灯。
本发明提供的同时测定汞、镉、锌、铅的装置包括设置于所述原子吸收检测装置后的石英催化管;所述石英催化管包括依次设置的火焰缓存区8和吸附填料区9。
本发明所述石英催化管内径为19mm,外径为22mm,长度为30-200mm;所述火焰缓存区长度为5-100mm;所述吸附填料区中的填料为氧化钙和二氧化锰中的一种或几种。
本发明提供的同时测定汞、镉、锌、铅的装置包括设置于所述石英催化管后的原子吸收测汞装置;所述原子吸收测汞装置包括依次设置的汞富集管10、原子吸收检测器11和气泵12。
通空气燃烧过程中,从4的右端喷出的燃烧产物,形成稳定的高速气流5,喷入测汞系统B的石英管8中,8和9,10均为石英管,9,8直径一样,9内装有氧化钙和二氧化锰的氧化物颗粒,用以吸附燃烧过程中产生的酸性气体和氮氧化物,同时将未燃烧充分的有机物彻底分解。10内装有镀金石英砂,用于富集燃烧产物中的汞元素。
11为双光束冷原子荧光测汞装置,用于检测从10中热解释放的汞。12为抽气泵,用以提供从4末端喷出的燃烧产物在8,9,10,11中流动的动力气。5,8,9,10,11,12组成气密性传输流路,由12提供动力气。
按照本发明,所述汞富集管内径为3mm,外径为5mm,长度为30-150mm
所述汞富集管内填装有镀金石英砂。所述汞富集管与所述吸附填料区出口相连。
图1为本发明所述装置示意图。
本发明提供了一种上述技术方案任意一项所述的装置同时测定汞、镉、锌、铅的方法,包括:
A)在空气气氛下,样品在样品加热区燃烧热解,经高温填料选择性抓捕部分镉、锌、铅,汞元素经吹扫进入原子吸收测汞装置进行测定;
B)切换至氮气/氢气气氛下,样品继续加热,气体吹扫石英管,镉、锌、铅从样品灰分和填料中释出,进入原子吸收检测器AA1进行检测。
本发明首先在空气气氛下,样品在样品加热区燃烧热解,经高温填料选择性抓捕部分烟气中镉、锌、铅,汞元素,经气氛切换吹扫进入原子吸收测汞装置进行测定。
所述样品加热区的加热温度为200~1100℃;所述高温填料区的加热温度为500℃~1100℃;所述石英准直管的加热温度为500℃~1100℃。
本发明所述空气流量为200~1000ml/min;更优选为350~500ml/min。
样品经过程序升温燃烧分解,去除样品中的水分和分解有机物;填料区用以吸附燃烧烟气中部分携带的镉、铅、锌等元素;石英准直管可以将2,3中释出的分析物聚集成束,从4的右端喷出的燃烧产物,形成稳定的高速气流5,喷入测汞系统B的石英管8中,9内装有氧化钙和二氧化锰的氧化物颗粒,用以吸附燃烧过程中产生的酸性气体和氮氧化物,同时将未燃烧充分的有机物彻底分解。10内装有镀金石英砂,用于富集燃烧产物中的汞元素。
燃烧过程结束,燃烧产物被抽进B单元完成了样品中汞的准确测定。样品在A系统中完成燃烧过程,实际上也是去除了样品中大量的复杂有 机质基体,得到的是基体相对较为简单的无机基体。
本发明测定汞的方式为:原子吸收检测器AA1为CCD扫描光纤光谱仪;镉、锌、铅分析波长分别选取为228.8nm、213.8nm、283.3nm;本发明对于所述具体的测定参数不进行限定,本领域技术人员熟知的即可。
切换至氮气/氢气气氛下,样品继续加热,气体吹扫石英管,镉、锌、铅释出,进入原子吸收检测器AA1进行检测。
然后,1中的气氛切换为氮气和氢气的混合气,当2,3,4中的气氛切换为氮氢混合气后,2中样品燃烧灰分和可能吸附在3中的镉、锌、铅等元素在氢气的还原性气氛下急速释出,由氮氢混合气载带经过4,4为石英准直管,可将2,3中释出的分析物聚集、浓缩成束,在4的末端进入大气环境。
由于4是维持在800~900(850度)高温,从4的末端喷出的氮氢气被点燃,形成火焰5。镉、锌、铅等元素在火焰中被原子化。原子态的镉、锌、铅等元素在特征光谱6-3的照射下,选择性的吸收光,通过7来检测通过火焰衰减的光7-4,从而获得镉、锌、铅等元素的含量。特别的,6为镉、锌、铅等元素的空心阴极灯或其他辉光放电灯,也包括他们的复合元素灯。7为原子吸收检测器,可以采用窄带滤光片和光电倍增管(PMT)或CCD扫描光纤光谱仪,前者适合单元素分析,后者可多元素也可单元素分析。特别的,6为镉、锌、铅等元素的复合元素灯。其他特别强调的,4末端形成的氮氢扩散火焰,即为原子化器,不存在4末端经过冷端传输后再次点燃。
AA1为5,6,7三部分组成,AA2为11。
本发明所述氮气/氢气混合气体的比例为氮气:氢气=1~10:1,所述流量为100~1000mL/min。
所述抽气泵的流速为100~1500mL/min。
本发明对于所述具体的测定参数不进行限定,本领域技术人员熟知的即可。
本发明提供了一种同时测定汞、镉、锌、铅的装置,包括:气体发生装置;与气体发生装置相连的石英分析管;所述石英分析管包括依次设置 的样品加热区、高温填料区和石英准直管;设置于所述石英分析管后方的原子吸收检测装置AA1;所述原子吸收检测装置包括原子吸收检测器、火焰和光源;设置于所述原子吸收检测装置后的石英催化管;所述石英催化管包括依次设置的火焰缓存区和吸附填料区;设置于所述石英催化管后的原子吸收测汞装置;所述原子吸收测汞装置包括依次设置的汞富集管、原子吸收检测器AA2和气泵。本发明样品经过样品加热区高温燃烧(热解)的方式,将有机质分解,挥发分经过高温填料进一步分解,吹扫出分析管路系统,进入原子吸收测汞装置,同时,高温填料选择性抓捕燃烧中部分挥发的镉、铅、锌等易挥发元素。通过将加热气氛温和地切换为还原性气氛,镉、铅、锌从燃烧灰分和高温填料区填料中释出,送入原子吸收检测装置AA1中进行测定。本发明装置可以实现汞、镉、锌、铅的同时测定,同时准确率高。
为了进一步说明本发明,以下结合实施例对本发明提供的一种同时测定汞、镉、锌、铅的装置和方法进行详细描述。
实施例1
按照本发明所述组装好装置:包括空气发生器和氮气氢气混合器发生器的气体发生装置;与气体发生装置相连的石英分析管;所述石英分析管包括依次设置的外径22mm,内径19mm样品加热区、外径22mm,内径19mm高温填料区(设置氧化镁颗粒)和4mm,内径2mm石英准直管;设置于所述石英分析管后方的原子吸收检测装置;所述原子吸收检测装置包括原子吸收检测器AA1、火焰和镉、锌、铅等元素的空心阴极灯光源;设置于所述原子吸收检测装置后的内径为19mm,外径22mm石英催化管;所述石英催化管包括依次设置的火焰缓存区和内装有氧化钙和二氧化锰的氧化物颗粒吸附填料区;设置于所述石英催化管后的原子吸收测汞装置;所述原子吸收测汞装置包括依次设置的内装有镀金石英砂的汞富集管、原子吸收检测器AA2和气泵。
实施例2
按照本发明实施例1的装置,在空气气氛下,空气流量为350mL/min;样品在样品加热区加热至1100℃燃烧热解,经高温填料恒温850℃选择性 抓捕镉、锌、铅,汞元素经吹扫进入原子吸收测汞装置进行测定;即为,通空气燃烧过程中,从4的右端喷出的燃烧产物,形成稳定的高速气流5,喷入测汞系统B的石英管8中;11为双光束冷原子荧光测汞装置,用于检测从10中热解释放的汞。12为抽气泵,用以提供从4末端喷出的燃烧产物在8,9,10,11中流动的动力气。燃烧过程结束,燃烧产物被抽进B单元完成了样品中汞的准确测定。
切换至氮气/氢气气氛下,样品继续加热,气体吹扫石英管,镉、锌、铅释出,样品燃烧灰分和可能吸附在3中的镉、锌、铅等元素在氢气的还原性气氛下急速释出,由氮氢混合气载带经过4,4为石英准直管,可将2,3中释出的分析物聚集、浓缩成束;由于4是维持在850度高温,从4的末端喷出的氮氢气被点燃,形成火焰5。镉、锌、铅等元素在火焰中被原子化;进入原子吸收检测器进行检测AA2。原子态的镉、锌、铅等元素在特征光谱6-3的照射下,选择性的吸收光,通过7来检测通过火焰衰减的光7-4,从而获得镉、锌、铅等元素的含量。
实施例3~8
选择大米、土壤和标液为样品,分别采用实施例1的装置和实施例2所述的方法,测定结果如表1所述,同时与现有技术的ICP-MS和GF-AAS进行对比,结果表明,准确性好。
表1镉(Cd)的测定结果与比较结果(采用镉空心阴极灯和光电倍增管检测器)
Figure PCTCN2019119851-appb-000003
Figure PCTCN2019119851-appb-000004
实施例9
选择食盐和酱油进行加标回收率的测定,结果如表2所示,表2可以看出,加标回收率结果满意。高盐样品中镉的测定是分析领域的难点,通过以下数据表明,本发明专利阐述的分析方法具有抗高盐干扰的能力,且为直接进样分析,具有较高的方法优越性。
表2测定高盐样品中镉与加标回收(采用镉空心阴极灯和光电倍增管检测器)
Figure PCTCN2019119851-appb-000005
实施例10
选择土壤类样品,进行镉、锌、铅、汞同时分析的数据结果。
表3镉、锌、铅、汞同测的结果(采用复合辉光放电灯和CCD检测器测镉、锌、铅)
Figure PCTCN2019119851-appb-000006
Figure PCTCN2019119851-appb-000007
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种同时测定汞、镉、锌、铅的装置,其特征在于,包括:
    气体发生装置;
    与气体发生装置相连的石英分析管;所述石英分析管包括依次设置的样品加热区、高温填料区和石英准直管;
    设置于所述石英分析管后方的原子吸收检测装置AA1;所述原子吸收检测装置包括原子吸收检测器、火焰和光源;
    设置于所述原子吸收检测装置后的石英催化管;所述石英催化管包括依次设置的火焰缓存区和吸附填料区;
    设置于所述石英催化管后的原子吸收测汞装置;所述原子吸收测汞装置包括依次设置的汞富集管、原子吸收检测器AA2和气泵。
  2. 根据权利要求1所述的装置,其特征在于,所述气体发生装置包括空气发生器和氮气/氢气发生器;所述光源为镉、锌、铅元素的复合元素灯;
    所述气体发生装置包括空气发生器和氮气/氢气发生器;
    所述氮气/氢气发生器包括:
    空气源;
    氢气发生装置;
    能够点燃空气及氢气的燃烧头;
    能够使燃烧产生的水汽凝结的水汽结构,所述水汽结构具有与所述空气源连接的空气进口、与所述氢气发生装置连接的氢气进口及设置于所述水汽结构顶部的生成气体出口。
  3. 根据权利要求1所述的装置,其特征在于,所述石英分析管中样品加热区、高温填料区的内径为19mm,外径22mm;所述石英准直管的外径为4mm,内径为2mm;所述石英催化管内径为19mm,外径为22mm;所述汞富集管内径为3mm,外径为5mm。
  4. 根据权利要求1所述的装置,其特征在于,所述高温填料区中的填料为氧化镁、或氧化钙或高岭土;所述吸附填料区中的填料为氧化钙和 二氧化锰中的一种或几种;所述汞富集管内填装有镀金石英砂。
  5. 根据权利要求1所述的装置,其特征在于,所述汞富集管与所述吸附填料区出口相连。
  6. 一种采用权利要求1~5任意一项所述的装置同时测定汞、镉、锌、铅的方法,其特征在于,包括:
    A)在气体发生装置提供的空气气氛下,样品在石英分析管的样品加热区燃烧热解,高温填料区的高温填料选择性的抓捕部分挥发的镉、锌、铅;汞元素经石英准直管汇聚、石英催化管吸附净化、进入冷原子吸收检测装置AA2进行汞元素的测定;
    B)将气体发生装置切换至氮气/氢气气氛下,样品继续加热,气体吹扫石英分析管,镉、锌、铅释出,进入原子吸收检测器AA1进行检测。
  7. 根据权利要求6所述的方法,其特征在于,所述空气流量为200~1000ml/min;所述氮气/氢气混合气体的比例为氮气:氢气=(0.1~10):1,所述混合气流量为100~1000mL/min。
  8. 根据权利要求6所述的方法,其特征在于,所述样品加热区的加热温度为200~1100℃;所述高温填料区的加热温度为500℃~1100℃;所述石英准直管的加热温度为500℃~1100℃。
  9. 根据权利要求6所述的方法,其特征在于,所述原子吸收检测器AA1为CCD扫描光纤光谱仪;镉、锌、铅分析波长分别为228.8nm、213.8nm、283.3nm;所述光源为镉、锌、铅的复合空心阴极灯,或单元素灯,或其他辉光放电灯。
  10. 根据权利要求6所述的方法,其特征在于,所述抽气泵的流速为200-2000mL/min,所述原子吸收测汞装置包括双光束冷原子吸收检测器AA2,采用低压汞灯做光源,光电二极管做检测器。
PCT/CN2019/119851 2019-10-29 2019-11-21 一种同时测定汞、镉、锌、铅的装置和方法 WO2021082117A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020541408A JP7224359B2 (ja) 2019-10-29 2019-11-21 水銀、カドミウム、亜鉛、鉛を同時に測定する装置及び方法
US16/965,303 US11754494B2 (en) 2019-10-29 2019-11-21 Device and method for simultaneously measuring mercury, cadmium, zinc and lead
EP19908071.4A EP3865856B1 (en) 2019-10-29 2019-11-21 Device and method for simultaneously measuring mercury, cadmium, zinc and lead

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911038388.3A CN110579564B (zh) 2019-10-29 2019-10-29 一种同时测定汞、镉、锌、铅的装置和方法
CN201911038388.3 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021082117A1 true WO2021082117A1 (zh) 2021-05-06

Family

ID=68815586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119851 WO2021082117A1 (zh) 2019-10-29 2019-11-21 一种同时测定汞、镉、锌、铅的装置和方法

Country Status (5)

Country Link
US (1) US11754494B2 (zh)
EP (1) EP3865856B1 (zh)
JP (1) JP7224359B2 (zh)
CN (1) CN110579564B (zh)
WO (1) WO2021082117A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640236A (zh) * 2021-08-11 2021-11-12 哈尔滨蔚蓝环境检测有限公司 一种耕地土壤中重金属镉的检测方法
CN113702310A (zh) * 2021-09-14 2021-11-26 长沙开元弘盛科技有限公司 一种用于土壤中镉分析的热释试剂以及使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879948A (en) * 1997-05-12 1999-03-09 Tennessee Valley Authority Determination of total mercury in exhaust gases
WO2009090608A1 (en) * 2008-01-15 2009-07-23 Tshwane University Of Technology Atomic absorption spectrometry
CN102967590A (zh) * 2012-11-13 2013-03-13 北京吉天仪器有限公司 一种直接进样同时测定汞和镉的方法和仪器
US8969832B2 (en) 2010-07-15 2015-03-03 Beijing Titan Instruments Co., Ltd. Electrothermal vaporization atomic fluorescence spectroscopy and spectrometer for determination of cadmium
CN204649610U (zh) 2015-04-30 2015-09-16 长沙开元仪器股份有限公司 一种双光束原子吸收测汞仪
CN205861540U (zh) * 2016-03-11 2017-01-04 中国农业科学院农业质量标准与检测技术研究所 一种用于电热蒸发原子吸收光谱法测定锌的装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544789A (en) * 1968-03-04 1970-12-01 Irwin Wieder Atomic absorption detection of given substances independent of absorption by background substances
US4300834A (en) * 1980-05-22 1981-11-17 Baird Corporation Inductively coupled plasma atomic fluorescence spectrometer
JPH0623691B2 (ja) * 1987-05-25 1994-03-30 株式会社日立製作所 原子吸光分光光度計
JP2783375B2 (ja) * 1992-08-05 1998-08-06 株式会社日立製作所 原子吸光光度計
JP3115504B2 (ja) * 1995-04-21 2000-12-11 株式会社日立製作所 原子吸光光度計および黒鉛管
JPH0989763A (ja) * 1995-09-20 1997-04-04 Hitachi Ltd 原子吸光分光光度計
US7354553B2 (en) * 2005-05-02 2008-04-08 Dirk Appel Method and apparatus for detecting the presence of elemental mercury in a gas sample
US7742167B2 (en) * 2005-06-17 2010-06-22 Perkinelmer Health Sciences, Inc. Optical emission device with boost device
CN104865206A (zh) * 2015-04-24 2015-08-26 上海伯顿医疗设备有限公司 一种单光电管五通道原子吸收光谱仪
CN108007911B (zh) 2017-12-29 2023-11-17 北京博晖创新光电技术股份有限公司 一种分开测定汞和镉的检测系统及检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879948A (en) * 1997-05-12 1999-03-09 Tennessee Valley Authority Determination of total mercury in exhaust gases
WO2009090608A1 (en) * 2008-01-15 2009-07-23 Tshwane University Of Technology Atomic absorption spectrometry
US8969832B2 (en) 2010-07-15 2015-03-03 Beijing Titan Instruments Co., Ltd. Electrothermal vaporization atomic fluorescence spectroscopy and spectrometer for determination of cadmium
CN102967590A (zh) * 2012-11-13 2013-03-13 北京吉天仪器有限公司 一种直接进样同时测定汞和镉的方法和仪器
CN204649610U (zh) 2015-04-30 2015-09-16 长沙开元仪器股份有限公司 一种双光束原子吸收测汞仪
CN205861540U (zh) * 2016-03-11 2017-01-04 中国农业科学院农业质量标准与检测技术研究所 一种用于电热蒸发原子吸收光谱法测定锌的装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI XIAOCHEN, LI ZENGCHANG, ZHANG YIXUE: "Comparison of Analysis Performance for Cd,Cr,Cu,Mn,Pb between t he Field-portable Atomic Absorption Spectrometer (AAS) and Conventional Graphite Furnace AAS", MODERN SCIENTIFIC INSTRUMENTS, vol. 3, 1 June 2010 (2010-06-01), pages 45 - 49, XP055813139 *
MAO, XUEFEI: "Study on Determination of Cadmium and Mercury in Agri-foods by Solid Sampling Electrothermal Vaporization Spectrometry Using Atomic Traps", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 June 2015 (2015-06-01), pages 1 - 141, XP055813135, [retrieved on 20210611] *
W. FRECHDC BAXTERG. DYVIKB. DYBDAHL: "On the measurement of total mercury in natural gases using the amalgamation technique and cold vapor atomic-absorption spectrometry", J. ANAL. AT. SPECTROM., vol. 10, 1995, pages 769 - 775
WANG BO, FENG LI, MAO XUEFEI, LIU JIXIN, YU CHONGCHONG, DING LAN, LI SIQI, ZHENG CHUANGMU, QIAN YONGZHONG: "Direct determination of trace mercury and cadmium in food by sequential electrothermal vaporization atomic fluorescence spectrometry using tungsten and gold coil traps", JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, ROYAL SOCIETY OF CHEMISTRY, vol. 33, no. 7, 1 January 2018 (2018-01-01), pages 1209 - 1216, XP055813141, ISSN: 0267-9477, DOI: 10.1039/C8JA00009C *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640236A (zh) * 2021-08-11 2021-11-12 哈尔滨蔚蓝环境检测有限公司 一种耕地土壤中重金属镉的检测方法
CN113702310A (zh) * 2021-09-14 2021-11-26 长沙开元弘盛科技有限公司 一种用于土壤中镉分析的热释试剂以及使用方法

Also Published As

Publication number Publication date
EP3865856A1 (en) 2021-08-18
EP3865856A4 (en) 2021-12-15
US20230160813A1 (en) 2023-05-25
US11754494B2 (en) 2023-09-12
EP3865856B1 (en) 2024-05-08
CN110579564A (zh) 2019-12-17
CN110579564B (zh) 2021-03-23
JP2022508981A (ja) 2022-01-20
JP7224359B2 (ja) 2023-02-17

Similar Documents

Publication Publication Date Title
Heringa et al. Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer
WO2021082117A1 (zh) 一种同时测定汞、镉、锌、铅的装置和方法
CN109856308B (zh) 一种分析氮氧同位素组成的方法及装置
US5661038A (en) Interface system for isotopic analysis of hydrogen
Zimmermann et al. Application of single‐particle laser desorption/ionization time‐of‐flight mass spectrometry for detection of polycyclic aromatic hydrocarbons from soot particles originating from an industrial combustion process
CN211825827U (zh) 生物质燃烧气溶胶制备与检测一体装置
CN110632165A (zh) 生物质燃烧气溶胶制备与检测一体装置及其方法
Xing et al. Novel solid sampling electrothermal vaporization atomic absorption spectrometry for fast detection of cadmium in grain samples
US8969832B2 (en) Electrothermal vaporization atomic fluorescence spectroscopy and spectrometer for determination of cadmium
JP2000065699A (ja) 分析用試料燃焼装置及び分析用試料燃焼装置における不活性ガス,酸素含有ガス供給制御方法並びに試料燃焼装置を有する分析システム
Zhao et al. Effect of photooxidation on size distribution, light absorption, and molecular compositions of smoke particles from rice straw combustion
CN106290201A (zh) 一种测汞系统及测汞方法
US6577390B1 (en) Continuous emissions monitor of multiple metal species in harsh environments
Wan-Qi et al. Application of vacuum ultraviolet single-photon ionization mass spectrometer in online analysis of volatile organic compounds
CN109900777B (zh) 一种快速在线分析材料燃烧产物气成分的装置和应用
CN110655045A (zh) 除氧装置及除氧方法
CN116972387B (zh) 燃烧量热及自由基原位监测用抑烟式火焰分离燃烧装置及联合分析系统
JP2000065721A (ja) 分析装置
US5000920A (en) Device for the heat treatment of gaseous test samples
CN213091574U (zh) 一种基于直接进样法的汞含量测定装置
GB2486495A (en) Flame technique for the analysis of samples using infra-red absorption spectroscopy
CZ302757B6 (cs) Zpusob prekoncentrace bizmutu pro jeho stanovení metodou atomové absorpcní spektrometrie a atomizátor pro prekoncentraci bizmutu
Ebdon et al. Use of hydrogen in electrothermal atomic absorption spectrometry to decrease the background signal arising from environmental slurry samples
WO2018231047A1 (en) System and method for measuring mercury in a hydrocarbon stream
Lakshmanan Atomic absorption spectroscopy and determination of trace metals

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020541408

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019908071

Country of ref document: EP

Effective date: 20200713

ENP Entry into the national phase

Ref document number: 2019908071

Country of ref document: EP

Effective date: 20200713

NENP Non-entry into the national phase

Ref country code: DE